Searchable list of Earth Science Publications
Earth Science Publications Archive
2023 Publications
May 2023
Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign
Johnson, M. S., A. H. Souri, S. Philip, R. Kumar, A. Naeger, J. Geddes, L. Judd, S. Janz, H. Chong, and J. Sullivan. 2023. Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign. Atmos. Meas. Tech.: 16, 2431–2454
https://amt.copernicus.org/articles/16/2431/2023/
Inland Water Greenhouse Gas Budgets for RECCAP2: 2. Regionalization and Homogenization of Estimates
Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L., Bastviken, D., Hastie, A., Holgerson, M.A., Johnson, M.S., et al. (2023). Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates. Global Biogeochemical Cycles, 37, e2022GB007658.
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GB007658
Review Article: Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State-Of-The-Art of Global Scale Assessments
Johnson, M.S., 2023. Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State‐of‐the‐Art of Global Scale Assessments. Global Biogeochemical Cycles 37(5): e2022GB007657.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GB007657
April 2023
BioSentinel: Validating Sensitivity of Yeast Biosensors to Deep Space Relevant Radiation
Liddell, L.C., Gentry, D.M., Gilbert, R., Marina, D., Massaro Tieze, S., Padgen, M.R., Akiyama, K., Keenan, K., Bhattacharya, S. and Santa Maria, S.R. (2023). BioSentinel: Validating Sensitivity of Yeast Biosensors to Deep Space Relevant Radiation. Astrobiology 23(6): 9pp.
https://www.liebertpub.com/doi/full/10.1089/ast.2022.0124
Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
Lenhardt, E. D., Gao, L., Redemann, J., Xu, F., Burton, S. P., Cairns, B., Chang, I., Ferrare, R. A., Hostetler, C. A., Saide, P. E., Howes, C., Shinozuka, Y., Stamnes, S., Kacarab, M., Dobracki, A., Wong, J., Freitag, S., and Nenes, A.: Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic, Atmos. Meas. Tech., 16, 2037–2054, https://doi.org/10.5194/amt-16-2037-2023.
https://amt.copernicus.org/articles/16/2037/2023/
Diverging ozone trends above western North America: Boundary layer decreases vs. free tropospheric increases
Chang, K.-L., Cooper, O.R., Rodriguez, G., Iraci, L. T., Yates, E.L., Johnson, M. S., et al. (2023). Diverging ozone trends above western North America: Boundary layer decreases versus free tropospheric increases. Journal of Geophysical Research: Atmospheres, 128(8), e2022JD038090.
http://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD038090
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
Chang, I., Gao, L., Flynn, C. J., Shinozuka, Y., Doherty, S. J., Diamond, M. S., Longo, K. M., Ferrada, G. A., Carmichael, G. R., Castellanos, P., da Silva, A. M., Saide, P. E., Howes, C., Xue, Z., Mallet, M., Govindaraju, R., Wang, Q., Cheng, Y., Feng, Y., Burton, S. P., Ferrare, R. A., LeBlanc, S. E., Kacenelenbogen, M. S., Pistone, K., Segal-Rozenhaimer, M., Meyer, K. G., Ryoo, J.-M., Pfister, L., Adebiyi, A. A., Wood, R., Zuidema, P., Christopher, S. A., and Redemann, J.: On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic, Atmos. Chem. Phys., 23, 4283–4309.
https://acp.copernicus.org/articles/23/4283/2023/acp-23-4283-2023.html
Improving the Quality of MODIS LAI Products by Exploiting Spatiotemporal Correlation Information
Wang, J., Yan, K., Gao, S., Pu, J., Liu, J., Park, T., Bi, J., Maeda, E.E., Heiskanen, J., Knyazikhin, Y. and Myneni, R.B. (2023). Improving the Quality of MODIS LAI Products by Exploiting Spatiotemporal Correlation Information. IEEE Transactions on Geoscience and Remote Sensing 61: 4402319.
https://ieeexplore.ieee.org/abstract/document/10091530
Author Correction: Climate-mediated shifts in temperature fluctuations promote extinction risk
Duffy, K., Gouhier, T.C. and Ganguly, A.R., 2023. Author Correction: Climate-mediated shifts in temperature fluctuations promote extinction risk. Nature Climate Change, pp.1-1.
https://www.nature.com/articles/s41558-023-01649-w
Author Correction: GLORIA – A globally representative hyperspectral in situ dataset for optical sensing of water quality
Lehmann, M.K., …, Jeremy A. Kravitz, et al. 2023. Author Correction: GLORIA-A globally representative hyperspectral in situ dataset for optical sensing of water quality. Scientific data, 10(1), p.191.
https://www.nature.com/articles/s41597-023-02069-3
A GeoNEX-based high-spatiotemporal-resolution product of land surface downward shortwave radiation and photosynthetically active radiation
Li, R., Wang, D., Wang, W., and Nemani, R.: A GeoNEX-based high-spatiotemporal-resolution product of land surface downward shortwave radiation and photosynthetically active radiation, Earth Syst. Sci. Data, 15, 1419–1436.
https://essd.copernicus.org/articles/15/1419/2023/essd-15-1419-2023.html
March 2023
Pyrocumulonimbus affect average stratospheric aerosol composition
Katich, J.M., Apel, E.C., Bourgeois, I., Brock, C.A., Bui, T.P., Campuzano-Jost, P., Commane, R., Daube, B., Dollner, M., Fromm, M., Froyd, K.D., (…) Bui, T., et al. (2023). Pyrocumulonimbus affect average stratospheric aerosol composition. Science, 379(6634): 815-820.
https://www.science.org/doi/full/10.1126/science.add3101
Convective Impact on the Global Lower Stratospheric Water Vapor Budget
Ueyama, R., Schoeberl, M., Jensen, E., Pfister, L., Park, M., & Ryoo, J.-M. (2023). Convective impact on the global lower stratospheric water vapor budget. Journal of Geophysical Research: Atmospheres, 128(6): e2022JD037135.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022JD037135
Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN)
Segal Rozenhaimer, M.; Nukrai, D.; Che, H.; Wood, R.; Zhang, Z. (2023). Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN). Remote Sens. 2023, 15(6): 1607.
https://www.mdpi.com/2072-4292/15/6/1607
Variation in Leaf Reflectance Spectra Across the California Flora Partitioned by Evolutionary History, Geographic Origin, and Deep Time
Griffith, D.M., Byrd, K.B., Taylor, N., Allan, E., Bittner, L., O’Brien, B., Parker, V.T., Vasey, M.C., Pavlick, R. and Nemani, R.R., 2023. Variation in leaf reflectance spectra across the California flora partitioned by evolutionary history, geographic origin, and deep time. Journal of Geophysical Research: Biogeosciences 128: e2022JG007160.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022JG007160
Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC4RS Case Study
Cuchiara, G. C., Fried, A., Barth, M. C., Bela, M. M., Homeyer, C. R., Walega, J., Weibring, P., Richter, D., Woods, S., Beyersdorf, A., Bui, T.V., and Dean-Day, J. (2023). Effect of marine and land convection on wet scavenging of ozone precursors observed during a SEAC4RS case study. Journal of Geophysical Research: Atmospheres 128: e2022JD037107.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022JD037107
National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake
Byrne, B., …, Johnson, M.S., et al. (2023). National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth Syst. Sci. Data 15: 963–1004.
https://essd.copernicus.org/articles/15/963/2023/essd-15-963-2023.html
The Habitability of Venus
Westall, F., D. Honing, G. Avice, D. Gentry, T. Gerya, C. Gillmann, N. Izenberg, M.J. Way, and C. Wilson. (2023) The habitability of Venus. In C. F. Wilson, D. Breuer, C. Gillmann, S. E. Smrekar, T. Spohn and T. Widemann (Eds.), The Habitability of Venus. Space Sci Rev 219, 17 (2023)
https://doi.org/10.1007/s11214-023-00960-4
Submesoscale effects on changes to export production under global warming
Brett, G. J., Whitt, D. B., Long, M. C., Bryan, F. O., Feloy, K., & Richards, K. J. (2023). . Global Biogeochemical Cycles, 37, e2022GB007619.
https://doi.org/10.1029/2022GB007619
February 2023
A globally representative hyperspectral in situ dataset for optical sensing of water quality
Lehmann, M.K., Gurlin, D., Pahlevan, N., and 73 other authors, including Kravitz, J.A. GLORIA – A globally representative hyperspectral in situ dataset for optical sensing of water quality. Sci Data 10, 100 (2023)
https://www.nature.com/articles/s41597-023-01973-y
The Cross Equatorial Transport of the Hunga Tonga-Hunga Ha’apai Eruption Plume
Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., and Yu, W. 2023. Geophysical Research Letters, 50.e2022GL102443.
https://doi.org/10.1029/2022GL102443
Dynamics of volcanic vortex rings
Pulvirenti, F., Scollo, S., Ferlito, C., Schwandner, F.M. (2023). Dynamics of volcanic vortex rings. Scientific Reports, 13(1), p.2369.
https://www.nature.com/articles/s41598-022-26435-0
Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties
Souri, A. H., Johnson, M. S., Wolfe, G. M., Crawford, J. H., Fried, A., Wisthaler, A., Brune, W. H., Blake, D. R., Weinheimer, A. J., Verhoelst, T., Compernolle, S., Pinardi, G., Vigouroux, C., Langerock, B., Choi, S., Lamsal, L., Zhu, L., Sun, S., Cohen, R. C., Min, K.-E., Cho, C., Philip, S., Liu, X., and Chance, K. (2023).
Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties, Atmos. Chem. Phys., 23, 1963–1986.
https://acp.copernicus.org/articles/23/1963/2023/acp-23-1963-2023.html
Improving the MODIS LAI compositing using prior time-series information
Jiabin Pu, Kai Yan, Si Gao, Yiman Zhang, Taejin Park, Xian Sun, Marie Weiss, Yuri Knyazikhin, Ranga B. Myneni (2023). Improving the MODIS LAI compositing using prior time-series information, Remote Sensing of Environment, 287, 113493.
https://www.sciencedirect.com/science/article/pii/S0034425723000445
Using commercial high-resolution satellite imagery to monitor a nuisance macroalga in the largest marine protected area in the USA
Fraiola, K.M., Miura, T., Martinez, J., Lopes, K.H., Amidon, F., Torres-Pérez, J., Spalding, H.L., Williams, T., So, K., Sachs, E. and Kosaki, R.K. (2022). Using commercial high-resolution satellite imagery to monitor a nuisance macroalga in the largest marine protected area in the USA. Coral Reefs, 42:253-259.
https://link.springer.com/article/10.1007/s00338-022-02336-6
Wildfire adaptation in the Russian Arctic: A systematic policy review
I.V. Canosa, R. Biesbroek, J. Ford, J.L. McCarty, R.W. Orttung, J. Paavola, D. Burnasheva (2023). Wildfire adaptation in the Russian Arctic: A systematic policy review. Climate Risk Management, 39: 100481.
https://www.sciencedirect.com/science/article/pii/S2212096323000074?via%3Dihub
Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties
Souri, A. H., Johnson, M. S., Wolfe, G. M., Crawford, J. H., Fried, A., Wisthaler, A., Brune, W. H., Blake, D. R., Weinheimer, A. J., Verhoelst, T., Compernolle, S., Pinardi, G., Vigouroux, C., Langerock, B., Choi, S., Lamsal, L., Zhu, L., Sun, S., Cohen, R. C., Min, K.-E., Cho, C., Philip, S., Liu, X., and Chance, K. (2023).
Characterization of errors in satellite-based HCHO ∕ NO2 tropospheric column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and retrieval uncertainties, Atmos. Chem. Phys., 23, 1963–1986.
https://acp.copernicus.org/articles/23/1963/2023/acp-23-1963-2023.html
Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s
Stavros, E. N., J. Chrone, K. Cawse-Nicholson, A. Freeman, N. F. Glenn, L. Guild, R. Kokaly, C. Lee, J. Luvall, R. Pavlick, B. Poulter, S. Schollaert Uz, S. Serbin, D. R. Thompson, P. A. Townsend, K. Turpie, K. Yuen, K. Thome, W. Wang, S.-K. Zareh, J. Nastal, D. Bearden, C. E. Miller, D. Schimel (2022).
Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s. Special Section: The Earth in living color: spectroscopic and thermal imaging of the Earth: NASA’s Decadal Survey Surface Biology and Geology Designated Observable. JGR Biogeosciences 28(1).
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JG006471
Development of a benchmark Eddy flux evapotranspiration dataset for evaluation of satellite-driven evapotranspiration models over the CONUS
Volk, J. M., Huntington, J., Melton, F. S., Allen, R., Anderson, M. C., Fisher, J. B., Kilic, A., SEnay, G., Halverson, G., Knipper, K., Minor, B., Pearson, C., Wang, T., Yang, Y., Evett, S., French, A., Jason R., & Kustas, W. (2023). Development of a benchmark Eddy flux evapotranspiration dataset for evaluation of satellite-driven evapotranspiration models over the CONUS. Agricultural and Forest Meteorology, 331, 109307.
https://www.sciencedirect.com/science/article/pii/S0168192323000011
Explainable deep learning for insights in El Niño and river flows
Liu, Y., Duffy, K., Dy, J. G., & Ganguly, A. R. (2023). Explainable deep learning for insights in El Niño and river flows. Nature Communications, 14(1):339.
https://www.nature.com/articles/s41467-023-35968-5
January 2023
Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget
Watts, J. D., Farina, M., Kimball, J. S., Schiferl, L. D., Liu, Z., Arndt, K. A., Zona, D., Ballantyne, A., Euskirchen, E. S., Parmentier, F.-J., Helbig, M., Sonnentag, O., Tagesson, T., Rinne, J., Ikawa, H., Ueyama, M., Kobayashi, H., Sachs, T., Nadeau, D. F., Kochendorfer, J., Jackowicz-Korczynski, M., Virkkala, A., Aurela, M., Commane, R., Byrne, B., Birch, L., Johnson, M. S., et al. (2023). Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Global Change Biology, 00, 1– 20.
https://onlinelibrary.wiley.com/doi/10.1111/gcb.16553
Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s
Stavros, E. N., Chrone, J., Cawse-Nicholson, K., Freeman, A., Glenn, N. F., Guild, L., Kokelay, R., Lee, C., Luvall, J., Pavlick, R., Poulter, B., Schollaert Uz, S., Serbin, S., Thompson, D.R., Townsend, P.A., Turpie, K., Yuen, K., Thome, K., Wang, W., Zareh, S.-K., Nastal, J., Bearden, D., Miller, C.E., Schimel, D. (2023). Designing an observing system to study the Surface Biology and Geology (SBG) of the Earth in the 2020s. Journal of Geophysical Research: Biogeosciences, 128 (1), e2021JG006471.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JG006471
Towards a whole-system framework for wildfire monitoring using Earth observations
Crowley, M. A., Stockdale, C. A., Johnston, J. M., Wulder, M. A., Liu, T., McCarty, J. L., Rieb, J. T., Cardille, J. A., & White, J. C. (2022). Towards a whole-system framework for wildfire monitoring using Earth observations. Global Change Biology, 00, 1– 14.
https://onlinelibrary.wiley.com/doi/10.1111/gcb.16567
Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires
Rickly, P. S., Guo, H., Campuzano-Jost, P., Jimenez, J. L., Wolfe, G. M., Bennett, R., Bourgeois, I., Crounse, J. D., Dibb, J. E., DiGangi, J. P., Diskin, G. S., Dollner, M., Gargulinski, E. M., Hall, S. R., Halliday, H. S., Hanisco, T. F., Hannun, R. A., Liao, J., Moore, R., Nault, B. A., Nowak, J. B., Peischl, J., Robinson, C. E., Ryerson, T., Sanchez, K. J., Schöberl, M., Soja, A. J., St. Clair, J. M., Thornhill, K. L., Ullmann, K., Wennberg, P. O., Weinzierl, B., Wiggins, E. B., Winstead, E. L., and Rollins, A. W. (2022): Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., 22, 15603–15620.
https://acp.copernicus.org/articles/22/15603/2022/acp-22-15603-2022.html
2022 Publications
December 2022
Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires
Rickly, P., Guo, H., Campuzano-Jost, P., Jimenez, J.L., Wolfe, G.M., Bennett, R., Bourgeois, I., Crounse, J.D., Dibb, J.E., DiGangi, J.P., Diskin, G.S., Dollner, M., Gargulinski, E.M., Hall, S.R., Halliday, H.S., Hanisco, T.F., Hannun, R.A., Liao, J., Moore, R., Nault, B.A., Nowak, J.B., Peischl, J., Robinson, C.E., Ryerson, T., Sanchez, K.J., Schöberl, M., Soja, A.j., St.Clair, J.M., Thornhill, K.L., Ullmann, K., Wennberg, P.O., Weinzierl, B., Wiggins, E.B., Winstead, E.L., Rollins, A.W. 2022. Emission factors and evolution of SO2 measured from biomass burning in wild and agricultural fires. Atmospheric Chemistry and Physics, 22, 15603–15620.
https://acp.copernicus.org/articles/22/15603/2022/acp-22-15603-2022.html
Neighborhood-scale ambient NO2 concentrations using TROPOMI NO2 data: Applications for spatially comprehensive exposure assessment
Lee, H.J., Liu, Y., and Chatfield, R.B., 2023. Neighborhood-scale ambient NO2 concentrations using TROPOMI NO2 data: Applications for spatially comprehensive exposure assessment. Science of The Total Environment, 857(3):159342.
https://www.sciencedirect.com/science/article/pii/S0048969722064415
Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types
Pešek, O., Segal-Rozenhaimer, M., and Karnieli, A., 2022. Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types. Remote Sensing, 14(20), p.5210.
https://www.mdpi.com/2072-4292/14/20/5210
November 2022
Diverse Responses of Multiple Satellite-Derived Vegetation Greenup Onsets to Dry Periods in the Amazon
Zhang, X., Shen, Y., Gao, S., Wang, W., & Schaaf, C. (2022). Diverse responses of multiple satellite-derived vegetation greenup onsets to dry periods in the Amazon. Geophysical Research Letters, 49, e2022GL098662
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL100248
Deep Convective Cloud Top Altitudes at High Temporal and Spatial Resolution
Pfister, L., Ueyama, R., Jensen, E. J., & Schoeberl, M. R. (2022). Deep convective cloud top altitudes at high temporal and spatial resolution. Earth and Space Science, 9, e2022EA002475.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EA002475
A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and thier intEractionS) campaign over the southeastern Atlantic during 2016-2018: Part 2 – Daily and synoptic characteristics
Ryoo, J.-M., Pfister, L., Ueyama, R., Zuidema, P., Wood, R., Chang, I., and Redemann, J., 2022: A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics, Atmos. Chem. Phys., 22, 14209–14241
https://acp.copernicus.org/articles/22/14209/2022/
Constraining China’s land carbon sink from emerging satellite CO2 observations: progress and challenges. Global Change Biology
Wang, Y., Tian, X., Chevallier, F., Johnson, M.S., Philip, S., Baker, D.F., Schuh, A.E., Deng, F., Zhang, X., Zhang, L., Zhu, D. and Wang, X. (2022), Constraining China’s land carbon sink from emerging satellite CO2 observations: progress and challenges. Glob Change Biol. 8:6838–6846.
https://onlinelibrary.wiley.com/doi/10.1111/gcb.16412
Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment
Peterson, D.A., Thapa, L.H., Saide, P.E., Soja, A.J., Gargulinski, E.M., Hyer, E.J., Weinzierl, B., Dollner, M., Schöberl, M., Papin, P.P., Kondragunta, S., Camacho, C.P., Ichoku, C., Moore, R.H., Hair, J.W., Crawford, J.H., Dennison, P.E., Kalashnikova, O.V., Bennese, C.E., Bui, T.P., DiGangi, J.P., Diskin, G.S., Fenn, M.A., Halliday, H.S., Jimenez, J., Nowak, J.B., Robinson, C., Sanchez, K., Shingler, T.J., Thornhill, L., Wiggins, E.B., Winstead, E., and Chuanyu Xu. 2022. Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment. Bulletin of the American Meteorological Society 103(9):E2140-E2167.
https://journals.ametsoc.org/view/journals/bams/103/9/BAMS-D-21-0049.1.xml
Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments
Barrett, P. A., Abel, S. J., Coe, H., Crawford, I., Dobracki, A., Haywood, J., Howell, S., Jones, A., Langridge, J., McFarquhar, G. M., Nott, G. J., Price, H., Redemann, J., Shinozuka, Y., Szpek, K., Taylor, J. W., Wood, R., Wu, H., Zuidema, P., Bauguitte, S., Bennett, R., Bower, K., Chen, H., Cochrane, S., Cotterell, M., Davies, N., Delene, D., Flynn, C., Freedman, A., Freitag, S., Gupta, S., Noone, D., Onasch, T. B., Podolske, J., Poellot, M. R., Schmidt, S., Springston, S., Sedlacek III, A. J., Trembath, J., Vance, A., Zawadowicz, M. A., and Zhang, J.: Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments, Atmos. Meas. Tech., 15, 6329–6371.
https://amt.copernicus.org/articles/15/6329/2022/amt-15-6329-2022.html
Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses
Foster, A., (25 co-authors)…C. Potter, et al., 2022, Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses. Environmental Research Letters. 17(11).
https://iopscience.iop.org/article/10.1088/1748-9326/ac98d7
October 2022
Climate-mediated shifts in temperature fluctuations promote extinction risk
Duffy, K., Gouhier, T.C. & Ganguly, A.R. Climate-mediated shifts in temperature fluctuations promote extinction risk. Nature Climate Change. (2022).
https://www.nature.com/articles/s41558-022-01490-7
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Byrne, B., Liu, J., Yi, Y., Chatterjee, A., Basu, S., Cheng, R., Doughty, R., Chevallier, F., Bowman, K. W., Parazoo, N. C., Crisp, D., Li, X., Xiao, J., Sitch, S., Guenet, B., Deng, F., Johnson, M. S., Philip, S., McGuire, P. C., and Miller, C. E.: Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia, Biogeosciences, 19, 4779–4799
https://bg.copernicus.org/articles/19/4779/2022/
Analysis and impact of the Hunga Tonga-Hunga Ha’apai stratospheric water vapor plume
Schoeberl, M. R., Y. Wang, R. Ueyama, G. Taha, E. Jensen, and W. Yu. 2022. Analysis and impact of the Hunga Tonga-Hunga Ha’apai stratospheric water vapor plume. Geophysical Research Letters, 49, e2022GL100248. https://doi.org/10.1029/2022GL100248
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL100248
Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation
June, N. A., Hodshire, A. L., Wiggins, E. B., Winstead, E. L., Robinson, C. E., Thornhill, K. L., Sanchez, K. J., Moore, R. H., Pagonis, D., Guo, H., Campuzano-Jost, P., Jimenez, J. L., Coggon, M. M., Dean-Day, J. M., Bui, T. P., Peischl, J., Yokelson, R. J., Alvarado, M. J., Kreidenweis, S. M., Jathar, S. H., and Pierce, J. R.: Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation, Atmos. Chem. Phys., 22, 12803–12825.
https://acp.copernicus.org/articles/22/12803/2022/acp-22-12803-2022.html
September 2022
Multisensor Machine Learning to Retrieve High Spatiotemporal Resolution Land Surface Temperature
K. Duffy, T. J. Vandal and R. R. Nemani, 2022.”Multisensor Machine Learning to Retrieve High Spatiotemporal Resolution Land Surface Temperature,” in IEEE Access, vol. 10, pp. 89221-89231
https://ieeexplore.ieee.org/document/9856638
Evaluating Global Atmospheric Inversions of Terrestrial Net Ecosystem Exchange CO2 Over North America on Seasonal and Sub-Continental Scales
Cui, Y.Y., Zhang, L., Jacobson, A.R., Johnson, M.S., Philip, S., Baker, D., Chevallier, F., Schuh, A.E., Liu, J., Crowell, S. and Peiro, H.E. (2022). Evaluating global atmospheric inversions of terrestrial net ecosystem exchange CO2 over North America on seasonal and sub‐continental scales. Geophysical Research Letters, e2022GL100147. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL100147
Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2.
Yang A., Tan Q., Rajapakshe C., Chin M., and Yu H. (2022) Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2. Front. Environ. Sci. 10:975755. https://www.frontiersin.org/articles/10.3389/fenvs.2022.975755/full
On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset
Liner, S.; Ryoo, J.-M.; Chiao, S. On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset. Water 2022, 14, 2392. https://www.mdpi.com/2073-4441/14/15/2392
Phenology of Primary Producers (State of the Climate in 2021: Global Climate)
Hemming, D. L., O. Anneville., Y. Aono., J. Garforth., A. Menzel., J. O’Keefe., T. Park., A.D. Richardson., T. Rutishauser., T.H. Sparks., S.J. Thackeray., A. van Vliet. and Y. Yuan., 2022: Phenology of Primary Producers. In: Jessica Blunden & Tim Boyer (eds.), “State of the Climate in 2021: Global Climate“. Bulletin of the American Meteorological Society, 103 (8), S11-S142 (article: S105–S108). https://journals.ametsoc.org/view/journals/bams/103/8/BAMS-D-22-0092.1.xml?tab_body=pdf
Tundra Greenness (State of the Climate in 2021: The Arctic)
Frost, G. V., M. J. Macander, U. S. Bhatt, L. T. Berner, J. W. Bjerke, H. E. Epstein, B. C. Forbes, S. J. Goetz, M. M. P. D. Heijmans, M. J. Lara, R. Í. Magnússon, T. Park, G. K. Phoenix, J. E. Pinzon, S. P. Serbin, H. Tømmervik, C. J. Tucker, D. A. Walker, and D. Yang. 2022. Tundra greenness. In: R. Thoman, M.L. Druckenmiller, & T. Moon (eds.), “State of the Climate in 2021: The Arctic”. Bulletin of the American Meteorological Society 103 (8):S257-S306 (article: S291–S293). https://journals.ametsoc.org/view/journals/bams/103/8/BAMS-D-22-0082.1.xml
Homogeneous Freezing Events Sampled in the Tropical Tropopause Layer
Jensen, E. J., Diskin, G. S., DiGangi, J., Woods, S., Lawson, R. P., & Bui, T. V. (2022). Homogeneous freezing events sampled in the tropical tropopause layer. Journal of Geophysical Research: Atmospheres, 127, e2022JD036535. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022JD036535
Rain Impacts on the Surface Atmosphere and Upper Ocean in the Central Equatorial Pacific
Whitt, D. B. (2022) https://journals.ametsoc.org/view/journals/phoc/52/9/JPO-D-22-0033.1.xml
Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties
LeBlanc, S. E., Segal-Rozenhaimer, M., Redemann, J., Flynn, C., Johnson, R. R., Dunagan, S. E., Dahlgren, R., Kim, J., Choi, M., da Silva, A., Castellanos, P., Tan, Q., Ziemba, L., Lee Thornhill, K., and Kacenelenbogen, M. (2022). Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties, Atmos. Chem. Phys., 22, 11275–11304. https://acp.copernicus.org/articles/22/11275/2022/acp-22-11275-2022.html
August 2022
Multi-sensor machine learning to retrieve high spatiotemporal resolution land surface temperature
Duffy, K., Vandal, T. and Nemani, R. (2022). Multi-sensor machine learning to retrieve high spatiotemporal resolution land surface temperature. IEEE Access 10: 89221-89231. https://ieeexplore.ieee.org/abstract/document/9856638
A Lagrangian View of Seasonal Stratosphere-Troposphere Exchange
Schoeber, M.R., Ueyama, R. and Pfister, L., Bergman (2022). A Lagrangian View of Seasonal Stratosphere‐Troposphere Exchange. Journal of Geophysical Research: Atmospheres, e2022JD036772. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022JD036772
Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS
Doherty, C.T., Johnson, L.F., Volk, J., Mauter, M.S., Bambach, N., McElrone, A.J., Alfieri, J.G., Hipps, L.E., Prueger, J.H., Castro, S.J., Alsina, M.M., Kustas, W.P., and F.S. Melton, 2022. Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS. Irrigation Science, pp.1-16. https://link.springer.com/article/10.1007/s00271-022-00808-9
Cloud processing and weeklong ageing affect biomass burning aerosol properties over the south-eastern Atlantic
Che, H., Segal-Rozenhaimer, M., Zhang, L., Dang, C., Zuidema, P., Dobracki, A., Sedlacek, A.J., Coe, H., Wu, H., Taylor, J. and Zhang, X., 2022. Cloud processing and weeklong ageing affect biomass burning aerosol properties over the south-eastern Atlantic. Communications Earth & Environment (Nature), 3(1), pp.1-9 https://www.nature.com/articles/s43247-022-00517-3