Suggested Searches

1 min read

Diffractive Solar Sailing

Amber Dubill
Johns Hopkins University/Applied Physics Laboratory

The innovative use of diffracted rather than reflected sunlight affords a higher efficiency sun-facing sail with multiplier effects: smaller sail, less complex guidance, navigation, and attitude control schemes, reduced power, and non-spinning bus. Further, propulsion enhancements are possible by the reduction of sailcraft mass via the combined use of passive and active (e.g., switchable)diffractive elements. We propose circumnavigating the sun with a constellation of diffractive solar sails to provide full 4π (e.g., high inclination) measurements of the solar corona and surface magnetic fields. Mission data will significantly advance heliophysics science, and moreover, lengthen space weather forecast times, safeguarding world and space economies from solar anomalies.

2022 Phase I Selections