Suggested Searches

2.0    Fundamentals of Systems Engineering 
2.1    The Common Technical Processes and the SE Engine
2.2    An Overview of the SE Engine by Project Phase   
2.3    Example of Using the SE Engine
2.4    Distinctions between Product Verification and Product Validation  
2.5    Cost Effectiveness Considerations 
2.6    Human Systems Integration (HSI) in the SE Process 
2.7    Competency Model for Systems Engineers 

In Pre-Phase A, the SE engine is used to develop the initial concepts; clearly define the unique roles of humans, hardware, and software in performing the missions objectives; establish the system functional and performance boundaries; develop/identify a preliminary/draft set of key high-level requirements, define one or more initial Concept of Operations (ConOps) scenarios; realize these concepts through iterative modeling, mock-ups, simulation, or other means; and verify and validate that these concepts and products would be able to meet the key high-level requirements and ConOps. The operational concept must include scenarios for all significant operational situations, including known off-nominal situations. To develop a useful and complete set of scenarios, important malfunctions and degraded-mode operational situations must be considered. The importance of early ConOps development cannot be underestimated. As system requirements become more detailed and contain more complex technical information, it becomes harder for the stakeholders and users to understand what the requirements are conveying; i.e., it may become more difficult to visualize the end product. The ConOps can serve as a check in identifying missing or conflicting requirements.

Note that this Pre-Phase A initial concepts development work is not the formal verification and validation program that is performed on the final product, but rather it is a methodical run through ensuring that the concepts that are being developed in this Pre-Phase A are able to meet the likely requirements and expectations of the stakeholders. Concepts are developed to the lowest level necessary to ensure that they are feasible and to a level that reduces the risk low enough to satisfy the project. Academically, this process could proceed down to the circuit board level for every system; however, that would involve a great deal of time and money. There may be a higher level or tier of product than circuit board level that would enable designers to accurately determine the feasibility of accomplishing the project, which is the purpose of Pre-Phase A.

During Phase A, the recursive use of the SE engine is continued, this time taking the concepts and draft key requirements that were developed and validated during Pre-Phase A and fleshing them out to become the set of baseline system requirements and ConOps. During this phase, key areas of high risk might be simulated to ensure that the concepts and requirements being developed are good ones and to identify verification and validation tools and techniques that will be needed in later phases.

During Phase B, the SE engine is applied recursively to further mature requirements and designs for all products in the developing product tree and perform verification and validation of concepts to ensure that the designs are able to meet their requirements. Operational designs and mission scenarios are evaluated and feasibility of execution within design capabilities and cost estimates are assessed.

Phase C again uses the left side of the SE engine to finalize all requirement updates, finalize the ConOps validation, develop the final designs to the lowest level of the product tree, and begin fabrication.

Phase D uses the right side of the SE engine to recursively perform the final implementation, integration, verification, and validation of the end product, and at the final pass, transition the end product to the user.

The technical management processes of the SE engine are used in Phases E and F to monitor performance; control configuration; and make decisions associated with the operations, sustaining engineering, and closeout of the system. Any new capabilities or upgrades of the existing system reenter the SE engine as new developments.