Rei Ueyama
Research Scientist
Affiliation: NASA Ames Research Center
Division: Earth Science Division (SG)
Email: rei.ueyama@nasa.gov
Phone: (650) 604-3903
Professional Biography
Dr. Rei Ueyama is a Research Physical Scientist and a Forecasting and Flight Planning Lead in the Earth Science Division. Her scientific expertise is on stratospheric dynamics and transport with a focus on stratosphere – troposphere exchange processes that influence the composition of the upper troposphere and lower stratosphere. She analyzes a variety of observational datasets including measurements from remote sensing and airborne platforms and combines them with numerical models to elucidate the processes in the middle atmosphere and their impact on Earth’s climate.
Dr. Ueyama has participated in numerous NASA airborne missions, serving leadership roles in Mission Science, Meteorological Forecasting, and Flight Planning. She leads the NASA Ames Airborne Science Meteorological Support team (https://bocachica.arc.nasa.gov/), providing forecasting support for NASA’s aircraft campaigns. She is also the Science PI of the Meteorological Measurement System (MMS), an airborne instrument that measures science-quality in situ state parameters such as pressure, temperature, and three-dimensional wind vectors (https://airbornescience.nasa.gov/mms).
Prior to her arrival at NASA Ames Research Center as a NASA Postdoctoral Research Fellow in 2012, Dr. Ueyama held a postdoctoral research associate position at University of Washington and NorthWest Research Associates. She graduated from Cornell University with a B.S. in Science of Earth Systems (and a minor in Atmospheric Science) in 2003 and M.S. in Oceanography in 2004. She obtained her Ph.D. in Atmospheric Sciences from University of Washington in 2010.
Education
Ph.D., Atmospheric Sciences, University of Washington, 2010
M.S., Oceanography, Cornell University, 2004
B.S., Science of Earth Systems, Cornell University, 2003
Professional Experience
2018 – present: Research Physical Scientist, NASA Ames Research Center
2015 – 2018: Research Scientist, Bay Area Environmental Research Institute, NASA Ames Research Center
2012 – 2015: NASA Postdoctoral Research Fellow, NASA Ames Research Center
2011 – 2012: Postdoctoral Research Associate, University of Washington & NorthWest Research Associates (NWRA)
NASA Airborne Mission Experience
- PACE-PAX, Meteorological Forecasting Lead, 2024
- ARCSIX, Meteorological Forecasting Co-lead, 2024
- SABRE, Meteorological Forecaster and Flight Planner, 2023 – present
- ACCLIP, Meteorological Forecasting Lead and WB-57 Flight Planner, 2022
- DCOTSS, Forecasting and Flight Planning Lead, 2021 – 2026
- ORACLES, Meteorological Forecasting Co-lead, 2017 – 2018
- POSIDON, Meteorological Forecasting Lead and Flight Planner, 2016
- ATTREX-CAST, Meteorological Forecasting Lead, 2015
- SEAC4RS, Meteorological Forecaster, 2013
- ATTREX, Meteorological Forecaster, 2013 – 2014
Awards & Other
- NASA Exceptional Achievement Medal (2023)
- NASA Earth Science Division Superior Accomplishment Award (2019, 2021, 2022)
- NASA Ames Contractor Council Certificate of Excellence for NASA ORACLES (2017)
- NASA Group Achievement Award for NASA ORACLES (2019), POSIDON (2017), ATTREX (2016), SEAC4RS (2015)
- NASA Ames Safety Award (2021)
- NASA Postdoctoral Fellowship (2012 – 2015)
- NSF Graduate Research Fellowship (2004 – 2007)
- University of Washington Program on Climate Change Fellowship (2006)
- AAAS Mass Media Science & Engineering Fellowship (2004)
Public Service
- Member, American Meteorological Society Board on Best Practices (2024 – present)
- Emeritus Chair, American Meteorological Society Committee on Middle Atmosphere (2024 – present)
- Chair, American Meteorological Society Committee on Middle Atmosphere (2021 – 2023)
- Member and Vice Chair, American Meteorological Society Committee on Middle Atmosphere (2019 – 2020)
Selected Publications
- Schoeberl, M. R., Wang, Y., Taha, G., Zawada, D. J., Ueyama, R., & Dessler, A. (2024), Evolution of the climate forcing during the two years after the Hunga Tonga-Hunga Ha’apai eruption, J. Geophys. Res. Atmos., https://doi.org/10.1029/2024JD041296
- Gordon, A., Homeyer C. R., Smith, J. B., Ueyama, R., Dean-Day, J. M., et al. (2024), Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes, Atmos. Chem. Phys., 24, 7591-7608. https://doi.org/10.5194/acp-24-7591-2024
- Pan, L. L., and co-authors (Ueyama, R.) (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, PNAS, 121 (12), e2318716121, https://doi.org/10.1073/pnas.2318716121
- Jensen, E. J., Kärcher, B., Woods, S., Krämer, M., & Ueyama, R. (2024), The impact of gravity waves on the evolution of tropical anvil cirrus microphysical properties, J. Geophys. Res. Atmos., https://doi.org/10.1029/2023JD039887.
- Homeyer, C. R., Smith, J. B., Bedka, K. M., Bowman, K. P., Wilmouth, D. M., Ueyama, R., Dean-Day, J. M., St. Clair, J. M., Hannun, R., Hare, J., Pandey, A., Sayres, D. S., Hanisc, T. F., Gordon, A. E., & Tinney, E. N. (2023), Extreme altitudes of stratospheric hydration by midlatitude convection observed during the DCOTSS field campaign, Geophys. Res. Lett., 50, e2023GL104914. https://doi.org/10.1029/2023GL104914
- Schoeberl, M. R., Wang, Y., Ueyama, R., Dessler, A., Taha, G., & Yu, W. (2023), The estimated climate impact of the Hunga Tonga-Hunga Ha’apai eruption plume, Geophys. Res. Lett., 50, e2023GL104634. https://doi.org/10.1029/2023GL104634
- Ueyama, R., Schoeberl, M., Jensen, E., Pfister, L., Park, M., & Ryoo, J.-M. (2023). Convective impact on the global lower stratospheric water vapor budget. J. Geophys. Res. Atmos., 128, e2022JD037135. https://doi.org/10.1029/2022JD037135
- Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., & Yu, W. (2022), The cross equatorial transport of the Hunga Tonga-Hunga Ha’apai eruption plume, Geophys. Res. Lett., 49, e2022GL100248. https://doi.org/10.1029/2022GL102443
- Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., Jensen, E., & Yu, W. (2022), Analysis and impact of the Hunga Tonga-Hunga Ha’apai stratospheric water vapor plume, Geophys. Res. Lett., 49, e2022GL100248. https://doi.org/10.1029/2022GL100248.
- Pfister, L., Ueyama, R., Jensen, E., & Schoeberl, M. (2022), Deep convective cloud top altitudes at high temporal and spatial resolution, Earth and Space Science, 9(11), e2022EA002475. https://doi.org/10.1029/2022EA002475
- Ryoo, J.-M., Pfister, L., Ueyama, R., Zuidema, P., Wood, R., Chang, I., & Redemann, J. (2022), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016-18: Part 2 – Daily and synoptic characteristics, Atmos. Chem. Phys., 22, 14209-14241. https://doi.org/10.5194/acp-22-14209-2022.
- Schoeberl, M. R., Ueyama, R., & Pfister, L. (2022), A Lagrangian view of seasonal stratosphere-troposphere exchange, J. Geophys. Res. Atmos., 127, e2022JD036772. https://doi.org/10.1029/2022JD036772.
- Treadaway, V., Atlas, E., Schauffler, S., Navarro, M., Ueyama, R., Pfister, L., Thornberry, T., Rollins, A., Elkins, J., Moore, F., & Rosenlof, K. (2022), Long-range transport of Asian emissions to the west Pacific TTL, J. Atmos. Chem., 79, 81-100. https://doi.org/10.1007/s10874-022-09430-7
- Pistone, K., and co-authors (Ueyama, R.) (2021), Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., 21, 9643–9668. https://doi.org/10.5194/acp-21-9643-2021
- Schoeberl, M., Jensen, E., Wang, T., Taha, G., Ueyama, R., Wang, Y., DeLand, M., & Dessler, A. (2021), Cloud and aerosol distributions from SAGE III/ISS observations, J. Geophys. Res. Atmos., 126, e2021JD035550. https://doi.org/10.1029/2021JD03550.
- Ryoo, J.-M., Pfister, L., Ueyama, R., Zuidema, P., Wood, R., Chang, I., & Redemann, J. (2021), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016-18: Part 1 – Climatology, Atmos. Chem. Phys., 21, 16689-16707. https://doi.org/10.5194/acp-21-16689-2021.
- Smith, W. P., Pan, L. L., Honomichl, S. B., Chelpon, S. M., Ueyama, R., & Pfister, L. (2021), Diagnostics of convective transport over the tropical western Pacific from trajectory analyses, J. Geophys. Res. Atmos., 126(17), e2020JD034341. https://doi.org/10.1029/2020JD034341.
- Redemann, J., & co-authors (Ueyama, R.) (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507–1563. https://doi.org/10.5194/acp-21-1507-2021
- Kodera, K., Eguchi, N., Ueyama, R., Funatsu, B. M., Gaetani, M. & Taylor, C. M. (2021), The impact of tropical tropopause cooling on Sahelian extreme deep convection. J. Meteor. Soc. Japan, 99,
https://doi.org/10.2151/jmsj.2021-055 - Ueyama, R., Jensen, E., Pfister, L., Krämer, M., Afchine, A., & Schoeberl, M. (2020), Impact of convectively detrained ice crystals on the humidity of the tropical tropopause layer in boreal winter, J. Geophys. Res. Atmos., 125, e2020JD032894. https://doi.org/10.1029/2020JD032894
- Kodera, K., Eguchi, N., Ueyama, R., Kuroda, Y., & Kobayashi, C. (2019), Implication of tropical lower stratospheric cooling on deep convective activity: (I) Recent trends in tropical circulation, Atmos. Chem. Phys., 19. https://doi.org/10.5194/acp-19-2655-2019
- Schoeberl, M. R., Jensen. E. J., Pfister, L., Ueyama, R., Wang, T., Selkirk, H., Avery, M., Thornberry, T., & Dessler, A. E. (2019), Water vapor, clouds and saturation in the tropical tropopause layer, J. Geophys. Res. Atmos., 124(7). https://doi.org/10.1029/2018JD029849
- Ueyama, R., Jensen, E., & Pfister, L. (2018), Convective influence on the humidity and clouds in the tropical tropopause layer during boreal summer, J. Geophys. Res. Atmos., 123(14). https://doi.org/10.1029/2018JD028674
- Jensen, E. J., Kärcher, B., Ueyama, R., Pfister, L., Bui, T. V., Diskin, G. S., DiGangi, J. P., Woods, S., Lawson, R. P., Froyd, K. D., & Murphy, D. M. (2018), Heterogeneous ice nucleation in the tropical tropopause layer, J. Geophys. Res. Atmos., 123(21), 12,210-12,227. https://doi.org/10.1029/2018JD028949
- Schoeberl, M. R., Jensen, E., Pfister, L., Ueyama, R., Avery, M., & Dessler, A. E. (2018), Convective hydration of the upper troposphere and lower stratosphere, J. Geophys. Res. Atmos., 4583-4593. https://doi.org/10.1029/2018JD028286
- Jensen, E. J., Thornberry, T., Rollins, A., Ueyama, R., Pfister, L., Bui, T. V., Diskin, G. S., DiGangi, J. P., Hintsa, E., Gao, R.-S., Woods, S., Lawson, R. P., and Pittman, J. (2017), Physical processes controlling the vertical and longitudinal distributions of relative humidity in the tropical tropopause layer over the Pacific, J. Geophys. Res. Atmos., 122(11), 6094-6107. https://doi.org/10.1002/2017JD026632
- Jensen, E. J., and co-authors (Ueyama, R.) (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 98(1), 129-143. https://doi.org/10.1175/BAMS-D-14-00263.1
- Eguchi, N., Kodera, K., Funatsu, B. M., Takashima, H., & Ueyama, R. (2016), Rapid Convective Transport of Tropospheric Air into the Tropical Lower Stratosphere during the 2010 Sudden Stratospheric Warming, SOLA, 12Z, 13-17. https://doi.org/10.2151/sola.12A-003
- Jensen, E. J.,. Ueyama, R., Pfister, L., Bui, T. V., Alexander, M. J., Podglajen, A., Hertzog, A., Woods, S., Lawson, R. P., Kim, J.-E., & Schoeberl, M. (2016), High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43(12), 6629-6635. https://doi.org/10.1002/2016GL069426
- Jensen, E. J., Ueyama, R., Pfister, L., Bui, T. V., Lawson, R. P., Woods, S., Thornberry, T., Rollins, A. W., Diskin, G. S., DiGangi, J. P., & Avery, M. A. (2016), On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance, J. Atmos. Sci., 73, 2445-2464. https://doi.org/10.1175/JAS-D-15-0274.1
- Ueyama, R., Jensen, E. J., Pfister, L., & Kim, J.-E. (2015), Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer, J. Geophys. Res. Atmos., 120, 10,483-10,500. https://doi.org/10.1002/2015JD023318
- Jensen, E. J., Pfister, L., Ueyama, R., Bergman, J., & Kinnison, D. (2015), Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause, J. Geophys. Res., 120, 2067-2086. https://doi.org/10.1002/2014JD022661
- Ueyama, R., Jensen, E. J., Pfister, L., Diskin, G. S., Bui, T. P., & Dean-Day, J. M. (2014), Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations, J. Geophys. Res. Atmos., 119(9). https://doi.org/10.1002/2013JD021381
- Ueyama, R., Gerber, E. P., Wallace, J. M., & Frierson, D. M. (2013), The Role of High-Latitude Waves in the Intraseasonal to Seasonal Variability of Tropical Upwelling in the Brewer-Dobson Circulation., J. Atmos. Sci., 70, 1631-1648. https://doi.org/10.1175/JAS-D-12-0174.1.
- Ueyama, R., & Wallace, J. M. (2010), To What Extent Does High-Latitude Wave Forcing Drive Tropical Upwelling in the Brewer–Dobson Circulation?, J. Atmos. Sci., 67, 1232-1246. https://doi.org/10.1175/2009JAS3216.1.
- Ueyama, R., & Deser, C. (2008), A Climatology of Diurnal and Semidiurnal Surface Wind Variations over the Tropical Pacific Ocean Based on the Tropical Atmosphere Ocean Moored Buoy Array, J. Climate, 21, 593-607, https://doi.org/10.1175/2007JCLI1666.1.
- Ueyama, R., & Monger, B. C. (2005), Wind-induced modulation of seasonal phytoplankton blooms in the North Atlantic derived from satellite observations, Limnol. Oceanogr., 50, 1820-1829. https://doi.org/10.4319/lo.2005.50.6.1820
Science Communication
NASA Earth Expeditions blog, “Storm (outflow) chasing high up in the stratosphere”