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INTRO- vii

INTRODUCTION*

The Catalog of Apollo 17 rocks is a primarily bulk interpretations of THE APOLLO 17
set of four volumes that characterize existing data or mere lists of samples MISSION
each of 334 individually numbered are not generally included, Foreign

rock samples (79 larger than 100 g) language journals were not On December 1I, 1972, the

in the Apollo 17 collection, showing scrutinized, but little data appears to Apollo 17 lunar excursion module
what each sample is and what is have been published _ in such "Challenger," descending from the
known about it. Unconsolidated journals. The reference list included Command Service Module

regolith samples are not included, at the end of this volume has been "America," landed in a valley near
The catalog is intended to be used by updated, the edge of Mare Serenitatis
both researchers requiring sample (Figures 1 and 2). It was the sixth
allocations and a broad audience Much valuable information exists in and final landing in the Apollo
interested in Apollo 17 rocks. The the original Apollo 17 Lunar Sample program. Astronauts Eugene Cernan
volumes are arranged geographically, Information Catalog (Butler, 1973) and Harrison Schmitt spent 72 hours
with separate volumes for the South based on the intense and expert work at the site, named Taurus-Littrow
Massif and Light Mantle; the North of the Preliminary Examination from the mountains and a crater to

Massif; and two volumes for the "ream. However, that catalog was the north. The site was geologically
mare plains. Within each volume, compiled and published only four diverse, with the mountain ring of
the samples are arranged in months after the mission itself, from the Serenitatis basin and the lava fill

numerical order, closely rapid descriptions of usually dust- in the valley. The main objectives of
corresponding with the sample covered rocks, usually without the mission were to sample very
collection stations. A sample index anything other than macroscopic ancient material such as pre-Imbrian
is included at the back of Volume 4. observations, and less often with thin highlands distant from the Imbrium

sections and a little chemical data. In basin, and to sample pyroclastic
Information on sample collection, the nearly two decades since then, materials believed pre-mission to be
petrography, chemistry, stable and the rocks have been substantially substantially younger than mare
radiogenic isotopes, rock surface subdivided, studied, and analyzed, basalts collected on previous
characteristics, physical properties, with numerous published papers, missions.
and curatorial processing is However, the original Catalog

summarized and referenced as far as contains more information on The crew spent more than 22 hours
it is known up to early 1994. The macroscopic observations for most on the lunar surface, using the rover
intention has been to be samples than does the present set of to traverse across the mare plains and
comprehensive--to include all volumes. Considerably more to the lower slopes of the South and
published studies of any kind that detailed inforniation on the North Massifs, and over a light
provide information on the sample, dissection and allocations of the mantle in the valley that appeared to
as well as some unpublished samples is preserved in the Data have resulted from a landslide from
information. References which are Packs in the Office of the Curator. the South Massif. The traverses

*Adapted from volume 1.
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Figure 1: Apollo and Luna sampling sites on the near side of the Moon. $84-31673.

totalled more than 30 kin, and nearly and objectives, the mission itself, and have been studied in coordinated
120 kg of rock and soil were results are described in detail in the fashion in formal consortia.
collected (Figure 3), This total Apollo 17 Preliminary Science
sample mass was greater than on any Report (1973; NASA SP-330) and The valley floor samples demonstrate
previous mission. An Apollo Lunar the Geological Exploration of the that the valley consists of a sequence
Surface Experiments Package Taurus-Littrow Valley (1980; USGS of high-Ti mare basalts that were
(ALSEP) was set up near the landing Prof. Paper 1080), and others listed mainly extruded 3.7 to 3.8 Ga ago.
point. Other experiments and in the bibliography at the end of this The sequence is of the order of
numerous photographs were used to section. Many of the rock samples 1400 m thick. The sequence consists
characterize and document the site. have been studied in detail, and of several different types of basalt
Descriptions of the pre-mission work some, particularly massif boulders, that cannot easily be related to each
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Figure 2: Apollo i 7 landing site region showing major geographic features. AS17-M-447.

other (or Apollo 11 high-Ti mare valley fill. These glasses too are massifs, and is characterized by an
basalts) by simple igneous processes, high-Ti basalt in composition. The aluminous basalt composition and a

but instead reflect varied mantle orange glasses occur in the rocks poikilitic groundmass. The samples
sources, mixing, and assimilation, only as components of some regolith are widely interpreted as part of the
Orange glass pyroclastics were breccias, impact melt produced by the
conspicuous, and is the unit that Serenitatis basin event itself. A

mantles both the valley fill and part The sampling of the massifs was second type of impact melt, dark and
of the nearby highlands. However, directed at coherent boulders and aphanitic, is represented only by
they were found to be not younger some rocks, and are dominated by a samples from the South Massif

than other Apollo volcanics, but particular type of crystalline impact stations. It is similar in chemistry to
were only slightly younger than the melt breccia. This is found on both first type, but is more aluminous and
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SouthMassif

Figure 3: Apollo 17 traverse and sample collection map.

much poorer in TiO2. It contains a (some of which formed meter-sized contain more alumina and only half
much greater abundance and variety clasts or individual boulders), as well of the incompatible element budget
of clast types. Opinion still differs as as more evolved types including of the dominant impact melt rocks,
to whether these aphanites are a gabbros and felsic/granitic demonstrating that the massifs,
variant of the Serenitatis melt or fragments. Feldspathic granulites are representing pre-Serenitatis material,
represent something distinct. Both common as clasts in the melt have a component not well
aphanitic and poikilitic melts seem to matrices (both aphanitic and represented in the larger collected
be most consistent with an age of poikilitic) and occur as a few small samples. Conspicuously absent, and
close to 3.87 (-+0.2)Ga. A few rare individual rocks. Geochronology not the "missing" component in the
samples of impact melt have distinct shows that many of these granulites soil, is ferroan anorthosite, common
chemistry. Other rock and clasts are and pristine igneous rocks date back at the Apollo 16 site and widely
pristine igneous rocks, including as far as 4.2 and even 4.5 Ga. The believed to have formed an early
dunite, troctolite, and norite purer soils of the South Massif lunar crust.
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BIBLIOGRAPHY NUMBERING OF Thefirst numbers for each area were

APOLLO 17 SAMPLES used for drill stems, drive tubes, and
Apollo Field Geology Investigation the SESC. Drill stem sections and

Team (1973) Geologic exploration of As in previous missions, five digit double drive tubes are numbered
Taums-Littrow: Apollo 17 landing sample numbers are assigned each from the lowermost section upward.
site. Science 182, 672-680 rock (coherent material greater than

about 1 cm), the unsieved portion The last digit is used to code sample
Apollo Lunar Geology Investigation and each sieve fraction of scooped type, in conformity with the
Team (1973) Documentation and <1 cm material, the drill bit and each conventions used for Apollo 15 and
environment of the Apollo 17 drill stem and drive tube section and Apollo 16. Fines from a given

samples: A preliminary report. U.S_..__. each sample of special documented bag are ascribed
Geological Survey Interagency characteristics, numbers according to:
Report: Astrogeology 71.

The first digit (7) is the mission 7WXY0 Unsieved
Apollo 17 Preliminary Examination designation for Apollo 17 (missions material
Team (1973) Apollo 17 lunar prior to Apollo 16 used the first two (usually <1 cm)
samples: Chemical and petrographic digits). As with Apollo 15 and 16 7WXY1 <1 nun
description. Science 182, 659-672 numbers, the Apollo 17 numbers are 7WXY2 1-2 mm

grouped by sampling site. Each 7WXY3 2-4 mm
Apollo 17 Preliminary Science group of one thousand numbers 7WXY4 4-10 mm
Report (1973) National Aeronautics applies to an area as follows:
and Snace Administration SP-330

Bailey N.G. and Ulrich G.E. (1975) Sampling Site Initial Number
Apollo 17 voice transcript pertaining
to the geology of the landing site.
U.S. Geological Survey Rept. LM, ALSEP, SEP, and samples collected
USGS-GD-74-031 between Station 5 and the LM 70000

Schmitt H. H. (1973) Apollo 17 Station 1A 71000
report on the valley of Taurus-
Littrow. Science 183, 681-690 Station 2 and between it and the LM 72000

Wolfe E. W. and others (1981 ) The Station 3 and between it and Station 2 73000
geologic Investigation of the
Taurus-Littrow valley: Apollo 17 Station 4 and between it and Station 3 74000
landing site. U.S. Geolo_,ical Survey
Prof. Paber 1080. Station 5 and between it and Station 4 75000

Station 6 and between it and the LM 76000

Station 7 and between it and Station 6 77000

Station 8 and between it and Station 7 78000

Station 9 and between it and Station 8 79000



xiv-INTRO

Rocks from a documented bag are 71500-71509, 71515 were used for CAUTIONARY NOTE
numbered 7WXY5 - 7WXY9, the sieve fractions and six rocks from

usually in order of decreasing size. the soil sample in DB 459. Then for Every effort was made for the data to

the companion rake sample in DB's be accurately copied into this
Sample number decades were 457 and 458, 71520 was used for the catalog. However, it would
reserved for the contents of each soil, which was not sieved, and the obviously be prudent for any
documented bag. In the cases where 38 >1 cm rake fragments were scientist who wants to use this data

the number of samples overflowed a numbered 71535-71539, 71545- to check the original scientific
decade, the next available decade 71549, etc., to 71595-71597. publication (which is referenced) and
was used for the overflow. For not rely on copied data for critical

example DB 455 contained soil, In as much as possible all samples argument.
numbered 71040-71044, and 6 small returned loose in a sample collection

rocks numbered 71045-71049 and bag or an ALSRC were numbered in FINAL
71075. a decade. In the cases in which rocks INTRODUCTORY NOTE

from several stations were put into a
Paired soil and rake samples for each single collection bag however, the

If one is confused by the technical
sampling area are assigned by soil and rock fragments were
centuries starting with 7W500. The assigned a decade number that aspects of the study of Moon rocks,

one might like to borrow one of the
soil sample documented bag has the conforms to the site for the largest or Curator's sets of Educational Lunar
first decade or decades of the most friable rock. The other rocks in Thin Section Sets. There is an
century, in conformity with the last the same bag have numbers for their
digit coding for rocks and fines (as own site, generally in the second or instructive booklet to the study ofMoon rocks that accompanies these
explained above), and the rake third decade of the thousand numbers sets of sections (Meyer, 1987).
sample documented bag uses the for that site.
following decades. For example,
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SAMPLE INVENTORY
FOR VOLUME 4

Sample Mass (g) Location Description Page

76015 2819 Boulder 6 Vesicular Micropoikilitic Impact Melt Breccia 11

76035 376.2 Nonvesicular Impact Melt Breccia 25

76036 3.95 Impact Melt Breccia 27

76037 2.52 High-Ti Mare Basalt 29

76055 6412 Impact Melt Breccia 31

76135 133.5 LRV 10 Vesicular Poikilitic Impact Melt Breccia 39

76136 86.6 LRV10 High-Ti Mare Basalt 41

76137 2.46 LRV10 Poikilitic Impact Melt Breccia 45

76215 643.9 Boulder 6 Vesicular Micropoikilitic Impact Melt Breccia 47

76235 26.56 Boulder 6 Feldspathic Granulitic Impactite 57

76236 19.18 Boulder 6 Feldspathic Granulitic Impactite 65

76237 10.31 Boulder 6 Feldspathic Granulitic Impactite 67

76238 8.21 Boulder 6 Feldspathic Granulitic Impactite 69

76239 6.23 Boulder 6 Feldspathic Granulitic Impactite 71

76245 8.24 Shadowed Impact Melt Breccia 73

76246 6.5 Shadowed Impact Melt Breccia 75

76255 406.6 Boulder 6 Banded Impact Melt Breccia 77

76265 1.75 Trench Impact Melt Breccia 89

76275 55.93 Boulder 6 Impact Melt Breccia 91

76285 2.208 Trench Agglutinate 97

76286 1.704 Trench Impact Melt Breccia 99

76295 260.7 Boulder 6 Impact Melt Breccia 103

76305 4.01 Boulder 6 Feldspathic Granulitic Impactite 113

76306 4.25 Boulder 6 Feldspathic Granulitic Impactite 113

76307 2.49 Boulder 6 Feldspathic Granulitic Impactite 113

76315 671.1 Boulder 6 Micropoikilitic Impact Melt Breccia 115

76335 502.89 BSLSS Cataclastic Troetolite 125

76505 4.69 Soil Micropoikilitic Impact Melt Breccia 129

76506 2.81 Dark Matrix Regolith Breccia 131

76535 155.5 Rake Troetolite 137

76536 10.26 Rake Crushed Troctolite 153

76537 26.48 Rake High-Ti Mare Basalt 159

76538 5.87 Rake High-Ti Mare Basalt 163

76539 14.8 Rake Aphanitic High-Ti Mare Basalt 165

76545 51.21 Rake Dark Matrix Regolith Breccia 169

76546 0 Combined with 76545
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Sample Mass (g) Locatl_ Description Page

76547 0 Combined with 76545

76548 2.527 Rake Dark Matrix Regolith Breccia 175

76549 0 Combined with 76545

76555 8.435 Rake Micropoikilitic Impact Melt Breccia 177

•715556 7.396 Rake Micropoikilitic Impact Melt Breccia 179

76557 5.592 Rake Micropoikilitic Impact Melt Breccia 181

76558 0.683 Rake Impact Melt Breccia 183

76559 0.747 Rake Poikilitic Impact Melt Breccia 185

76565 11.6 Rake Dark Matrix Regolith Breccia 187

76566 2.639 Rake Dark Matrix Regolith Breccia 193

76567 5.49 Rake Light Matrix Regolith Breccia 195

76568 9.477 Rake Aphanitic High-Ti Mare Basalt 197

76569 4.207 Rake Aphanitic Impact Melt Breccia 199

76575 16.25 Rake Feldspathic Impact Melt Breccia 201

76576 5.327 Rake Micropoikilitic Impact Melt Breccia 205

76577 13.54 Rake Poikilitic Impact Melt Breccia 209

77017 1730 Station 7 Poikilitic Anorthositic Gabbro 211

77035 5727 Micropoikilitic Impact Melt Breccia 227

77075 172.4 Boulder 7 Impact Melt Dike in Cataclastic Norite 241

77076 13.97 Boulder 7 Impact Melt Dike in Cataclastic Norite 251

77077 5.45 Boulder 7 Cataclastic Norite with Back Veinlets 253

77115 115.9 Boulder 7 Micropoikilitic Impact Melt Breccia 257

77135 337.4 Boulder 7 Vesicular Poikilitic Impact Melt Rock 267

77215 846.4 Boulder 7 Cataclastic Norite 283

77515 337.6 Soil Poikilitic Impact Melt Breccia 299

77516 103.7 High-Ti Mare Basalt 303

77517 45.6 Unique Fragmental Breccia 307

77518 42.5 Micropoikilitic Impact Melt Breccia 311

77519 27.4 Micropoikilitic Impact Melt Breccia 315

77525 1.19 Impact Melt Breccia 317

77526 1.07 Impact Melt Breccia 319

77535 577.8 Soil High-Ti Mare Basalt 321

77536 355.3 High-Ti Mare Basalt 327

77537 71.7 Impact Melt Breccia 331

77538 47.2 Unusual Fragmental Breccia 333

77539 39.6 Poikilitic Impact Melt Breccia 337

77545 29.5 Poikilitic Impact Melt Breccia 341

78135 133.9 Station 8 High-Ti Mare Basalt 345

78155 40 I. 1 Feldspathic Granulitic Impactite 351

78235 199 Boulder 8 Shocked Norite 367
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Sample Mass (g) Location Description Page

78236 93.06 Boulder 8 Shocked Norite 381

78237 0 Combined with 78235

78238 57.58 Boulder 8 Shocked Norite 391

78255 48.31 Boulder 8 Shocked Norite 393

78256 0 Combined with 78255

78465 1.039 Trench Soil Breccia 397

78505 506.3 Soil High-Ti Mare Basalt 401

78506 55.97 High-Ti Mare Basalt 405

78507 23.35 High-Ti Mare Basalt 409

78508 10.67 Light Matrix Breccia 413

78509 8.68 High-Ti Mare Basalt 415

78515 4.76 Dark Matrix Breccia 419

78516 3.18 Dark Matrix Soil Breccia 423

78517 1.82 Friable White Cataclasite 427

78518 0.88 Dark Matrix Soil Breccia 429

78525 5.11 Rake Agglutinate 431

78526 8.77 Rake Green Glass Vitrophyre 433

78527 5.16 Rake Granulitic Noritic Breccia 439

78528 7 Rake Basalt 443

78535 103.4 Rake Dark Matrix Breccia 445

78536 8.67 Rake Dark Matrix Breccia 449

78537 11.76 Rake Dark Matrix Breccia 451

78538 5.82 Rake Dark Matrix Breccia 453

78539 3.73 Rake Dark Matrix Breccia 455

78545 8.6 Rake Dark Matrix Breccia 457

78546 42.66 Rake Dark Matrix Breccia 459

78547 29.91 Rake Dark Matrix Soil Breccia 463

78548 15.95 Rake Soil Clod 467

78549 16.09 Rake Soil Clod 471

78555 6.64 Rake Soil Breccia 475

78556 9.5 Rake Dark Matrix Soil Breccia 479

78557 7.19 Rake Dark Matrix Soil Breccia 48 1

78558 3.78 Rake Dark Matrix Soil Breccia 483

78559 3.05 Rake Dark Matrix Soil Breccia 485

78565 3.5 Rake Dark Matrix Soil Breccia 487

78566 0.77 Rake Dark Matrix Soil Breccia 489

78567 18.88 Rake Dark Matrix Soil Breccia 491

78568 3.57 Rake Breccia 493

78569 14.53 Rake High-Ti Mare Basalt 495

78575 140 Rake High-Ti Mare Basalt 499
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U¢,

Sample Mass (g) Locate--- Description Page

78576 11.64 Rake High-Ti Mare Basalt 503

78577 8.84 Rake High-Ti Mare Basalt 509

78578 17:13 Rake High-Ti Mare Basalt 513

78579 6.07 Rake High-Ti Mare Basalt 517

78585 44.6 Rake High-Ti Mare Basalt 521

78586 10.73 Rake High-Ti Mare Basalt 525

78587 11.48 Rake High-Ti Mare Basalt 529

78588 3.77 Rake High-Ti Mare Basalt 535

78589 4.1 Rake High-Ti Mare Basalt 539

78595 4.19 Rake High-Ti Mare Basalt 543

78596 7.55 Rake High-Ti Mare Basalt 547

78597 319.1 Rake High-Ti Mare Basalt 551

78598 224.1 Rake High-Ti Mare Basalt 557

78599 198.6 Rake High-Ti Mare Basalt 563
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INTRODUCTION: Samples of the North Massif

The North Massif is internally (chipped) in several places (76015, 1993). The soil around the boulders

complex, with numerous roughly 76215, 76235, 76255, 76275, 76295, does not have the same composition
horizontal strnetuml units that may 76315, and others). It has a boulder as the boulders, and there are clearly
be depositional or intrusive layers track down the Massif leading from other components in the soil. A
(Schmitt and Cernan, 1973). The the blocky layers above (Figs. 2, 3, large rake sample was taken about
tilting and faulting of massif units and 4). 20 meters to the east of Boulder 6
may relate to their uplift during the (76500). Two breccia fragments
Serenitatus impact event or subse- b) Turning Point Rock (LRV10), a (76035 and 037) were taken from the
quent major basin event (Fig. 1). small boulder about 0.5 km to the soil about 25 meters to the west.
The rock layers high up on the east of Station 6 that was apparently
Massif are interpreted as ejecta sampled by the scoop taken there A number of fragments were also
sheets of impact melt formed by the (76135, 137). taken from a trench in the fillet next
Serenitatus event (Spudis and Ryder, to the boulder - but these probably
1981). Several authors (Chao et al., e) 76055, a small rock that was are additional pieces of the boulder
1975; Winzer et al., 1975; Spudis picked from the regolith about (76245, 246, 265, 285, and 286).
and Ryder, 1981) have found con- 15 meters to the east of the boulder;
siderable similarity between some It is chemically distinct from the An index to all of the Apollo 17 rock
samples of the South Massif and the boulder samples and may be slightly samples is included at the back of
boulder samples of the North Massif. older, this volume.

Samples were collected from several d) The boulder at Station 7, which is
boulders that rolled down the North about 0.6 km to the west (77135,
Massif (see Wolfe and others, 1981). 77115).

These include However, the most representative
samples of the North Massif may be

a) The large boulder at Station 6, the rake samples or coarse fines
which was carefully sampled rollected from the soils (Jolliff et al.,

South Massif

•......... _:S-'nontiemeli" breccia (NB) old surface North Massif
6 ....................." "_ .-_ ..... -:.-

 oo2

o_4 -_" norite (AN) _ _N_llll_igh"R marebasal_ _X __-

3 -_\\ \ \ \ \\ \\_/_6//A,_,.-_e_da./y_z6///z<_///_, ?.\\\\\\F

L I I _ _ I

0 1 2 3 4 5 kan

Figure 1: Cross section of the Taurus-Littrow Valley drawn by Korotev (1993).
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Figure 2: Composite photo of boulder at Station 6 showing Taurus-Littrow Valley. AS17-140-21497 and 21493.
Entrance to Taurus-Littrow Valley is in the distant background.

Figure 3: Photo of astronaut in front of Block 2 of the large broken boulder at Station 6. AS17-146-22294.
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Figure 4: Plan view of the Station 6 Boulder area. From Wolfe and others (1981). Arrows indicate direction of

NASA photographs. Note the boulder tracks and sample numbers.
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Introduction to Large Boulder at Station 6
Samples 76015, 76215, 76235, 76255,
76275, 76295, and 76315

Also samples 76245, 246, 265, 285, and began to roll, only a decrease in impact melt breccia with a matrix
and 286 may have been spalled off slope or the break-up of the boulder that is chemically rather uniform.

the boulder at Station 6. Samples would stop it. At the end of its track, Four main lithologic units within the
76230, 236, 237, 238, 239, 305, 306, the big Station 6 Boulder apparently boulder cluster have been identified
and 307 are all part of 76235, which broke into five distinct blocks (Heiken et al., 1973, and Phinney,
was chipped from a distinct clast on (Fig. 1) and came to rest at the top of 1981). Unit A is characterized by
Boulder 6. the talus from the North Massif. abundant vesicles (some greater than

Blocks 1, 2, and 3 readily fit 5 cm long) flattened along a plane
together;, the fit of Boulders 4 and 5 parallel to the contact with the adja-

GEOLOGICAL SETTING is less obvious. According to cem unit (no samples taken). Unit B
Arvidson et al. (1975), the emplace- is characterized by well-developed

Most of the large samples collected ment of the Station 6 Boulder is one foliation or banding (samples 76015
at the Apollo 17 Station 6 are from a of only a few well-dated events on and 76215). Unit C is massive, with
large broken boulder (6 x 10 x 18 m) the Moon (22 m.y.), no obvious foliation, and contains
lying at the end of a boulder track angular clasts up to 0.8 m long
that can clearly be seen in the photos The Station 6 Boulder is the closest (samples 76235, 255,275,295).
taken by the astronauts (see Schmitt thing to a geological outcrop on the Unit AB is a discontinuous transition
and Cernan, 1973, and Wolfe and Moon! Photos of the boulder blocks zone up to a few meters wide be-
others, 1981). This boulder track were mapped by G. Heiken et al. tween units A and B (sample 76315).
leads from a distinct blocky horizon (1973) in preparation for the consor- The samples (described individually)
approximately 1/3 of the way up the tium study of the samples led by are impact melts and anorthositic
North Massif. On the basis of W. Phimaey, C. Simonds, and clasts. The matrices of the Station 6
observation of several boulder tracks J. Warner (Figs. 2-6). The Station 6 Boulder samples contain 50-60%
on North Massif, it appeared to the Boulder was found to be a calcic feldspar, ~45% orthopyroxene,
astronauts that once a boulder was geologically complex, clast-bearing, and 1-7% ilmenite.
jarred loose from its "source-crop"

0 5 lOreUnit A i , _ ' ,L I . I

Transition from A to B -7625S
/

,76295 _Fig 2

Unit . Fig.3 .7627S ._
Unit C 7623S

n -76315

.__FIg. 4

_76215
Fig 5 __p015 Fig. 6

Figure 1: Map of the boulder cluster at Station 6, showing sample locations,
location of lithologic units, and index to boulder maps. From Phinney (1981).
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Figure 6: Map of the north face of Boulder 5. From Heiken et al. (1973).

Important clasts contain ~70% nents of the soil include the boulders, Cernan, 1973). The exterior surfaces
feldspar, 30% orthopyroxene, and the adjacent mare surface, and the of boulder samples are covered with
olivine and trace ilmenite. The softer portions of the North Massif. micrometeorite craters and contain

matrix of the boulder was apparently It will take a careful study of the solar flare tracks. An unusual feature
homogenized extremely well by the coarse fines from the soil to discern of two of the samples, 76015 and

impact process on the scale of this what the rest of the North Massif is 76215, is that they each had a patina
boulder. The major and trace made of (Jolliff et al., 1993). covered "lip" that was partially
element compositions of the various Samples like 76535 and 76335 may protected from micrometeorite
pieces of matrix form a tight cluster be more representative of the main bombardment, which led to the
on composition diagrams, including portion of the North Massif than the development of an especially dark
the siderophile elements (Ir-Au-Re) samples of the boulder. (thick?) patina.
contributed by the meteorite
projectile. The clasts display various
degrees of brecciation and shock PATINA CONSORTIUM STUDIES
metamorphism. Some clasts (76235,
76255) may be of plutonic origin. A distinct brown patina is well The samples of the boulder blocks at

developed on all the weathered rock Station 6 were the subject of consor-

The boulders at Station 6 do not have surfaces of the otherwise tan or blue- tium studies led by W. Phinney

a composition like that of the soil grey breccia, including the fractured (1981). Photos of the boulder
(Fig. 7). Station 6 is located on the surfaces of the blocks of the surfaces (mapped by Heiken et al.,
talus of the North Massif. Compo- Station 6 Boulder (Schmitt and 1973) allowed each sample to be
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Figure 7: Normalized rare earth element diagram comparing 76015 (typical of boulder) with Station 6 soil.

related to a specific lithology of the There is general agreement that these carefully studied the remanent
boulder. These consortium studies data (mean age 3.96 + 0.04 b.y.) give magnetization of 26 subsamples
were not completed because many of the age of the Serenitatus impact from the Station 6 Boulder. The
the samples (i.e., 76275) were slow event (see arguments in Spudis and direction of magnetization after
to be processed and not delivered Ryder, 1981). alternating field demagnetization of
until after consortium members had breccia samples was found to be
left. However, the consortium A major finding of the consortium roughly uniform for clast-free matrix
concluded that the poikilitic texture was that all the matrix samples were samples (76015, 76215) while
of these rocks was formed in a melt of the same chemical and generally scattered for the clast-rich
sheet after the impact (Simonds, mineralogical composition (Phinney, samples (76275). Gose et al.
1975; Simonds et al., 1976; and 1981). Especially remarkable was proposed that the natural remanent
Onorato et al., 1976). This consor- the tight grouping in siderophile magnetization of impact melt
tium went on to study impact melt elements (Higuchi and Morgan, breccias is the vector sum of two
sheets in terrestrial impact craters 1975, and Hertogen et al., 1977). magnetizations: a pre-impact
(see JGR 83, 2729-2816). magnetization and a partial thermo-

The collection of samples from remanence acquired during breccia
A summary of the ages of the clasts Boulder 6 provides the most lithification. The large scatter of
and matrix samples from the comprehensive set of related samples magnetization direction of the clast-
Station 6 Boulder is given: in Table 1 that has been available for lunar rich samples implies the predomi-
from Cadogan and Turner (1976). magnetic studies. Gose et al. (19.78) nance of pre-impact magnetization.
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Table 1: Summary of Ar 39/40 plateau ages from the Station 6 Boulder samples.
Data from Cadogan and Turner (1976).

Plateau age % 39Ar recoil

Sample no. Irradiation (G.y.) (matrix samples only)

Matrix samples

76215,30 SH36 3.94 +_0.04 0.8

76015,38 SH36 3.93 + 0.04 1.1

76315,36 SH31 3.98 + 0.04 1.4

76295,1 (tan) SH36 3.95 + 0.04 3.9

76295,3 (blue) SH36 3.96 + 0.04 2.4

76275,39 SH40 4.02 + 0.04 2.9

Clasts

76235,3 SH36 3.93 + 0.06 --

76235,3 SH40 3.95 + 0.06 --

76315,67 (C3) SH31 3.97 + 0.04 --

76315,61 (C2) SH31 3.98 + 0.04 --

(4.10 + 0.05)

76255,46 SH40 4.02 +_0.04 --

Mineral concentrates

76015,38 (plag) SH36 3.96 _+0.06 --

76015,36 (plag) SH36 3.92 + 0.04 --

76015,38 (px) SH36 (3.79 + 0.07) --

76015,36 (px) SH36 (3.92 + 0.09) --

Mean age 3.96 + 0.04
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76015
Vesicular Micropoikilitic Impact Melt Breccia
2819 g, 20 x 16 x 14 cm

INTRODUCTION One surface of 76015 was part of a from the Serenitatus impact event.
shielded cavity that was oriented Simonds et al. (1976) and Onorato

Sample 76015 was chipped off of the parallel to the sunline, which had an et al. (1976) provide a compre-
top comer of Block 5 of the big azimuth of approximately 106 deg hensive thermal model for the

boulder at Station 6 (Fig. 1, Wolfe and elevation of approximately lithification of impact melt breccias
and others, 1981). It is a sample of 36 deg to the horizontal. This unique based on their detailed study of the
lithologic unit B of Boulder 6 and is cavity has allowed several interesting textures of samples from Boulder 6
similar in color and texture to 76215 studies of the solar flare, cosmic ray, and in comparison with melt sheets
from Block 4 (also from unit B). and micrometeorite bombardment of from large terrestrial craters.
This lithology was originally referred the lunar surface (Blanford et al.,
to as the "green-grey" breccia 1974; Morrison and Zinner, 1975;

lithology (Fig. 2). 76015 has a well- Crozaz et al., 1974). The "lip" of PETROGRAPHY
documented orientation based on this cavity has a thick, undisturbed
laboratory photography and has a patina (Fig. 3). Sample 76015 is a very vesicular,
well-known exposure history crystalline-matrix breccia with
because of its certain relationship to Spudis and Ryder (1981) summarize <0.1 mm to 5 cm long irregular
several other samples of the Station 6 the arguments that this boulder is vesicles that compose about 20% of
Boulder (Heiken et al., 1973). from the melt sheet or ejecta blanket the rock by volume. The flattened

Figure 1: Location of 76015 on Block 5 before sampling. Note the well-documented orientation. AS17-140-21411.
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Figure 2: The exterior surface of 76015 has been heavily eroded by micrometeorite bombardment and is covered with
glass-lined micrometeorite craters (zap pits) with white spall zones. The foliation of the abundant large vesicles is
evident in this photo. Scale is I cm. $73-15015.

vesicles define a preferred as <20 tJ-rngrains both within and described as annealed "dunite" and
orientation best seen on the west between the low-calcium pyroxene "troctolite" fragments.

(WI) side of the sample (Fig. 2). oikocrysts. Both poikilitic ilmenite
The modal mineralogy of 76015 is and armalcolite grains up to 200 pan Simonds (1975) describes the poiki-
about 50% plagioelase, 40% low- long, with spinel and rutile lamellae, litic matrix of 76015 as a continuous
calcium pyroxene, with minor are concentrated between the network of interlocking pigeonite
amounts of augite, olivine, ilmenite, pyroxene oikocrysts, oikocrysts with about half of the
armalcolite, and metallic iron. The pyroxene in a tight cluster in the

poikilitic matrix of 76015 (Fig. 4) Mineral and lithic clasts compose compositional diagram
consists of a nearly continuous mass 5-15% of the rock. Mineral clasts Wo5.6En70_73Fs22_26. Simonds
of elongated and occasionally are recognized because they are notes that the narrow range of

aligned 0.2-0.3 by 0.7-1.5 mm low- typically over 50 Ima across, much pyroxene and feldspar composition
calcium pyroxene oikocrysts larger than the matrix grains, agrees with the uniform composi-
(Wo4.9En61_76Fs19.25). Tabular Simonds et al. (1974 and 1975) tional data of Rhodes et al. (1974)
feldspar 10-50 p.rn long occurs both studied numerous small lithic clasts and Hubbard et al. (1974) for widely
within and between the pyroxene in 22 thin sections of 76015 and separated portions of the sample.

grains and ranges from An 82 to found that they were predominantly They conclude that the matrix of this
An96, with a distinct peak at An89 granoblastic or poikilitic in texture, sample is very homogeneous in
(Fig. 5). Small amounts of augite generally with 70-80% feldspar, composition.
(Wo35.40En42.46Fs12.15) are found Some of the small clasts were
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Figure 3: This photo of 76015 illustrates the patina covered "lip" that waspartially shielded from micrometeorites (see
text). The large vesicular basalt "vug" clast is evident in the center of the photo. Scale is I cm. $73-18764.

Figure 4: Photomicrograph of 76015 matrix. Note the partially digested relict clast and the large vesicle. The texture
of the matrix of 76015 is poikilitic with large pyroxene grains surrounding small plagioclase laths and mineral
inclusions. This texture is typical of the matrix of all the Station 6 boulders as well as many Apollo 16 melt rocks. Field
of view is 4 x5 mm.
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Figure 5: Pyroxene, olivine, and plagioclase compositions of the matrix and the vesicular basalt clast in lunar breccia
76015 (from Simonds, 1975). Note that the larger plagioclase inclusions in the green-grey matrix are more calcic
(An95) than the plagioclase laths in the matrix (An89).

Misra et al. (1976) have studied the 76015 and 76215 have a lower

complex metallic nickel-iron patti- abundance of these meteoritic RADIOGENIC ISOTOPES
cles included in 76015 (Fig. 6). elements than the matrix for 76275

and 76295 (Table 2). Cadogan and Turner (1976) deter-
mined the crystallization age of

WHOLE-ROCK CHEMISTRY 76015 by the 39Ar- 40Ar plateau
SIGNIFICANT CLASTS technique. The matrix yielded an

The matrix of 76015 is very homo- intermediate temperature plateau

geneous in composition (Table 1) Simonds (1975) and Phinney (1981) which covered 70% of the release of
and the composition is also very describe a large (2 cm) porous basalt 39Ar and corresponds to an age of
similar to that of the other samples of clast ("vug" filling?) in 76015 with 3.93 +-0.04 b.y. A similar but less

this boulder (Fig. 7). intersertal texture (Fig. 9). The well-defined age of 3.96 + 0.06 b.y.
plagioclase in this clast is found to be was obtained for a plagioclase

Higuchi and Morgan (1975) find that somewhat less calcic than that of the separate (Fig. 10).
the trace siderophile element breccia matrix (Fig. 5). However,

compositions of all the samples of there appear to be no chemical or Nyquist et al. (1974) have reported
the Station 6 Boulder form a tight isotopic data on this large basalt clast Rb-Sr data for several splits of

grouping (meteorite group 2) on (see also Fig. 3). matrix from 76015 (Fig. 11 and
compositional diagrams (Fig. 8). Table 3) and note that the Rb-Sr
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systematics are probably partially their paper). As a consequence of (18 5:3 m.y.) is found to be concor-
reset by the Serenitatus impact event the small solid angle factor, the dam with the galactic proton age
(see Phinney, 1981). U-Th-Pb data effects of erosion over a long period (17.5 5:0.5 m.y.) as determined by

by Leon Silver were also reported in of time are removed, allowing for a the Kr-Kr method, although some-
Phinney (1981). study of the solar flare spectrum what younger than the 22 m.y.

without the complication of exposure age determined for 76315
continuous erosion. Indeed, the (Arvidson et al., 1975). Presumably

COSMOGENIC measured solar flare track density for a portion of the surface of 76015RADIOISOTOPES AND
EXPOSURE AGES 76015 was found to fall offmuch eroded away in the past

faster with depth than for other lunar (Crozaz et al.).

Crozaz et al. (1974) have studied the samples (which have experienced

long-term exposure history of a erosion) and is comparable with data Bogard et al. (1974) (see unpub-
on the energy of solar flares derived lished data in Phinney, 1981) havesurface of 76015 that was exposed to

the sky through a small solid angle by studies of recent solar flares using determined the noble gas abundances
the Surveyor glass (Crozaz et al.). in 76015.(as evidenced by a marked gradient
The solar flare track exposure ageof dark to light patina) (see figure in
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Figure 6: Nickel vs. cobalt contents of metal grains in 76015 and 76215. From Misra et al. (1976).
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Figure 7: Normalized rare earth diagram for 76015. All subsamples have the same pattern and are similar to the

matrix of 76215 and 76315. This sample provides a good reference for the other samples of the North Massif. Data
from Hubbard et aL (1974).
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Figure 8: lr-Au-Re compositions of Station 6 Boulder matrix all fall witkin Cluster 2 (see Higuchi and Morgan, 1975).
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Figure 9: Large pyroxene grains and plagioclase laths in vesicular basalt clast (see Phinney, 1981). Scale is 4 x 5 ram.
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Figure 11: Comparison of reflectance spectra of poikilitic rocks (including 76015) and KREEP basalts.
From Charette and Adams (1977).

surface where there is a less well- of the accumulation of this fused

MAGNETIC STUDIES developed patina due to constant material on nearby surfaces. High
steady-state erosion. There is a resolution examination of the

Pearce et al. (1974) and Gose et al. marked gradation in patina from the stratigraphically oldest glass particles
(1978) have carefully studied the thick deposit of the partially shielded on the exterior surface of 76015
remanent magnetization of 26 sub- lip of the rock to a lack of patina in suggests that their surfaces have been
samples from the Station 6 Boulder. the completely shielded region. The altered by solar wind sputtering.
The direction of magnetization of thick deposit is made of accumulated Older particles have a granular
clast-free samples from unit B glass splashes, pancakes, and appearance in contrast to the
(including 76015) cluster fairly well presumably condensed vapor that perfectly smooth appearance of the
after alternating field demagnetiza- may have come from the opposite superposed younger particles.
tion. Gose et al. propose that the face of the cavity.
natural remanent magnetization of Charette and Adams (1977) have

impact melt breccias is the vector The Surface patina on 76015 has determined the reflectance spectra of
sum of two magnetizations, a pre- been carefully described by Blanford the surface of 76015 and report that
impact magnetization and a partial et al. (1975). The partially shielded the spectra of poikilitic rocks are

thermoremanence acquired during part of the surface of 76015 has similar to KREEP with a slight

breccia lithification, accumulat_ed accretionary particles upturn at the high wavelength
over a long period of time (Fig. 11). It would be interesting to
(22 m.y.?), while the exposed surface determine the difference in spectra

SURFACE STUDIES of 76015 reached a steady state of for patina-covered surfaces as com-
micrometeorite erosion and accumu- pared to fresh surfaces (76015 is the

The thickness of the patina that lated glass splashes. Accretionary ideal sample for such study).
developed on the T1 surface of particles are small objects adhering
76015 (Fig. 3) is unusual and is a to the host surfaces. They include

function of the exposure geometry of glass splashes, stingers, and EXPERIMENTAL
a partially to completely shielded pancakes as well as angular dust
cavity on top of the boulder. The T1 particles. Glassy accretionary Experimental studies by Delano
surface subtended a small solid angle particles are formed by fusion of (1977) showed that 76015 has

and intercepted few large particles target material by hypervelocity olivine as its liquidus phase at
capable of eroding the surface, as is micrometeorites. Patina is the result 0 kbars. Olivine + spinel coexist on
the case on the fully exposed exterior
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the liquidus in the pressure interval Morrison and Zinner determined that

from 5 to 12 kbar. Olivine + spinel + there are 900 0.1 pan craters PROCESSING
orthopyroxene are simultaneously on produced per cm2 per year per 2
the liquidus at 12 kbar. Orthopy- steradian. Based on their observation A slab and a column were cut from

roxene + spinel are the liquidus of numerous fresh 0.1 pm craters, the center of this rock (see maps in
phases at pressures greater than they concluded that there is not more Phinney, 1981). A second slab and
12 kbar (Fig. 12). Experimental than an estimated maximum solar- column were cut at right angles to

phase relations of these experiments wind erosion rate of 0.07 ,_,/yr. the first slab in 1988. A large piece
suggest that the 76015 composition (330 g) has been used for public
does not represent magma derived by Morrison and Clanton (1979) have display.
partial melting of either cosmic or documented differences in the micro-

differentiated source regions at any meteorite populations and surface The largest piece remaining (,18)
pressure on the Moon. characteristics between the surface of weighs 1307 g and is stored at

76015 that was exposed in the plane Brooks Air Force Base. The second
of the ecliptic and the surface that largest piece (,19) weighs 630 g.

VUGS was exposed perpendicular to the There are 30 thin sections.
ecliptic.

This sample has numerous vugs and

cavities with well-known orientation Carter et al. (1975) have studied the

(Fig. 13). Morrison and Zinner euhedral crystals of pyroxene,
(1975) used two of these cavities to plagioclase, ilmenite, metallic iron,
study the possible directional and troilite that line the vugs of
variations in the flux of micro- 76015.
meteorites and solar flare particles.

Studies by Blanford et al. (1975) Phinney (1981) reports that large
(Fig. 14) and Morrison and Zinner apatite crystals occur in the vugs of
(1975) found no anisotropy in the 76015 as honey-yellow, transparent,
flux of micrometeorites between the single crystals up to 1 mm in greatest
north direction and the ecliptic, dimension. They are found to be
whereas Hutcheon (using different doubly terminated and loosely
samples) determined that the ecliptic adhering to the cavity walls. Large
flux was seven times as high as the beta-cristobalite crystals and wiry
flux from the south (see discussion in and dendritic metallic Cu are also

Zinner and Morrison, 1976). reported in these cavities.
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Figure 12: Melting relations of 76015 as function of temperature and pressure. From Delano (1977).



SAMPLE 76015 - 21

LUNARNORTH

SCHEMATICRECONSTRUCTIONOF 76015

Figure 13: Orientation and exposure geometry of 76015,105,24 and ,40. From Morrison and Zinner (1975).
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SAMPLE 76015 - 22

Table 1" Whole-rock chemistry of 76015.

a) Rhodes et al. (1974a); Hubbard et al. (1974); b) Palme et al. (1978)
See also Wiesmann and Hubbard (1975) and Phinney (1981).

Split ,22M (a) ,37M (a) ,41M (a) ,64M (a) ,12 (b)
Technique XRF, IDMS XRF, IDMS XRF, IDMS XRF, IDMS XRF, INAA

SiO 2 (wt%) 46.16 46.38 46.38 46.59 46.52

TiO2 1.52 1.55 1.53 1.48 1.54

A1203 17.17 17.78 17.77 18.00 17.86

(5-203 .... 0.19

FeO 9.81 9.65 9.07 9.10 8.08

MnO 0.13 0.13 0.12 0.12 0.11

MgO 13.03 12.40 12.67 12.43 12.57

CaO 10.77 11.13 11.11 11.10 10.99

Na20 0.70 0.72 0.69 0.75 0.68

K2 O 0.26 0.26 0.26 0.29 0.24

P205 0.27 0.29 0.29 0.28 0.28

S 0.09 0.06 0.08 0.08 0.39

Nb (ppm) 32

Zr 490 515 507 484 480

Hf 12.5 12.7 - - 11.81

Ta 1.62

U 1.46 1.59 1.96 1.48 1.2

Th 5.44 5.64 5.56 5.41 4.18

y 112

Sr 172 178 177 174 180

Rb 6.41 6.67 6.57 7.46 -

Li 18.3 19.8 21.6 18.5 17.7

Ba 348 362 358 354 340

Cs 0.20

Ni 1140

Co 90.2

Sc 16.7

La - 34.3 33.4 29.9 33.8

Ce 83.3 85.9 84.9 78.4 89.2

Nd 52.8 54.4 54.0 49.3 54

Sm 14.9 15.3 15.2 14.0 14.11

Eu 1.94 2.02 1.99 1.97 1.99

Gd 18.7 19.0 18.9 17.6 18.1

Tb 3.04

Dy 19.5 20.0 19.9 18.3 19.9

Er 11.5 11.8 11.7 10.9 -
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Table 1: (Concluded).

Split ,22M (a) ,37M (a) ,41M (a) ,64M (a) ,12 (b)

Technique XRF, IDMS XRF, IDMS XRF, IDMS XRF, IDMS XRF, INAA

Yb 10.6 11.0 10.8 10.0 11.43

Lu - - 1.30 1.50 1.55

Ga

F 45.8

C1 6.9

Ge (ppb)

lr 43

Au 18

Table 2: Trace element data for 76015. Concentrations in ppb.
From Higuchi and Morgan (1975).

Sample
76015,77
matrix

Ir 3.41

Os

Re 0.315

Au 1.89

Pd

Ni (ppm) 135

Sb 1.02

Ge 164

Se 76

Te 2.7

Ag 1.02

Br 46.8

In

Bi 0.22

Zn (ppm) 2.8

Cd 3.2

TI 0.67

Rb (ppm) 5.77

Cs 266

U 1490
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Table 3: Rb-Sr composition of 76015.
Data from Nyquist et al. (1974).

Sample 76015,22M ,37M ,41M ,64M

wt (mg) 52.3 53.5 63.6 51.5

Rb (ppm) 6.41 6.67 6.57 7.46

Sr (ppm) 171.8 177.5 176.6 173.8

87Rb/86Sr 0.1079 + 9 0.1088 + 9 0.1076 _+9 0.1242 + 10

87Sr/86Sr 0.70589 + 5 0.70605 + 5 0.70589 + 11 0.70693 + 6

TB 4.39+0.07 4.45+_0.07 4.40+0.11 4.40+0.07

TL 4.45+0.07 4.52+0.07 4.45+0.11 4.44+0.07

B = Model age assuming I = 0.69910 (BABI + JSC bias)
L = Model age assuming I = 0.69903 (Apollo 16 anorthosites for T = 4.6 b.y.)
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76035
Nonvesicular Impact Melt Breccia
376.2 g, 12 x 5.5 x 5 cm

INTRODUCTION the blue-grey impact melt (see
PETROGRAPHY Fig. 1). Some thin sections show the

Sample 76035 was collected from dark lithology is a soil breccia--but
the soil about 20 meters downslope The photo of one side of this sample it is very minor portion of the overall
from the large boulder in the (Fig. 1) shows that the main mass of sample.
Station 6 area. It is a nonvesicular, it is the blue-grey impact melt

clast-bearing, blue-grey impact melt breccia typical of the highlands; the This sample has not been studied.
breccia, other side has an assemblage of light

and dark clasts folded together like in There are only three thin sections of
Chao et al. (1975) believe that 76035 an omelet (Fig. 2). Angular 77035.
is very similar to 77115 and to inclusions of light impact melt
72435. Ryder (1993) describes the breccia are included in the blue-grey

matrix of 76035 as fine-grained with matrix of 76035. There is an
olivine microphenocrysts, apparent basaltic clast included in

Figure 1: Freshly broken surface of 76035, showing basalt clast. There are few vesicles compared with
the Station 6 Boulder. Scale is I cm. 873-19355.
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Figure 2: Angular inclusions of light impact melt breccia included and attached to matrix of 76035.
Scale is I cm. $73-15457.
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76036
Impact Melt Breccia
3.95 g, 2.5 x 2 x 0.6 cm

INTRODUCTION has small impact craters; the other
PETROGRAPHY side has a few white inclusions

Sample 76036 was collected from (Fig. 1).
the soil about 20 meters downslope Sample 76036 has not been studied,
from the Boulder 6 area. It is a dark but it is apparently similar to and

grey impact melt breccia, probably a piece of 76035. One side

Figure 1: Dark grey impact melt breccia 76036. Cube is I cm. $73-17959.
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76037
High-Ti Mare Basalt
2.52 g_ 1.7 x 1.2 x 0.8 cm

INTRODUCTION
PETROGRAPHY MINERAL CHEMISTRY

Sample 76037 was collected from

the soil about 20 meters downslope Neal et al. (1990) classify 76037 as a Neal et al. (1990) have studied the
from the Boulder 6 area as part of a Type 1B mare basalt, typical of other mineral chemistry. Olivine is
soil sample. It is a coarse-grained A17 basalts (Fig. 2). They report a Fo50-65, plagioclase is An78.88, and
ilmenite basalt (Fig. 1). mode of 0.5% olivine, 46% pyrox- pyroxene is Wo8.40En25_63.

ene, 33% plagioclase, and 17%
ilmenite. Grain size is 0.i to 1 mm.

Figure 1." llmenite basalt 76037. Cube is 1 cm. $73-17958.
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Figure 2: Photomicrograph of ilmenite basalt 76037. Field of view is 4 x 5 mm.
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76055
Impact Melt Breccia
6412 g, 23 x 13 x 13 cm

INTRODUCTION distinct from the boulder samples Other sections taken of the main

(with lower A1 and REE; higher Mg mass of the sample show that it is an
Sample 76055 was picked up from and Mg/Fe ratio), impact melt like that of the Station 6

the regolith at some distance Boulder and broadly similar to the
(10-15 meters) from the Station 6 This large sample has not received poikilitic breccias from the South

Boulder. The hand specimen adequate attention. It may be a Massif (Fig. 2). Sawn surfaces show
appeared to be relatively homoge- separate sample of the Serenitatus that the interior of 76055 is an

neous and clast free, but the thin melt sheet from high on the North assemblage of aphanitic breccia
sections show many minute clasts. Massif. clasts, included in larger aphanitic
This rock contains a prominent folia- pods, all included in a vesicular

tion that is defined by many small aphanitic matrix that displays a
lenticular vesicles up to 0.2 x 3 mm PETROGRAPHY swirled, banded foliation.
in size. The surface of the sample is
covered with zap pits, including one Sample 76055 is a massive impact The matrix of 76055 consists of

glass splash of about 1 cm. melt breccia with aphanitic matrix about 10% subangular plagioclase
(Fig. 1). Literature descriptions of and olivine clasts (50 to 500 btm) set

This sample appears to be slightly 76055 by Chao (1973), Warner et al. in a finer-grained (10 tma) poikilitic
older than the Station 6 Boulder and (1973), and Albee et al. (1973) are matrix of subhedral orthopyroxene
other Serenitatus impact melts. The all apparently from the same set of intergrown with anhedral
bulk composition is also apparently thin sections, all of which included plagioclase. The pyroxene has a

the same atypical clast in the breccia constant composition of about
matrix (see below).

Figure 1: Impact melt breccia 76055. Scale is I cm. $73-15714.
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Figure 2: Interior texture of impact melt breccia 76055, showing foliation of elongate vesicles wrapping around a
partially dissolved mafic clast. Field of view is 4 x 5 ram.

Wo4En77Fs19 , plagioclase An86_90, Station 6. This was first noticed by Turner et al. (1974) determine a
and olivine Fo77. The mode is about the preliminary examination team plateau age of 3.98 + 0.05 b.y.
41% plagioclase, 24% orthopy- (LSPET 1973) (Fig. 4). Palme et al. (Fig. 7). Both groups notice an
roxene, 18% olivine--with minor (1978) have studied 76055 for its unusual decrease in the apparent age

augite, armaicolite, and iron metal siderophile signature (Table 1). The at the highest temperature release.
(Albee et al., 1973). If this mode is REE are significantly less than for Kirsten et al. (1973) and Kirsten and
correct, then this sample has higher the samples of the Station 6 Boulder, Horn (1974) report a slightly older
olivine content than the other giving further evidence that this is a Ar plateau age of 4.05 + 0.07 b.y.
Station 6 breccias, which may separate impact melt rock (Fig. 5). (Fig. 8), but this is within the
explain its high Mg content, precision of the others.

Chao et al. (1975) believe that 76055 SIGNIFICANT CLASTS Nyquist et al. (1974) have reported

may be similar to 77135. Rb-Sr data for the matrix of 76055
Albee et al. (1973) give a detailed (Table 2) and note that the Rb-Sr

description of an olivine-bearing, systematics are probably partially
MINERAL CHEMISTRY "pod" or "metaclastic" clast in a thin reset by the Serenitatus impact event.

section of 76055,7. Chao (1973) has

Albee et al. (1973) give the detailed apparently also studied the same
compositions of many of the miner- clast in thin section 76055,10, but COSMOGENIC
als in 76055, including plagioclase, terms it an "olivine micronorite RADIOISOTOPES AND
pyroxene, olivine, armalcolite, iron homfels." Warner et al. (1973) EXPOSURE AGES
metal, apatite, and whitlockite describe the same clast in section
(Fig. 3). The compositions of the 76055,13 as an "angular poikilitic Huneke et al. (1973) calculate an Ar
minerals appear to be similar to those relic." exposure age of 140 m.y. from their

data, Turner et al. (1974) report 125

of the big boulder at Station 6. m.y., and Kirsten et al. (1973) report
RADIOGENIC ISOTOPES 120 + 15 m.y. This is much older

WHOLE-ROCK CHEMISTRY than the exposure age of the big
Huneke et al. (1973) determine the boulder (i.e., 22 m.y.).

Sample 76055 has a distinctly higher age of 76055 to be 3.97 +_ 0.04 b.y.
Mg content and higher Mg/Fe ratio by the broad intermediate plateau in
than the samples of the boulder at the 40Ar -39Ar release (Fig. 6).
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VESICULAR BRECCIA
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Figure 3: Mineral compositions of matrix to 76055. From Albee et al. (1973).
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Figure 5: Normalized rare earth diagram of 76055 compared to matrix of Station 6 Boulder (76015).
Data from Hubbard et aL (1974).
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SAMPLE 76055 - 35

0'_ I I I i I i i l I 0"I

0.1

0.0c.

_'_ O'O_ _-'
:).01

r .... ;

II i r--_! f f
150 _* l I

....F.........., , ', _-o

,.......... __ _

76055 l a
ANORTHOSITIC GABBRO

-- MATRIX z_-
bJ

• .... CLAST 1.6o<
T= 3"98 *- 0.05 #E "_

100 I I I I i l l I I -3,4

o 0"5 I.O
FRACTION OF 39Ar RELEASED

Figure 7: Argon plateau age of 76055 by Turner et al. (1974).

4.5 I ' I ' I ' I '_///,_
Y///A

4.0 _ 76055

o 3._ _____ |v ------

,,, ,?
<30 li

I I

r-f J
25 c--±u I , I , I , I ,

_i_i"o_ 02 0.4 06 08 10
"-1_$ Fraction of 39Ar Released

Figure 8: Argon plateau age of 76055 by Kirsten et al. (1973).



SAMPLE76055- 36

pressure range of 0 to 23 kbars.

SURFACE STUDIES Olivine + orthopyroxene are simul- PROCESSING
taneously on the liquidus at 23 kbar.

Storzer et al. (1973) determined a Orthopyroxene is the liquidus phase The sample was sawn into three
mean galactic track density of at pressures greater than 23 kbar approximately equal chunks, but it
6.7 x 106 tracks/cm 2 for feldspar in (Fig. 9). Experimental phase was not slabbed.

76055. relations of these experiments
suggest that the 76055 composition

EXPERIMENTAL does not represent magma derived by
partial melting of either cosmic or

Experimental studies by Delano differentiated source regions at any
(1977) showed that 76055 has pressure on the Moon.

olivine as its liquidus phase in the

(a)
16oo 76055
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,_ 1400-
.J'_ ...._/= / /
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Figure 9: The melting relations of 76055 as a function of temperature and pressure. From Delano (1977).
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Table 1: Whole-rock chemistry of 76055.

a) LSPET (1973); Hubbard et al. (1974); b) Nava (1974); Philpotts et al. (1974a); c) Palme et al. (1978)

Split ,5 (a) ,3 (b) ,40 (c)
Technique XRF, IDMS IDMS XRF, INAA

SiO2 (wt%) 44.65 45.7 45.60

TiO2 1.24 1.38 1.28

A1203 16.47 15.84 15.91

(3r203 0.19 0.19 0.20

FeO 9.11 9.27 9.21

MnO 0.11 0.122 0.12

MgO 16.33 17.89 16.50

CaO 9.93 9.13 9.69

Na20 0.48 0.55 0.57

K20 0.20 0.223 0.18

P205 0.19 0.220 0.20

S 0.07 0.07

Nb (ppm) 24

Zr 399 345

Hf 8.78

Ta 1.24

U 0.88

Th 3.52

W 0.44

Y 84

Sr 156.6 154 158

Rb 5.17 5.0 5.62

Li 13.5 11.7

Ba 253 291 285

Cs 0.093

Zn 0.81

Pb

Cu 2.98

I_ 490

Co 43.1

Sc 14.0

La 22.6 25.09

Ce 56.3 65.5 65.0

Nd 35.8 42.1 40

Sm 10.1 12.0 10.62

Eu 1.71 1.81 1.73

Gd 12.7 - 12.9
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Table 1: (Concluded).

Split ,5 (a) ,3 (b) ,40 (c)
Technique XRF, IDMS IDMS XRF, INAA

Tb 2.36

Dy 13.5 16.0 15.3

Er 8.18 9.66 9.31

Yb 7.64 8.84 8.72

Lu - 1.37 1.21

Ga 3.55

F 38.9

CI 1.7

Ge (ppb) 700

lr 13

Au 7.2

Re 1.6

Table 2: Rb-Sr composition of 76055.
Data from Nyquist et al. (1974).

Sample 76055,5

wt (rag) 47.7

Rb (ppm) 5.17

Sr (ppm) 156.6

87Rb/86Sr 0.0955+_ 8

87Sr/86Sr 0.70511 + 9

TB 4.39+0.11

TL 4.44+0.10

B = Model age assuming I = 0.69910 (BABI +
JSC bias)
L = Model age assuming I = 0.69903
(Apollo 16 anorthosites for T = 4.6 b.y.)
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76135
Vesicular Poikilitic Impact Melt Breccia
133.5 g, 7 x 6 x 4 cm

INTRODUCTION There areno other studiesof 76135

PETROGRAPHY reported to date.
Sample76135 was scooped from the
soil next to aiming pointrock Sample 76135 is a vesicular, clast- There areonly three thin sections of
(LRV10)--the astronautswere bearing,poikilitic impactmelt 76135.
attemptingto get apiece of turning breccia (Fig. 1). It has two
point rock by samplingthe fillet next populationsof vesicles, large (1 cm)
to it. Turningpoint rock is a boulder andsmall (>1 mm). Both show
thatrolled downfrom(or was blasted "frosted" crystallineinteriors. These
off of) North Massif. Chao et al. crystal-linedinteriorsdeserve SEM
(1975) believe that76135 maybe study. The poikilitic matrix includes
similar to 76055, but it is lighter in many smallmineralclasts (Fig. 2).
color andmore vesicular.

Figure 1: Vesicular poikilitic impact melt breccia 76135. Scale is 1 cm. $74-25040.
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Figure 2: Photomicrograph of the poikilitic texture of 76135. Scale is 4 x 5 ram.
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76136
High-Ti Mare Basalt
86.6 g, 6 x 4 x 3 cm

INTRODUCTION blocky pyroxene. The pyroxene- grained, rapidly chilled samples.
plagioclase matrix varies from The chemical variation within each

The top of this rock is covered with crudely variolitic (or sheath-like) to group is attributed to moderate

many large (.4).5 mm) micro- intersertal in texture (Fig. 2). amounts (5-20%) of crystal
meteorite pits lined with grey glass fractionation dominated by removal
(Fig. 1). Several large crystal-lined Brown et al. (1975) report the of olivine, armalcolite/ilmenite, and

cavities occur in this basalt. This mineral mode of 76136 to be 15% chrome spinel. Table 1 gives the
rock is a typical Apollo 17 basalt plagioclase, 46% clinopyroxene, 6% composition, and Fig. 3 compares the
fragment, olivine, 31% opaques, and 1.5% REE content of 76136 with the soil

silica, and the boulder.

PETROGRAPHY

WHOLE-ROCK CHEMISTRY RADIOGENIC ISOTOPES
Sample 76136 consists of large,

randomly-oriented ilmenite plates in Rhodes et al. (1976a) define three Nyquist et al. (1976) report whole-
a fine-grained holocrystalline matrix self-consistent basalt types at rock Rb-Sr data (Table 2).
with -6% equant olivine rimmed by Apollo 17 on the basis of fine-

Figure 1: Micrometeorite craters on surface of 76136, ilmenite basalt. $73-23931.
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Figure 2: Photomicrograph of texture of 76136 basalt. Field of view is 4 x 5 ram.
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Figure 3: Normalized rare earth element composition of 76136 compared with soil and boulder at Station 6.
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Table 1: Whole-rock chemistry of 76136.
From Rhodes et al. f1976a).

Split ,8 Split ,8
Technique XRF, ID, INAA Technique XRF, ID, INAA

SiP2 (wt%) 38.60 Li 8.9

TiP 2 12.64 Ba 83.7

A1203 8.65 1_

(2203 0.44 Co 18.7

FeO 19.12 Sc 82

MnO 0.28 La 6.91

MgO 8.61 Ce 23.8

CaP t0.53 Nd 26.2

Na20 0.38 Sm 10.9

K20 0.06 Eu 2.14

P205 0.06 Gd 16.4

S 0.18 Tb

Nb (ppm) Dy 19.3

Zr Er 11.4

Hf 9.4 Yb 10.2

Sr 190 Lu 1.42

Rb 0.67

Table 2: Rb-Sr composition of 76136.
Data from Nyquist et al. (1976).

Sample 76136,8

wt (mg) 60

Rb (ppm) 0.665

Sr (ppm) 190

87Rb/86Sr 0.0101 + 2

87Sr/86Sr 0.69974 + 4

TB 4.42 + 0.36

TL 4.89 + 0.36

B mModel age assuming I R 0.69910 (BABI +
JSC bias)

L R Model age assuming I _ 0.69903
(Apollo 16 anorth-osites for T _ 4.6 b.y.)
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76137
Poikilitic Impact Melt Breccia

2.46 g, I x 1.5 x 1.8 em

INTRODUCTION next to it. Turning point rock is a
boulder that rolled down from (or

Sample 76137 is apparently the same was blasted off of) North Massif.

lithology as 76135. It was scooped
from the soil next to turning point Sample 76137 is a light-colored
rock (LRV10)--the astronauts were impact melt breccia (Fig. 1). It has
attempting to get a piece of turning not been studied.
point rock by sampling the fillet

Figure 1: Poikilitic impact melt breccia 76137. Cube is I cm. $73-21762.



SAMPLE 76215 - 47

76215
Vesicular Micropoikilitic Impact Melt Breccia
644 g, 10.5 x 8 x 6 cm

INTRODUCTION surface of a large cavity (this may be detailed study of the textures of
why these samples broke off of the samples from Boulder 6.

Breccia sample 76215 was collected boulder). One surface of this sample
from the lunar surface next to the was the interior surface of a large
large Station 6 Boulder, but it was cavity (vesicle?). The "lip" of this PETROGRAPHY

most certainly spalled from the top cavity has a thick, undisturbed patina
surface of Block 4 of Boulder 6 (Fig. 2). The thickness of the patina Sample 76215 is a vesicular,
(Wolfe and others, 1981), where in this cavity is gradational from the crystalline matrix breccia with a

there is a fresh mark that fits the "lip" to the shielded interior (at the crude macroscopic foliation defined
sample directly above the location of bottom of the photo), by the alignment of vesicles and
the sample on the soil (Fig. 1). cavities, including the roughly flat

Sample 76215 is from the same Spudis and Ryder (1981) summarize side of a large cavity that defines one
lithologic unit B as sample 76015 the arguments that Boulder 6 is from side of the sample (Fig. 2). The

(Heiken et al., 1974) and has the the melt sheet or ejecta blanket from sample has two distinctive matrix
same overall color (green-grey) and the Serenitatus impact event, textures that differ only slightly in
vesicular texture. Simonds et al. (1976) and Onorato et modal mineralogy--both are 50%

al. (1976) provide a comprehensive plagioclase, 30% pigeonite, 4-11%
As in the case of 76015, 76215 has thermal model for the lithification of augite, 7-14% olivine, and 2%

an apparently shielded interior impact melt breccias based on their ilmenite (Simonds, 1975). Most of

Figure 1: Photograph of the top of Block 4 where 76215 was originally located. Sample was picked from the soil
directly beneath this point and was clearly broken from this spalled area on the top of the block. AS17-140-21421.
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Figure 2: Sample 76215, showing the patina-covered surface of the interior vug. Sample 76215 is a poikilitic impact
melt breccia with vesicles. $72-56373.

the sample has a clast-laden, myriad of evenly distributed, tiny be vesicles that were trapped when
poikilitic texture that is similar to the (10-30 _m) tabular feldspar grains." the rock crystallized. The smaller
other Apollo 16 and 17 impact melt Olivine occurs both as irregular cavities are vug that may have been
rocks. However, this sample also chadocrysts within pyroxene and as made by gas that was exsolved as the

has regions with ophitic textures granular grains between oikocrysts, rock crystallized.
similar to basaltic sample 14310 Fig. 4 compares the compositions of

(Fig. 3). The contact between the pyroxene, olivine, and plagioclase in The poikilitic region contains
regions with this change in texture is the ophitic matrix with those of the cm-size clasts of anorthosite display-
reported to be distinct, but the ophitic poikilitic matrix (Simonds, 1975). ing polygonal feldspar grains up to
areas are very irregular in outline and The region with ophitic texture is an 2 mm across--some with a granulitic
lack evidence of reaction. Simonds intergrowth of subhedral pyroxene texture with 120 deg triple junctions

argues that one is not a clast in the (0.2 to 0.8 mm) and euhedral (Fig. 5).
other, plagioclase (0.2 to 0.35 mm).

Plagioclase clasts in the ophitic Misra et al. (1976) have studied the

Simonds (1975) describes the poiki- regions have overgrowths up to complex metallic nickel-iron
liticareas as a "continuous network 30 pm wide. Olivine is the only particles included in 76215 and other

of pigeonite and subordinate augite mafic clast in the ophitic regions, samples of the Station 6 Boulder.
oikocrysts (0.5 to 2 mm) enclosing a Thecoarser cavities appear to
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Figure 3: Photomicrograph of the texture of the matrix of 76215. Note the large vesicle and the regions of ophitic
texture within the overall poikilitic matrix. Field of view is 4 x 5 ram.
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Figure 4: Pyroxene, olivine, and plagioclase compositions in two regions of matrix of 76215 (from Simonds, 1975).

Plagioclase clasts are more calcic than plagioclase laths in the matrix.
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Figure 5: Photomicrograph of large (0.5 cm) clast of anorthosite in 76215,70. Field of view is 4 x 5 ram.

from unit B (including 76215) cluster
WHOLE-ROCK CHEMISTRY COSMOGENIC

RADIOISOTOPES AND fairly well after alternating field

The matrix of 76215 is very homo- EXPOSURE AGES demagnetization. Gose et al. propose
geneous in composition (Table 1), that the natural remanent magnetiza-
and the composition is also very Some of the Apollo 17 samples tion of impact melt breccias is the
similar to that of the other samples of (including 76215) provided a unique vector sum of two magnetizations, a
this boulder (Fig. 6). Higuchi and opportunity to study the energy pre-impact magnetization, and a

Morgan (1975) find that the trace spectrum (and potential angular partial thermoremanence acquired
siderophile element compositions of anisotropy) of the incident proton during breccia lithification. Brecher
all the samples of the Station 6 Boul- flux from the August 1972 solar flare (1976) is convinced that alignment of
der form a tight grouping (meteorite (Rancitelli et al., 1974; Keith et al., magnetism follows the direction of
group 2) on compositional diagrams 1974). Table 3 compares the foliation and is caused by "textural
(Fig. 7). 76015 and 76215 have a induced activity of 76215 with other remanent magnetization."
lower abundance of these meteoritic samples of the boulder.
elements than the matrix for 76275 SURFACE STUDIES

and 76295 (Table 2). Bogard et al. (1974) (see unpub-

lished data in Phinney, 1981) have A large part of one surface of 76215
determined the noble gas abundances was apparently the interior surface of

RADIOGENIC ISOTOPES in 76215. a large vug or cavity in the boulder
(Fig. 2). Part of this shielded surface

Cadogan and Turner (1976) deter-
mined the crystallization age of MAGNETIC STUDIES has a patina indicating that a portionof the vug or cavity was open to the
76215 by the 39Ar-40Ar plateau
technique (Fig. 8). The matrix Gose et al. (1978) have carefully sky, but there is a nice gradation of
yielded an intermediate temperature studied the remanent magnetization patina along the vug surface with
plateau which covered 65% of the of 26 subsamples from the Station 6 apparent depth into the original vug
release of 39Ar and corresponded to Boulder. The direction of opening, as though there had been
an age of 3.94 + 0.04 b.y. magnetization of clast-free samples shielding from the sky. The thick
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Figure 6: Normalized rare earth diagram. The matrix of 76215 has the same composition as that of 76015.
Data from Simonds (1975).
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Figure 7: Diagram comparing the lr-Au-Re compositions of 76215 with those of other lunar samples.
From Higuchi and Morgan (1975).
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Figure 8: Argon release diagram for 76215. From Cadogan and Turner (1976).

deposit is made of accumulated glass Morrison and Zinner (1977) have (1975) have studied the surface
splashes, pancakes, and presumably also reported the distribution of small coating of F on the exteriors and
condensed vapor that may have come micrometeorite craters on the surface interiors of vugs in 76215. Carter et
from the opposite face of the cavity, of 76215 (Fig. 10). Measurements al. (1975) have studied the euhedral

by Hutcheon (1975) on the produc- crystals of pyroxene, plagioclase,
Morrison and Zinner (1977) have tion rate of micron-sized craters on ilmenite, metallic iron, and troilite
studied the solar flare tracks and the lunar surface disagree with the that line the vugs of 76215.

micrometeorite craters on a single finding of Morrison and Zinner

crystal of anorthite from 76215. (1975) by a factor of approximately
They determined a solar flare track 50. According to Zinner and PROCESSING
age of 1.6 x 104 years in agreement Morrison (1976), this disagreement
with the Mg and Fe exposure ages of cannot be due to experimental A slab and a column were cut from
2.1 and 2.4 x 104 years as deter- technique or assumptions, but might this rock (see lithology maps and
mined by ion microprobe analysis be due to sampling difficulties, diagrams in Phinney, 1981).
(Zinner et al., 1977) of implanted
solar wind. The solar flare tracks Samples of 76215 and other The largest remaining piece of 76215

extend to a depth of about vesicular breccias at this site are weighs 308 g. There are 19 thin
80 microns where the background of suitable for studies of the interior sections.

cosmic ray tracks becomes surfaces of cavities. Goldberg et al.
noticeable (Fig. 9).
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Figure 9: Track density vs. depth profiles for 76215. From Morrison and Zinner (1977).
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Figure 10: Crater densities for 76215. From Morrison and Zinner (1977).
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Table 1: Whole-rock chemistry of 76215.
Simonds (1975); Wiesmann and Hubbard (1975); Phinney (1981)

Split ,27M ,28M
Technique XRF, IDMS XRF, IDMS

SiO2 (wt%) 46.02 46.13

TiO2 L52 1.24

Al203 17.83 18.73

Cr203 - _

FeO 8.70 8.08

MnO na 0.06

MgO 12.21 12.43

CaO 11.10 11.50

Na20 na 0.70

K20 0.27 0.25

P205 0.28 0.24

S 0.05 0.06

Nb (ppm)

Zr 495 459

nf - -

U 1.5 1.26

Th 5.20 4.61

SF --

Rb 6.89 6.10

Li 19.6 22.6

Ba 352 294

La 33.4 27.3

Ce 83.6 68.9

Nd 52.2 43.7

Sm 14.9 12.3

Eu 1.99 1.70

Gd 19.3 15.9

Tb

Dy 19.7 16.5

Er 11.8 9.9

Yb 10.9 9.0

Lu - -
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Table 2: Trace element data for 76215. Concentrations in ppb.
From Higuchi and Morgan (1975).

Sample Sample
76215,48 76215,48
matrix matrix

Ir 0.829 Ag 0.87

Os Br 50.5

Re 0.07 In

Au 0.526 Bi 0.34

Pd Zn (ppm) 2.5

Ni (ppm) 54 CA 1.08

Sb 0.44 TI 0.63

Ge 31.5 Rb (ppm) 2.51

Se 60 Cs 188

Te 3.6 U 1120

Table 3: Solar flare induced activity from large solar flare, August 1972.
a) Keith et al., (1974); b) Rancitelli et al., (1974); c) O'Kelley et al., (1974)

Sample Sample Sample Sample Sample
76215 (a) 76255 (b) 76275 (b) 76295 (b) 76295 (c)

dpm/Kg

26A1 56+3 79+4 110+3 71+4 67+5

22Na 60+4 71 +4 100+3 64+3 54_+4

54Mn 22 _+17 38 _+9 103 + 20 69 _+26 38 + 15

56Co 45_+6 37_+4 86_+9 35+5 41 _+7

46Sc 5+3 3.9 + 1.2 7+2 6.4+2.6 5+2

48V

Natural activity

Th (ppm) 4.6 2.33 5.69 5.76

U (ppm) 1.27 .58 1.40 1.55

K (ppm) 2900 2250 2300
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76235
Feldspathic Granulitic Impactite
26.56 g, 5 x 3 x 2 cm

INTRODUCTION (Fig. 2) appears to be uniform in distribution ranging from 20 to

texture and homogeneous in 600 _m, but, according to Simonds
Several fragments, all with the same composition on a scale of 1 cm. On (1975), lack the polygonal texture of
unique lithology, were chipped from the moon, Schmitt called the texture a well-annealed rock (Fig. 3).
the same clast on Block 1 of the "aplitic." Rounded mafic inclusions up to

Station 6 Boulder (Fig. 1). They 30 _tm across occur in the larger
may have broken further in the feldspars. The compositions of
sample bag. These include samples PETROGRAPHY minerals are very homogeneous
numbered 76230, 76235, 236, 237, (Fig. 4). Necklaces of inclusions,

238, 239, 305, 306, and 307 (Heiken Sample 76235 is from a large (0.8 m) indicating overgrowth, are missing in
et al., 1973; Phinney, 1981). Most of feldspathic clast in the Station 6 this rock. Opaques include minute
these fragments have a thin brown Boulder. All of the pieces have the iron, troilite, and chromite. Ilmenite
patina with many micrometeorite same texture and lithology. The only occurs as lamellae in chromite.
craters. However, 76235 and 76305 mineralogical mode of 76235 is 70%

lack patina or pitted surfaces, plagioclase (An94.95), 20% pigeonite Warner et al. (1977) describe the
(Wo4En74Fs22), and 10% olivine texture of 76235 as poikoblastic and

This light-colored sample of dense, (Fo73) (Simonds, 1975). The equant suggest that rounded plagioclase
feldspathic, granulitic impactite feldspar have seriate grain-size regions about 1 mm across are

Figure 1: Surface of Block I of the big boulder at Station 6, showing numerous large clasts (see section on boulder,
page 5). Sample 76235 and related pieces were chipped from large clast in boulder (see Wolfe and others, 1981).
AS17-140-21443.
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Figure 2: Light-colored, feldspathic, granulitic impactite 76235. Cube is 1 cm. $73-16733.

megacrysts of anorthosite. These
regions of apparent anorthosite are RADIOGENIC ISOTOPES COSMOGENICRADIOISOTOPES AND
the only evidence that the rock may EXPOSURE AGES
be polymict in origin since the Cadogan and Turner (1976) deter-
mineral composition has been mined the crystallization age of two

samples of the 76235 clast by the Bogard et al. (1974) (see unpub-
homogenized (however, see 39Ar-40At plateau technique (Figs. 6 lished data in Phinney, 1981) have
siderophiles below). Warner et al. determined the noble gas abundances
and others group this rock with and 7). This feldspathic clast yielded in 76235.
feldspathic, granulitic impactites, plateau ages of 3.93 _+0.06 b.y. and

3.95 + 0.06 b.y. over 80% of the gas

release curve. This is the same age MAGNETIC STUDIES
WHOLE-ROCK CHEMISTRY as the breccia matrix surrounding

this clast in the boulder. The magnetization of sample 76307
The chemical analysis of 76230 (same as 76235) has been studied by
(Table 1) reported by LSPET (1973) Rb-Sr isotopic data (Table 3) by Gose et al. (1978).
and Hubbard et al. (1974) is of the Nyquist et al. (1975) show that

same rock material as 76235 (Fig. 5). 76230 (same as 76235) is not There are only three thin sections of
Higuchi and Morgan (1975) report a equilibrated with the matrix of the 76235.
very high meteoritic (5%) component Station 6 Boulder (Fig. 8).
in this clast (Table 2).



SAMPLE 76235 - 59

Figure 3: Photomicrograph of thin section 76235,19. Relict clastic texture has been annealed. Poikilitic pyroxene
includes plagioclase and olivine inclusions. Field of view is 4 x 5 mm.
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Figure 4." Pyroxene, olivine, and plagioclase composition diagram for 76230, which is a chip of 76235. The minerals
are homogeneous in this rock (see Simonds, 1975).
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Figure 5: Normalized rare earth element abundances for 76230 (76235) compared to the boulder matrix (76015).
Data are from Hubbard et al. (1975).
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Figure 6: Ar-Ar release diagram for 76235. From Cadogan and Turner (1976).
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Table 1: Whole-rock chemistry of 76235.

a) LSPET (1973); b) Hubbard et al. (1974); c)Wiesmann and Hubbard (1975)

Split 76230,4 (a, b, c)

Technique XRF, IDMS

SiO2 (wt%) 44.52

TiO 2 0.20

AI203 27.01

Cr203 0.11

FeO 5.14

MnO 0.06

MgO 7.63

CaO 15.17

Na20 , 0.35

K20 0.06

P205 0.05

S 0.03

Nb (ppm) 3.2

Zr 42

U 0.20

Th 0.72

Sr 146

Rb 0.448

Li 11.0

Ba 50.2

Zn 2

Ni 166

La 3.04

Ce 7.54

Nd 4.64

Sm 1.34

Eu 0.805

Gd 1.70

Dy 2.02

Er 1.31

Yb 1.37

Lu 0.202

Ge (ppb)

Ir

Au
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Table 2: Trace element data for 76235. Concentrations in ppb.
From Higuchi and Morgan (1975).

Sample Sample
76235,9 76235,9

dast clast

Ir 22.5 Ag 0.66

Os Br 9.6

Re 1.69 In

Au 6.66 Bi 0.15

Pd Zn (ppm) 1.2

Ni (ppm) 379 Cd 0.63

Sb 1.47 11 0.097

Ge 328 Rb (ppm) 0.448

Se 38 Cs 29.5

Te 2.6 U 190

Table 3: Rb-Sr composition of 76230.
(same as 76235)

Data from Nyquist et al. (1974).

Sample 76230,4

wt (mg) 78.1

Rb (ppm) 0.448

Sr (ppm) 145.9

87Rb/86Sr 0.0089 + 2

87Sr!86Sr 0.69982 +_7

TB 5.60 + 0.65

TL 6.12 -+0.66

B = Model age assuming I = 0.69910 (BABI +
JSC bias)
L = Model age assuming I = 0.69903
(Apollo 16 anorthosites for T = 4.6 b.y.)
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76236
Feldspathic Granulitic Impacfite
19.18 g, -4 x 2 x 2 cm

INTRODUCTION

Sample 76236 is a part of 76235. It
was chipped from the same light-
colored clast in the boulder at

Station 6. This fragment has a thin
brown patina with micrometeorite
craters on the surface (Fig. 1).

Figure 1: Feldspathic granulitic impactite 76236. Cube is 1 cm. $73-16725.
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76237
Feldspathic Granulitic Impactite
10.31 g, --4x 2 x 2 cm

INTRODUCTION

Sample 76237 is a part of 76235. It
was chipped from the same light-
colored clast in the boulder at

Station 6. This fragment has a thin
brown patina with micrometeorite
craters on the surface (Fig. 1).

Figure 1: Feldspathic granui#ic impactite 76237. Cube is 1 cm. $73-16719.
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76238
Feldspathic Granulitic Impactite
8.21 g, ~3 x 2 x 2 cm

INTRODUCTION

Sample 76238 is a part Of 76235. It
was chipped from the same light-
colored clast in the boulder at

Station 6. This fragment has a thin
brown patina with micrometeorite
craters on the surface (Fig. 1).

Figure 1: Feldspathic granulitic impactite 76238. Cube is 1 cm. $73-16717.
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76239
Feldspathic Granulitic Impactite
6.23 g, --3x 2 x 2 cm

INTRODUCTION

Sample 76239 is a part of 76235. It

was chipped from the same light-
colored clast in the boulder at

Station 6. This fragment has a thin
brown patina with micrometeorite

craters on the surface (Fig. 1).

Figure 1: Feldspathic granulitic impactite 76239. Cube is I cm. $73-16712.
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76245
Impact Melt Breccia
8.24 g, 3 x 2 x 1 cm

INTRODUCTION
PETROGRAPHY

Sample 76245 is a tan-grey, vesicular
impact melt breccia from the No thin section or chemical data are

permanently shadowed soil under the available.
overhang of Block 4 of the Station 6
Boulder: All surfaces appear to be
pitted (Fig. 1).

Figure 1: lmpactmelt breccia 76245. Cube is I cm. $73-17976.
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76246
Impact Melt Breccia
6.5g, 2x2 x2cm

INTRODUCTION
PETROGRAPHY

Sample 76246 is a tan-grey, vesicular
impact melt breccia from the No thin section or chemical data are

permanently shadowed soil under the available.
overhang of Block 4 of the Station 6
Boulder (Fig. 1).

Figure 1: Impact melt breccia. Cube is 1 cm. $73-17977.
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76255
Banded Impact Melt Breccia
406.6 g, 11 x 8 x 6 cm

INTRODUCTION are very confusing (at the time of breccia sampled from the boulder at
compiling this catalog, it would Station 6. The texture of the matrix

Sample 76255 was chipped by the require a research project by a new is subophitic with pyroxene and
astronauts from across the contact consortium tofigure this out:), olivine oikocrysts, small spherical
between unit C and a large (1 m) Please note the change in numbering vesicles, and abundant mineral and
clast seen in the surface photography of the lithologies between Warner et lithic clasts. Warner et al. give the
of Block 1 of the large boulder at al. (1976) and Phinney (1981). See mineralogical mode of the matrix as
Station 6 (Fig. 1). According to also Ryder andNorman (1979). 45% plagioclase (An82_95), 32%
Phinney (1981 ), the sample contains olivine (Fo73_77), 12% pigeonite
mostly crushed material from the (Wo7En70Fs23), 2% augite

clast, but from the maps of the sawn PETROGRAPHY (Wo38En50Fs12), and 3% ilmenite.
surface of the slab of 76255, it is However, the matrix is variable with

obvious that the contact zone is quite Sample 76255 is a banded impact finer-grained, dark material inter-
mixed and that more than one clast melt breccia with a large clast of mixed with coarser-grained light
was sampled, crushed norite and several small material. The plagioclase inclusions

white clasts (Fig. 2). According to in the breccia matrix are very calcic
Cautionary note: The exact details Warner et al. (1976), the matrix of (An95) (Fig. 3).
in the literature pertaining to which 76255 is the finest-grained, most
analyses are from which lithology clast-laden, impact-melt polymict

Figure 1: Photo of boulder surface showing large clasts in boulder matrix. 76255 was taken from one of these clasts
(Wolfe and others, 1981). AS17-140-21443.
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Figure 2: Mugshot of 76255 showing banded nature of sample. Note the crushed appearance of the norite clast (center)
and the white powder on the bottom surface. Scale is 1 cm. $72-56415.

Warner et al. (1976) have described plagioclase, large euhedral augite bulk, but mineral compositions are

the large crushed norite clast (called prisms that have exsolved thin given in Fig. 7.
unit 3 in Warner et al. and unit 4 in lamellae of low-Ca pyroxene, _aad

Phinney, 1981). It has been crushed interstitial anhedral pigeonite masses James and Flohr (1982) have also
to a seriate texture with fragments with exsolved augite lamellae. The studied the clasts in this breccia.

ranging in size from 2 _amto over cores of the plagioclase are An89 They group the norite and the gabbro
2 mm (Fig. 4)i Because this crushed while the rims are An75. The large clasts in their Category of Mg-
norite appears to be permeated with pyroxenes are Wo36En48Fs16 :rod gabbronorites. Jolliff et al. (1993)
breccia matrix, Warner et al. claimed Wo10En61Fs29, respectively (Fig. 6). have plotted the plagioclase vs.

that clean separations'of the norite pyroxene composition of these clasts
elast were not possible for A 0.8 x 1.2 cm shocked troctolite (Fig. 8).

geochemical and age dating experi- clast has been studied by Warner et
ments. The mineralogical mode is al. and others. It consists of 75'%
41% plagioclase (An87), 31% large (1 mm).euhedral plagioclase MINERAL CHEMISTRY

pigeonite (Wo8En61Fs3i), and 9% (An95) and 23% crushed olivine Using the pyroxene data Of Takeda
augite (Wo37En45Fs34). The (Fo89) fragments up to 0.7 mm.
pyroxenes in the norite are coarsely and Miyamoto (1977), Anderson and
exsolved (see below). The compo- Two basalt clasts with mineralogies Lindsley (1982) calculate a pyroxene

sition of pyroxenes and plagioclase suggestive of mare affinities were equilibrium temperature of 800 °C.
in the norite clast are shown in reported by Warner et al. (1976). Takeda and Miyamoto have also
Fig. 5. Because these clasts are enclosed studied the cooling rate of the

within the boulder, which is d_ted at inverted pyroxene in 76255. A deep-

Warner et al. also studied a 3 x 5 mm ~ 3.96 b.y., they must be at least that seated originis indicated for the

clast of gabbro that was broken off of old, indicating that mare volcaaism norite clast.
76255 (Phinney, 1981). It consists began before this time. These basalt

of large (2 mm) oscillatory-zoned clasts were too small to analyze in
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Figure 3: Pyroxene, olivine, and plagioclase compositions in 76255 matrix (Warner et al., 1976).

Figure 4: Photomicrograph of 76255,76 showing clastic texture of norite clast. Field of view is 4 x 5 mm.
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Smith et al. (1980), Steele et al. Warner et al. (1976) first descrit_ed (An89_75), augite (Wo36En48) with
(1980), and Bersch et al. (1991) have the large clast (300 g?) of cataclastic exsolved thin lamellae of low-Ca

also reported analysis of minerals in norite in 76255. Ryder and Noraaan pyroxene, and interstitial pigeonite
76255. (1979) and Phinney (1981) have (Wo 10En61) with exsolved thick

attempted to summarize what was lamellae. The location of this clast
known about this important clast, on 76255 is uncertain, but it is not

WHOLE-ROCK CHEMISTRY Warner et al. reported that the c]ast is from the slab as indicated by Warner
• permeated with "pods and septa of et al. Sections ,71,72 and ,73 were

Table 1 gives the major dement material identical to the boulder's derived from 76255,50, which was

analysis by Rhodes (unpublished in impact melt matrix." However, Gros from the external surface of 76255.
Phinney, 1981). Gros et al. (1976) et al. (1976) found that at least part
and Wolf and Anders (1979) have of this norite clast was free of

analyzed the trace elements of the meteorite contamination (note that RADIOGENIC ISOTOPES
various clasts for the Phinney they apparently misnamed it as
consortium (Table 2). Warren (1978, "troctolite"). Warren et al. (1986) 76255,46 yielded a very well-defined

1984, and 1986) has made several attempted to reanalyze this clas.r, but Ar plateau age of 4.02 + .04 b.y.
attempts to analyze the trace element found that their split was contara- (Cadogan and Turner, 1976) with no
content of the large norite clast inated with "countless small dark characteristic decrease in apparent

(Table 3 and Fig. 9). Additional aphanitic pods." However, their age in the high-temperature gas
analyses are needed of carefully analysis also showed that this clast is release (Fig. 11). This age appears to
controlled samples, a "possibly pristine" gabbronorite be older than the ages determined for

(James and Flohr, 1983; Warren, other samples of this boulder (see
table and discussion of Station 6

SIGNIFICANT CLASTS 1993). Boulder, page 5).

Several different clasts have been The small clast of gabbro (.4).5 g)

analyzed--see especially Ryder and studied by Warner et al. (1976) has a Bogard has analyzed the rare gas
Norman (1979), Phirmey (1981), and coarse cumulate texture (Fig. 10) isotopes in 76255 (see unpublished
Warren (1993). with oscillatory zoned plagioclase data in Phinney, 1981 ).

1000 I I I I I I I I I I 1000

76015 matrix

1oo 1oo
-g

E
10 10

1 I I I I I I I I I I 1

La Ce Nd Sm Eu Gd ]'b Dy Er Yb

Figure 9: Normalized rare earth element diagram for norite clast in 76255 compared to boulder matrix. According to
Warner et el. (1976) and Warren et al. (1986), this clast may contain some matrix material.
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Figure I0: Photomicrograph of gabbro clast in 76255,72. Field of view is 2 mm.
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Figure 11: Ar-Ar plateau age for 76255. From Cadogan and Turner (1976).
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m

COSMOGENIC MAGNETIC STUDIES PROCESSING
RADIOISOTOPES AND

EXPOSURE AGES Gose et al. (1978) have carefully A slab and a column were cut from

studied the remanent magnetization this rock (see lithology maps and
Some of the Apollo 17 samples of 26 subsamples from the Station 6 diagrams in Phinney, 1981). The
(including 76255) provided a unique Boulder. The direction of distribution of samples is recorded in
opportunity to study the energy magnetization after alternating field Phinney (1981) and Ryder and

spectrum (and potential angular demagnetization of breccia sample Norman (1979).
anisotropy) of the incident proton 76255 was found to be scattered.

flux from the August 1972 solar flare Gose et al. propose that the large The largest remaining piece of 76255
(Rancitelli et al., 1974; Keith et al., scatter of magnetization direction for weighs 166 g. There are 15 thin
1974). Table 4 compares the 76255 implies the predominance of sections.
induced activity of 76255 with other pre-impact magnetization in this
samples of the boulder, sample.

Table 1: Whole-rock chemistry of 76255.
From Rhodes (unpublished, reported :inPhinney, 1981).

Split ,38 ,44 ,51 ,55 ,58
Technique XRF XRF XRF XRF XRF

norite matrix matrix and dast dast elast

SiO 2 (wt%) 50.61 45.45 46.94 59.68 43.84

TiO 2 0.75 1.60 1.66 1.37 0.25

A1203 15.37 18.91 19.04 15.89 25.15

Cr203 0.04

FeO 9.8 7.40 7.21 9.36 4.23

MnO 0.19 0.11 0.13 0.17

MgO I 1.14 13.88 11.86 11.23 11.02

CaO 11.05 11.78 12.47 11.17 14.20

Na20 0.74 0.68 0.76 0.73 0.40

1<20 0.37 0.17 0.18 0.32 0.08

P205 0.03 0.24 0.22 0.01

S 0.09 0.03 0.03 0.03
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Table 2: Trace element compositions of 76255. Concentrations in ppb.
a) Gros el:al. (1976); d) Wolf and Anders (1979)

Sample Sample Sample Sample
76255,47 (a) 76255,52 (a) 76255,56 (a, d) 76255,57 (a, d)

matrix matrix clast dast

lx 1.13 1.21 0.042 0.019

Os 1.11 1.91 0.035 <0.03

Re 0.132 0.112 0.028 0.0068

Au 0.843 0.38 0.178 0.0093

Pd <2.5 <2.5 <0.7 <4.3

Ni (ppm) 90 62 31 <15

Sb 2.2 0.2 0.11 2.4

Ge 34.2 9.6 6.6 2.2

Se 41 19 49 0.6

Te 1.6 2.5 1.1 5.9

Ag 12.9 1.29 0.7 0.34

Br 35.9 15.8 9.2 7.8

In 0.61 9.76 0.3 0.77

Bi 0.31 0.37 0.2 <2

Zn (ppm) 2.4 2.3 2 0.5

Cd 8.2 6.4 2 67.5

"13 0.89 1 0.96 5.4

Rb (ppm) 5.36 3.68 12.8 0.19

Cs 184 175 842 6.3

U 3150 1170 445 19
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Table 3: Composition of 76255.
a) Warren and Wasson (1978); b) Warren et al. (1986)

Sample Sample Sample
76255,58 (a) 76255,95 (b) 76255,95 (b)

Na (%) 0.347 0.5139 0.495

Mg (%) 6.13 7.3

Al (%) 13.8 8.9

Si (%) 20.6 22.8

K (%) 0.158 0.124

Ca (%) 10.7 8.3 8.3

Se (ppm) 4.7 17.3 16.2

Ti (%) 0.16 0.5

Cr (ppm) 461 1310 1320

Mn (ppm) 367 1010 975

Fe (%) 3.3 6.2 6

Co (ppm) 19.4 14.2, 16.2

Ni (ppm) <70 23 13

Zn (ppm) 53.2

Ga (ppm) 4.81 4.2 4

Ge (ppb) 22 1.3

Zr (ppm) 150 120 196

Cd (ppm) 6.4

In (ppm) <5

Ba (ppm) 240 184 178

La (ppm) 16.1 12. l 13.7

Ce (ppm) 38 32 37

Nd (ppm) 24 20.2 22.2

Sm (ppm) 5.4 5.8 6.3

Eu (ppm) 1.77 1.57 1.55

Tb (ppm) 0.94 1.23 1.34

Yb (ppm) 3.4 4 4.3

Lu (ppm) 0.46 0.63 0.68

Hf (ppm) 3 3,8 4.3

Ta (ppm) 0.27 0 41 0.42

Re (ppb) 0,017

lr (ppb) 0.63 0.077

Au (ppb) 10.8 0.139 0.05

Th (ppm) 1.3 1.4 1.58

U (ppm) 0.38 0.38 0.38
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Table 4: Solar flare induced activity from large solar flare, August 1972.
a) Keith et al., (1974); b) Rancitelli et al., (1974); c) O'Kelley et al., (1974)

Sample Sample Sample Sample Sample
76215 (a) 76255 (b) 76275 (b) 76295 (b) 76295 (c)

dpm/Kg

26AI 56+3 79+4 110+3 71 "+4 67"+5

22Na 60"+4 71 "+4 100+3 64"+3 54+4

54Mn 22 + 17 38 _+9 103 + 20 69 + 26 38 + 15

56Co 45-+6 37+_4 86_+9 35+5 41 +7

46Sc 5+3 3.9+ 1.2 7+2 6.4+2.6 5+2

48V

Natural activity

Th (ppm) 4.6 2.33 5.69 5.76

U (ppm) 1.27 .58 1.40 1.55

K (ppm) 2900 2250 2300



SAMPLE 76265 - 89

76265
Impact Melt Breccia
1.75 g, 2 x 1.5 x 0.7 cm

INTRODUCTION

Sample 76265 is a vesicular,
greenish-grey, impact melt rock from
the soil between the blocks of the

Station 6 Boulder (Fig. 1).

This sample has not been studied and
there are no thin sections.

Figure 1: Sample 76265. Cube is 1 cm. $73-21767.
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76275
Impact Melt Breccia
55.93 g, 6.8 x 4 x 3 cm

INTRODUCTION iron. The texture of the fine grain
matrix of 76275 is poikilitic to subo- WHOLE-ROCK CHEMISTRY

Sample 76275 was chipped from phitic and similar to that of 76295
Block 1 of the big boulder at (Simonds, 1975; Simonds et al., Phirmey (1981) and Simonds and
Station 6 (Wolfe and others, 1981; 1974). The matrix is finer-grained Warner (1981) report preliminary
Heiken et al., 1973). It contains than for the other samples of the major element data for matrix and
distinct clasts of white feldspar (or large boulder (Fig. 2). The grain size clasts in 76275 (Table 1). The blue-
anorthosite) in a dark, fine-grained, of matrix feldspar is <10 pin, grey matrix, tan matrix, and vesicular
clastic matrix. This sample has not pyroxene <25 Jam. The matrix clast all appear to have compositions
been well studied, consists of low-calcium pyroxene like those of the matrices of the rest

(Wo4En60.73Fs19_26), minor augite of the samples of the large Station 6
(Wo30_40En44_57Fs12_15), olivine Boulder. Higuchi and Morgan

PETROGRAPHY (Fo 70-76), and feldspar (An 81-97) (1975) find that the trace siderophile
(Fig. 3). element composition of all the

Sample 76275 is a clast-bearing, samples of the Station 6 Boulder

nonvesicular, blue-grey breccia Misra et al. (1976) have studied the form a tight grouping (meteorite
(Fig. 1). The modal mineralogy of complex metallic nickel-iron group 2) on compositional diagrams.
76275 is about 50% plagioclase, particles included in 76275 (Fig. 4). Sample 76275 has a higher abun-
40% low-calcium pyroxene, with dance of these meteoritic elements
minor amounts of augite, olivine, than the matrices of 76015 and
ilmenite, armalcolite, and metallic 76215 (Table 2, Gros et al., 1976).

.... _ i;_i_̧

Figure 1: Sample 76275, showing light a_l dark clasts in an aphanitic blue-grey matrix. Cube is I cm. $73-15081.
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Figure 2: Photomicrograph of matrix of 76275,56. Vesicles are not typical. Field of view is 4 x 5 mm.
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Figure 3: Electron microprobe analyses of minerals in mat,ix of 76275. From Phinney (1981).
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Figure 4: Ni vs. Co analysis of iron grains in 76275 compared with other Station 6 breccia samples.
By Misra et al. (1976).

4.02 + 0.04 b.y. for 76275 (Fig. 5). flux from the August 1972 solar flare
SIGNIFICANT CLASTS This is somewhat older than the (Rancitelli et al., 1974; Keith et al.,

other Ar ages for this boulder. 1974). Table 3 compares the
Several large, white clasts with induced activity of 76275 with other
distinctboundaries can be seen in the m samples of the boulder.
photos of the broken surface of COSMOGENIC
76275 (Fig. 1). These obvious clasts RADIOISOTOPES AND
deserve to be studied. EXPOSURE AGES MAGNETIC STUDIES

The Apollo 17 samples (including Gose et al. (1978) havecarefully
RADIOGENIC ISOTOPES 76275) provideda unique studied theremanentmagnetization

opportunityto study the energy of 26 subsamplesfrom the Station 6
Cadoganand Turner (1975) deter- spectrum(and potentialangular Boulder. The direction of
mined an Ar plateauage of anisotropy)of the incidentproton
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magnetization after alternating field magnetization and a partial
demagnetization of breccia sample thermoremanence acquired during PROCESSING
76275 was found to be scattered for breccia lithification. The large

this clast-rich sample. Gose et al. scatter of magnetization direction of The processing of sample 76275 was

propose that the natural remanent 76275 implies the predominance of delayed and the Phinney consortium
magnetization of impact melt pre-impact magnetization in this did not complete their analyses
breccias is the vector sum of two sample. (Phinney, personal communication).

magnetizations, a pre-impact The largest remaining piece (,0)
weighs 38 g. There are 16 thin
sections.
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Figure 5: Ar-Ar release diagram of matrix of 76275. From Cadogan and Turner (1976).
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Table 1: Whole-rock chemistry of 76275.
From Simonds and Warner (1981) and Phinney (1981).

(Cautionary note: Thesepreliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analyst)

Split ,24 ,32 ,38
Technique EMP EMP EMP

tan matrix vesicular clast blue-grey clast

SiO2 (wt%) 47.14 47.16 46.67

TiO2 1.65 1.43 1.36

A1203 18.7 17.68 18.63

Cr203 0.15 0.19 0.19

FeO 8.54 8.91 8.41

MnO

MgO 9.22 11.20 10.85

CaO 12.06 11.30 11.37

Na20 0.72 0.70 0.70

K20 0.34 0.22 0.28

Table 2: Trace element data for 76275. Concentrations in ppb.
From Gros et al. (1976).

Sample Sample
76275,33 (a) 76275,33 (a)

k 7.76 Ag 1.22

Os 8.6 Br 72.7

Re 0.725 In 12.4

Au 5.]I Bi <0.5

Pd 19.8 Zn (ppm) 4

Ni (ppm) 387 Cd 8.8

Sb 2 TI 1.4

Ge .'183 Rb (ppm) 3.67

Se 125 Cs 196

Te 9.8 U 2350
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Table 3: Solar flare induced and natural activity of 76275 compared with other samples.
From large solar flare, August 1972.

a) Keith et al. (1974); b) Rancitelli et al. (1974); c) O'Kelley et al., (1974)

Sample Sample Sample Sample Sample
76215 (a) 76255 (b) 76275 (b) 76295 (b) 76295 (c)

dpm/Kg

26A1 56+3 79+4 110+3 71 +4 67+5

22Na 60 + 4 71 + 4 100 + 3 64 + 3 54 _+4

54Mn 22 + 17 38 + 9 103 _+2D 69 + 26 38 + 15

56Co 45+6 37+4 86+9 35+5 41 _+7

46Sc 5+3 3.9+ 1.2 7+2 6.4+2.6 5+2

48V

Natural activity

Th (ppm) 4.6 2.33 5.6!) 5.76

U (ppm) 1.27 .58 1.*) 1.55

K (ppm) 2900 2250 2300



SAMPLE76285- 97

76285
Agglutinate of Dark Matrix Breccia Fragments
2.208 g, 3 x 1.5 x 1.5 cm

INTRODUCTION
PETROGRAPHY

This fragment (76285) was collected
from the soil between the boulder A dark brown glass splash
blocks at Station 6. This soil was (agglutinate) holds several dark

collected as a comparison with brown matrix breccia fragments

76245, which was permanently together (Fig. 1). This breccia may
shadowed, be a soil breccia rather than a

highlands impact melt. This
fragment has not been studied, and
there are no thin sections.

i

Figure 1: Sample 76285. Cube is 1 cm. $73-20182.
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Figure 2: The other side of762_5. $73-20181.
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76286
Impact Melt Breccia
1.704 g, 1.5 x I x I cm

INTRODUCTION cdginally had a relatively coarse
grain size (1 to 3 ram'?.). However, WHOLE-ROCK CHEMISTRY

This small rock fragment was the thin section allocated to Warren
collected from a trench in the soil et al. (1978) showed a "fine-grained, Warren and Wasson (1978) analyzed
between the blocks of the big polymict texture" that is very similar a piece of 76286 and found that it

boulder at Station 6. Although it was to the boulder samples 76215 and had a composition very similar to the
called a "brecciated troctolite" in the 76015 (Fig. 2). This vesicular samples of the big boulder at
original catalog, it is instead a typical poikilitic impact melt breccia is Station 6 (Fig. 3). Sample 76286 had
impact melt breccia (Fig. 1). reported by Warren et al. to have high Ir and is nonpristine (Table 1).

about 51% plagioclase (An 85-95),
26% orthopyroxene (Wo 3_5En72_77 There are no other data on this small

PETROGRAPHY F's19-25), and ~13% olivine (FoT0). fragment.

The binocular description by Butler
(1973) indicated that this rock

Figure 1: Poikilitic matrix, blue-gr'ey impact melt rock 76286. Cube for scale = I cm. $73-2018l.
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Figure 2: Photomicrograph of 76286,3, illustrating clastic poikilitic texture and large vesicle.

Field of view is 4 x 5 mm.
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Figure 3: Normalized rare earth element diagram for 76286, with data from 76015for comparison.
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Table 1: Chemical data for 76286.

From Warren and Wasson (1978).

Sample
76286,1

Na (%) 0.499

Mg (%) 7.55

AI (%) 9.53

Si (%) 22

K (%) 0.232

,Ca (%) 7.8

Sc (ppm) 16.7

Ti (%) 0.94

Cr (ppm) 1330

Mn (ppm) 917

Fe (%) 7.1

Co (ppm) 13.8

Ni (ppm) 57

Zn (ppm) 2.44

Ga (ppm) 4.82

Ge (ppb) 445

Zr (ppm) 500

Cd (ppm) 8.4

][n(ppm) <50

Ba (ppm) 384

La (ppm) 32.1

Ce (ppm) 83

Nd (ppm) 56

'_m (ppm) 14

Eu (ppm) 1.92

Tb (ppm) 3

Yb (ppm) 10.4

Lu (ppm) 1.45

Hf (ppm) 11.3

Ta (ppm) 1.34

Re (ppb) 0.27

lr (ppb) 1.4

Au (ppb) 0.77

Th (ppm) 5.2

U (ppm) 1.5
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76295
Impact Melt Breccia
260.7 g, 10 x 6 x 3.5 cm

m

INTRODUCTION PETROGRAPHY (Wo 30_40En44.57Fs 12-15), olivine
(Fo70_76), and feldspar (An81.97).

Sample 76295 was chipped from The grain size of matrix feldspar is
Block 1 of the big boulder at Szunple 76295 is a banded, clast- <15 _m, pyroxene 10-25 _m
Station 6 (Wolfe and others, 1981; bearing, nonvesicular, blue-grey (Fig. 2).
Heiken et al., 1973). It is a non- breccia with aphanitic matrix. The
vesicular, crystalline matrix breccia modal mineralogy of 76295 is about Banded areas of aphanitic tan matrix
with a blue-grey color (similar to 50% plagioclase, 40% low-calcium are included in the aphanitic blue-

76275). Light and dark clasts have a pyroxene, with minor amounts of grey matrix (Fig. 3). There are only
distinct outline with the matrix augite, olivine, ilmenite, armalcolite, minor differences between the

(Fig. 1), and the fine grain size of the and metallic iron. The texture of the mineralogy of the tan areas and that
matrix of this sample and that of fine grain matrix of 76295 is of the blue-grey matrix (Fig. 4).
76275 form an important argument subophitic (Simonds et al., 1974). There appears to be significantly
of the thermal model of Simonds Tile matrix consists predominantly of more olivine in the blue-grey
(1975) and Onorato et al. (1976) for low-calcium pyroxene portions and more augite in the tan
the genesis of impact melt breccias. (Wo4En60_73Fs19_26), minor augite

Figure 1: Freshly broken surface of impact melt breccia 76295. Scale is I cm. $72-56409.
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Figure 2: Photomicrograph of 76295,85, showingfine grain aphanitic matrix and vesicular basalt clast.
Field of view is 4 x 5 ram.
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Figure 3." Maps of two slab surfaces through sample 76295.
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Figure 4: Mineral composition of blue-grey matrix and tan-grey clast veins in 76295. From Phinney (1981).

areas, but this is not well Misra et al. (1976) have studied the element composition of the matrix of
documented. Rare rounded clasts complex metallic nickel-iron 76295 is within the tight grouping of
(50 pan) of pink spinel are found in particles included in 76295. the Station 6 Boulder (meteorite

the blue-grey subophitic matrix group 2) on the Ir-Au-Re composi-1

(Simonds, 1975)• tional diagram, but that the Ir-Au-Re
WHOLE-ROCK CHEMISTRY ratios of the 76295 clasts are

Norman et al. (1993) have compared distinctly different (Fig. 7). The
the composition of minerals in The matrix of 76295 is homogeneous 76295 matrix has a higher abundance
LKFM clasts in 76295 with minerals and apparently similar to that of the of these meteoritic elements than the

in similar clasts in 76315 (Fig. 5). other samples of this boulder matrix for 76015 and 76215
They conclude that the clast (Fig. 6). Unpublished chemical data (Table 2). Some data for 76295 are
population in 76295 is dominated by are :reported in Phinney (1981)• also given in Simonds and Warner
"Mg-suite norites, troctolites and There is no difference between the (1981).
gabbronorites?' Minor-element REE composition of the tan matrix
abundances in both olivine and and that of the blue-grey matrix

pyroxene are unlike those found in (Table 1). Higuchi and Morgan
lunar rocks of the ferroan anorthosite (1975) find that the trace siderophile
suite.
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Figure 5: Histograms of plagioclase, olivine, and pyroxene con!positions of clasts in 76295 and 76315.
From Norman et al. (1993).
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Figure 6: Normalized rare earth element diagram for matrices and cla,cts in breccia 76295. The blue-grey and tan
matrices have the same exact composition. The dark grey clast has higher REE and the basalt is lower. The basalt is
not like a mare basalt.
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q 20 Ir

Figure 7: lr-Au-Re diagram from Higuchi and Morgan (1975), showing that the 76295 clasts are slightly different
from the breccia matrix (group 2).

basalt clast (from Simonds, 1975). Unpublished U-Th-Pb data by Leon
SIGNIFICANT CLASTS The composition of the porous Silver were reported in Phinney

basaltic clast (see Table 1) is quite (1981).
The dark grey and light grey aphani- exotic, with preferential enrichment
tic clasts analyzed by Phinney (1981) in the volatile elements such as Rb

are, respectively, subophitic and relative to U (Simonds, 1975). COSMOGENIC
poikilitic melt rocks quite similar to RADIOISOTOPES AND

EXPOSURE AGES
the fragments that form the matrix of Simonds (1975) also studied the

the boulder. They have slightly mineral composition of a "troctolite" Some of the Apollo 17 samples
higher KREEP contents than the clast in 76295 (Fig. 9). (including 76295) provided a unique
matrix (Fig. 6). opportunity to study the energy

Four small vuggy basalt clasts RADIOGENIC ISOTOPES spectrum (and potential angular
(similar to the large basaltic vug in anisotropy) of the incident proton
76015) oecm' in 76295. Because of Cadogan and Turner (1976) deter- flux from the August 1972 solar flare

their high porosity, these "clasts" mined the crystallization age of two (Rancitelli et al., 1974; Keith et al.,
samples of 76295 by the 39Ar-40At 1974).appear to be vug fillings. Their

texture iS that of an intersertai basalt, plateau technique. The tan matrix

but with pore s_aces in place of yielded an intermediate temperature Bogard et al. (1974; see unpublished
mesostasis (Fig. 2). Plagioclase plateau age of 3.95 + 0.04 b.y., and data in Phirmey, 1981) have deter-
occurs as subhedral groins up to 300 the blue-grey matrix yielded one of mined the noble gas abundances in
Imalong with inclusions of pyroxene, 3.96 + 0.04 b.y. Both exhibited 76295.
K-feldspar, opaques, and a silica appreciable high-temperature
phase concentrated at the rims decreases in 40Ar over the last 30%
(Phinney, 1981). Fig. 8 gives the i_elease (Fig. 10).

mineral compositions of a porous
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Figure 8: Microprobe analyses of minerals in a porous basaltic clast in 76295. From Simonds (1975).
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Figure 10: Ar-Ar release diagram for 76295 matrb:. By Cadogan and Turner (1976).

propose that the large scatter of
MAGNETIC STUDIES magnetization direction of '76295 PROCESSING

implies the predominance of pre-
Gose et al. (1978) have carefully impact magnetization in this sample. A slab and a column were cut from
studied the remanent magnetization Brecher (1976) is convinced that this rock (see lithology maps and

of 26 subsamples from the Station 6 alignment of magnetism fo:tlows the diagrams in Phinney, 1981).
Boulder. The direction of direction of foliation and is caused

magnetization after alternating field by "textural remanent
demagnetization of breccia sample magnetization."
76295 was found to be scattered for

this clast-rich sample. Gose et al.
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Table 1: Whole-rock chemistry of 76295.

a) Simonds (1975); b) Wiesmann and Hubbard (1975); c) Phinney (1981)

Split ,14 (a, b) ,46 (b, c) ,31,35 (c) ,51 (c) .30 (c)
Technique IDMS fused bead. INAA INAA INAA

blue matrix basaltic rug tan matrix dark grey clast light grey clast

SiO 2 (wt%) 47.03 48.11 47.55 46.89 47.04

TiO2 1.39 1.80 1.64 1.50 1.36

A1203 18.25 16.95 17.67 18.67 18.98

Cr203 - 0.17 0.17 0.17 0.16

FeO 9.09 9.17 9.05 8.79 8.44

MnO

MgO 10.78 9.72 9.78 9.66 9.64

CaO 11.54 11.22 11.49 11.69 11.95

Na20 0.76 0.7 0.74 0.71 0.66

K20 0.26 0.6 0.29 0.23 0.28

P203 0.32
S 0.06

Nb (ppm)

Zr 541 232

Hf - - 13.2 16.3 12.4

Ta 1.9 2.4 1.7

U 1.83 0.66

Th 6.12 2.01 5.6 7.6 5.2

Sr - 191

Rb 5.43 20.47

Li 19.4 20.5

Ba 376 334

Ni 160 220 170

Co 19.9 28 23

Sc 17.8 18.2 16.7

La 37.8 18.2 37.5 44.2 31.8

Ce 95.7 46.6 102 127 95.8

Nd 60.0 31.1

Sm 16.9 9.22 17 20.4 14.3

Eu 1.91 2.08 2.11 2.01 1.77

Gd 21.3 12.4

Tb 3.91 4.56 3.56

Dy 22.3 13.3

Er 13.2 8.06

Yb 12.0 7.6 12.2 14.1 10.8

Lu - 1.07 1.71 1.95 1.49
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Table 2: Trace element data for 76295 matrix and clast. Concentrations in ppb.

From Higuchi and Morgan (1975).

Sample Sample Sample Sample Sample
76295,31 76295,34 76295,37 76295,49 76295,52

clast matrix matrix basalt clast

Ir 5.98 6.1 7.88 3.18 5.42

Os

Re 0.48 0.486 0.566 0.267 0.456

Au 2.65 3.43 4.36 2.91 3.93

Pd

Ni (ppm) 179 218 250 146 203

Sb 1.03 1.68 393 1.84 2.11

Ge 198 374 316 321 423

Se 75 132 103 235 68

Te 2.4 4.62 4.9 5.81 1.9

Ag 0.87 5.09 4.55 1.03 1.2

Br 23.5 27.9 78.7 30.5 37.5

In

Bi 0.46 0.8 0.97 0.4 0.56

Zn (ppm) 2.3 2_5 27.1 2.2 2.6

Cd 1.88 1 6.56 1.13 1.28

TI 0.44 0.64 1.41 0.99 0.33

Rb (ppm) 3.31 4.22 9.2 12.5 1.75

Cs 192 297 151 649 110

U 1620 1320 1910 760 1940
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76305-76307
Feldspathic Granulitic Impactites
76305 -- 4.01 g, 76306 = 4.25 g, 76307 -- 2.49 g

INTRODUCTION patina with micrometeorite craters on
the surface (Fig. 1).

Samples 76305, 76306, and 76307
are parts of 76235. They were The magnetization of sample 76307
chipped from the same light-colored has been studiedby Gose et al.
clast in the boulder at Station 6. (1978).
These fragments have a thin brown

Figure 1: Feldspathic granulitic impactite 76305, 76306, and 76307. Cube is I cm. 573-16711.
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76315 , ----
Micropoikilitic Impact Melt Breccia
671.1 g, 10 x 12 x 4.5 cm

INTRODUCTION extent that the underlying lithology from the boulder. The "clast I" was

could not be discerned except on the found to be disappointingly small in
Sample 76315 was chipped from the freshly broken B1 face (Fig. 3). The volume.
side of the big boulder at Station 6 broken surface was composed of
(Fig. 1). This blue-grey breccia dark grey breccia with a large The modal mineralogy of the matr'Lx
sample is part of lithology AB, in:egular patch of "pink-grey" of 76315 is about 50% plagioclase
which is mapped as a "transitional material and a 1 x 2 cm light grey and 40% low-calcium pyroxene with
zone" on Block 2 by Heiken et al. clast (Phinney, 1981). minor amounts of augite, olivine,
(1973). Sample 76315 is a micro- ilmenite, armalcolite, and metallic
poikilitic impact melt breccia that A distinct foliation is apparent in the iron (Fig. 4). The texture of the
has been studied by many slab of 76315 due to variations in matrix of 76315 is micropoikilitic

investigators. It is typical of the matrix color, and trains of minute and similar to the matrix of the other
other samples Of the big boulder (see vesicles occur in the matrix. Along samples of the large boulder
the introduction section on the one edge of the slab and parallel to (Simonds et al., 1974). The matrix
boulder at Station 6). the foliation are white patches consists dominantly of low-calcium

referred to as "clast 1" by Phinney pyroxene (Wo4En60_73Fs19.26),
(1981). However, this brecciated minor augite (Wo30_40En4a.57

PETROGRAPHY clast was apparently squeezed along Fs12_15), olivine (Fo70-76), and
the direction of foliation, forming a feldspar (An81_97). The grain size of

The surface of 76315 was covered zone of weakness along which the matrix feldspar is ~ 10 tun; pyroxene

with patina (Fig. 2) to such an rozk was fractured during sampling is 25-30 pan. Histograms of matrix

Figure 1: Photo of the downhill side of Block 2 of the Station 6 Boulder where sample 76315 was chipped.
AS17-140-21436.
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Figure 2: Exterior surface of 76315, showing thick patina and many micrometeorite pits. Scale is 1 cm. $73-17108.

mineral compositions (Fig. 5) from pyroxene (Simonds et al., 1974). James (1994) has carefully reviewed
widely separated regions, including The clast population in 76315 has the volatile and siderophile elements
subophitic and micropoikiltic also been studied by Norman et al. in Apollo 17 melt rock. There is
regions, showed similar (1993). remarkable similarity in the patterns
compositions (Simonds et al., 1974). of these elements in the matrices of

Misra et al. (1976) have studied the all these samples.

Simonds et al. (1974) studied numer- complex metallic nickel-iron
ous small lithic clasts in 20 thin particles included in 76315.
sections of 76315, including two SIGNIFICANT CLASTS

poikilitic 70-80% feldspar fragments,
three granulitic 70-80% feldspar WHOLE-ROCK CHEMISTRY Clast 1 (,52) was a thin white rind
fragments, one crushed feldspar or along the side of the sample. The
anorthosite fragment, three intersertal Simonds (1975) gives the chemical white rind's mineral mode, mineral
feldspar-pyroxene-olivine fragments, composition of 76315 and two of its composition, bulk composition, and
one crushed olivine or dunite, one clasts (Table 1). Morgan et al. textural data are reported in Simonds

poikilitic 50-60% feldspar fragment, (1974) and Gros et al. (1976) have (1975) (Fig. 6). This granulitic clast
two crushed spinel-olivine determined the siderophile and trace has ~70% plagioclase (An95), -15%

fragments, one crushed troctolite element abundance of matrix and pigeonite (Wo3_5En83Fs12), and
fragment, and three aphanitic clasts in 76315 (Table 2). Jovanovic -15% olivine (Fo82). See also the
feldspathic fragments. Among the and Reed (1975) have determined F, REE diagram (Fig. 7).
mineral clasts in 76315, pyroxenes C1, I, Li, U, Ru, and Os in external
and olivine fragments range in and internal pieces of 76315. Allen

Mg/Fe ratios above and below the et al. (1975) have reported heavy
composition of the matrix element abundances.
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Figure 3: Freshly broken surface of 76315 showing two large, prominent clasts. The large pinkish-white clast (clast 1)

was found to be very thin. The light grey clast (clast 2) was found to have a coarse poikilitic texture. The large pinkish-
white clast was apparently a zone of weakness where the fragment broke from the boulder. Scale is I cm. $73-17109.

Figure 4: Photomicrograph of a portion of thin section 76315,111 illustrating aphanitic, poikilitic clast in aphanitic,
micropoikilitic matrix. Field of view is 4 x 5 mm.
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Figure 5: Composition of minerals in matrix of 76315 (from Simond_ et al., 1974). Note the Ca-rich plagiocIase
and Mg-rich pyroxene mineral inclusions in the matrix.

Clast 2 (,62) was a light grey, (Table 3). Unpublished U-Th-Pb Turner and Cadogan (1975) reported
poikilitic-texture, "anorthositic" clast data by Leon Silver were also a poorly defined Ar exposure age of
with ~70% plagioclase (An95), reported in Phinney (1981). around 13 m.y.
~17% pigeonite (Wo3_5En78Fs18),
and -13% olivine (Fo75). The Bogard et al. (1974) have studied the
minerals in this clast were found to COSMOGENIC rare gases in a large number ofRADIOISOTOPES AND
be very homogeneous in composition EXPOSURE AGES subsamples of 76315 (see unpub-
(Fig. 6). lished data reported in Phinney,

Concordant 81Kr-Kr and cosr_.ic ray 1981).

RADIOGENIC ISOTOPES track ages from sample 76315 show
that the Station 6 Boulder tumbled or MAGNETIC STUDIES
rolled to the present position at theTurner and Cadogan (1975 and

1976) report a well-defined Ar base of the North Massif 22 m.y. ago Pearce et al. (1974) and Gose et al.
plateau age of 3.98 + .04 b.y. for the (Crozaz et al., 1974a). The in_;orrect (1978) have carefully studied the
matrix of 76315. The white anortho- 11 m.y. exposure age originally remanent magnetization of 26 sub-
sitic clast (,61) appears to have reported by Heiken et al. (1973) samples from the Station 6 Boulder.
retained Ar from an older event becomes consistent with the 22 m.y. The direction of magnetization of
(Fig 8) in the highest temperature age when one takes into accou.nt the sample 76315 (from unit AB) was
release, fact that this sample was from the difficult to determine because the

side of the boulder and only exposed high metallic iron content caused it
Nyquist et al. (1974) report Rb-Sr to half the sky. Apparently, Iqleiken to be very susceptible to the acqui-
data for several splits of matrix from et al. incorrectly used productiLon sition of an anhysteretie magnetism
76315 and note that the Rb-Sr rates calculated on the basis of or a viscous magnetization.

systematics are probably partially assumed 2n geometry (see discussion However, the direction of magnetiza-
reset by the Serenitatus impact event in Arvidson et al., 1975). tion of this sample is more uniform
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Figure 6: Plagioclase, olivine, and pyroxene composition in white-rind clast 1 and light grey clast 2
from 76315 (Simonds, 1975).

than for the more clast-rich samples, similar to KREEP with a slight Samples of 76315 were allocated for

Nagata (1975) has reported the upturn at the high wavelength several studies of"physical
intensity of saturation magnetization (Fig. 9). It would be interesting to properties." Gold et al. (1976)
for 76315. Brecher (1976) has determine the difference in spectra determined "electrical properties."

proposed textural remanence in for patina covered surfaces as Housley et al. (1976) have deter-
76315. Stephenson et al. (1974) also compared with fresh surfaces of mined the ferromagnetic resonance.
attempted to determine the lunar lunar rocks. The lack of a significant Hoffman et al. (1974) have

magnetic field aleointensity using pyroxene adsorption band at 0.9/Jan determined the iron distribution by
76315. may be due to the thick glass patina M6ssbaner spectroscopy.

on the surface of 76315.

SURFACE STUDIES _:
1)ROCESSING

Adams and Charette (1975) have

determined the reflectance spectra of A slab and a column were cut from
the surface of 76315 and report that this rock (see lithology maps and

the spectra of poikilitic rocks are diagrams in Phinney, 1981).
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Figure 8: Ar-Ar plateau age of matrix and clasts in 76315. From Turner and Cadogan (1975).
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Figure 9: Reflectance spectra of 76315. By Adams and Charette (1975).
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Table 1: Whole-rock and dast chemistry of 76315.

a) LSPET (1973); b) Rhodes et al. (1974a); c) Hubbard eta]. (1974); Wiesmann and Hubbard (1975)

Split ,2 (a, c) ,30M (b, c) ,30,3 (b, c) ,35M (b, c) ,52 (b, c) ,62 (b, c)
Technique XRF, IDMS XRF, IDMS XRF, IDMS XRF, IDMS XRF, IDMS XRF, IDMS

matrix clast matrix clast clast

SiO2 (wt%) 45.82 45.64 46.45 46.21 48.57 45.10

TiO2 1.47 1.50 1.43 1.50 0.32 0.36

A1203 18.01 17.53 18.18 18.14 17.91 26.37

Cr203 0.19 0.19 0.20 0.19 0.12 0.11

FeO 8.94 9.53 8.83 8.95 7.66 5.29

MnO 0.11 0.13 0.13 0.12 0.13 0.07

MgO 12.41 12.50 12.34 12.02 13.84 7.46

CaO 11.06 10:97 11.30 11.32 10.36 15.12

Na20 0.57 0.70 0.64 0.60 0.47 0.47

K20 0.27 0.26 0.22 0.26 0.15 0.10

P205 0.29 0.30 0.29 0.29 0.12 0.06

S 0.08 0.08 0.07 0.07 0.00 0.04

Nb (ppm) 33 33 32 33 -

Zr 477 485 465 522 105 95

Hf 12.5 - 11.9 - - 5.3

U 1.52 1.47 1.36 2.52 0.34 0.343

Th 5.2 5.36 5.23 5.69 1.34 1.234

y 111 113 107 111 -

Sr 180 175 172 174 115 153

Rb 5.88 6.56 3.85 5.78 3.73 2.336

Li 14.6 15.6 14.1 13.9 11.8 9.5

Ba 359 349 366 337 129 72.8

Zn 4 3 2 4 -

Ni 149 77 82 74 -

La 30.1 32.9 24.7 31.6 7.33 5.41

Ce 84.6 84.0 78.6 82.3 18.4 13.7

Nd 53.5 53.5 50.2 52.7 11.5 8.6

Sm 15.1 15.1 14.1 14.8 3.2 2.42

Eu 2.00 1.97 1.88 1.95 0.971 0.94

Gd 18.9 18.5 17.6 18.8 3.93 2.99

Dy 19.9 19.7 18.3 19.1 4.59 3.39

Er 11.7 11.5 11.0 11.4 2.91 2.14

Yb 11.0 10.6 10.0 10.4 2.98 2.07
_ .455 0.30Lu - -
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Table 2: Trace element data for 76315. Concentrations in ppb.
a) Gros et al. (1976); b) Morgan et al. (1974)

Sample (a) Sample (b) Sample (b)
76315,118 76315,73 76315,74

clast matrix

lr 18.6 5.42 5.97

Os 20.9

Re 1.85 0.507 0.575

Au 6.41 3.21 3.48

Pd 22.6

Ni (ppm) 423 256 260

Sb 0.85 1.49 1.54

Ge 57.7 346 354

Se 71 100 107

Te 3.4 4.04 5.1

Ag 0.72 0.84 0.88

Br 39.2 48 44

In 4.61

Bi 0.44 0.098 0.28

Zn (ppm) 2 3.1 3.4

Cd 12.1 5 6.4

"11 1.6 0.31 0.34

Rb (ppm) 2.73 5.91 5.9

Cs 110 250 250

U 355 1540 1490

Table 3: Rb-Sr composition of 76315.
Data from Nyquist et al. (1974).

Sample 76315,2 ,35M ,30C3 ,30M ,52 ,62

wt (rag) 52.4 49.2 66.7 51.6 38.9 52.5

Rb (ppm) 5.88 5.78 3.85 6.56 3.73 2.34

Sr (ppm) 179.5 174.4 171.5 174.8 115.2 153.1

87Rb/86Sr 0.0948+8 0.0960+8 0.0650+6 0.1086+9 0.0937+9 0.0441 _+5

87Sr/86Sr 0.70515_+5 0.70521_+7 0.70351_+10 0.70595+5 0.70491+6 0.70185+5

TB 4.45 + 0.08 4.44 + 0.09 4.72 _+0.14 4.40 + 0.08 4.33 + 0.08 4.35 + 0.13

TL 4.50_+0.08 4.49+0.09 4.80+0.14 4.46+0.08 4.40_+0.08 4.46_+0.13

B_=Model age assuming I = 0.69910 (BABI + JSC bias)

L = Model age assuming I = 0.69903 (Apollo 16 anorthosites for T = 4.6 b.y.)
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76335
Cataclastic Troctolite

502.89 g, largest piece 8 x 6.5 x 5 cm

INTRODUCTION given in Bersch et al. (1991). Ryder
PETROGRAPHY et al. (1980) report the composition

Sample 76335 is a pristine, friable of metal grains.
"anorthosite" that was collected from Warren and Wasson (1978) estimate

the regolith about 15 meters from the tile mineral mode of 76335 is 88%
Station 6 Boulder (LMP--"It's plagioclase (An95.6) and 12% olivine WHOLE-ROCK CHEMISTRY

pretty fragile.., very white--looks (Fo 86.8). Bersch et al. (1991) also
like a crushed anorthosite"). It was report minor low-Ca pyroxene. The Warren and Wasson (1978) have

returned in the BSLSS bag (which plagioclase and olivine are shocked, determined the composition of 76335
received rough handling on the but Warren and Wasson report that (Table 1). It is free of meteoritic
return from the Moon). Fig. 1 shows "the rock shows vestigial cumulate contamination and low in trace
the pieces of 76335 in a tray. The texture" with intact plagioclase element abundance (Fig. 4).
residue in the BSLSS bag (76330) grains up to 4 mm in dimension and
contained additional pieces of this relict olivine at least 2 mm across.
sample. The olivine has been crushed RADIOGENIC ISOTOPES

(Fig. 2).
So far, no one has attempted to date

76335 is a poorly studied, potentially 76335.
important piece of the original lunar MINERAL CHEMISTRY
crust that deserves additional study
(Ryder and Norman, 1979). All of Note: Weight discrepancy with

The olivine and plagioclase composi- original catalog; additional piecesthe thin sections are from one piece
and may, or may not, be tions have been plotted in Fig. 3. were selected from thefines in the

Precise mineral compositions for BSLSS bag.
representative! olivine and low-Ca-pyroxene are

Figure 1: Trayfull of76335. $73-19384.
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Figure 2: Photomicrograph of thin section 76335,28. Field of view is 2 x 3 mm.
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Figure 3: Diagram of plagioclase composition and olivine composition.
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Figure 4: Normalized rare earth element diagram for 76335. Data by Warren and Wasson (1977).
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Table 1: Composition of 76335.
From Warren and Wasson (1978).

Sample Sample
76335.38 76335,38

Na (%) 0.239 0.228

Mg (%) 5.4 6.2

AI (%) 16.5 14.6

Si (%) 20.3

K (%) 0.03

Ca (%) 12 10.7

Sc (ppm) 1.33 1.72

Ti (%) 0.04

Cr (ppm) 356 408

Mn (ppm) 202 286

Fe (%) 1.75 2.3

Co (ppm) 13.1 15.6

Ni (ppm) 20.4 <20

Zn (ppm) 3.1 0.38

Ga (ppm) 3.5 3.15

Ge (ppb) 10.2 1.1

Zr (ppm) 160

Cd (ppm) 5.2 8.7

In (ppm) 0.078 <1.1

Ba (ppm) 56 46

La (ppm) 2.47 2.12

Ce (ppm) 6.7 5.3

Nd (ppm)

Sm (ppm) 0.8 0.7

Eu (ppm) 1.03 0.91

Tb (ppm) 0.12 0.13

Yb (ppm) 0.56 0.56

Lu (ppm) 0.073 0.082

Hf (ppm) 0.4 0.45

Ta (ppm)

Re (ppb)

Ir (ppb) 0.013 0.13

Au (ppb) 0.089 0.013

Th (ppm) 0.16

U (ppm) 0.1
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76505
Micropoikilitic Impact Melt Breccia
4.69 g, 1.6 x 1.4 x 1.5 cm

INTRODUCTION (Fig. 1). Thin sections of sample
76505 show that it is a very fine- CLAST ?

The original catalog by Butler (1973) grained, micropoikilitic impact melt
describes 76505 as a "light greenish- rock with only a trace of ilmenite The original catalog reported a

grey breccia" and the rake sample (Fig. 2). The mode is roughly 55% second, darker lithology, but this
catalog by Phinney et al. (1974) plagioclase and 45% low-Ca turned out to be nothing more than
describes 76505 as an "annealed pyroxene. Section ,8 also has a small some soil packed in a large vesicle of

crystalline breccia." Simonds and patch of "granitic melt" surrounding the feldspathic impact melt rock
Warner (1981) and Simonds et al. a small vesicle. (Fig. 1).
(1975) mistakenly claim that 76505
is a "vitric matrix soil breccia," but
correctly report that it has high AI WHOLE-ROCK CHEMISTRY
and low Ti.

Simonds and Warner (1981) report a
preliminary analysis of 76505 by

PETROGRAPHY fused bead electron microprobe
analysis (Table 1) (these unpublished

Sample 76505 was sieved from analyses are suspect because fusion
highlands soil 76501. It is a may not have been complete).
coherent, light grey fragment

Figure 1: Photograph of light grey sample 76505. Scale bar is marked in I mm. 574-20167.
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Figure 2: Photomicrograph of a portion of thin section 76505,8. Field of view is 2 x 3 mm.

Table 1: Whole-rock chemistry of 76505.
From Simonds and Warner (1'981).

(Cautionary note: These preliminary analyses were made by fused bead electron
microprobe analyses, R. Brown, analyst.)

Split ,2
Technique EMP

SiO 2 (wt%) 46.85

TiO2 1.54

A1203 18.64

Cr203 0.19

FeO 7.82

MnO

MgO 11.13

CaO 11.26

Na20 0.88

K20 0.29

P205
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76506
Dark Matrix Regolith Breccia
2.81 g, ~1.3 x I x I cm

INTRODUCTION and abundant ilmenite and was
PETROGRAPHY derived from the mare surface.

This sample was sieved from soil However, it also contains small

76501. It is a regolith breccia with a Sanlple 76506 is a dark matrix white clasts of feldspathic material
brown glass matrix and a high regolith breccia (Fig. 1). Using SEM from the lunar highlands (Fig. 2).
percentage of mare component. It is petrography, Phinney et al. (1976)
clearly a lithified mare soil. Simonds term 76506 a friable microbreccia
and Warner mistakenly label the with 35% porosity. Thin sections WHOLE-ROCK CHEMISTRY
analysis of 76506 as "clast-bearing show that this sample contains
fine grained micropoikilitic impact abundant orange glass beads and Simonds and Warner (1981) report
melt rock." broken glass fragments (Fig. 2). It an analysis with 4.6% TiO 2 and

contains numerous mare basalt clasts 11% FeO (Table 1).

Figure 1: Photograph of 76506. Scale bar is in mm. 574-20168.
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Figure 2: Photomicrograph of thin section 76506,7. Dark matrix contains orange glass. Field of view is 2 x 3 mm.

Table 1: Whole-rock chemistry of 76506.
From Simonds and Warm.,r (1981).

(Cautionary note: These preliminary analyses were made by fused bead electron
microprobe analyses, R. Brown, analyst.)

Split ,2
Technique EMP

SiO2 (wt%) 42.94

TiO2 4.64

A1203 16.74

Cr203 0.30

FeO 11.08

MnO

MgO 10.36

CaO 11.73

Na20 0.49

K20 0.12
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Rake Samples from Station 6

The collection of samples by raking (1975). They are also discussed in on the talus of the North Massif. The
the soil and shaking out the fine Wolte and others (1981). A large Station 6 rake sample was important

material has proven to be one of the soil sample, 76501, was also because it collected 76535 (a pristine
best ways to sample the lunar collected at the same location, and troctolite), which has become our
surface. Fig. 1 shows the rake used the coarse fines (4 ram- 1 cm) sieved most interesting sample of the Moon.
on the Moon. It has wires spaced at from it were cataloged by Meyer
1 cm in the scoop so that everything (1973). Jolliff et al. (1993) are The rake samples were returned in
less than 1 cm will shake out. The studying the 2-4 mm coarse fines SCB 4/558. The residue from this
Station 6 rake sample was taken from from the North Massif (Fig. 3). bag is numbered 76530. A summary
the rim of a small (~10 m) subdued Sample 76505 and 76506 were of the rock types found in this rake
crater about 20 meters west of the sieved from soil 76501. sample is given in Table 1.
large boulders (Fig. 2).

A su,prisingly large amount of mare
The rake samples collected at material from the valley floor is
Station 6 were originally cataloged found included in this rake sample,
by Butler (1973) and Phinney et al. considering that this site was located

Figure 1: Rake used to collect samples. Wires spaced at 1 cm. AS17-142-21706.
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Figure 3: Plagioclase vs. pyroxene composition diagram. Fields are from James and Flohr (1983).

Data are from Jolliff et al. (1993).



Table 1: Summary of rake samples from Station 6.

76535 Troctolite

76536 Crushed Troctolit,_

76537 High-Ti Mare Ba_;alt

76538 High-Ti Mare Ba_;alt

76539 Aphanitic High-_i Mare Basalt

76545 Dark Matrix Regolith Breccia

76546 Dark Matrix Regolith Breccia

76547 Dark Matrix Regolith Breccia

76548 Dark Matrix Regolith Breccia

76549 Dark Matrix Regolith Breccia

76555 Micropoikilitic Irapact Melt Breccia

76556 Micropoikilitic Irapact Melt Breccia

76557 Micropoikilitic Irapact Melt Breccia

76558 Impact Melt Breccia

76559 Poikilitic Impact Melt Breccia

76565 Dark Matrix Regolith Breccia

76566 Dark Matrix Regolith Breccia

76567 Light Matrix Regolith Breccia

76568 Aphanitic High-Ti Mare Basalt

76569 Aphanitic Impac! Melt Breccia

76575 Feldspathic Impact Melt Breccia

76576 Micropoikilitic hnpact Melt Breccia

76577 Poikilitic Impact Melt Breccia
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76535
Troctolite

155.5 g, ~5 x 5 x 5 cm

INTRODUCTION grains (0.2-0.3 mm) occur in clusters Cr-spinel, Ca-phosphates (apatite and
and are honey-yellow brown in color, whitlockite), baddeleyite,

Troctolite 76535 is without doubt the Plagioclase shows nice striations on "pyrochlore," "K-Ba feldspar," and
most interesting sample returned flat cleavage surfaces, metallic iron. These minor phases
from the Moon! It is a colorful, occur in "mesostasis areas" and in

pristine, coarse-grained, plutonic symplectite intergrowths.
rock that has had a slow cooling PETROGRAPHY
history. It is interesting to note that This rock has a granular polygonal
it was collected as a random sample Gooley et al. (1974) and Dymek texture with smooth, curved grain
as part of the rake sample collected et al. (1975) describe lunar sample boundaries and abundant 120 deg
at Station 6. It has been widely 76535 as a coarse-grained, olivine- junctions resulting from the slow
distributed and much studied, but its plagioclase cumulate that shows process of grain coarsening leading
origin is still debated, evidence of extensive annealing and to a mineral fabric with minimum

re-equilibration (Fig. 3). Gooley surface area (Fig. 3). Stewart (1975)
Fig. 1 shows the main mass of 76535 reports the mode as 58% plagioclase used the grain size of 76535 (2 to
before processing. The sample is (/M196),37% olivine (Fo88), and 4% 3 mm) and various assumptions to
friable, separating easily at the grain orthopyroxene (Wo 1En86Fs13), calculate the interval of annealing
boundaries. Closeup photos of small while Dymek finds 35% plagioclase, (~108 y.) in the temperature range
pieces show the granular texture of 60% olivine, and 5% low-Ca 1100 °C to 600 °C. Stewart termed
the olivine and plagioclase (Fig. 2). pyroxene. Warren (1993) wisely this "Apollonian" metamorphism.
White plagioclase grains puts it at 50% plagioclase! Other
(0.2-0.7 ram) are translucent to trace minerals reported include

slightly milky, while lustrous olivine Ca--rich pyroxene (Wo48En50Fs4),

Figure 1: Photograph of lunar troctolite 76535. Cube is 1 cm. $73-19459.
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Figure 2: Photograph of lunar troctolite 76535,2. Scale bar is marked in mm. $73-19601.

Figure 3: Photomicrograph of thin section 76535 in partially cross-polarized light.
Field of view is 2 x 3 ram. $76.20796.
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Gooley et al. (1974) used the (1975) report that these elongate
enstatite content of the high-Ca inclusions are another form of MINERAL CHEMISTRY
pyroxene coexisting with low-Ca symplectite. Using high resolution
pyroxene in the symplectites to TEM techniques, Nord (1976) found Minerals in 76535 are homogeneous
calculate an equilibrium temperature that the inclusions in the plagioclase in composition. Dymek et al. (1975)
of 1000 °C and a minimum pressure are augite, pigeonite, orthopyroxene, and Gooley et al. (1974) present

of about 0.6 kb, which would be and holes (or an unidentified phase detailed mineral compositions
about 12 km deep in the Moon. which is preferentially thinned out (Fig. 4). High Ca-pyroxene and
Dymek et al. (1975) agreed that this during-sample preparation). Ni-Fe Cr-spinel are only minor phases.
rook formed deep in the Moon, but metal particles are also present but Fig. 5 shows the position of 76535
not with the calculation of the depth! constitute a small volume of the on the plagioclase vs. pyroxene
Finnerty and Rigden (1981) argue inclusions. These elongate inclu- diagram. It is the end-member of the
that the high-Ca pyroxene in the sions in the plagioclase of 76535 "Mg-suite" of lunar magmatic rocks
symplectite is secondary and not in appear to be the result of unmixing in James and Flohr (1983).
equilibrium, of unwanted components in the

Hansen et al. (1979) have determinedplagioclase that have nucleated on
The plagioolase has striations dislocations, subboundaries, and twin the Na, K, Fe, and Mg distribution
(Fig. 2) reportedly due to twinning boundaries during solid-state by electron probe in plagioclase from
(LSPET 1973; Phinney et al., 1974; exsolution. The geometric 76535, and Steele et al. (1980) have
Gooley et al., 1974). Oriented rows distribution of these rows of small determined Li, Mg, Ti, K, Sr, and Ba
of fine elongate metal particles are inclusions precludes entrapment of in plagioclase by ion probe. Smith
also reported in the plagioclase melt droplets during crystallization, et al. (1980) have determined the
(Gooley et al., 1974), but Bell et al. trace element contents of olivine

76555

PLAGIOCLASE KAISi308

1_\ BOAIZSi_O 8�354POINTS _ _
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I _ I!l! ,b "_
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Figure 4: Pyroxene diagrams and mineral compositions of 76535 (from Dymek et al., 1975).
Plagioclase and olivine are main minerals.
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Figure 5: Plagioclase vs. low-Ca pyroxene composition of 76535 troc,_olite, showing that it is the end-member of the
Mg-suite of plutonic lunar rocks. Fields are from James and Flohr (1983).

from 76535. Precise mineral compo- Smyth (1986) performed a cry:;tal (Table 2). The low siderophile
sitions for olivine and low-Ca structure refinement of anorthite content indicates its pristine compo-
pyroxene are also given in Bersch using plagioclase from 76535 to sition with no meteorite contribution.
et al. (1991 ). H askin et al. (1974) determine the position of the cations
determined the rare earth contents of in the structure. Haskin et al. used the whole-rock

plagioclase and olivine separates by composition and known distribution
isotope dilution mass spectroscopy Based on identical mineral coefficients to calculate the probable
(Fig. 6). Heavilon and Crozaz chemistry, Warren et al. (1987) parent liquid (Fig. 7). They
(1989) have also used the ion apparently have found at least two concluded that this rock may have
microprobe technique to determine additional pieces of troctolite similar had ~16% trapped liquid when it
the rare earth elements in plagioclase to 76535 in the "'coarse fines" from originally crystallized from the melt.
and pyroxene, the soil samples (76504,12 and

76034,90).
76535 has symplectite intergrowths RADIOGENIC ISOTOPES

i

along some but not all of the grain
boundaries (Gooley et al., 1974; WHOLE-ROCK CHEMISTRY Heroic efforts have been made to
Albee et al., 1975; Bell et al., 1975). date troetolite 76535. Most recently,
Bell et al. discuss in detail several Rhodes et al. (1974a), Wiesmann and Premo and Tatsumoto (1992) have

types of symplectites in 76535. Hubbard (1975), and Haskin et al. carefully considered the age of
Gooley et al. (1974) and Ryder et al. (1974) have determined the b_Lik 76535 and conclude that it was
(1980) report the composition of chemical composition (Table ! and formed between 4.23 and 4.26 b.y.
metal grains in 76535. Haggerty Fig. 6). Morgan et at. (1974) .'rod Note that Hinthorne et al. (1975)
(1975) gives the composition of Wolf et al. (1979) report the sidero- originally determined 4.27 +
chromite in 76535. phile and volatile trace elements 0.03 b.y. using the 207pb/206pb,
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ion microprobe technique to date U- 76535 and determined a "probable
rich phases, age" of 4.236 + 0.015 b.y., with a COSMOGENICRADIOISOTOPES AND

young "disturbance" at about 62 m.y. EXPOSURE AGES
The various age dating studies of (Table 6 and Fig. 10). This requites

troctolite 76535 provide an a high U/Pb in the source region. Bogard et al. (1975), Crozaz et al.
interesting study in the preservation Tera and Wasserburg (1974) had (1974), and Lugmair et al. (1976)

of radiogenic information through previously tried to date 76535 by reported cosmic ray exposure ages of
the course of major metamorphic U-Pb systematics, but found that 195 + 10 m.y., 211 + 7 m.y., and
change (Table 3). Careful study of their techniques did not give gooc_ 223 + 16 m.y., respectively. Premo
the Rb-Sr, Sm-Nd, and 40Ar/39Ar data for this rock, even after careful and Tatsumoto (1992) show a hint of

systematics has yielded a broad leaching of mineral surfaces. The a lower intercept age at 62 +
range of apparent isotopic closure discordant data by Tera and 320 m.y., suggesting Pb disturbance
ages, 4.61 + 0.07, 4.26 + 0.06, and Wasserburg are presented in Figs 11 at the time of excavation.
4.23-4.34 b.y., respectively, for and 12.
troctolite 76535 (Papanastassiou and
Wasserburg, 1976; Lugmair et al., Bogard et al. (1975) and Premo _tad SPECTRAL REFLECTANCE
1976; Lugmair and Marti, 1978; Tatsumoto (1992) have measured
Husain and Schaeffer, 1975; Bogard additional Rb-Sr and Sm-Nd data on Charette and Adams (1977) have
et al., 1975; Huneke and Wasserburg, 76535 (Tables 7 and 8). recorded the spectral reflectance of
1975). The Rb-Sr isochron (Table 4 76535 and note the minimum near

and Fig. 8) is based on Rb-rich Hohenberg et al. (1980) and Caffee 1.1 _m due to olivine as well as the
inclusions in the olivine (one point et al. (1981) have carefully studied absorption at 0.9 lain due to pyroxene
was excluded), whereas the Sm-Nd "excess" fission xenon and trapped (Fig. 15).
isochron (Table 5 and Fig. 9) is solar wind noble gases in troctolite
based on pyroxene, plagioclase, and 76535 (Fig. 13). Stepwise heatinlg of
accessory phases, exclusive of separated olivine and plagioclase PROCESSING
olivine. The Rb-Sr isochron showed evidence for in-situ decay of

presumably dates the isolation of 244pu leading to fission Xe ages of This sample was extremely friable
Rb-rich inclusions in olivine and is 4.50 b.y. and 4.25 b.y., respectively and had already broken into many

apparently insensitive to the (consistent with Rb-Sr and Sm-Nd separate fragments by the time of the
metamorphism that produced the ages above). Ne, Ar, Kr and preliminary examination. There may
texture of the rock, while the Sm-Nd "parenfless" fission Xe are loosely be additional pieces of it in the
and 40Ar/39Ar isochrons involve a bound (Fig. 14). These rare gase:_ residue from the collection bag

variety of lower temperature mineral are apparently located at the grair, (76530, 70 g).
phases that are more sensitive to boundaries and apparently due to
subsequent metamorphism and trapped solar wind located in this The largest remaining piece (,0)
closure to movement of radiogenic sample! weighs 26 g. A 20-gram piece is at

elements at a later time. The study Brooks Air Force Base, and a 10-
of rare gases by Caffee et al. (1981) Braddy et al. (1975) reported a gram piece is at the California
also shows that the different minerals fission track age of 4.07 b.y., which Institute of Technology.
in 76535 have different, mineral- they say may record a metamorphic

specific, isotopic closure ages. age. However, fission tracks in There are 14 thin sections. Sample
apatite are easily annealed over a 76535 was cut with the band saw!

Premo and Tatsumoto (1992) long time, and it is unlikely that they

performed careful leaching experi- would be fully preserved.
ments on mineral separates from
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Figure 8: Rb-Sr isochron diagram for lunar troctolite 76535. From Papanastassiou and Wasserburg (1976).
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Table 1: Whole-rock chemistry of 76535.

a) Rhodes et al. (1974a); Haskin et al. (1974); Wiesmarm and Hubbard (1975)

Split ,21 (a)
Technique XRF, IDMS

SiO 2 (wt%) 42.88

TiO2 0.05

A1203 20.73

Cr203 0.11

FeO 4.99

MnO 0.07

MgO 19.09

CaO 11.41

Na20 0.23

K20 0.03

P205 0.03

S 0.00

Nb (ppm) 1.2

Zr 24

Hf 0.52

U .056

Th 0.16

Y 4.4

Sr 114

Rb 0.24

Li 3.0

Ba 32.7

Zn 1

Ni 25

La 1.51

Ce 3.81

Nd 2.30

Sm 0.61

Eu 0.73

Gd 0.73

Dy 0.80

Er 0.53

Yb 0.56

Lu 0.079
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Table 2: Trace element composition of 76535. Concentrations in ppb.
Data from Morgan et al. (1974) and Wolf et al. (1979).

Sample
76535,20

Ir 0.0054

Os

Re 0.0012

Au 0.0025

Pd

Ni (ppm) 44

Sb 0.014

Ge 1.7

Se 4.1

Te 0.28

Ag 0.12

Br 3.2

In

Bi 0.037

Zn (ppm) 1.2

Cd 0.6

]1 0.012

Rb (ppm) 0.2

CA 14

U 19.4

Table 3: Summary of age data for 76535.

4.19 + 0.02 K-Ar Husain and Schaeffer (1975)

4.16 + 0.04 K-Ar Huneke and Wasserburg (1975)

4.27 + 0.08 K-Ar Bogard et al. (1975)

4.61 +_0.07 Rb-Sr Papanastassiou and Wasserburg (1976)

4.26 _+0.02 Sm-Nd Lugmair et al. (1976)

4.330 + 0.064 Sm-Nd Premo and Tatsumoto (1992)

4.27 + 0.03 Pb-Pb Hinthorne et al. (1975)

4.236 + 0.015 U-Pb Premo and Tatsumoto (1992)
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Table 4:76535 analytical results.

From Papanastassiou and Wasserburg (1976).
(Footnotes may refer to material not included in this catalog.)

Weight K Rb b 88srb 87Rb/86Sr 87Sr/86SrC

Sample a (nag) (ppm) 10"8mole/g x 102

Plagioclase /d4.6 AE

1. 25 8 400 0.509 185.9 0.639 + 3 0.69946 + 5 0.69904 + 5

2. 25 2e 374 0.521 182.0 0.669 +-7 0.69951 + 7 0.69907 _+7

3. 25 2e 371 0.563 177.4 0.741 + 7 0.69947 _+4 0.69898 + 4

4. 13 13 392 0.522 186.7 0.653 + 3 0.69939 + 5 0.69896 + 5

Olivine 7dBABI(AE)

1. 25 192 5.6 0.03231 0.925 8.t5+5 0.70448+ 15 4.70+0.13

2. 14 90 2.2 0.01623 0.3486 10.86+8 0.70534+18 4.09+0.12

3. 14 67 3.0 0.02029 0.3050 15.52 + 13 0.70907 + 18 4.53 + 0.09

4. 13 112 2.6 0.01393 0.1518 21.41 + 22 0.7132 + 3 4.63 + 0.10

5. 13 + 25 92 9.4 0.0492 1.262 9.08 + 5 0.70507 + 10 4.67 + 0.08

Pyroxene /d4.6 AE

1. 13 + 14 + 25 26 6.7 0.02973 2.878 2.41 + 4 0.70060 + 14 0.69901 + 14

Total(25)
A. Leach - 0.48% f 4.0% f 0.29% f 7.38+ 15 0.7044+3

Residue - 292 0.3268 140.5 0.543 + 3 0.69924 + 5

Combined 1.04 g 293 0.3397 140.9 0.563 + 3 0.69925 + 5 0.69888 + 5

B. -300 ttm 100 209 0.2469 100.1 0.575 + 3 0.69937 _+5 0.69899 + 5

aSubsample number (assigned by Curator) from which separate was obtained.

bConcentrations calculated using normal compositions 85Rb/87Rb = 2.591; 86Sr/88Sr = 0.1194; and
84Sr/88Sr = 0.006748.

CErrors are +-2Omean and correspond to last figures given.

dlnitia187Sr/86Sr using the isochron age T = 4.61 AE. Model ages are relative to BABI = 0.69898.

eConcentrations uncertain by -5% due to small weight; element ratios are not affected by this uncertainty.
fAmount in leach given as percentage of the amount in the combined total rock.
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Table 5:76535 analytical results.

From Lugmair et al. (1976).

(Footnotes may refer to material not included in this catalog.)

Sample Weight a [Sm] b [144Nd]b
Subsample no. (mg) 10 -9 mole/g 147Sm/144NdC 143Nd/144Ndd

Plagioclase, 66 52.50 5.085 4.975 0.1533 _+1 0.511 481 _ 15

Total rock, 64 72.02 3.909 3.768 0.1556_+ 1 0.511 556_+ 14

"Symplectite," 66 47.5 e 9.31 6.61 0.2111 _+14 0.513 206_+ 157

"Magnetic," 64 31.03 1.258 0.743 0.2538 +_14 0.514 304 _+26

Pyroxene, 66 7.87 5.15 1.67 0.462 _ 7 0.520 272 + 91f

Olivine, 66 777.5 e 0.2200 0.1956 0.1689 -+2 0.512 889 - 26

aWeights are calculated for aliquants taken from total sample solution for spiking.
bSm concentrations are calculated using measured composition (see text); for Nd normal Nd (see Table 1) was used.

CErrors correspond to last figures given and represent 95% C.L. Included are uncertainty in concentration ratio of
Sm/Nd in spike solution and 50% of the blank corrections, quadratically added.

dlsotope ratios are those given in Table 1 but corrected for a neutron capture effect (1.5 parts in 105).

eFractions were totally spiked and isotope ratios corrected for spike contributions.

fIsotope ratio corrected for 3% blank of terrestrial composition (Table 1); uncertainty of correction included in error.
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Table 6: U-Th-Pb analytical data for 76535.
From Premo and Tatsumoto (1992).

(Footnotes may refer to material not included in this catalog.)

Sample/ Weight % Blank Pb* U* Th* 2°6ph/ 204ph/ 2°7pb/ 208pb/ 238U1 232Th/

Fraction (rag) Pb (ppb) (ppb) (ppb) 204pb t 206pb_ 206pb_: 206 pb_ 204Pb_ 238U _

Residues

WR 91.9 2.0 45.2 21.0 45.2 349.3 0.00223 0.6829 0.6595 421 2.23

(1.0) § (4.4) (0.11) (0.42) (4.7)

PL-I 185.7 1.0 44.2 15.1 64.5 300.2 0.00294 0.7455 1.119 288 4.42

(0.38) (2,0) (0.05) (0.t 4) (2.2)

PL-2 137.0 2.3 26.8 6.85 25.4 141.3 0.00620 0.9594 1.112 109 3.83

(1,2) (2.5) (0.07) (0.25) (2.8)

OL-P 55.5 3.7 40.1 39.9 28.0 747.7 0.00040 0.5299 0.2861 3890 0.725

(0.35) (35) (0.16) (1.6) (36)

Dilute HNO 3 (l .IV)leaches

A2-WR 30.4 2.39 0.094 1.67 23.40 0.03778 0.8435 2,016 3.52 18.3

(0.14) (3.0) (0.20) (0.22) (17)

A2-PL- 1 11.5 3.95 0.173 2.73 23.02 0.04194 0.8367 2.127 3.61 16.3

(0.14) (0.6) (0.09) (0.15) (4.2)

A2-PL-2 33.7 1,38 0,058 0.418 22.61 0.03945 0.8729 1,810 3.41 7.48

(0.13) (2.9) (0.46) (1.0) (18)

A2-OL-P 59.9 1.16 0.290 1.49 28.62 0.01430 0.6468 1.147 42.5 5.31

(0.21) (65) (6.7) (18) (101)

Dilute HBr (0.1 iV) leaches

AI-WR - 11.2 14.7 0,309 4.54 21.06 0.04655 0.8492 2.153 1.58 15.2

(0.10) (0.35) (0.10) (0.17) (4.8)

AI-PL-I 19.9 3.66 0,239 6.43 29.04 0.02779 0.7775 3.558 11.0 27.8

(0,14) (5.1) (0.40) (2.3) (14)

A I-PL-2 - 2.7 45.3 0,080 0,546 19.06 0.05230 0.8351 2.014 0.113 7.07

(0.05) (0.12) (0.07) (0.14) (9.8)

AI-OL-P - 18.5 13.5 0.528 1.77 20.80 0.04668 0.8406 1.964 2.79 3.46

(0.13) (0.56) (0.12) (0.22) (7,0)

Water washes

W-WR 91.9`I 41.2 1.46 0.ff26 0,089 19.16 0.05090 0.8420 2.019 1.18 3.54

(0.07) (0.8) (0.31) (0.34) (47)

W-PL- 1 186.6 84.3 0.094 0.011 0.105 20.17 0.02809 0.7778 1.878 13.2 9.91

(0,18) (350) (26) (33) (815)

W-PL-2 137.0 8.6 7.33 0.007 0.061 18.95 0.05253 0.8299 2,014 0.063 8.77

(0.05) (0.13) (0.07) (0.14) (103)

W-OL-P 55.5 29.3 4.09 0.159 0.302 19.68 0.04946 0.8248 1.963 2.60 1.96

(0.21) (0.68) (0.18) (0.33) (17)

Concentrauons corrected for blank Pb; ppm for leaches and washes are calculated using the original weight of the sample fraction.

t Measured ratio, uncorrected for blank Pb or mass fractionation.

:_Correeted for blank Pb (amounts are given in the text) using the methods of Ludwig (1980, 1985a).

§Numbers in parentheses are 2 o errors given in percent for the values just above them.

`1Original weights before washing and leaching procedure.
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Table 7: Rb-Sr composition of 76 .
Data from Bogard et al. (1975)

Sample 76535,21..22

wt (rag) 53.9

Rb (ppm) 0.238

Sr (ppm) 113.9

87Rb/86Sr 0.00605 + 28

87Sr/86Sr 0.69950 +-5

Table 8: Rb-Sr and Sm-Nd analytical data for 76535.
From Premo and Tatsumoto (1992).

Weight Rb St- 87Rb/ 87Sr/ 87Sr/
Sample (mg) (ppm) (ppm) 86Sr* 86Sr* 86Srt v.Srt

WR 91.9 0.29 161 0.00520 + 3 0.699472 + 33 0.699152 + 49 -3.53 + 0.90

PL-1 185.7 0.33 180 0.00530 + 2 0.69944!) -+17 0.699122 + 45 -3.96 + 0.89

PL-2 137.0 0.35 180 0.00570 + 2 0.699481 + 20 0.699128 + 46 -3.87 + 0.89

OL-P 55.5 0.01 5.14 0.00810 + 20 0.69959',3 + 43 0.699085 + 53 -4.49 + 0.91

*Isotopic ratios corrected for blank and mass fractionation. 87Sr/86Sr data are normalized to 86Sr/88Sr = 0.1194 and
adjusted for instrumental bias to 87Sr/86Sr = 0.710265 for NBS SRM 987 standard. Uncertainties correspond to the
last significant figure(s) at the 95% confidence level.
iInitial 87Sr/86Sr ratios and eSr are calculated using an age of 4.23 Ga; 3. = 1.42 x 1011/yr; present day

(87Sr/86Sr)uR = 0.7045, and (87Rb/86Sr)UR = 0.0824, where UR = uniform reservoir.

Weight Sm Nd 147Sm/ 143Nd/ 143Nd/

Sample (rag) (ppm) (ppm) 144Nd* 144Nd* 144Ndt eNdt

WR 91.9 0.70 2.73 0.15592 + 14 0.511430 + 43 0.507025 + 36 -1.10 + 0.41

PL-1 185.7 0.69 2.76 0.15134-+ 15 0.511277 -+14 0.507001 -+30 -1.57 +0.39

PL-2 137.0 0.73 2.97 0.14834 + 80 0.511220 + 51 0.507029 -+123 -1.02 + 0.72

OL-P 55.5 0.26 0.43 0.36345 + 25 0.517372 + 92 0.507104 + 104 0.45 + 0.64

*Isotopic ratios corrected for blank and mass fractionation. 143Nd/144Nd data are normalized to 146Nd/144Nd=
0.7219 and adjusted for instrumental bias to 143Nd/144Nd = 0.511860 for the La Jolla Nd standard. Uncertainties

correspond to the last significant figure(s) at the 95% confidence level.
tlnitial 143Nd/144Nd ratios and eNd are calculated using an age of 4.26 Ga; Z. = 6.54 x 10112/yr;,present day

(143Nd/144Nd)cHUR = 0.512636, and (147Srn/144Nd)cHUR = 0.1967, where CHUR = chondritic uniform reservoir.

Note: Our 149Sm data were corrected for a 0.43% depletion due to neutron absorption observed in 76535 (Lugmair

et aL , 1976).
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76536
Crushed Troctolite
10.26 g, 3.5 x 1.8 x I cm

INTRODUCTION (unpublished), and Warren and
MINERAL CHEMISTRY Wasson (1979) have determined

Lunar sample 76536 is a pristine trace elements by RNAA for 76536
troctolite that has been shocked and Precise mineral compositions for (Table 1). The unpublished analysis

crushed--without contamination by olivine and low-Ca pyroxene are by Blanchard indicates a higher trace
other lunar or meteorite materials, given in Bersch et al. (1991). Both element content than the analysis by
Sample 76536 was collected as a olivine and pyroxene seem to have a Warren and Wasson and is not
rake sample from the soil at Station 6 slightly lower Mg/Fe ratio in 76536 plotted in Fig. 4. The analysis by
(Phinney et al., 1974). than in 76535. The composition of Warren and Wasson is in complete

plagioclase has not been reported agreement with that of 76535, which
(Warren et al., 1993). Ryder and is plotted as a reference. Ebihara

PETROGRAPHY Norman (1979) observe that 76536 et al. (1992) have reported the trace
contains symplectite intergrowths siderophile and volatile element

Sample 76535 is white or very light that are similar to those reported in content of 76536 (Table 2).
grey with a hackly surface. It has a 76535.
granulated texture and is relatively
coherent (Fig. 1). There are
occasional large grains of plagioclase WHOLE-ROCK CHEMISTRY
(2 ram) with striations (Fig. 2).

Simonds and Warner (1981) report

The mineral assemblage in 76536 electron probe analysis of fused glass
has been crushed in place. There bead by Roy Brown (unpublished),
appear to be about equal amounts of Ryder and Norman (1979) report a
olivine and plagioclase (Fig. 3). REE analysis by Blanchard

Figure 1: Photograph of 76536,1. Scale bar is marked in mm. $73-19600.
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Figure 2: Photograph of 76536,4. Scale bar is m_rked in mm. $73-19604.

Figure 3: Photomicrograph of thin section 76536,15. There are about equal amounts of olivine and piagioclase.
Both minerals are crushed in place. FieM of view iS 2 x 3 ram.
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Figure 4: Normalized rare earth element diagram for 76536. Reference data from troctolite 76535 are plotted as
squares on the diagram. Data from Warren and Wasson (1979).
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Table 1: Whole-rock chemistry of 76536.

a) S imonds and Warner (1981 - unpublished emp analyses by Roy Brown); b) Ryder and Norman (1979 - unpublished
REE analysis by Blanchard); c) Warren and Wasson (1979)

*(Cautionarynote: Thesepreliminaryanalysesweremadebyfusedbeadelectronmicroprobeanalyses,
R. Brown, analyst.)

Split ,9 (a, b) ,16 (c)
Technique EMP, INAA INAA

SiO 2 (wt%) 43.54* 42.4

TiO2 0.07* -

A1203 21.01" 26.2

Cr203 0.12" 0.08

FeO 4.94* 3.6

MnO 0.04

MgO 17.42" 13.6

CaO 11.76* 13.3

Na20 0.28* 0.29

K20 0.06* 0.04

Nb (ppm)

Hf 1.04 0.36

Ta 0.13 0.031

U

Th 4.2 0.20

Zn 12 1.13

I_ 32 5

Co 25.6 20

Sc 2.42 1.8

Ba 49

La 11.0 1.9

Ce 31.9 4.1

Nd 2.5

Sm 6.03 0.65

Eu 0.745 0.78

Tb 1.13 0.13

Yb 2.67 0.44

Lu 0.341 0.062

Ge (ppb) 2.4

lr 0.051

Au 0.02
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Table 2: Trace element data for 76536. Concentrations in ppb.
From Ebihara et al. (1992).

Sample
76536,19

k 0.026

Os <0.19

Re <0.004

Au 0.011

Pd <1.9

Ni (ppm) 55.3

Sb 0.37

Ge 2.73

Se 4.56

Te <0.97

Ag 0.179

Br

In 1.41

Bi 0.6

Zn (ppm) 0.42

Cd <3.3

TI 0.005

Rb (ppm) 0.724

Cs 456

U 52
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76537
High-Ti Mare Basalt
26.48 g, 3.2 x 2.7 x 1.5 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76537 is a rake sample from
Station6(Phirmeyetal., 1974). Itis TheB1 surfaceof sample76537 is Thisbasalt has 13%TIO2. Ithas
atypical Apollo 17high-Ti mare covered withmicrometeoritepits and been analyzedfor major elements by
basalt, patina(Fig. 1). This fine-grained Rhodes et al. (1976a) and for REE

mare basalthas a variolitictexture by WiesmannandHubbard (1975)
with olivine phenocrysts andlong (Table 1). It is typicalof Apollo 17
needles of ilmenite (Fig. 2). Brown high Ti basalts (Fig. 3). Nyquist
pyroxene is intergrown with et al. (1975) have reported isotopic
plagioc!ase in radial clusters, data (Table 2).

Figure 1: Photograph of cratered surface of 76537. $73-19735.
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Figure 2: Photomicrograph of texture of 76537. Field of view is 2 x 3 mm.

I000 I I I I I I I I I I000

U_

,_ loo 76537 loo

0

0

13.
E

f,_ 10 10

1 I I I I I I I I I 1

La Ce Nd Sm EuGd Dy Er Yb

Figure 3: Normalized rare earth element diagram for mare basalt sample 76537.
Data from Wiesmann and Hubbard (1975).
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Table 1: Whole-rock chemistry of 76537.
From Rhodes et al. (1976a); Wiesmann and Hubbard (1975).

Split ,1 Split ,1
Technique XRF, IDMS Technique XRF, IDMS

SiP2 (wt%) 38.25 Th 0.45

TiO2 13.05 Sr 131

A1203 8.69 Rb 0.41

Cr203 0.37 Li 8.4

FeO 19.60 Ba 66.5

MnO 0.29 La 6.01

MgO 8.01 Ce 19.4

CaP 10.67 Nd 18.9

Na20 0.40 Sm 7.51

K20 0.05 Eu 1.51

P205 0.11 Gd 11.5

S 0.15 Dy 13.6

Nb (ppm) Er 8.21

Zr 201 Yb 7.61

U 0.13

Table 2: Rb-Sr composition of 76537.
Data from Nyquist et al. (1975).

Sample 76537,1

wt (rag) 47

Rb (ppm) 0.410

Sr (ppm) 131

87Rb/86Sr 0.0091 _+4

87Sr/86Sr 0.69973 + 7

TB 4.8 + 0.8

TL 5.3 + 0.8

I3 = Model age assuming I = 0.69910 (BABI +
JSC bias)

L m Model age assuming I ,=0.69903
(Apollo 16 anorthosites for T = 4.6 b.y.)
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76538
High-Ti Mare Basalt
5.87 g, 1.4 x 2.0 x 1.5 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76538 is a small, coarse-
grained, high-Ti mare basalt Mare basalt fragment 76538 has a The preliminary fused bead electron

collected as part of the rake sample fresh, hackly surface (Fig. 1). It has probe analysis of 76538 (Table 1)
taken at Station 6 (Phinney et al., a few relict zap pits on all surfaces, shows that it has a high TiO 2 content
1974). Thin section 76538,8 (Fig. 2) shows (~14%). This analysis indicates that

that it has an equigranular-to- this fragment is typical of mare
subophitic texture with intergrown basalts from Apollo 17.
ilmenite, plagioclase, and pyroxene.

Figure 1: Photograph of 76538. Scale bar is marked in mm. $73-19609.
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Figure 2: Photomicrograph of thin section 76538,8. Field of view is 2 x 3 mm.

Table 1: Whole-rock chemistry of 76538.
From Simonds andWarner(I 981).

(Cautionary note: These preliminary analyses were made byfused bead electron microprobe analyses,
R. Brown, analyst.)

Split A_
Technique EMP

SiO2 (wt%) 36.79

TiO2 13.87

A1203 9.70

Cr203 0.50

FeO 18.58

MnO

MgO 8.37

CaO 9.63

Na20 0.54

K20 0.08
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76539
Aphanitic High-Ti Mare Basalt
14.8 g, 3x2x lcm

INTRODUCTION
WHOLE-ROCK CHEMISTRY RADIOGENIC ISOTOPES

Phinney et al. (1974) and Simonds
and Warner (1981) f'md that 76539 is Rhodes et al. (1976a) and Wiesmann Nyquist et al. (1975) have reported
a typical Apollo 17 mare basalt and Hubbard (1975) have determined whole-rock isotopic data for 76539
sample, the composition of 76539 (Table 1). (Table 2).

It is typical of other high-Ti mare
basalts from Apollo 17 (Fig. 4).

PETROGRAPHY

Sample 76539 is an aphanitic mare
basalt (Fig. 1). This basalt sample
has about 15% skeletal olivine

(Fig, 2) and ~10% skeletal ilmenite
(Fig. 3), in quenched basaltic glass.
It has no zap pits on the surface and
only a few small vugs.

Figure 1: Photograph of 76539. Scale bar is marked in ram. $73-19606.
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Figure 2: Photomicrograph of thin section 76539,10, showing transparent skeletal olivine and opaque matrix.
Field of view is 2 x 3 ram.

Figure 3: Reflected light photomicrograph of same area as Fig. 2, showing abundant skeletal ilmenite.

Field of view is 2 x 3 ram.
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Figure 4: Normalized rare earth element diagram from 76539, showing pattern typical of
high-Ti Apollo 17 mare basalts.
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Table 1: Whole-rock chemistry of 76539.
From Rhodes et al. (1976a); Wiesmama and Hubbard (1975).

Split ,3 Split ,3
Technique XRF, IDMS Technique XRF, IDMS

SiO 2 (wt%) 38.21 Sr 130

TiO2 12.65 Rb 0.383

AI203 8.80 Li -

Cr203 0.34 Ba 64.8

FeO 19.42 La 5.88

MnO 0.29 Ce 18.6

MgO 7.87 Nd 18.3

CaO 10.91 Sm 7.32

Na2 O 0.39 Eu 1.48

K20 0.06 Gd 11.3

P205 0.10 Dy 13.3

S 0.16 Er 8.02

Nb (ppm) Yb 7.40

Zr 196 Lu 1.05

Table 2: Rb-Sr composition of 76539.
Data from Nyquist et al. (1975).

Sample 7653!9,3

wt (mg) 57

Rb (ppm) 0.383

Sr (ppm) 130

87Rb/86Sr 0.0385 + 3

87Sr/86Sr 0.6!9967 + 6

TB 4.7 + 0.7

TL 5.2 + 0.7

B = Model age assuming I = 0.69910 (BABI +
JSC bias)

L = Model age assuming I = 0,.69903
(Apollo 16 anorthosites for T = 4.6 b.y.)
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76545
Dark Matrix Regolith Breccia
51.21 g; 76545 = 7.676 g, 76546 = 2401 g, 76547 ----10.05 g, 76549 -- 9.175 g (4 pieces)

INTRODUCTION Phinney et al. (1976) have studied subcrater processes." This interest-
76545 by SEM petrography. The ing alternative model is more

Phinney et al. (1974) mated these pieces of this sample are described as consistent with the fact that these
fragments into a common group on vitric matrix breccias by Simonds fragments have the exact same
the basis of their common et al. (1975), who noted the composition as the soil (76501).
appearance (Figs. 1-4). occurrence of orange glass in the

matrix. Phinney et al. suggest that
the origin of these breccias is by hot WHOLE-ROCK CHEMISTRY

PETROGRAPHY glass quenched by cold clastic debris
in an impact (Simonds, 1974). A piece of sample 76545 has been

Sample 76545 is a dark matrix analyzed by XRF and isotope

regolith breccia with sedate distri- 76545,14 contains "radial-arcuate dilution mass spectroscopy (Table 1)
bution of mineral clasts (Fig. 5). The lapillar structures that are corn- (Wiesmann and Hubbard, 1975). It
matrix has a high proportion of pressed and deformed" and are has exactly the same composition as
brown glass, and the fragments are interpreted by Nagle (1982) as being the 76501 soil from which it was
veined and splattered with black "ejecta that was modified by collected (Fig. 6).
agglutinated glass.

Figure 1: Photograph of 76545. Scale bar is marked in ram. $73-19611.
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?i

Figure 2: Photograph of 76546. Scale bar is marked in ram. $73-19621

Figure 3: Photograph of 76547. Scale bar is marked in ram. $73-19616.
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Figure 4: Phqtograph of 76549. Scale bar is marked in mm. $73-19623.

Figure 5: Photomicrograph of thin section 76545,14. Field of view is 2 x 3 ram.
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Figure 6: Normalized rare earth element diagram comparing composition of 76545 with 76501 reference soil.
Data from Wiesmann and Hubbard (1975).



SAMPLE76545- 173

Table 1: Whole-rock chemistry of 76545.
From Simonds and Warner (1981); Wiesmann and Hubbard (1975).

Split .3,5
Technique XRF, IDMS

SiO2 (wt%) 43.45

TiO2 3.69

A1203 17.89

Cr203 0.26

FeO 10.94

MnO 0.15

MgO 10.51

CaO 12.21

Na20 0.40

K20 0.13

P205 0.09

S 0.07

Nb (ppm)

Zr 191

U 0.43

Th 1.56

Sr

Rb 2.43

I.i 8.9

Ba 114

La 9.36

Ce 25

Nd 17.9

Sm 5.87

Eu 1.29

Gd 7.96

Dy 8.89

Er 5.33

Yb 4.88
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76548
Dark Matrix Regolith Breccia
2.527 g, I x I x I cm

INTRODUCTION together by matrix glass. The origin
PETROGRAPHY of matrix glass is uncertain. Clasts

This sample of regolith breccia is of mare basalt and orange glass
similar to 76545 except that it has Phinney et al. (1976) have studied beads are also included (Fig. 2), and
about 20% black agglutinated glass 76548 by SEM petrography. They this particle is probably derived from
welding it together (Fig. 1). found that it was a coherent vitric nearby mare soil.

matrix breccia with seriate distri-
bution of mineral clasts welded

Figure 1: Photograph of 76548. Scale bar is marked in mm. $73-19620.
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Figure 2: Photomicrograph of thin section 76548,5, showing clastic texture with brown glass matrix and a small
(1 mm) mare basalt clast. FieM of vi!ew is 2 x 3 mm.
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76555
Micropoikilitic Impact Melt Breccia
8.435 g, 2.5 x 2 x 1 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76555 is a light greyimpact
melt rock thatwas collected as arake The thin sections of 76555 show that Simonds andWarner(1981) point
sample from Station6 (Phinney it has a clastic texturewith a fine- out that this poikilitic impactmelt
et al., 1974). grained, annealed,mieropo'fldlitic breccia has less Fe and moreMg

matrix (Fig. 2). than the boulder at Station 6
(Table 1), and is similar to sample
76055.

Figure l: Photograph of 76555. Scale bar is in mm. $73-19618.
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Figure 2: Photomicrograph of thin section 76555,7. FieM of view is 2 x 3 ram.

Table 1: Whole-rock chemistry of 76555.
From Simonds and Warner Ct981).

(Cautionary note: These preliminary analyses were made byf_Ised bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2
Technique EMP

SiO2 (wt%) 46.,36

TiO2 1,49

AI 203 18.04

Cr203 0.18

FeO 8.32

MnO

MgO 12.23

CaO 10.96

Na20 0.8

K20 0.29
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76556
Micropoikilitic Impact Melt Breccia
7.396 g, 2.5 x 2 x 2 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76556 was collected as a
rake sample from the soil at Station 6 76556 is a light grey, microcrystal- Simonds and Warner (1981) point
(Phinney et al., 1974). line impact mek rock (Fig. 1). Thin out that this micropoikilitic impact

sections of 76556 indicate a clastic melt breccia has less Fe and more

origin. The matrix has a micro- Mg than the boulder at Station 6
poikilitic texture (Fig. 2). (Table 1). They speculate that it may

be similar to the large sample 76055.

Figure 1: Photograph of 76556. Scale bar is marked in ram. $73-19597.
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Figure 2: Photomicrograph of thin section 76556,7. FieM of view is 2 x 3 mm.

Table 1: Whole-rock chemistry of 76556.
From Simonds and Warner (1981).

(Cautionary note: These preliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analysit.)

Split ,3
Technique EMP

SiO2 (wt%) 46.55

TiO2 1.47

A1203 18.73

Cr203 0.18

FeO 7.40

MnO

MgO 11.73

CaO 11.47

Na20 0.75

K20 0.24
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76557
Micropoikilitic Impact Melt Breccia
5.592 g, 2 x 1.5 x I cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Breccia 76557 was collected as a

rake sample from the soil at Station 6 Sample 76557 has a clastic texture Simonds and Warner (1981) point
(Phinney et al., 1974). with micropoikilitic matrix. Fig. 1 out that this micropoikilitic breccia

shows that it has small flattened has less Fe and more Mg than the

cavities that def'me a foliation. Fig. 2 boulder at Station 6 (Table 1). They
shows the clastic texture and speculate that it may be similar to the
annealed, poikilitic matrix. A clast large sample 76055.
of exsolved pyroxene is incorporated
in the crystallized melt.

Figure 1: Photographof 76557. Scale bar isin ram. $73-19599.
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Figure 2: Photomicrograph of section 76557,7, showing exsolved pyroxene clast incorporated in poikilitic matrix.
Field of view is 2 x 3 ram.

Table 1: Whole-rock chemis_try of 76557.
From Simonds and Warner (1981).

(Cautionary note: These preliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analyst.)

Split ,1
Technique EMP

SiO2 (wt%) 46.26

TiO2 1.21

AI 203 18.05

C_203 0.17

FeO 7.64

MnO

MgO 13.79

CaO 10.46

Na20 0.8

I(20 0.39



SAMPLE76558- 183

76558
Impact Melt Breccia
0.683 g, 1.5 x 0.8 x 0.5 cm

m

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76558 was collected as a
rake sample from the soil at Station 6 This small fragment of light grey The composition of 76558 has not

(Phinney et al., 1974). impact melt breccia (with some dark been determined.
matrix regolith attached) is held
together by black glass (Fig. 1). The
appearance of 76558 is very similar
to 76559.

D
Figure 1: Photograph of 76558. Scale bar is marked in ram. $73-19631.
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76559
Poikilitic Impact Melt Breccia
0.747 g, I x 1 x 0.75 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76559 was collected as a
rake sample from the soil at Station 6 Sample 76559 is light grey impact Simonds and Warner (1981) point
(Phinney et al., 1974). There is a melt rock with a poikilitic matrix, out that this poikilitic breccia has
black glass splash and some soil Pyroxene and ilmenite oikocrysts less Fe and more Mg than the
breccia attached (Fig. 1). enclose anorthite grains (Fig. 2). The boulder at Station 6 (Table 1). They

sample is completely crystalline, speculate that it may be similar to the
large breccia sample 76055.

Figure 1: Photograph of 76559. Scale bar is marked in mm. $73-19629.
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Figure 2: Photomicrograph of thin section 76559,7, showing well-developed poikilitic matrix.
Field of view is 2 x 3 mm

Table 1: Whole-rock chemistry of 76559.
From Simonds and Warner (1981).

(Cautionary note: These preliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2
Technique EMP

SiO 2 (wt%) 46.47

TiO 2 1.49

Al203 17.53

Cr203 0.18

FeO 8.:36

MnO

MgO 12.!)8

CaO 10.78

Na20 0.454

K20 0.27
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76565
Dark Matrix Regolith Breccia
11.6 g, 2.5 x 2.5 x 2 cm

INTRODUCTION a brown glass matrix (Fig. 2) and has (Table 2). It has a relatively high Ti
been termed a "vitric matrix breccia" content for talus from the North

Fruland (1983) included 76565 in the by Simonds et al. (1975). It contains Massif, indicating lateral transport
suite of soil breccias to be studied by orange glass beads and mare basalt for the adjacent mare surface.
the Regolith Initiative, and it has fragments. It also contains fragments Simonds et al. (1975) speculate that
been studied in detail by Simon et al. of feldspathic materials from the the vitric matrix breccias from the

(11990). Warren et al. (1983) found highlands (Figs. 1 and 2). Station 6 soil may have come from
the small white clast to be small (less than 1 km across) craters
nonpristiue, that are within the Apollo 17 valley

WHOLE-ROCK CHEMISTRY (e.g., SWP, Cochise, and Shorty).

PETROGRAPHY The rare earth element composition
of the dark matrix part of 76565 is SIGNIFICANT CLASTS

Sample 76565 is a dark matrix identical to the Station 6 soil, 76501

regolith breccia (Fig. 1) with a high (Fig. 3). The composition has been Warren et al. (1983) have studied the
percentage of mineral fragments reported by Simonds and Warner small white clast seen in Fig. 1
(Simon et al., 1990) (Table 1). It has (1981) and by Simon et al. (1990) (estimated mass is -150 mg). They

ili!ilil
Figure 1: Sample 76565, showing a white clast studied by Warren. Scale bar is 1 ram. $73-19644.



SAMPLE 76565 - 188

conclude that it is a nonpristine of the metal indicate meteoritic high-Ca and low-Ca pyroxene
"anorthositic, polymict, granulitic contamination. It is about 70% (Fig. 4).
breccia." The relatively high Ir plagioclase (An92.6_97.3), with
(20 ppb) and the Ni and Co content olivine (Fo 71.9-74.1), and with both

Figure 2: Photomicrograph of 76565,7, showing brown glass matrix and part of a clast of feldspathic highlands
material. Field of view is 2 x 3 mm.
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Figure 3: Normalized rare earth element diagram for 76565 and white clast in Fig. 1. The brown glass matrix has the
same composition as 76501 soil.
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Figure 4: Pyroxene composition of 76565 white clast. From Warren et al. (1983).
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Table 1: Mineralogical mode of brown glass matrix of "r6565. From Simon et al. (1990).

76565 78546 79035 79135 79175

S L S L S L S L S L

Lithic Fragments

Mare Component

Mare Basalt 0.4 2.2 0.1 3.7 1.1 5.0 0.4 1.9 0.5 3.3

Highland Component

Plutonic 0.5 2.5 0.1 1.8 0.1 0.1 0.1 0.6 0.3 3.0

Feld. Frag. Breccia 0.1 - - 0.1 - 0.1 - 0.5 - 0.2
Feld. Basalt - - - 0.1 - - 0.1 - - -

Granulite/Poik. 0.5 1.9 0.2 0.5 - - 0.2 0.6 0.1 0.2

Impact 0.6 0.4 0.5 1.5 0.7 1.2 0.5 1.5 0.4 1.2
Melt

Fused Soil Component

Regolith Brecc. 0.1 1.5 0.1 2.7 0.3 0.3 0.2 0.8 0.1 2.0

Agglutinate 1.6 1.5 0.7 3.5 5.0 8.6 0.9 5.0 0.6 4.0

Mineral Fragments

Pyroxene 3.8 1.6 3.8 1.2 3.8 1.7 3.2 1.7 2.9 1.7

Olivine 2.4 1.0 1.4 0.4 0.8 0.4 0.9 0.5 0.6 0.3

Plagioclase 7.8 5.6 4.2 3.4 2.2 0.8 3.4 1.6 1.7 1.4

Opaque 1.5 0.3 0.8 - 1.7 0.2 1.9 0.3 1.5 0.6

Glass Fragments

Orange/Black 1.1 - 2.5 0.5 1.1 - 2.7 0.7 0.7 0.3
Yellow/Green 0.6 0.6 1.5 0.4 0.8 0.4 1.2 1.1 0.2 0.1

Colorless 1.0 0.1 0.8 - 0.6 1.0 1.3 1.1 0.2 0.3

Brown 0.2 - 0.2 - 0.2 - 0.1 - 0.2 0.1

Miscellaneous

Devit. Glass 1.7 1.2 3.7 6.8 2.2 1.4 3.0 2.7 2.0 3.1

Other 0.2 0.2 - 0.2 0.1 - - 0.4 0.1 0.2

Total 24.0 20.6 20.6 26.8 20.7 21.2 20.1 21.0 12.1 22.0

Matrix 55.4 52.6 58.1 58.9 65.9

Matrix = <201am; S = small clasts (90 - 20pxn); L = large clasts (1000- 90_un); tr = trace.
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Table 2: Whole-rock chemistry of 76565.
a) Simonds and Warner (1981); b) Simon et al. (1990); c) Warren et al. (1983)

*(Cautionary note: Some of these preliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2 (a) ,13 (b) ,10 (c)
Technique EMP INAA INAA

matrix matrix clast

SiO2 (wt%) 43.94* - 45.37

TiO2 3.24* 4.57 0.25

A1203 18.59" 16.1 26.08

Cr203 0.27* 0.32 0.16

FeO 9.57* 12.4 5.66

MnO 0.16 0.08

MgO 10.22" 10.3 8.13

CaO 12.15" 12.0 14.56

Na20 0.49* 0.41 0.35

K20 0.12" 0.09 0.10

Nb (ppm)

Zr 120 -

Hf 5.00 1.08

Ta 0.86 0.16

U 0.32 0.21

Th 1.12 0.72

Sr 160

Rb 4.7

Ba 105 62

Cs 0.14 0.22

Zn 35 9.4

Ni 130 420

Co 30 33.1

Sc 38.7 10.9

La 8.55 2.71

Ce 22.5 7.1

Nd 18.7 3.9

Sm 6.04 1.13

Eu 1.38 0.75

Gd 7A

Tb 1.4 0.3

Dy 8.7 1.91
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Table 2: (Concluded).

Split ,2 (a) ,13 (b) ,10 (c)
Technique EMP INAA INAA

matrix matrix clast

Tm 0.81

Yb 4.78 1.32

Lu 0.72 0.21

Ga 3.9

Ge (ppb) 0.15

Ir 4.5 20

Au 2.0 7.2
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76566
Dark Matrix Regolith Breccia
2.639 g, 2 x 1.5 x I cm

INTRODUCTION
PETROGRAPHY

These two fragments of brown glass
matrix regolith breccia are very Sample 76566 is typical brown glass
similar to 76545 from the same rake regolith breccia (Fig.1). It is lithified
sample, local soil. No studies have been

done and no thin sections exist.

Figure 1: Photograph of 76566. Scale bar is marked in mm. $73-19639.
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76567
Light Matrix Regolith Breccia
5.49 g, 2 x 1.5 x I cm

INTRODUCTION The surface of 76537 has zap pits
PETROGRAPHY galore (Fig. 1). The thin section

Sample 76567 is a vitric matrix shows that the matrix is transparent
breccia that contains fragmentsof Phinney et al. (1976) have studied (Fig. 2). A clast of a feldspathic
mare, nonmare, and orange glass. It 76567 by SEM petrography. They highlands rock is attached.
has a light-colored grey matrix with term it a moderately coherent vitric
both light and dark clasts. It does not matrix breccia with only -20% glass
have the brown tint characteristic of in matrix.

the mare regolith breccias.

Figure 1: Photograph of light grey breccia 76567. Scale bar is marked in I mm. 5"73-19641.
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S_ili!!i;]

Figure 2: Photomicrograph of 76567,7, showing matrix attached to clast of highlands material.
FieM of view is 2 x 3 mm.
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76568
Aphanitic High-Ti Mare Basalt
9.477 g, 2.5 x 2 x 2 cm

INTRODUCTION fragment has been determined by
PETROGRAPHY Roy Brown (unpublished, in

Sample 76568 was collected as a Simonds and Warner, 1981). The
rake sample from the soil at Station 6 Sample 76568 is an aphanitic mare high TiO2 content (~11%) is
(Phinney et al., 1974). basalt with variolitic texture (Fig. 1). consistent with the ilmenite

The thin section of 76568,7 shows abundance in the thin section.
that it is ilmenite rich (Fig. 2). The
chemical composition of this

Figure 1: Photograph of 76568. Scale bar is in ram. $73-19642.
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Figure 2: Photomicrograph of 76568,7. Field of view is 2 x 3 mm.

Table 1: Whole-rock chemistry of 76568.
From Simonds and Warner (1981).

(Cautionary note: These preliminary analyses were made by J[tsed bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2
Technique EMP

SiO2 (wt%) 39.50

TiO 2 1] .12

A1203 9.16

Cr203 0.46

FeO 17.79

MnO

MgO 8.70

CaO 10.65

Na20 0.53

[(20 0.I0
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76569
Aphanitic Impact Melt Breccia
4.207 g, 2 x 1.5 x 1 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76569 was collected as a
rake sample fromthe soil at Station6 Sample 76569 is a coherent, dark Simonds andWarner(1981) reporta
(Phinneyet al., 1974). grey impactmelt rock. Ithas zap preliminaryanalysisof 76569

pits on all surfaces (Fig. 1). The (Table 1).
matrix of this sample is crystalline,
but Veryfine grained, so that the
sample is aphanitic. Mineral and
lithic clasts in the matrix are rounded
(Fig. 2).

Figure 1: Photograph of 76569. Scale bar is marked in ram. $73-19635.
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Figure 2: Photomicrograph of thin section 76569_,8. Field of view is 2 x 3 mm.

Table 1: Whole-rock chemistry of 76569.
From Simonds and Warner (1981).

(Cautionary note: These preliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2
Technique EMP

SiO 2 (wt%) 47.79

TiO2 1.23

A1203 17.34

Cr20 3 0.23

FeO 8.66

MnO

MgO 11.42

CaO 10.73

Na20 0.68

K20 0.36
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76575
Feldspathic Impact Melt Breccia
16.25 g, 3 x 2 x 2 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76575 was collected as a
rake sample from the soil at Station 6 This unique fragment has clasts of This sample has been analyzed by

(Phinney et al., 1974). The surface aphanitic breccia included within a XRF and isotopic dilution mass
of this rounded fragment is covered fragmental matrix of mostly feldspar spectroscopy (Table 1). It has a high
with glass splashes, patina, and (Fig. 2). A1203 content (~ 26%) and low trace
micrometeorite pits (Fig. 1). element content (Fig. 3).

Figure 1: Photograph of 76575. Scale bar is marked in mm. $73-19633.
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Figure 2: Photomicrograph of thin section 76575,10 showing suevite texture. Field of view is 2 x 3 mm.

1000 I I I I I I I I I 1000
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Figure 3: Normalized rare earth element diagram comparing 76575 with the Station 6 soil (76501).
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Table 1: Whole-rock chemistry of 76575.

From Simonds and Warner (1981); Wiesmann and Hubbard (1975).

Split ,3
Technique XRF, IDMS

SiO2 (wt%) 44.83

TiO2 0.34

A1203 25.77

Cr203 0.11

FeO 5.61

MnO 0.08

MgO 7.45

CaO 15.23

Na20 0.35

K20 0.03

P205 0.04

S 0.04

Nb (ppm)

Zr 47

U 0.13

Th 0.48

Sr

Rb 0.697

Li 3.7

Ba 36.7

La 2.67

Ce 7.02

Nd 4.49

Sm 1.31

Eu 0.775

Gd 1.75

Dy 1.90

Er 1.23

Yb 1.16

Lu 0.169
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76576
Micropoikilitic Impact Melt Breccia
5.327 g, 2.5 x 1.5 x 1.5 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

This light grey fragment has lots of
small micrometeorite pits on its Sample 76567 has an annealed According to Simonds and Warner
surface (Fig. 1). This unique cataclastic breccia texture that is (1981), sample 76576 has "a K20-
highlands sample is a nonpristine different from the boulders at poor unique composition and an
impact melt breccia with a Station 6 and may be from a different annealed texture which is totally
micropoikilitic breccia texture, part of the highlands crust. It has different from the boulder matrices."

many small mineral fragments set in However, there is the possibility that
an aphanitic matrix (Fig. 2). it could have been a clast in the melt
Pyroxene oikocrysts are just sheet. This sample has also been
beginning to form. It has about 65% analyzed by Warren and Wasson
plagioclase, 20% olivine, and 10% (1978) (Table 1). It is nonpristine
low-Ca pyroxene and ~5% high-Ca and has a uniquely low and flat rare
pyroxene, earth element pattern (Fig. 3).

I "4 ! _|

Figure 1: Photograph of rake sample 76576. Scale bar is marked in 1 ram. 573-19637.
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Figure 2: Photomicrograph of thin section 76576,7. Field of view is 2 x 3 mm.
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Figure 3: Normalized rare earth element diagram for highlands sample 76576.
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Table 1: Whole-rock chemistry of 76576.
a) Simonds and Warner (1981); b) Warren and Wasson (1978)

*(Cautionary note: Thesepreliminary analyses were made by fused bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2 (a) ,3 (b)

technique EMP INAA

SiO 2 (wt%) 43.34* 45.15

TiO2 0.29* 0.20

AI203 19.95" 23.06

Cr203 0.19"

FeO 10.53" 8.23

MgO 12.95" 9.88

CaO 11.62" 13.86

Na20 0.34* 0.30

K20 0.08* 0.10

Nb (ppm)

Cr 1230

N'm 780

Zr

Hf 1.7

Ta 0.28

U 0.31

Th 1.2

Ba 90

Zn 1.4

Ni 111

Co 28.4

Sc 12.1

La 4.7

Ce 12

Nd

Sm 2.03

Eu 0.75

Tb 0.45

Yb 2

Lu 0.29

Ga 3.22

Ge (ppb) 20

Re 0.51

Ir 6.3

Au 2.18
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76577
Poikilitic Impact Melt Breccia
13.54 g, 2.5 x 2 x 2 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 76577 was collected as a
rake sample from the soil at Station 6 Sample 76577 has a nicely Simonds and Warner (198 l) point
(Phinney et al., 1974) (Fig. l). developed poikilitic texture (Fig. 2) out that this poikilitic breccia has

with orthopyroxene and ilmenite less FeO and more MgO than the
oikocrysts surrounding relict angular boulder at Station 6. They speculate
clasts of anorthite plagioclase. It has that it may be similar to the lithology
small rounded vesicles (1 ram). represented by large sample 76055.

Figure 1: Photograph of 76577. Scale bar is marked in nun. $73-19645.
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Figure 2." Photomicrograph of thin section 76577,7, showing ram-sized vesicles and poikilitic matrix texture.
Field of view is 2 x 3 mm.

Table 1: Whole-rock chemistr'¢ of 76577.
From Simonds and Warner (1981).

(Cautionary note: These preliminary analyses were made by.[ksed bead electron microprobe analyses,
R. Brown, analyst.)

Split ,2
Technique EMP

SiO2 (wt%) 46.34

TiO2 ! .49

A1203 18.07

Cr203 0.17

FeO 8.02

MnO

MgO 11.94

CaO 11.09

Na20 0.8

K20 0.33



SAMPLE 77017 - 211

77017
Poikilitic Anorthositic Gabbro
1730 g, 17 x 12.5 x 9 cm

INTRODUCTION Various names have been given to
the feldspathic portion of this rock: PETROGRAPHY

Sample 77017 is a large, annealed,
feldspathic breccia set in a frothy Crushed anorthositic gabbro - Butler The feldspathic portion of Apollo 17
black glass matrix (Fig. 1). A (1973), Helz and Appleman (1974) sample 77017 is an olivine-beating,

photograph of a slab through this Poikilitic anorthositic gabbro - anorthositic gabbro with a relatively
rock reveals how the anorthositic McCallum et al. (1974) coarse-grained poikilitic texture
portion has been incorporated in the (McCallum et al., 1974; Helz and
black glass matrix (Fig. 2). The Feldspathic granulitic impactite - Appleman, 1974; and Ashwal, 1975).

feldspathic portions all appear to be Warner et al. (1977) The mineral composition of 77017 is
the same, with uniform chemistry Olivine gabbro breccia - Wolfe and ~75% plagioclase (An94_97), ~5%
and mineral composition. The others (1981) olivine (Fo60-65), ~10% augite

(Wo 37En46Fs 17), and ~ 10%
anorthositic portion has high sidero- Poikilitic anorthositic nofite - pigeonite (Wo8En62Fs30). Itphiles with an age of about 4 b.y.,
while the glassy matrix is basaltic Lindstrom and Lindstrom (1986). contains relict lithic clasts of
with a fusion age of about 1.5 b.y. annealed troctolitic anorthosite and
(see below). The petrogenetic his- anorthosite. Mineral clasts of
tory of this rock was well-described plagioclase, olivine, pink spinel, and
by Helz and Appleman (1974). opaque minerals are enclosed within

Figure 1: Photograph of lunar sample 77017. Cube is I cm. $73-17772.
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Figure 2: Slab surface of 77017. Cube is 1 inch. $75-34250.

pigeonite and augite oikocrysts. All extensive subsolidus annealing, be that this represents the Apollonian
minerals show a restricted composi- Pyroxene oikocrysts (up to 1 mm) metamorphism proposed by Stewart
tional range, occur as both pigeonite and augite; (1975). However, the abundant

sometimes found epitaxially amount of trace siderophiles leads
A late shock event has caused partial intergrown (McCallum et al., 1974). one to consider the impact model of
granulation, producing a fine-grained Both pyroxenes show well- Simonds et al. (1975). Warner et al.
cataclastic matrix. The proportions developed exsolution lamellae up to (1977) propose that 77017 formed in
and compositions of minerals in the 2 pan wide. The pyroxenes are the period after the consolidation of
crushed areas are the same as in the homogeneous in composition and the lunar crust but before the final
uncrushed, indicating that the show a well-defined compositional bombardment when "still hot
cataclasis was not accompanied by gap (Fig. 5). Anhedral olivine: grains impactite sheets could have been
any significant transfer of material, occur in the troctolitic anorthosite buried by layers of younger ejecta
Shock features are common: and are included in the pyroxene that were themselves hot." Helz and
undulose extinction, shock-induced oikocrysts. Ilmenite oikocrysts Appleman (1974) and Lindstrorn and

twinning, mosaicism, and partial to enclose plagioclase and mafic Lindstrom (1986) interpret the clasts
complete vitrification of plagioelase, minerals, in 77017 to represent a plutonic
Minor amounts of clear glass in the anorthositic norite lithology that was
interior of the rock were produced by Temperatures calculated from the brecciated and metamorphosed to
this late shock, pyroxene pairs indicate a temperature produce the poikiloblastic texture.

of equilibration between 1050 and Cushing et al. (1993) and James

The plagioclase in the relict anortho- 1100 °C, which is estimated to be (1993) have recently discussed the
site and troctolitic anorthosite lithic about 100 *C below the solidus for a relationship of 77017 to the
clasts has well-developed polygonal rock of this composition (McCallum "granulitic suite."

grain boundaries indicative of et al. 1974). One interpretation could



SAMPLE 77017 - 213

Figure 3: Photomicrograph of a thin section of the feldspathic portion of thin section 77017,65, showing coarse
poikilitic texture. Field of view is 3 x 5 ram.

Figure 4: Photomicrograph of the same feldspathic portion of 77017,65 using partially crossed polarizers to show the

granulitic texture on the plagioclase grains with 120 deg triple junctions. Field of view is 3 x 5 mm.
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Figure 5: Pyroxene and olivine compositions in 77017. Data from McCallum et al. (1974).

Finally, the anorthositic portion of analyze several relict clasts, but
this rock was caught up in the black WHOLE-ROCK CHEMISTRY found that their samples all had
matrix, which has a high mare basically the same composition
component. This is best seen in the Hubbard et al. (1974), Laul et al. (Fig. 11). However, the feldspathic
saw cut of the slab (Fig. 2). (1974), and Lindstrom and portion of this large rock has not

Lindstrom (1986) have determined been fully explored.

Bence et al. (1974) have studied a the rare earth element contents of
small fragment 78503,7,1, which 77017 (Table 1). The feldspathic
they claim is the equivalent of portion of the rock is very low in STABLE ISOTOPES
77017. trace elements (Fig. 9). The

incorporation of abundant sidero- Mayeda et al. (1975) have studied

philes without the addition of ;a the oxygen isotope fractionation of
MINERAL CHEMISTRY significant amount of rare earth 77017. Two olivine seParates have

elements by mixing with KREEP- different isotopic compositions, and

The composition of olivine, plagio- rich rocks is thought to be an the plagioclase-olivine fractionation
clase, and pyroxene is relatively important constraint to when KREEP is larger than for other lunar rocks.
homogeneous in the feldspathic was present on the lunar surface Muller et al. (1976) attempted to
portion of 77017 (Helz and (Warner et al., 1977). determine the nitrogen in 77017.
Appleman, 1974 and McCallum et
al., 1974). Fig. 6 shows that 77017 Morgan et al. (1974) have deter-
falls in the field of ferroan anortho- mined the siderophile and volatile RADIOGENIC ISOTOPES
site even though the minerals have element composition of 77017

"equilibrated" composition. This (Table 2). They found extremely Phinney et al. (1975) dated 77017 as
indicates that the precursor of 77017 highlr, Re, andAu (Fig. 10). The 3.97+ 0.02b.y. by theAr-Ar
may have been a ferroan anorthosite, data by Lindstrom and Lindstrom plateau technique (Fig. 12). Kirsten

(1986) also confirm the extremely and Horn (1974) determined 4.05 +
0.05 b.y. for the white mineralTaylor and Williams (1974) and high siderophile content of this rock.
fraction of their sample and 1.5 +Hewins and Goidstein (1975) have Hertogen et al. (1977) and James

studied the compositions and phases (1994) have reviewed the siderophile 0.3 b.y. for the black glass vein
of the metallic particles (Figs. 7 and volatile element data. within it (Fig. 13) using the Ar-Ar
and 8). Metal grains in the poikilitic technique.
facies of 77017 are chemically
homogeneous, containing 15 to 20% SIGNIFICANT CLASTS Nunes et al. (1974) and (1975) have

Ni, while grains in the shocked studied the U-Th-Pb systematics of
portion of 77017 show exsolution. Helz and Appleman (1974) artd 77017 (Table 3), but could not

McCallum et al. (1974) describe determine an internal isochron or an

McCallum et al. (1974) present x-ray relict feldspathic clasts with apparent age for this rock. Nyquist et al.
diffraction data for pyroxenes, cumulate texture. Lindstrom .and (1974) obtained Rb-Sr data for

Lindstrom (1986) attempted to 77017 (Table 4).
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Figure 6: 77017falls in the field of "ferroan anorthosite" even though the minerals have a metamorphic origin.
Boundaries of rock types from James and Flohr (1983).
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Figure 7: Composition of metal grains in 77017. From Taylor and Williams (1974).
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Figure 8: Composition of metal grains in 77017. From Hewins and Goldstein (1975).
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Figure 9: Normalized rare earth element diagramfor 77017. Data from Hubbard et al. (1974).
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studied the remanent magnetization
COSMOGENIC of 7'7017. Huffnan et al. (1974) and SURFACE STUDIESRADIOISOTOPES AND
EXPOSURE AGES Brecher et al. (1975) studied the

distribution of Fe by M6ssbauer Adams and Charette (1975) and

Phinney et al. (1975) determined an spectroscopy (Fig. 14). Charette and Adams (1977)
exposure age of 224 + 20 m.y., while determined the spectral reflectance of
Kirsten and Horn (1974) determined Mizutani and Osako (1974) have 77017 and compared it with other

one of 80 + 10 m.y. studied the elastic wave velocity, anorthositic gabbros (Fig. 17).
thermal diffusivity, and thermal

conductivity of 77017 (Fig. 15). PROCESSING
MAGNETIC STUDIES According to Horai and Winkler

(1976), the thermal diffusivity of Sample 77017 has 32 thin sections.

Brecher et al. (1974), Nagata et al. 77017 is the lowest among the solid The largest piece is 1053 g.
(1974 and 1975), Pierce et al. (1974), rock samples (Fig. 16).
and Cisowski et al. (1983) have

t.o
q)

,,---4

.9_o

16s
N

164 Breccio • 77017Anorlh.

Cryst. o 15455An_'lh.(
Breccio• 15102 Norite

Cryst. o 15272 Bosoll

Figure 10: Trace element data for 77017 compared with other rocks. Sample 77017 has elevated siderophiles.
From Morgan et al. (1974).
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Figure 11: Normalized rare earth element diagram for multiple splits 0.[77017. Data from Lindstrom
and Lindstrom (1986).
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Figure 12: 39Ar-40Ar release patterns and apparent K/Ca ratios for anorthositic breccia 77017,46.

From Phinney et al. (/975).
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Figure 13: 39Ar-40Ar release patterns and apparent K/Ca ratiosfor anorthositic breccia 77017,32A andfor a black
glass vein penetrating the breccia 77017,32B. From Kirsten and Horn (1974).
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Figure 14: Mo'ssbauer spectra of 77017. From Brecher et al. (1975).
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Figure 15: Elastic wave velocity as function of pressure. From Mizutani and Osako (1974).
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Figure 17: Reflectance spectra of 77017 compared with other anorthositic gabbros. From Adams and Charette (1975).
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Table 1: Whole-rock chemistry of 77017.

a) LSPET; b) Hubbard et al. (1974); c) Wiesmann and Hubbard (1975); d) Laul et al. (1974)

Split ,2 (a, b, c) ,57 (d) matrix (d) grey fragment (d)
Technique XRF, ID INAA INAA INAA

SiO 2 (wt%) 44.09

TiO 2 0.41 0.75 5.3 0.35

A1203 26.59 26.0 18.9 27.1

Cr203 0.13 0.14 0.29 0.126

FeO 6.19 6.2 12.1 5.7

MnO 0.08 0.085 0.155 0.077

MgO 6.06 6 8 6

CaO 15.43 14.5 11.7 15.7

Na20 0.30 0.31 0.39 0.36

K2O 0.06 0.05 0.10 0.076

P205 0.03

S 0.15

Nb (ppm) 4.1

Zr 59 200

Hf 1.6 1.5 4.9 1.0

Ta 0.22 0.85 0.14

U 0.22 - - -

Th - 0.4 0.6 -

y 14

Sr 142

Rb 1.31

Li 4.4

Ba 49 30 70 40

Zn 4

Ni 95 290 290 300

V 40 70 40

Co 24 27 23

Sc 12 36 9.8

La 3.48 3.3 6.4 3.6

Ce 8.9 9 22 10

Nd 5.56 5 18 5

Sm 1.6 1.5 5.9 1.7

Eu 0.794 0.78 1.42 0.81

Gd 2.01

Tb 0.3 1.3 0.3

Dy 2.34 2.4 9 2.4

Er 1.50
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Table 1: (Continued).

Split ,2 (a, b, c) ,57 (d) matrix (d) grey fragment (d)
Technique XRF, ID INAA INAA INAA

Yb 1.50 1.6 5.1 1.4

Lu 0.23 0.21 0.66 0.18

Ge (ppb)

lr 10 9 10

Au 3 3 3

Table 1: (Continued).
From Lindstrom and Lindstrom (1986).

Split ,151g ,151 ,152 _153 ,154 ,155
Technique INAA INAA INAA INAA INAA INAA

SiO2 (wt%)

TiO2 1.17 0.70 0.41

A1203 24.9 24.7 24.9

Cr203 0.15 0.16 0.12 0.14 0.14 0.12

FeO 6.34 5.99 6.18 6.21 6.02 6.02

MnO

MgO " 6.2 6.5 6.1

CaO 15.5 14.9 15.3 15.4 14.9 15.0

Na2 O 0.36 0.33 0.34 0.34 0.34 0.33

K2o
Nb (ppm)

Zr 40 30 38 50 32 48

Hf 1.57 0.8 1.10 1.27 0.89 1.16

Ta 0.28 0.103 0.112 0.152 0.128 0.148

U 0.11 0.05 0.18 0.17 0.13 0.06

Th 0.47 0.52 0.52 0.72 0.84 0.71

Sr 165 155 170 147 151 150

Ba 45 34 45 46 47 50

Ni 360 300 312 297 296 290

Co 28.5 24.8 27 25.2 24.9 24.6

Sc 15.2 13.4 12.0 13.1 11.8 11.5

La 2.76 1.68 3.17 3.46 2.69 2.4

Ce 7.1 4.3 8.3 9.2 6.6 5.7

Nd 4.5 2.9 5.0 5.7 4.0 3.4

Sm 1.61 0.984 1.621 1.824 1.258 1.164
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Table 1: (Concluded).

Split ,151g ,151 ,152 ,153 ,154 ,155
Technique INAA INAA INAA INAA INAA INAA

Eu 0.835 0.75 0.765 0.762 0.74 0.745

Gd

Tb 0.41 0.235 0.403 0.44 0.29 0.295

Dy

Er

Yb 1.57 1.06 1.60 1.61 1.26 1.28

Lu 0.237 0.163 0.24 0.248 0.193 0.203

Ge (ppb)

k 15 14 13 13 13 13

Au 6.2 4.1 4.8 3.5 7.9 3.5

Table 2: Trace element data for 77017. Concentrations in ppb.
From Morgan et al. (1974).

Sample
77017,48

Ix 17

Os

Re 1.7

Au 5.65

Pd

Ni (ppm) 443

Sb 0.72

C._ 110

Se 68

Te 1.9

Ag 0.87
Br 35

In

Bi 0.22

Zn (ppm) 2.5

CA 9

TI 0.77

Rb (ppm) 1.34

Cs 6t

U 137
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Table 3: U-Th-Pb for 77017.

From Nunes et al. (1974).

wt (mg) 94.7 79.8

U (ppm) 0.2699 0.4147

Th (ppm) 1.025 1.489

Pb (ppm) 0.5733 0.8663

232Th/238U 3.92 3.71

238U/204pb 643.0 863.0

Table 4: Rb-Sr composition of 77017.

Data from Nyquist et al. (1974).

Sample
77017,2

wt (mg) 68.4

Rt) (ppm) 1.310

Sr (ppm) 141.5

87Rb/86Sr 0.0268 + 3

87Sr/86Sr 0.70072 _+6

TB 4.22 + 0.20

TI, 4.40 + 0.20

B = Model age assuming I _ 0.69910 (BABI +
JSC bias)

L = Model age assuming I = 0.69903

(Apollo 16 anorthosites for T _ 4.6 b.y.)
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77035
Micropoikilitic Impact Melt Breccia
5727 g, 15 x 15.5 x 22 cm

INTRODUCTION of obvious clasts (Fig. 2) The fractionation during lunar evolution.
micropoikilitic matrix (Fig. 3) is Jovanovic and Reed (1974) have

Sample 77035 is primarily a non- uniform throughout the rock, and the determined C1, F, Br, and I.

descript impact melt rock that has sawn surfaces are aphanitic and Petrowski et al. (1974) have
partially dissolved the original clasts nondescript. The relict clastic determined C and S.
or welded them into its recrystallized texture of the matrix is obscured.
matrix such that they cannot be
easily extracted. It does contain one SIGNIFICANT CLASTS
large, pristine clast of norite (Fig. 1). WHOLE-ROCK CHEMISTRY

Sample 77035 has one large white
Boynton et al. (1975) and Wanke clast (~100 g) that has been studied

PETROGRAPHY et al. (1975) have analyzed the by Warren and Wasson (1979) and
matrix of 77035 (Table 1 and Fig. 4). Warren and Kallemyen (1984)

The main mass of 77035 is a Wanke et al. (1977) report V (Table 1). Warren (1993) lists this
micropoikilitic impact melt breccia, analyses and Garg and Ehmann large clast as probably pristine
apparently very similar to the matrix (1977) have determined the Zr and (Fig. 1). It is a cataclastic norite,
of the large boulders at Stations 6 Hf contents. The Zr/Hf ratio is high apparently monomiet, with
and 7 (Simonds et al., 1974). It is for 77035. Hughes and Schmitt approximately 60% plagioclase
dense, nonvesicular, and except for (1985) have utilized the composition (An93) and 40% orthopyroxene
one large white clast, relatively free of 77035 to discuss the Zr-Hf-Ta (Wo2En89Fs9). The pyroxene

Figure 1: Photograph of 77035 showing the large white clast of pristine norite. $78-27393.
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Figure 2: Photograph of 77035. Cube is 1 cm. $73-15907.

Figure 3: Photomicrograph of matrix in thin section 77035,92. Field of view is 3 x 4 ram.
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Figure 4: Normalized rare earth element diagram for 77035 showing matrix and large white norite clast.
Data from Boynton et al. (1975) and Warren and Wasson (1978).
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Figure 5: Pyroxene composition of large norite clast in 77035. From Warren and Wasson (1979).
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diagram (Fig. 5) is from Warren and et al. contained high Au; some have
Wasson (1979). Fig. 6 gives the very high Ir (Table 2). Warren RADIOGENIC ISOTOPES
position on the plutonic rock (1993) lists these clasts as only

diagram, showing that it is within the "marginally pristine." Murthy and Coscio (1977) have
Mg-norite suite of lunar highland reported Sr isotope measurements for
rocks. Berschet al. (1991)have Clast ,206 has 37ppmIr. "IheREE aplagioclaseclastin 77035.
precisely determined the composition profile is flat (Fig. 7). It ha_ about

of pyroxene in 77035,69. Papike 66% plagioclase (An93.96), 12% PHYSICAL PROPERTIES
et al. (1994) have determined the orthopyroxene (Wo 4En73Fs23),

REE in the orthopyroxene of this -14% high-Ca pyroxene, and -7% Sugiura et al. (1978) studied the
breceiated norite clast using the ion olivine (Fo71-74). thermal remanent magnetization in
microprobe method. Much of this 77035 (Fig. 8). Simmons et al.
clast has been shocked into diaplectic Clast ,229 is a gabbronorite with (1975) studied differential strain and
glass and thoroughly comminuted. -75% plagioclase (An85_87), ~11% crack closure in 77035. (These

orthopyroxene (En71-72), ~ 11% results proved applicable to the
Eckert et al. (1991), Neal et al. high-Ca pyroxene (Wo43En44Fs13), microcracks in the Vietnam

(1992), and Neal et al. (1994) have and -3% olivine (Fo69.73). It has a Memorial/) Horai and Winkler

studied additional lithic clasts in positive Eu anomaly (Fig. 7) and is (1976) studied the thermal diffusivity
77035 (Table 2). They report one reported as pristine by Nea!let al. of 77035 (Fig. 9).
"dunite," two "norite," and two (1994).
"anorthosite'" clasts. It was very
difficult to extract these clasts from Clast ,226 is essentially all olivine PROCESSING
the crystalline matrix of this rock, (dunite?) Fo80-89 and has a deep
and the trace element data for these negative Eu anomaly (Fig. 7). The main portion of 77035 was very
clasts (Fig. 7) may be compromised hard, and it was extremely difficult
because these sample splits may have Bickel and Warner (1978) report a to separate the small clasts that were
been contaminated by breccia matrix, small clast (plutonic fragment?) in welded into it.
All the small elasts studied by Neal thin section 77035,71.

An in plagioclase

75 80 85 90 95
I I I I I

troctolites

rag-suit

Figure 6: Position of norite clast on the plagioclase-pyroxene diagram for pristine lunar samples.
Fields from James and Flohr (1983).
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Figure 7: Normalized rare earth element diagram for small clasts in 77035. Data from Neal et al. (1994).
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Figure g: Thermal diffusivity of 77035. From Horai and Winkler (1976).
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Table 1: Whole-rock chemistry of 77035.

a) Boynton et al. (1975); b) Wanke et al. (1975); c) Warren and Wasson (1979)

Split ,84 (a) ,84 (a) ,61 (b) ,130 (c)
Technique RNAA RNAA INAA INAA

breccia breccia breccia large white dast

SiO2 (wt%) - - 46.87 -

TiO2 1.38 1.38 1.52 0.20

A1203 17.4 18.1 18.1 19.09

(3"203 0.18 0.20 0.20 0.32

FeO 6.94 9.00 8.87 2.64

MnO 0.12 0.11 0.11 0.09

MgO t 2.2 11.95

CaO 9.24 11.76 11.23 11.76

Na20 0.60 0.62 0.62 0.44

K20 0.26 0.09

P205

Nb (ppm)

Hf 7.4 10.6 10.8 1.9

Ta - 1.8 1.46 0.20

U 0.31

Th 3.7 5.5 4.5 1.1

Sr 210

Ba - 360 370 96

Zn 2.2 2.4 1.7

Ni 281 333 360 9.5

Co 25 32 32.! 22

Sc 13.6 16.8 16.0 10.9

La 23.4 34.0 32.2 5.5

Ce 63 101 85 13

Nd 55 8.6

Sm 10.7 15.2 14.3 2.19

Eu 1.37 1.90 1.95 0.93

Tb 1.7 3.0 3.2 0.49

Dy - 14 19.1

Yb 7.6 11.1 10.2 2.2

Lu 1.12 1.50 1.39 0.32

Ga 5.13 5.02

Ge (ppb) 444 433 3.9

lr 5 6.9 9 0.050

Au 4.6 5 0.026
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Table 2: Clast chemistry of 77035.
From Neal et al. (1994) (with permission).

Split ,206 ,226 ,227 2,28 ,229 ,230
Technique INAA INAA INAA INAA INAA INAA

SiO2 (wt%) ......

TiO2 0.22 nd 1.48 0.21 0.69 0.68

A1203 23.9 0.28 17.1 19.7 27.4 32.1

FeO 5.80 11.0 8.4 5.8 3.9 2.0

MnO 0.07 0.12 0.11 0.09 0.05 0.03

MgO 7.9 49.0 11.7 11.9 5.9 4.8

CaO 14.6 nd 9.7 12.2 14.2 18.2

Na20 0.43 0.02 0.65 0.46 1.21 0.55

K20 0.08 nd 0.3 0.11 0.18 0.32

Nb (ppm)

Cr 810 510 1170 1950 440 300

Hf 1.72 0.44 12.8 1.71 0.9 5.2

Ta 0.2 1.7 1.44 0.24 0.19 0.76

U 0.2 nd 1.5 0.29 nd 0.8

Th 0.93 0.33 5.3 1.38 0.47 2.7

Sr 180 nd 240 160 410 200

Rb nd nd 12 4 nd 9

Ba 110 nd 350 100 130 240

Cs nd nd 0.34 0.4 nd 0.32

Ni 560 110 300 26 nd 35

Co 41 62 38 21.4 5.8 4.3

Sc 9.4 5.6 t5.7 10.1 3.0 5.0

La 5.1 1.28 33 7 4.5 18.1

Ce 14.1 3.5 81 17.8 11.3 47

Nd 7.5 3.4 48 11.3 6.7 29

Sm 2.27 1.38 14.8 2.89 1.81 7.7

Eu 0.96 0.026 1.78 1.10 3.19 1.58

Tb 0.59 0.3 3.3 0.65 0.38 1.6

Dy 3.4 1.8 19 4.1 2.7 11

Yb 2.12 1.18 10.3 2.5 1.09 4.8

Lu 0.31 0.2 1.19 0.37 0.16 0.66

Ge (ppb)

Ir 37 nd nd nd nd nd

Au 11 6 9 5 6 15
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Introduction to Boulder at Station 7
Samples 77075, 77076, 77077,
77115, 77135, and 77215

The boulder at Station 7 is about 77135. The contact between the several of the boulders from the

3 meters in size and is thought to vesicular and nonvesicular lithol- South Massif (Fig. 5). In addition,

have tumbled downslope from high ogies is apparent. Fig. 3 is a sketch the trace element data for siderophile
on the North Massif (Wolfe and of the north side of the boulder and volatile elements by the Anders
others, 1981). Fig. 1 is a map of the showing the large (0.5 x 1.5 m) clast group show that these boulders are

location of samples at Station 7. of norite with penetrating black related (e.g., Hertogen et al., 1977).
Although the Station 7 Boulder has veins. While the norite clast These similarities have led various
nearly the same exposure age as the appeared off-white (light grey) in authors to conclude that these

larger boulder at Station 6 (28 m.y. surface photography, the fresh boulders represent ejecta from the
instead of 22 m.y.), the Station 7 surfaces of the samples (i.e., 77215) Serenitatus impact event (e.g.,
Boulder has no boulder track that are pure white in the laboratory. At Winzer et al., 1975; Spudis and
would allow us to know where the time of sampling, Schmitt (in Ryder, 1981). James (1994) has
exactly it came from on the North Schmitt and Cernan, 1973) observed reviewed the siderophile and volatile
Massif. that the dike material was continuous element composition.

with the "blue-grey matrix-rich
Field observations of the boulder by breccia" (represented by 77115) that
the astronauts showed that it was surrounds the off-white norite clast CONSORTIUM

composed of four main lithologies: a that the dike cuts.
large white norite clast (represented The boulder at Station 7 was system-
by sample 77215), cut by dark The Station 7 Boulder has a chemical atically studied by the international

dikelets (77075, 77076, and 77077), composition that is distinctly consortium led by E.C.T. Chao (see
enclosed in a blue-grey breccia different from the local soil on which the final report by Minkin et al.,

(77115), which is in turn surrounded it rests (Fig. 4). The composition of 1978). The original distribution of
by a vesicular, green-grey breccia the matrix of the Station 7 Boulder samples is recorded in Butler and
(77135). Fig. 2 is a photo of the (both 77115 and 77135) is similar to Dealing (1974). Several interesting
southeast side of the boulder the composition of the matrix of the clasts have been identified (Fig. 6).
showing the locations of 77115 and Station 6 Boulder, as well as that of
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x Area of 77035

77075-7';', 77215 77017x x"_7 Area of 77510-26
77530-45
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Figure 1: Planimetric map of Station 7. Map from Wolfe and others (1981).
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The dike through the clast (77075) According to Arvidson et al. (1975),
HISTORY was dated at 4.07 b.y. by Nakamura the final emplacement of the

and Tatsumoto and at 3.97 b.y. by Station 7 Boulder is one of only a
The history of the Station 7 Boulder Stettler et al. The matrix of the few well-dated events on the Moon.

is discussed by Winzer et al. (1977), breccia (77115 and 77135) ha.,;a The 81Kr-Kr exposure age is
Nakamura and Tatsumoto (1977), Rb-Sr age of _ 3.75 b.y. by 28.6 m.y. (Crozaz et al., 1974), while

Stettler et al. (1978), and Minkin Nakamura and Tatsumoto, while its Ar spallation age is reported as
et al. (1978). A summary of the age Stealer et ai. determined about 27.5 m.y. (Stettler et al., 1974). The

data for samples of the Station 7 3.9 b.y. (see the age discussion of apparently discrepant young cosmic
Boulder is given in Table 1, taken individual samples). It is worda ray track ages (5.4 m.y.) are
from Minkin et al. (1978). Measured noting that the different ages for the explained by loss of a few
39At- 40At ages are generally dike (77075, age 3.97 + 0.04 b.y.) centimeters of boulder surface about
consistent with the apparent and the surrounding breccia (77115, 5 m.y. ago (Arvidson et al., 1975).
stratigraphic sequence (Fig. 7). The age 3.90 + 0.03 b.y.) are not ill
large white norite clast, represented agreement, which is surprising
by sample 77215, has been dated by because of Schmitt's observation that
Rb-Sr and Sm-Nd at about 4.4 b.y. the dike was continuous with the

(Nakamura et al., 1976), while the breccia matrix (see discussion in

plagioclase in a norite clast within 77075).
77215 gave an 39Ar-40Ar plateau
age of 3.98 (Stettler et al., 1978).

Figure 2: Photo of southeast side of 3-meter boulder at Station 7 showing location of samples taken. AS17-146-22336.
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Figure 3: Sketch of north side of Station 7 Boulder, showing large norite clast (light grey clast) with penetrating veins
and the location of the samples taken (from Wolfe and others, 1981).
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Figure 5: Normalized rare earth element data for Station 7 matrix samples compared with Station 6
Boulder sample (76015). Datafrom Wiesmann and Hubbard (1975).
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Apollo 17 breccias and clasts in Station 7 Boulder.
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Figure 7: Summary of Ar plateau ages of different lithologies in Boulder 7. From Stettler et al. (1978).

Table 1: Summary of ages of Station 7 Boulder samples (b.y.).
From Minkin et ai. (1978).

Sample 40Ar/39Ar Rb/Sr Sm/Nd U-Pb 207 ph/206 Pb

77075

Dikelet 3.97 + .04(2) 4.07 + .09(3) 4.48 (6)

77115

Matrix 3.90 + .03 (2) 3.8 + .2(5) 4.45 (6)

77135

Matrix 3.90 + .04(4) ~3.75 (5) 4.40 (6)

Clast type 1 3.88 + .05(2) 3.89 + .08(6) 4.37 (6)

Clast type 2 3.99 + .02(1)

77215 3.98 + .03(2) 4.4.2+ .04(5) 4.37 + .07(5) 3.8 + .2(6) 4.49 (6)

(1)Stettler et al. (1974)

(2)Stettler et al. (1978)

(3)Nakamura and Tatsumoto (1977)

(4)Stettler et al. (1975)

(5)Nakamura et al. (1976)

(6)Nunes et al. (1974a)
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77075

Impact Melt Dike in Cataclastic Norite
172.4 g; 4 x 4 x 4 cm, 1.2 x 1.5 x 1.5 cm, 1 x I x 0.5 cm (3 fragments)

INTRODUCTION breccia that is a fine-grained equiva- size (Fig. 3). The average grain size
lent of the boulder sample 77115. of the matrix of 77075 is 5-10 _n,

Sample 77075 was sampled from one Schmitt (in Schmitt and Cernan, with poikilitic pyroxene averaging
of the dark dikes within the large, 1973) observed that the dike material 10-20 pin (McGee et al., 1980). The
"off-white" clast in the boulder at was continuous with the "blue-grey, principal minerals in the matrix are

Station 7 (see the section on the matrix-rich breccia" (represented by calcic plagioclase (An89_92),
Station 7 Boulder, page 235). The 77115) that surrounds the off-white pigeonite, and olivine (Fo74-78).
dike material is a fragment-laden norite clast that the dike cuts (Fig. 2). Orthopyroxene xenocrysts have a
melt rock with a matrix texture and Indeed, the chemistry, age, uniform composition of
chemical composition similar to that mineralogy, and texture of the thin Wo3_4En66.69Fs28_30. Augite was
of 77115, but with a finer grain size. sections all confirm this field not observed in the matrix of the dike

Friable white cataclastic norite observation (or is it the other way material in 77075. The dense, dark
(equivalent to samples 77077 and around?). The white material dike has a sharp boundary with the
77215) is attached to the black dike. attached to the sides of 77075 is the porous, noritic microbreccia.
Sample 77076 and piece 19 of 77215 same noritic material as that of

are also from the same dark dike. 77215 and is part of the large, "off- McGee et al. (1980) have studied the
The dark dike was about 3 cm thick white" boulder clast, microstructures in the pyroxenes
(Minkin et al., 1978) from the different lithologies of the

Chao et al. (1974) and Minkin et al. Station 7 Boulder, including the
(1978) have described 77075. 77075 dike. They measured exsolu-

PETROGRAPHY Megascopically, the dark vein in tion lamellae that were ~10 tim wide
77075 is aphanitic with scattered in pigeonite compared with

Sample 77075 consists of three small xenoliths of calcic plagioclase, 20-25 _rn wide in pyroxenes in
pieces that fit together (Fig. 1). The pyroxene, and olivine. The matrix is 77115 and 77135, leading McGee
dark dike material is a fragment- holocrystalline with very fine grain et al. to conclude that the 77075 dike
laden, micropoikilitic impact melt

Figure 1: Photograph of 77075. Scale is 1 cm. $73-24005.
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Figure 2: Closeup photograph of the boulder at Station 7. The vein through the off-white norite clast can be clearly

seen through the brown patina. Schmitt observed that this vein (770Z5) is continuous with the surrounding breccia

(77115). AS17-146-22327.

Figure 3: Photomicrograph of 77075,11, showing the poikilitic texture of the dike material.
Rounded olivine xenocryst is included. Field of view is 3 x 4 ram.
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crystallized and cooled through the Warren and Wasson (1978) find that

solidus more rapidly than did the chemical composition of the white WHOLE-ROCK CHEMISTRY
enclosing rocks 77115 and 77135. noritic portion of 77075 is

Presumably, the relatively rapid "extremely similar" to the composi- Winzer et al. (1974) have reported
cooling of the dike rock also tion of the same lithology on 77077 the chemical composition of the dark
inhibited precipitation of matrix and 77215, which are from the same vein in 77075, and Warren and

augite and resulted in coprecipitation sample location on the boulder at Wasson (1988) have reported the
of ilmenite and pigeonite. The Station 7. All three rocks are the composition of the white norite

abundant population of cooler, same crushed norite (Fig. 4). The material (Table 1 and Fig. 6). The

unmelted fragments in 77075 plagioclase in the norite is An90-92; composition of the dark dike is the
probably contributed to the rapid the orthopyroxene is same as for the continuous boulder

initial cooling rate and favored fine Wo4.5En65_70Fs26_30 . Bersch et al. matrix 77115 and similar to many
grain size by providing a high initial (1991) have precisely determined the other lunar impact melt breccias.
density of nuclei. Rapid quenching composition of pyroxene in the The attached white norite is the same
of the dike rock by injection into a white, noritic portion of 77075. composition as 77215.
cooler clast, 77215, probably also Fig. 5 shows that the white portion of
contributed to the faster cooling time 77075 plots within the Mg-norite Morgan et al. (1974a) determined the
(McGee et al., 1980). Sanford and suite of lunar rocks, trace siderophile and volatile
Heubner (1980) have also discussed elements in the dark dike material
the cooling rate for the dark dike in and found that it had high Ir
77075. (Table 2), while Warren and Wasson

(1978) found that the siderophile
elements were very low in the white,
noritic portion of 77075 (Table 1).

Figure 4: Photomicrograph 0f 77075 white norite material. Field of view is 3 x 4 mm.
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Figure 5: Plagioclase and pyroxene composition of the white portion of 77075. Fields from James and Flohr (1975).
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Figure 6. Normalized rare earth element plot for 77075. The data from the dike are from Winzer et al. (1974), and the
data for the white norite material are from Warren and Wasson (1978).



SAMPLE77075- 245

dike material after separating as
SIGNIFICANT CLASTS many of the xenocrysts as possible PROCESSING

(Table 3). They obtained an age of
The white material attached to 77075 4.18 + 0.08 b.y. (Fig. 8). However, The initial processing and

is the same material as the cataelastic this apparent "isochron" may be distribution of 77075 is outlined in
norite in 77077 and 77215. misleading because the mineral splits Butler and Dealing (1974). It was

may have included small plagioclase studied by the international

RADIOGENIC ISOTOPES xenocrysts, consortium led by E.C.T. Chao (see
final report by Minkin et al., 1978).

Stettler et al. (1974) determined ages Nunes et al. (1974) have reported A detailed description of the splits is
of 3.99 + 0.03 b.y. and 3.96 + U-Th-Pb data (Table 4), and given in open-file report 78-511.

0.08 b.y. by the 39Ar- 40Ar plateau Nakamura and Tatsumoto (1977)
technique (Fig. 7). Stettler et al. have determined'a Sm-Nd "isochron" Sample 77075 has five thin sections.

(1978) reported an age of 3.98 + (Table 5): The three largest pieces are:
0.03 b.y. for a third split of the dark ,13 (57 g); ,14 (41 g); and ,15 (53 g).

dike and concluded that the age was COSMOGENIC
3.97 + 0.04 b.y. (weighted average of RADIOISOTOPES AND
three analyses). EXPOSURE AGES

Nakamura and Tatsumoto (1977) Stettler et al. (1974) obtained an

have determined an internal Rb-Sr exposure age of about 25.5 m.y. by
"isochron" for the matrix of 77075 the Ar method.

v
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Figure 7. Ar-Ar plateau data for two splits of 77075. From Stettler et al. (1974).
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Table 1: Whole-rock chemistry 0f77075.
a) Winzer et al. (1974); b) Warren and Wasson (1978)

Split ,21 (a) ,27 (b) ,27 (b)
Technique AA, IDMS INAA INAA

dark vein white white

SiO 2 (wt%) 46.4 51.1 50.9

TiO2 1.38 0.34 0.35

A1203 18.17 14.97 14.00

Cr203 0.17 0.38 0.41

FeO 9.31 10.67 10.16

MnO 0.11 0.17 0.18

MgO 12.57 12.9 13.78

CaO 10.55 8.82 8.82

Na20 0.65 0.38 0.36

K20 0.23 0.18 0.16

P205 0.26

Nb (ppm)

Zr - 210 170

I-If 10.8 3.5 3.5

Ta 0.34 0.40

U 0.5 0.58

Th 1.57 1.8

Sr 165

Rb 6.1

Li 21.5

Ba 333 160 158

Zn 3.25 3.31

Ni 6.1 <1.1

Co 33 25.9

Sc 16.6 16.5

La 7.2 8.3

Ce 74.3 22 24

Nd 47.5 8.5 15

Sm 13.4 3.0 3.9

Eu 1.84 0.98 1.01

Gd 16.4

Tb 0.74 0.92

Dy 17.2

Er 10.0

Yb 9.53 3.9 4.4

Lu 1.5 0.59 0.68
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Table 1: (Concluded).

Split ,21 (a) ,27 (b) ,27 (b)
Technique AA, IDMS INAA INAA

dark vein white white

Ga 4.03 4.1

Ge (ppb) 10.9 16.8

lr 0.25 0.0084

Au 0.026 0.088

Table 2: Trace element data for dark dike in 77075. Concentrations in ppb.

From Morgan et al. (1974a).

Sample
77075,19

Ir 8.89

Os

Re 0.781

Au 5.09

Pd

Ni (ppm) 286

Sb 1.92

Ge 532

Se 112

Te 6.3

Ag t .2

Br 81

In

Bi 0.34

Zn (ppm) 2.8

Cd '7.5

TI :2.4

Rb (ppm) 6.4

Cs 270

U 1450
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Table 3: Rb-Sr analytical data for 77075.
From Nakamura and Tatsumoto (1977).

Weight K Rb Sr 87Rb I 87Sr2

Sample (rag) (%) (ppm) (ppm) 86Sr 86Sr

Handpicked fraction

Whole rock 22.75 0.1937 5.927 161.72 0.1060 0.70554 + 4

Matrix 5.13 0.1996 5.978 153.49 0.1126 0.70583 + 4

Olivine 0.62 0.0160 0.878 18.78 0.1352 0.70869 + 8

Density separates of > 74 grn fraction

13<2.83 9.42 0.1132 2.604 211.24 0.0356 0.70123 + 6

2.8<13<3.1 38.33 0.2090 6.274 165.35 0.1098 0.70571 + 4

3.1<13<3.2 6.05 0.1834 6.079 135.35 0.1299 0.70690 + 4

13>3.2 2.81 0.0961 3.554 66.25 0.1552 0.70827 + 10

Density separates of < 74 gm fraction

2.8<13<3.0 0.9 0.1247 3.613 140.56 0.0743 0.70358 -+6

p>3.25 0.75 0.0505 1.764 42.92 0.1189 0.70630 + 8

1Uncertainties are estimated to be <0.3%.

2Uncertainties correspond to last significant figure and are 20 mean.

3Combined with the p<2.8 separate of<74 I.tm fraction. Density is in g/cm 3.

Table 4: U-Th-Pb for 77075.

From Nunes et al. (1974).

Split 77075,22

wt (mg) 98.2

U (ppm) 1.425

Th (ppm) 5.299

Pb (ppm) 3.083

232Th/238 U 3.84

238U/204pb , 2110
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Table 5: Sm-Nd analytical data for 77075.
From Nakamura and Tatsumoto (1977).

Weight Sin Nd 147Sm {143 Nd _1
Sample (rag) (ppm) (ppm) 144Nd _144Nd ]

p<2.82 9.42 10.23 37.59 0.1645 + 2 0.511801 + 37

2.8<p<3.1 38.33 15.18 53.04 0.1732+ 1 0.512040+ 19

Whole rock 22.75 14.10 49.00 0.1739_+ 1 0.512050+ 19

p>3.2 2.81 6.58 22.86 0.1740 _+4 0.512094 + 40

1Normalized to 150Nd/144Nd = 0.236433. Errors corre:;pond to last significant figures and
are 20 mean.

2Density is in g/cm 3"
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77076
Impact Melt Dike in Cataclastic Norite
13.97 g, 3 x 2 x 2 cm

INTRODUCTION grain size. This rock has not been
studied. It is essentially another

Sample 77076 was sampled from a piece of 77075 (Fig. 1). Note the
dark dike in the large white clast in fine black veins extending into the
the boulder at Station 7 (see the white portion.
section on the Station 7 Boulder,

page 235). The dike is a fragment- This sample has not been allocated or
laden melt rock with a matrix similar studied.

to that of 77115, but with a finer

Figure 1. Photograph of 77076. Cube is 1 cm. $73-17101.
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77077 _
Cataclastic Norite with Black Veinlets
5.45 g, 2 x 2 x 1.5 cm

INTRODUCTION WatTen and Wasson (1978) find that

the mineralogy of the white portion WHOLE-ROCK CHEMISTRY
Sample 77077 was sampled along of 77077 is "extremely similar" to
with the dark dike in the large "off- the same lithology on 77075 and Warren and Wasson (1978) found
white" clast in the boulder at 77215, which are from the same that the siderophile elements were

Station 7 (see the section on the sample location on the boulder at very low in 77077 (Table 1). It has
Station 7 Boulder, page 235). This Station 7. All three rocks are the the same chemical composition as
sample is friable white cataclastic same crushed norite with plagioclase 77215 and the white material

norite with thin black veinlets (An90_92) and orthopyroxene attached to 77075 (Fig. 3).
(Fig. 1). (Wo4_5En65_70Fs26_30).

PETROGRAPHY MINERAL CHEMISTRY

Sample 77077 is cataclastic norite Bersch et al. (1991) have precisely
equivalent to sample 77215 and the determined the composition of
white material that is attached to the pyroxene in 77077. Hansen et al.
black dike 77075. Thin sections (1979) report the trace elements in
show that it is crushed with schliern plagioclase.
of very fine material (Fig. 2). It is
about half pyroxene and half
plagioclase.

Figure 1: Photograph of 77077. Scale is 1 cm. $73-17182.
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Figure 2: Photomicrograph of thin section 77077,6. Field of view is 1 x 2 mm.
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Figure 3: Normalized rare earth element data for 77077 plotted with data from 77215 and 77075 white portion.
Data from Warren and Wasson (1978).
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Table 1: Whole-rock chemistry of 77077.
From Warren and Wasson (1978).

Split ,1 (a)
Technique INAA

white

SiO 2 (wt%) 50.9

Ti02 0.30

A1203 16.16

Cr203 0.32

FeO 8.74

MnO 0.15

MgO 10.6

CaO 9.94

Na20 0.44

K20 0.22

Nb (ppm)

Zr 150

Hf 3.4

Ta 0.38

U 0.59

Th 2.0

Ba 220

Zn 2.84

Ni <1.7

Co 25.2

Sc 13.8

La 9.9

Ce 25

Nd 16

Sm 4.28

Eu 1.12

Tb 1.0

Yb 4.5

Lu 0.67

Ga 5.0

Ge (ppb) 18.7

Ir 0.0029

Au 0.056
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77115
Mieropoikilitic Impact Melt Breccia
115.9 g, 6.5 x 5.5 x 3.5 cm

INTRODUCTION Sample 77115 is a grey, vuggy, very
fine-grained, fragment-laden, PETROGRAPHY

Sample 77115 was sampled as "blue- crystalline-matrix breccia containing
grey breccia" from the boulder at abundant xenoliths (clasts). It The fine-grained matrix of 77115

Station 7 (see the section on the consists of two parts: a grey, fine- (Fig. 2) consists largely of an
Station 7 Boulder, page 235). It is a grained matrix making up most of interlocking network of anhedral and
sample of the boulder matrix that the rock and a thin layer that is part lath plagioclase surrounded by
incorporated the large white norite of a brown granular breccia clast pyroxene in a micropoikilitic texture
clast (77215). It contains obvious (Minkin et al., 1978). Chao et al. generally typical of the matrix of the
large lithic clasts, as seen in the band (1975) state that 77115 is "not a other impact melt rocks from
specimen (Fig. 1), and has numerous breccia in a normal sense, but is a Apollo 17 (i.e., 76035, 72435,

small lithic and mineral clasts in the crystalline rock, formed by 73155, etc.). The plagioclase and
matrix. The texture and chemical crystallization of a fragment-laden pyroxene form a subophitic-to-

composition of 77115 is similar to melt." The probable origin of impact poikilitic intergrowth in which the
that of the black dike in 77075, melt breccias has been explained by maximum grain size of pyroxene
although it is somewhat coarser Simonds (1975) and Onorato et al. oikocrysts is approximately
grained. Schmitt had observed that (1976). 25-30 gm and of matrix plagioclase
these rocks are closely related in is less than 15 Inn (McGee et al.,
origin (see discussion in 77075). 1980).

_• i ¸

Figure 1: Photograph of broken surface of 77115. Note the dark clasts as well as the large white clast. $73-24122.
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Figure 2: Photomicrograph of thin section 77115,60, showing the crystalline matrix with partially dissolved clasts.
Field of view is 3 x 5 ram.

Chao et al. (1975) reports the modal from Wo30_40En46_54Fs14_16 Thornber and Heubner (1980) have

mineralogy of the matrix of 77115 Olivine is Fo66-72. also performed an experimental
(Table 1). The matrix has ~60% study of the phase equilibria relations
plagioclase, -30% pigeonite, and 77115 contains a large variety of of a melt with the composition of
~6% olivine, with minor amounts of lithic clasts, and according to ,Chao 77115 (Fig. 6).

augite, phosphate, troilite, meso- et al. (1975), the clast population

stasis, and metallic iron. Equant appears different from that of 77135 MINERAL CHEMISTRY
grains of olivine are scattered (which is from the breccia that
throt_ghout the matrix. Clusters of surrounds the 77115 lithology).
ilmenite platelets mold against grains Figs. 3 and 4 are photomicrographs Chao et al. (1975) report the
of plagioclase and pyroxene and of a small compound lithic clast in compositions of pyroxene, olivine,
poikilitically enclose plagioclase, thin section 77115,11, illustrating a and plagioclase. McGee et al. (1980)
olivine, and pyroxene. Small small anorthosite clast within a larger have carefully studied the composi-
amounts of a K-rich mesostasis and granulated noritic clast, tion (Fig. 7) and microstructures in

associated small grains of phosphate the pyroxenes from the different
minerals, metallic iron, troilite, and Chao et al. (1975) and Huebner lithologies of the Station 7 Boulder,
ilmenite occur interstitially. Some (1976) reported diffusively rimmed including 77115. They measured

pyroxene and plagioclase occur as xenocrysts in 77115. This occurs exsolution lamellae in pigeonite
euhedral crystals in the vugs. The where the enclosed mineral clast has ~20-25 _rn wide in pyroxenes in

grain size of the plagioclase, a composition different from the 77115 and 77135 as compared with
pyroxene, and ilmenite in the matrix matrix. Thornber and Heubner ~10 Inn wide for 77075 dike rock,
ranges from 1 Itrn to about 30 _tm, (1980) and Sanford and Heubner leading McGee et al. to conclude that
with most grains about 5-10 _n. (1979 and 1980) discuss cation the 77075 dike crystallized more
Olivine grains are generally larger, diffusion and cooling rates for rapidly and cooled through the
about 6-8 _n across. 77115. They use chemical gradients solidus more rapidly than did the

in olivine (Fig. 5) to calculate a enclosing rocks 77115 and 77135.

In the matrix, plagioclase is An85.88, 'cooling rate of 10-25 °C/hr. fi'om
low-Ca pyroxene ranges from 1230 °C to 1180 °C and <7 °C/hr.
Wo4_13En66_77Fs19_21, and minor below 1180 °C.
amounts of high-Ca pyroxene range
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Figure 3: Photomicrograph of an "anorthositic" clast in thin section 77115,11. Field of view is 3 x 5 mm.

Figure 4: Cross-polarized view of same area as Fig. 3.
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Figure 5: Composition gradient at edge of olivine xenocryst in 77115. From Sanford and Huebner (1979).
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Figure 7." Pyroxene composition in 77115 matrix. From McGee et al. (1980).

Bersch et al. (1991) have precisely matrix of smaller, slightly fractured Nakamura et al. (1976) have
determined the compositions of yellow-green olivine (Fo69) and determined a Rb-Sr isochron

olivine in 77115. Engelhardt (1979) colorless to light grey plagioclase. (Table 4) with an imprecise "age" of
has reported the composition of the 3.75 + 0.20 b.y. (Fig. 10).
ilmenite. Hansen et al. (1979) report Warren and Kallemeyn (1993) have
the trace element content of restudied the "troctolite" clast in Nunes et al. (1974) have reported
plagioclase. Warren and Kallemeyn 77115 that was originally reported by U-Th-Pb data for 77115 (Table 5).
(1993) report that an uncommonly Winzer et al. (1974). Warren and
magnesian Cr-spinel is present in the K_dlemeyn conclude that this clast
troctolitic anorthosite clast, should be properly called a troctolitic MAGNETIC STUDIES

anorthosite and be classified as a
member of the "alkalic suite." This Cisowski et al. (1983) have

WHOLE-ROCK CHEMISTRY unusual clast has very high REE determined the thermal remanent
abundance (Fig. 8). In this clast, magnetization of 77115. Hale et al.

Winzer et al. (1974) reported the plagioclase is An95, olivine is Fo89, (1978) also attempted
chemical composition of 77115 and pyroxene is WOl.7En88Fs10. (unsuccessfully) to determine the
(Table 2 and Fig. 8). Note the high magnetization of this sample.
trace element and phosphate content
of the "troctolite" clast. Ebihara RADIOGENIC ISOTOPES

et al. (1991) report the trace PROCESSING
compositions of siderophile and Stettler et al. (1978) have restudied

volatile elements (Table 3). Fruchter the. ages of 77115 and confn-rned The initial processing and
et al. (1975) report K, U, and Th their results of 1974. They have distribution of 77115 is outlined in
contents, determined a pronounced Butler and Dealing (1974). It was

intermediate temperature plateau at studied by the international
3.90 + 0.03 b.y. (Fig. 9). This is a consortium led by E.C.T. Chao (see

SIGNIFICANT CLASTS problematical puzzle because this final report by Minkin et al., 1978).
rock was observed to be continuous Detailed description of the splits is

Chao et al. (1975) discuss a with the dike rock (77075), which given in open-file report 78-511.
brownish-grey xenolith that is found has been dated by the same
as a thin veneer on the surface that laboratory at 3.97 + 0.03 b.y. The largest remaining piece of 77115
was attached to the boulder Possibly the enclosure of 77115 is 76 g. Twenty-eight thin sections

(presumably why it broke this way). within the "green-grey" breccia of 77115 have been prepared.
This clast is a recrystallized breccia 77135 (age 3.89 b.y.) has reset the
with a bimodal grain-size age of 77115 without resetting the
distribution (but not cataclastic) age of 77075.
containing millimeter-size clasts of
granulated clinopyroxene set in a
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Figure 8: Normalized rare earth element composition of 77115 matrix and clast. Data from Winzer et al. (1974)
and Warren and Kallemeyn (l 993).
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Figure 10: Rb..Sr isochron for 77115. From Nakamura et al. (1976).

Table 1: Mineral modes for 77115.*

From Chao et al. (1975).

77115,52 77115,53 77115,56 Average Average
Mat_dx t Matrix t Matrix t matrix t

Plagioclase

(A) Matrix, anhedral
and laths 46.3 59.2 49.3 61.4 50.2 61.1 48.6 60.5

(B) Xenocrysts 10.5 -- 13.3 - 11.2 - 11.7 -

Clinopyroxene

(A) Matrix 24.7 31..6 22.4 27.9 22.4 27.2 23.2 28.9

(B) Xenocrysts 2.6 -- 1.5 - 0.7 - 1.6 -

Olivine

(A) Matrix, granular 4.5 5.7 5.3 6.6 5.5 6.7 5.1 6.3

(B) Xenocrysts 3.8 -- 2.4 - 3.4 - 3.2 -

Orthopyroxene xenocrysts 3.5 -- 1.5 - 1.8 - 2.3 -

llmenite 2.0 2.6 2.5 3.1 3.6 4.4 2.7 3.4

K-rich material 0.4 0.5 0.6 0.7 0.2 0.2 0.4 0.5

Phosphate 0.1 0.1 0.2 0.3 0.2 0.2 0.2 0.2

Ni-Fe material 1.4 -- 0.9 - 0.7 - 1.0 -

Troilite 0.2 0.3 0 0 0.2 0.2 0.1 0.2

Fe metal TR. TR. TR. TR. TR. TR. TR. TR.

Total 100.0 100.0 99.9 100.0 100.1 100.0 100.1 100.0

*Normalized after subtracting voids and xenoliths.
tNormalized after subtracting xenocrysts.

Done in reflected and transmitted light by C. L. Thompson.
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Table 2: Whole-rock chemistry of 77115.
From Winzer et al. (1974).

Split ,69 ,70 ,71 ,19 ,19
Technique AA, IDMS AA, IDMS AA, IDMS AA, IDMS AA, IDMS

matrix matrix matri,,_ "troctolite" chilled
clast margin

SiO2 (wt%) 47.1 47.1 47.2 41.8 46.6

TiO2 1.31 1.23 1.34 0.17 1.15

A1203 17.35 18.86 17.55 16.78 18.63

0-203 0.17 0.16 0.18 0.04 0.19

FeO 8.90 8.39 9.51 6.08 8.44

MnO 0.11 0.11 0.11 0.06 0.11

MgO 12.33 10.98 12.43 23.54 11.96

CaO 10.79 11.11 10.89 10.24 11.01

Na20 0.66 0.69 0.67 0.31 0.67

K20 0.26 0.32 0.2,1 0.08 0.25

P205 0.33 0.31 0.3:t 0.53 0.37

Nb (ppm)

Zr 538 524 477 160 549

Hf 12.9

Sr 170 180 167 134 176

Rb 6.82 8.82 6.35 1.24 6.10

I3 17.6 16.8 19.3 12.1 18.1

Ba 416 461 393 243 386

Ce 95.4 92.4 82.7 226 120

Nd 62.4 59.3 55.5 155 76.5

Sm 17.3 16.1 15.2 42.2 21.4

Eu 1.93 2.06 1.91 1.68 1.96

Gd 25.2 20.8 18.9 50.8 26.3

Tb

Dy 22.7 21.4 19.5 44.2 28.6

Er 13.2 12.5 11.1 21.6 15.9

Yb 12.1 11.7 11.0 17.2 14.5

Lu 1.86 1.80 1.5'9 2.51 2.20
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Table 3: Trace element data for 77115. Concentrations in ppb.
From Ebihara et al. (1991).

Sample Sample
77115,38 (a) 77115,74 (b)

Ir 8.62 7.15

Os 8.19 7.99

Re 0.894 0.715

Au 5.52 4.43

Pd 18.1 10.9

Ni (ppm) 332 287

Sb 3.01 1.99

Ge 512 462

Se 101 104

Te 5.48 6.15

Ag 11.8 1.21

Br

In 6.61 9.95

Bi 0.46 0.33

Zn (ppm) 2.19 2.34

Cd 4.15 16.3

TI 3.51 1.83

Rb (pprn) 8.93 7.43

Cs 230 281

U 1480 1500

(a) Fine--grained impact melt breccia matrix
(b) Troctolitic anorthosite clast (?)
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Table 4: Rb-Sr composition of 77115,35.
Data from Nakamura et al. (1976).

Separate Plag. Olivine "Pyroxene"

wt (rag) 4.74 4.63 0.80

K (%) 0.078 0.029 l 0.1129

Rb (ppm) 1.300 0.700 4.465

Sr (ppm) 243.6 19.6 32.81

87Rb/86Sr 0.01543 0.1033 0.3942

87Sr/86Sr 0.70002 + 4 0.70491 + 6 0.72000 + 11

Table 5: U-Th-Pb for '77115.

From Nunes et al. (1974).

Split 77115,35

wt (mg) 192.4

U (ppm) 1.453

Th (ppm) 5.436

Pb (ppm) 3.116

232TW238U 3.87

238U/204pb 2415
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77135
Vesicular Poikilitic Impact Melt Rock
337.4 g, 10.3 x 8.0 x 4.0 cm

INTRODUCTION Sample 77135 is a vesicular, grey,
fragment-laden, fine-grained, PETROGRAPHY

Sample 77135 was sampled as cITstalline-matrix breccia (Minkin

"green-grey breccia" from the et al., 1978). It has two parts: a Chao et al. (1974), Bence et al.
boulder at Station 7 (see the section larger, highly vesicular part and a (1974), Chao and Minkin (1975), and
on the Station 7 Boulder, page 235). smaller, less vesicular, finer-grained McGee et al. (1980) have provided

It is similar in texture and part (Figs. 1-3). The highly vesicular descriptions of 77135. Sample
composition to 76015 and other part includes clasts of recrystallized 77135 contains two textually distinct
rocks from the boulders on the North troctolitic anorthosite. Major clasts fragment-laden melt rock units (seen
Massif (Chao et al., 1975, and present in the less vesicular part in Fig. 3): a coarser-grained matrix
Winzer et al., 1975). The probable include recrystallized troctolitic fraction that contains vesicles

origin of impact melt breccias has breccia. 77135 is stratigraphically 100-500 0m in diameter and a finer-
been explained by Simonds (1975) the youngest lithology on the grained matrix fraction that contains
and Onorato et al. (1976). However, Station 7 Boulder, and this seems to 50-150 _xrnvesicles. Bence et al.

members of the international be confirmed by age dating. (1974) describe the texture as
consortium were impressed with poikiloblastic, while members of the
arguments that this rock may have an international consortium (Minkin
igneous origin (see for example Chao et al., 1978) refer to it as "fragment-
and Minkin, 1974).

Figure 1: Photograph of 77135, illustrating vesicles and clasts. Cube is I cm. $72-56391.
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Figure 2: Photograph of a piece of 77135 showing dark patina. Cube is 1 cm. $72-56387.

Figure 3: Photograph of slab surface of 77135. $73-34469.
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laden, pigeonite basalt." Mineral Chao and Minkin (1975) calculate result of two-stage cooling: initial
fragments, mostly plagioclase and the CIPW norm as 53% plagioclase, rapid cooling near the coetectic with
olivine, are more abundant in the 31% pyroxene, 13% olivine, and 3% nucleation of feldspar and olivine at
coarser fraction. The matrix of the ilmenite. Vaniman and Papike many foci, followed by slower
coarser fraction consists predomi- (1979) give the mode of the matrix cooling and crystallization at the
nantly of poikilitic pyroxene (mostly as 41.1% plagioclase, 30% pyroxene, point where pyroxene saturation is

pigeonite with minor augite) 15% olivine, and 1.4% ilmenite (with reached, allowing the growth of large
enclosing subhedral to euhedral 6.2% plagioclase and 2% pyroxene pyroxene grains encompassing the
plagioclase (Fig. 4). Borders clasts). Plagioclase in the matrix previous crystals. Ryder and Bower
between the pyroxene oikocrysts occurs in two distinct morphological (1976) and Lofgren (1977) suggest
contain granular olivine, ilmenite types: as small, sharply defined laths that nucleation effects (e.g., many
plates and rods, and mesostasis. The or elongated platy inclusions (An91) nucleation sites) are important in the
pyroxene oikocrysts generally are in the poikilitic pyroxene, and as origin of this texture.
2130-600 pm in size, but some stubby laths and anhedral grains

oikocrysts are larger than 1 mm. The associated with granular olivine Storey et al. (1974) and Ford (1976)
finer fraction commonly surrounds or grains (An89). The dominant have studied 77135 experimentally.
is adjacent to large lithic clasts. The pyroxene in the matrix is pigeonite Storey et al. have concluded that
matrix of the finer fraction also (Wos_12En67_76Fslg_21). Augite is 77135 would not be a liquid at less
consists predominantly of poikilitic minor. The olivine occurs both as than 1280 °C, 1 atmosphere pressure.
pyroxenes (75-200 larn) enclosing rounded inclusions in the pigeonite

plagioclase. Plagioclase grains are (Fo66_79) and as irregular grains Note: This sample was chosen as
finer and more irregular than in the associated with the anhedral part of the "suite" of reference
coarser fraction. Intergrowths of plagioclase (Fo64-72). samples for the Basaltic Volcanism
rounded, small (<20 pro) olivine Study. It was considered a

grains and irregular plagioclase The poikilitic texture of 77135 is the "highland" basalt even though it had
grains form aggregates of approxi- result of enhanced growth of a texture of an impact melt Its
rnately the same size as the pyroxene pyroxene and ilmenite enclosing apparent importance is that its
oikocrysts. Plates and rods of smaller grains of feldspar and composition is very near the
ilmenite mark the borders between olivine. Olivine may also enclose coetectic of the low-pressure phase
the oikocrysts and olivine- feldspar laths. Simonds et al. (1973) diagram of Walker et al. (1973).
plagioclase intergrowths, suggest that poikilitic texture is a

Figure 4: Photomicrograph of 77135,7, showing vesicles and the micropoikilitic texture of the matrix.
Field of view is 3 x 5 ram.
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MINERAL CHEMISTRY WHOLE-ROCK CHEMISTRY SIGNIFICANT CLASTS

The composition of minerals in Winzer et al. (1974 and 1977), Winzer et al. (1974) present trace
77135 is given in Bence et al. (1974), Rhodes et al. (1974), and Hubbard element data (Table 2, Fig. 7) for two
Chao and Minkin (1974), Vaniman et al. (1974) have analyzed 771135 pronounced clasts in 77135

and Papike (1980), and McGee et al. (Tables 1 and 2 and Fig. 7). Higuchi ("troctolite" clast 77135,52 and
(1980) (Figs. 5 and 6). McGee et al. and Morgan (1975) and Morgan "olivine-rich,' clast 77135,57). The
have studied the microstructures in et al. (1974) have measured the trace numbering and original distribution

the pyroxenes from the different siderophile and volatile element of splits of these two clasts are given
lithologies of the Station 7 Boulder, contents of 77135 (Table 3). None in Butler and Dealing (1974). Chao
including 77135. Steele et al. (1980) of the clasts was found to have: low et al. (1974) give petrographic
have analyzed the plagioclase by ion Ir. descriptions and mineral analyses of

probe. Smith et al. (1980) and Ryder these xenoliths. Minkin et al. (1978)
(1992) have analyzed olivine, and Gibson and Moore (1974) report also discuss the clast types in 77135,
Engelhardt (1979) has studied the sulfur abundances, and Gibson et al. but it is sometimes difficult to tell
ilmenite in 77135. Hewins and (1987) reported the hydrogen which data are from which clast.
Goldstein (1975) report Ni-rich metal content.

grains in a clast in 77135.
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Figure 5: Pyroxene diagram for the matrix of 77135. From Bence et al. (1974).

F" / _" ^ " Hdo 77115,36

, ;° •o _, 771_5,3

FnJ _' Y 0 v Y v "_ _¢ |

Figure 6: Pyroxene diagram for 77135 compared with "/'7115. From McGee et al. (1980).
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Figure 7: Normalized rare earth element diagram for the matrix and selected clasts in 77135.

Data from Winzer et aL (1977) and Hubbard et al. (1974).

Clast 1 (the "olivine-rich" clast ,57) 0°08b.y. for the vesicular matrix and determined an apparent age of 4.14 +
was found to have very high Ir by 3.99 + 0.02 b.y. and 4.00 + 0.03 b.y. 0.08 b.y. (Fig. 13), but they surmisc
Higuchi et al. (1975). Nunes et al. for the troctolitic clast in 77135 that this "isochron" is a mixing line
(1974) determined a Rb-Sr internal (Figs. 9, 10, and 11). Stettler et al. between partially reset old
isochron of 3.89 + 0.08 b.y. for (1975) report an age of 3.90 _+ plagioclase xenoliths and the young
clast 1 (Fig. 8) and Stettler et al. 0.03 b.y. for a matrix sample and an matrix (Table 5). In this case, no age
(1978) dated clast 1at 3.88 + olivine-rich clast (,57). Stettler et al. significance should be given to this
0.05 b.y. (Fig. 9) by the Ar-Ar (1978) determined ages of 3.88 + mixing line.
plateau technique. 0.05 b.y. and 3.87 + 0.04 b.y. for the

recrystallized clast 1 (Fig. 9) and Nunes et al. (1974) report U-Th-Pb
Clast 2 (the "troctolite" clast ,52) concluded that the cooling age of the data for 77135 (Table 6).
was also studied by Morgan et al. green-grey breccia was 3.89 +
(1974), who again found high Ir. 0.04 b.y. This is the same age as

COSMOGENIC
Stettler et al. (1974) dated a split determined for 77115 by the same RADIOISOTOPES AND
(,51) of this clast at 3.99 _+0.02 b.y. laboratory. EXPOSURE AGES
(Fig. 10).

Nunes et al. (1974) report a Rb-Sr Turner and Cadogan (1975) deter-
internal isochron age of 3.89 + mined an exposure age of 23 m.y.,

RADIOGENIC ISOTOPES 0.08 b.y. for clast 1(,57) of 77135 Crozaz et al. (1974) determined an
(Fig. 8). Nyquist et al. (1974) report age of 28.6 m.y., and Stettler et al.

Turner and Cadogan (1975) found Rb-Sr data for the matrix of 77135 (1974) determined an age of 28.5 and
that 77135 gave a very poor Ar (Table 4)and note that the Rb-Sr 29.6 m.y. Eberhardt et al. (1975)
release pattern, preventing an systematics for "noritic breccias" at
accurate age determination. Stettler determined 31.8 + 1.6 m.y. by
et al. (1974) determined 39Ar-40Ar Apollo 17 are probably partially 81Kr-Kr and 20 + 2 m.y. by 37Ar-Ar.

reset by the Serenitatus impact event The Ar exposure age is sensitive to
ages of 3.83 _+0.04 b.y. and 3.78 + (Fig. 12). Nakamura et al. (1976)



SAMPLE 77135 - 272

57A OL.Z /

OOULDE R ? //

0.709 7?158, 57

0,707

"Sr
II I 570 OL.

0.705 Sr //_5

0.70_ /
I 57A W.R.

o.,o, , .o ,,,

"Rb/"Sr
o.. , , , ,

0,041 O. | 2 0.1 •

Figure 8: Rb-Sr internal isochron of an olivine-rich clast (,57) in 77135. From Nunes et al. (1974).
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Figure 10." 39Ar-40Ar temperature release patterns for 77135 clast 2 (_51) and vesicular matrix.
From Stettler et al. (1974).

10-1 Y

o ......
U

_o-_ :__ .........I..._,......
tlJ
_f, I I I i I I--

4.

"_ 3. [

I-- LESS I
z I ! [VESICULARU.I VESICULAR

i,.,d f77135.57

"_ 7 PART I_ Ill/CLAST 12. | .... I,OLIVINE RICH

" 6 o15 1:o_ o15 11o
FRACTION OF Ar39 RELEASED
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Figure 12: Whole-rock isochronfor noritic breccias from Apollo 17, including 77135. From Nyquist et al. (1974).
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Figure 13: Apparent Rb-Sr internal "isochron," or mixing line,for the 77135 matrix, including small plagioclase
xenoliths. No significance should be given to this "age" (see discussion). Figure from Nakamura et al. (1976).



SAMPLE77135- 275

shielding by part of the boulder,

whereas the Kr exposure age is not. MAGNETIC STUDIES SURFACE STUDIES
Eugster et al. (1984) have also
discussed the exposure age of 77135. 77135 has been used for numerous Adams and Charette (1975) have

studies of the magnetic properties of determined the spectral reflectance of

Some of the Apollo 17 samples an old, wel]-dated lunar rock. 77135 (Fig. 16). Fechtig et al.
(including 77135) provided a unique Cisowski et al. (1983) have (1974) have studied the microcraters
opportunity to study the energy determined the thermal remanent on the surface of 77135.
spectrum (and potential angular magnetization of 77135. Nagata
anisotropy) of the incident proton (1975) has reported the intensity of
flux from the August 1972 solar flare saturation magnetization for 77135. PROCESSING
(Rancitelli et al., 1974; Keith et al., Pierce et al. (1974) and Brecher

1974). Table 7 compares the (1975) have studied the direction of The initial processing and
induced activity of 77135 with other magnetization, and Brecher (1977) distribution of 77135 is outlined in
samples of Apollo 17 (see also table ha_ discussed apparent alignment Butler and Dealing (1974). It was
for 76215). Yokoyama et al. (1974) with petrofabric. Hale et al. (1978) studied by the international
discussed the cosmogenic isotopes, have used microwave heating to consortium led by E.C.T. Chao

improve demagnetization (Minkin et al., 1978). Detailed
experiments (Fig. 15). description of the splits is given in

open-file report 78-511.

Brecher (1975) has determined the

MOssbauer spectra of 77135 The largest remaining piece of 77135
(Fig. 14). weighs 234 g. There have been 34

thin sections prepared.

BRECCIA 77135,36 m6ssbauer spectra

300 K 80 K

i

w unheated
sample

| i :i io

i i i 1

; _ heated t
800c

-
a.

R OIB

4 i .... i
"l 0 "_ • S

velocity (mm/sec)

Figure 14: M_ssbauer spectra for 77135. From Brecher (1975).



SAMPLE 77135 - 276

2 4 6 8 10 12 14 16 18 20x10 -7

[gausscm3 g-_)
pTRM

Figure 15: Demagnetization curve for 77135. From Hale et al. (1978).
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Figure 16: Spectral reflectance of 77135. Fror,_Adams and Charette (1975).
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Table 1: Whole-rock chemistry of 77135.
a) Rhodes et al. (1974); b) LSPET (1973); c) Hubbard et al. (1974);

d) Wiesmann and Hubbard (1975); e) Winzer et al. (1977)

Split ,2 (b, c, d) ,5 (a) ,82 (e) ,92 (e)

Technique XRF, ID XRF AA, IDMS AA, IDMS
matrix matrix

SiO2 (wt%) 46.13 46.17 47.5 46.3

TiO2 1.54 1.53 1.45 1.31

A1203 18.01 17.83 17.18 19.82

Cr203 0.20 0.21 0.18 0.16

FeO 9.11 9.14 9.01 8.28

MnO 0.13 0.13 0.11 0.10

MgO 12.63 12.39 12.66 11.78

CaO 11.03 11.08 10.91 11.74

Na20 0.53 0.69 0.66 0.56

K20 0.30 0.27 0.41 0.21

P205 0.28 0.30 0.29 0.21

S 0.08 0.07

Nb (ppm) 33 33

Zr 494 508

U 1.50

Th 5.60

Y 107 111

Sr 172 174 177 171

Rb 7.32 6.2

Li 19.3

Ba 337 360 294

Zn 4 4

Ni 110 62

La 32.1

Ce 81.2 82.8 59.2

Nd 51.6 53.2 41.1

Sm 14.6 14.8 11.2

Eu 1.99 1.97 1.80

Gd 18.5

Dy 19.1 18.3 15.1

El" 11.4 (1.4) 8.16

Yb 10.5 10.6 8.11

Lu 1.55 1.18 1.17
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Table 2: Whole-rock and dast chemistry of 77135.

a) Winzer et al. (1974); b) Win_zr et al. (1977)

Split ,66 (a) ,77 (a) ,41 (a) ,52 (a, b) ,57 (a)
Technique AA, IDMS AA, IDMS AA, IDMS AA, IDMS AA, IDMS

matrix matrix OI-PI breccia Troctolite OI-rich

SiO2 (wt%) 45.3 46.3 45.3 44.4

TiO2 1.72 1.48 0.4'.3 0.24

AI203 18.03 18.39 25.1:3 27.81

Cr203 0.18 0.18 0.13 0.09

FeO 9.56 9.48 5.98 4.19

MnO 0.11 0.11 0.05 0.05

MgO 13.38 12.19 8.5'9 7.96

CaO 10.64 10.96 13.95 15.09

lqa20 0.61 0.65 0.40 0.41

K20 0.22 0.23 0.09 0.07

P205 0.28 0.28 0.10 0.03

Nb (ppm)

Zr 308 643 146 62.1 71.8

Sr 169 181 147 147 87.4

Rb 5.99 6.63 2.67 2.00 1.18

Li 18.4 19 10.2 10.1 10.6

Ba 343 359 96.6, 63.3 60.8

La

Ce 81.2 83.3 19.4. 9.63 10.5

Nd 52.2 54.6 12.7 4.99 7.14

Sm 14.7 15.4 3.62 1.41 1.96

Eu 2.02 2.16 0.o 19 0.80 0.687

Gd 18.6 18.6 4.73 2.03 2.51

Dy 19.3 20.0 5.(17 - 2.69

Er 11.4 11.6 3.24 1.50 -

Yb - 10.6 3.08 1.45 1.79

Lu 1.56 1.75 0.481 0.223 0.293



SAMPLE 77135 - 279

Table 3: Trace element data for 77135. Concentrations in ppb.
From Morgan et al. (1974a) and Higuchi and Morgan (1975a).

Sample Sample Sample Sample Sample
77135,10 77135,50 77135,62 77135,57 77135,69

lr 3.78 7.2 15.1 17.4 10.5

Os

Re 0.485 0.662 1.42 1.38 1.06

Au 3.57 1.46 4.74 3.09 6.45

Pd

Ni (ppm) 205 174 412 221 438

Sb 1.21 0.58 0.47 0.778 2.16

Ge 295 50 78 113 618

Se 137 11.3 33 40 144

Te 3.6 1.32 1.1 5 8.84

Ag 1.1 0.38 0.58 0.7 1.2

Br 47 11.6 17.6 35.7 45
In

Bi 0.18 0.17 0.14 0.25 0.23

Zn (ppm) 2.9 2.6 2.4 2 3.3

Cd 10.5 6.8 3.7 2.4 3.5

TI 2.6 0.48 0.58 0.8 2.3

Rb (ppm) 6.5 1.8 2.6 3.59 6.1

Cs 270 74 73 95.3 250

U 1390 260 450 590 1380
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Table 4: Rb-Sr composition af 77135.

Data from Nyquist et al. (1974).

Sample 77135,2

wt (mg) 52.6

Rb (ppm) 7.32

Sr (ppm) 172.2

87Rb/86Sr 0.1230 _+10

87Sr/86Sr 0.70688 + 7

TB 4.4]L+ 0.08

TL 4.45 + 0.08

B = Model age assuming I = 0.69910 (BABI + JSC
bias)
L = Model age assuming I = 0.69903 (Apollo 16
anorthosites for T = 4.6 b.y.)

Table 5: Rb-Sr composition of 77135,34.
Data from Nakamura et al. (1976).

Separate Plag. Olivine Whole Rock Matrix

wt (mg) 4.94 6.36 7.23 5.35

K (%) 0.056 0.028 0.226 0.116

Rb (ppm) 0.911 0_818 6.77 3.77

Sr (ppm) 157.4 13.27 167,5 140.2

87Rb/86Sr 0.01547 0.1766 0.1168 0.0777

87Sr/86Sr 0.70007 + 4 0.70943 + 19 0.70608 + 3 0.70381 + 3

Table 6: U-Th-Pb for 77135.

From Nunes et al. (1974).

Split 77135,33 ,3,1 ,.57A

wt (nag) 133.2 125 122.1

U (ppm) 0.4674 1.390 0.5461

Th (ppm) 1.863 5>224 2.136

Pb (ppm) 0.9713 2.840 1.115

232Th/238 U 4.12 3.88 4.04

238 U/204pb 1387 2755 1191
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Table 7: Solar flare induced activity from large solar flare, August 1972.
a) Rancitelli et al. (1974); b) Keith et al. (1974); c) O'Kelley et al. (1974)

Sample Sample Sample Sample Sample
77135 (a) 78135 (b) 78235 (b) 78255 (b) 78597 (c)

dpm/Kg

26AI III+6 42+4 77±7 65__.6 48__.4

22Na 100±5 74___5 iii_+8 50+5 33+4

54Mn 21 + 15 180 + 20 55 + 8 10 _+5 80 + 10

56Co 66 + 4 240 + 20 52 + 9 30 _+20 80 + 20

46Sc 7.2 + 2.2 76 5:5 1.4 5:.9 <15 25 5:10

48V 18 5:5 <12

Th (ppm) 5.51 .26 .59 .83

U (ppm) 1.42 .107 .196 .227

K (%) .0525 .049 .059
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77215
Cataclastie Norite
846.4 g; largest piece is 6.5 x 4.5 x 2.5 cm (41 or more pieces)

INTRODUCTION and stretched or smeared out to form

schlieren, so that the relict host rock PETROGRAPHY

Sample 77215 was sampled from the types are only represented by very
large white clast in the Station 7 small clasts (Chao et al., 1976). This Sample 77215 is a pristine norite that
Boulder (see the section on the made consortium work very difficult has been shocked and crushed in
Station 7 Boulder, page 235). It was to coordinate because samples place. It contains lithic fragments of
quite friable and broke up into many representative of the major lithic "norite" and apparent "anorthosite"
pieces on the way back from the clasts in 77215 were generally too set in a porous mass of fine mineral
Moon (Fig. 1). One of the pieces small for allocation to all consortium fragments and thin glass veins

(,19, now ,80,81 and ,82) contains members (Minkin et al., 1978). (Fig. 5). The modal mineralogy is
the dark dike similar to 77075 Selected subsamples were therefore approximately 41% orthopyroxene
(Fig. 2) and other pieces contain assigned to individual consortium and 54% plagioclase with trace
black dikelets (similar to 77077). participants for analysis on the basis amounts of troilite, ilmenite, clino-
Some pieces have small areas of of suitability for their experiments, pyroxene, spinel, silica, K-feldspar,
unbrecciated norite with primary and the resulting data cannot now be zirconolite, whitlockite, and Fe-Co
igneous texture (Fig. 3). The large exactly correlated for this sample as metal (Table 1). The fragments of
cataclastic "norite" sample may itself a whole (as is sometimes done). In "anorthosite" may be plagioclase-
contain other clasts of similar general, the whole sample seems to rich regions within the original norite
igneous material (Fig. 4). Most of be one material, but care should be (Chao et al., 1976).
the lithic clasts in 77215 have been exercised because of the cataclastic

crushed and fractured, and some nature of the sample.
have been intensely granulated

Figure 1: Tray full of 77215. Note that some pieces have "off-white" patina. $73-17778.
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Figure 2: Photograph of sawn surfaces of slab and butt ends of 77215,19. Cube is I cm. $75-21992.

Figure 3: Photograph of 77215,16, showing igneous textures of some regions in the rock. Cube is I cm. $83-34595.
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Figure 4: Photograph of saw cut through 77215,92. $75-21980. Scale bar is in cm.

Figure 5: Photomicrograph of thin section 77215,12. Field of view is 4 x 5 mm.

According to Chao et al. (1976), the has a narrow compositional range also has a narrow compositional
original uncrushed norite is medium- (An 88-92Abl 1-7Or 1), mostly range (Wo3_5En63.68 Fs29_32). The
to coarse-grained (up to 3 nun, with An90_91. Plagioclase grains orthopyroxene in 77215 is notable

an average of about 1 mm) and has a frequently contain small inclusions for having well-developed, yet
holocrystalline igneous texture. Its of K-feldspar (An2Ab IOr97), silica, texturally diverse, augite blebs and
principal assemblage consists of and granitic glass. The plagioclase is lamellae (Wo41_43En44_47Fs12_13).
idiomorphic greenish-yellow ortho- not chemically zoned and has not Huebner et al. (1975) distinguish
pyroxene and clear to milky white been converted to maskelynite by the these blebs as "worms, planes,
calcic plagioclase. The plagioclase shock pressure. The orthopyroxene hachures, and septa." Within a
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single orthopyroxene, all augite is in Lindsley (1982) have carefully 77215. The plagioclase and pyrox-
the same optical orientation, but this calculated the equilibrium temper- ene are uniform in composition
does not seem to be crystallo- ature of the pyroxene pairs in "77215. (Fig. 7).
graphically controlled. Augite
lamellae are 5-10 pzn thick, rarely The anorthite, orthopyroxene, and Winzer et al. (1977) report analyses

30 Ixrn thick. The host and exsolved minor augite account for 97.3% of of orthopyroxene and plagioclase
pyroxenes are optically and chemi- the norite. The rest, 2.7%, consists mineral separates for the white
cally homogeneous (Fig. 6). of mesostasis, with a variety of noritic portion of 77215 (Fig. 8).

accessory minerals, that occurs in the Papike et al. (1994) have also used
Pyroxenes in 77215 show some of interstitial areas between the aaor- the ion probe to determine the REE
the features of"inverted pigeonites." thite and orthopyroxene. K-feldspar in orthopyroxene from 77215,203.
Huebner et al. (1975) explain that the with a fine network of thin silica
misoriented nature of the augite, lamellae is a common accesso_:y

WHOLE-ROCK CHEMISTRY
relative to the host orthopyroxene, is mineral in these interstitial areas.
a common feature of pyroxenes that Clusters of accessory minerals occur
originally crystallized as homoge- in the norite clast and in the Winzer et al. (1974 and 1977) report
neous pigeonite crystals at high brecciated matrix. Fe-Co meter, analyses of various portions of the
temperatures. According to Huebner troilite, ilmenite, chromite, 77215 sample, including dikes, glass,
et al., coarse pyroxene exsolution plagioclase (An91.92), orthopyroxene and the white noritic material
lamellae can form in geologically (Wo4En64_72Fs24.32), silica, lare (Table 2 and Fig. 9). The grey glass
short periods of time (<30,000 yr.) at augite, whitlockite, zirconolite, and appears to be melted norite, while the
elevated temperatures (>300 °C). rare armalcolite occur in these black glass has been injected from
Huebner et al. argue that such condi- clusters. All these accessory phases the surrounding matrix. Wolf et al.
tions could have been met in the are thought to be from the parent (1979) report the trace siderophile
upper levels of the lunar crust during norite (Chao et al., 1976). and volatile elements (Table 3). This
early lunar history as a consequence rock is a pristine norite. James
of the cooling of anorthositic crustal (1994) has also reviewed the
material. According to Huebner MINERAL CHEMISTRY siderophile and volatile element
et al., the exsolved pyroxenes do not composition.
necessarily suggest the deep-seated Chao et al. (1974), Huebner et al.
origin as originally proposed by (1975), and Chao et al. (1976) report
Chao et al. (1974). Anderson and the compositions of the minends in

Di _ x \ ",kHd
\

%00 40
y.

90 80 70 60 50 40 30 20 10

100Mg/Ca+Mg+Fe

Figure 6: Pyroxene composition for 77215 norite. From Huebner et al. (1975).
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Figure 7: Plagioclase and Fyroxene composition of 77215. Fields from James and Flohr (1983).
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Figure 8: Normalized rare earth element diagram for whole rock and minerals in the noritic portion of 77215.
Data from Winzer et al. (1977).
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Figure 9: Normalized rare earth element data for portions of 77215. Data from Winzer et aL (1977).

The orthopyroxene within the clast 4.42 + 0.04 b.y. and 4.37 + 0.07 b.y.
SIGNIFICANT CLASTS contains the exsolved augite. This respectively, for the bulk sample

norite clast is probably a small 77215,37 (Figs. 12 and 13). This is

Chao et al. (1976) describe two clasts sample of the source material for the one of the few pristine samples of the
(1 and 2) of least-shocked norite that breccia--a relict that escaped original crust that have been dated!
they separated from fragment granulation.
77215,22 and distributed for age A thermal event must have heated

dating, the noritic breccia at 3.98 b.y.
RADIOGENIC ISOTOPES without disturbing the Rb-Sr and

Chao et al. (1976), Huebner et al. Sm-Nd isotopic systems. This could
(1975), and Minkin et al. (1978) Stettler et al. (1978) separaled have been the event that intruded the
describe a region (or "clast") within feldspar from clast 2 (sample ,151) dike material and enclosed the norite

77215 that has highly magnesian from fragment 77215,22 and clast in the melt sheet represented by
olivine grains (Fo83-97) and calcic obtained a well-defined 39/u'- 4°Ar the boUlder matrix (samples 77115
plagioclase (An90.91). plateau age of 3.98 + 0.03 b.y. and 77135), or it could have been

(Fig. 10). This confirms the ages of mild heating throughout the time

Huebner et al. (1975) briefly describe 3.96 to 4.05 b.y. (Fig. 11) reported span 3.9 to 4.4 b.y.
a small clast in thin section 77215,13 earlier based on intermediate

that consists entirely of ortho- temperature plateau from samples of Nunes et al. (1974) have also

pyroxene and plagioclase in equal crushed matrix material (Stettler reported U-Th-Pb data for 77215
proportions with a subophitic texture, et al., 1974). (Table 6). This system has been
The composition of the pyroxene and disturbed.
plag!oclase is the same as for the Nakamura et al. (1976) obtained
isolated grains and grain fragments Rb-Sr and Sm-Nd data (Tables 4
observed elsewhere in the sample, and 5) and internal isochrons of
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Chao et al. (1976). Detailed

COSMOGENIC ]PROCESSING description of the splits is given in

RADIOISOTOPES AND open-file report 78-511.
EXPOSURE AGES The initial processing and

distaibution of 77215 are outlined in The largest pieces of 77215 that
Stettler et al. (1974) determined an Butler and Dealing (1974). It was remain unprocessed are: ,18 (103 g);
exposure age of 27.2 m.y. studied by the international ,17 (101 g); ,21 (69 g); and ,22

consortium led by E.C.T. Chao (see (60 g). Twenty-five thin sections
final report by Minki n et al., 1978). have been prepared.
Some notes on the distribution of

77215 are given in the appendix to
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Figure 10: 39Ar-40Ar temperature release pattern for plagioclase from a norite clast in 77215.
From Stettler et al. (1978).
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Figure 11: 39Ar-40Ar temperature release pattern for composite noritic material from 77215.
From Stettler et al. (1974).
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Figure 12: Rb-Sr internal isochron for 77215. From Nakamura et al. (1976).



SAMPLE 77215 - 291

I I I I I I |

0.516 APOLLO 17

51 77215,37
O. 5_-

0.514 + JUVINASILUGMAIR8t =1.,19751 PX_'I'/O../"
t. JUVINAS(THIS WORK) /_o/' p> 3 3(I)

_= 0.513 o 7T215,37(r.lsWORK1 //-p>3.3_z,

_._ 0.512 PL

z ACt

_" 0.511 /,_ o pL
0.510 T=4.56_*0.08 b.y, // +3'I"......... "1

I.0.50677.+10 _,// +2 ......
_./,,/ _ T=4.37_O.OT(2cr}b.y. ,kl E_ T ....... _" J

0.508

0°507 0]5 0.20 0.25

I I I I I I

0 0.1 I 4 7Sm/I 44Nd 0.2 0.3

Figure 13: Sm-Nd internal isochron for 77215. From Nakamura et al, (1976).
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Table 1: Fragment population o1F77215,138.
From Chao et al. (1976).

Fragment type Voi. %

Norite 8.3

"Anorthosite" 10.2

Gray glass 6.4

Mineral clasts 75.1

Total 100.0

Mineral elasts >30 _tm <30 Ixm Total* Recalculated
to 100%

Orthopyroxene 7.4 23.7 31.0 41.3

Plagioclase 6.3 34.2 40.5 54.0

Troilite .2 .2 .5 .6

Ilmenite .1 - .1 .1

Fe-Co metal .2 .1 .2 .3

Clinopyroxene .2 .1 .3 .4

Spinel .2 - .2 .2

Silica phase .04 1.3 1.4 1.8

K-feldspar .06 .1 .2 .3

Glass-coated clast .10 .6 .7 1.0

Total 14.8 60.3 75.1 100.0

*Volume percent recalculated from point count 1251 clasts >30 _m and 1370
clasts <30 Ixm, measured by C. L. Thompson.
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Table 2: Whole-rock chemistry of 77215.
a) Winzer et al. (1974); b) Winzer et al. (1977)

Split ,45 (a) ,152 (b) ,115 (b) ,119 (b) ,121 (b) ,130 (b)
Technique AA, IDMS AA, IDMS AA, IDMS AA, IDMS AA, IDMS AA, IDMS

norite norite black dike dike dike grey glass

SiO 2 (wt%) 51.3 51.1 46.8 47.2 46.0 51.1

TiO2 0.32 0.."t0 1.37 1.35 1.32 0.37

A1203 15.06 13.98 17.44 16.89 17.75 14.32

Cr203 0.32 0.'t6 0.19 0.20 0.14 0.36

FeO 10.07 10.38 9.39 9.36 9.04 10.32

MnO 0.16 0.17 0.12 0.12 0.11 0.17

MgO 12.56 14.31 13.16 12.93 12.74 13.23

CaO 8.96 8.65 10.88 10.76 10.94 9.08

Na20 0.43 0.39 0.65 0.68 0.68 0.55

I(20 0.14 0.18 0.24 0.23 0.24 0.15

P205 0.11 0.1.4 0.28 0.27 0.26 0.10

Nb (ppm)

Zr 171 - 419 147

Hf

Sr 105 102 171 169 174 103

Rb 3.54 3.21 6.51 6.48 6.26

l.,i 12.3 12.4 21 21.9 26.5

Ba 166 154 350 349 336 154

La

Ce 27.2 24.6 84.4 73.3 79.1 29.6

Nd 16.8 15.5 51.9 51.7 50.1 18

Sm 4.68 4.4 14.4 14.5 13.8 5.05

Eu 1.08 1.03 1.93 1.90 1.97 1.01

Gd 6.64 5.21 -

Dy 7.08 6.64 19.6 19.4 18.4 7.31

Er 4.51 4.57 10 - 10.7 4.44

Yb 4.98 4.88 8.59 10.5 9.94 4.45

Lu 0.766 0.592 1.76 1.68 0.835
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Table 3: Trace dement data for 77215. Concentrations in ppb.

From Higuchi and Morgan (1975) and Ebihara et al. (1991).

Sample Sample
77215,35 77215,37

Ir 2.66 0.0221

Os 3.04

Re 0.173 0.0047

Au 0.557 0.0108

Pd 1.45

Ni (ppm) 50 <3

Sb 1.04 0.121

Ge 47.1 14.3

Se 83.2 77

Te 1.92 1

Ag 1.89 0.62

Br 42.4

In <0.10

Bi 0.645 0.13

Zn (ppm) 2.95 3

Cd 4.39 4.4

TI 0.637 0.61

Rb (ppm) 12.3 4.9

Cs 393 180

U 799 920
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Table 4: K and Rb-Sr analytical data for 77215.
From Nakamura et al. (1976).

Weight K Rb Sr 87Rb 1 87Sr 2

Sample (mg) (%) (ppm) (ppm) 86Sr 86Sr

77215,37 (density separates)

Acetone float 29.12 0.127 4.933 136.7 0.1044 0.70553 + 4

9>2.9 g/cm 3 29.41 0.387 11.10 184.2 0.1743 0.70990 + 7

Whole rock 29.67 0.127 6.177 65.46 0.2733 0.71641 _+12

13>3.3g/cm 3 31.09 0.0081 0.526 3.387 0.4504 0.72738 + 7

13>3.3g/cm 3 25.13 0.0092 0.611 3.936 0.4499 0.72748 + 20

77215,145 (hand-picked mineral concentrates)

Plagioclase 3.33 0.154 3.442 204.1 0.0488 0.70207 + 3

Whole rock 18.19 0.0842 2.326 86.61 0.0777 0.70397 + 3

Black material
(glass?) 6.24 0.148 2.908 105.2 0.0800 0.70422 + 5

Pyroxene 7.56 0.0053 0.2303 4.958 0.1344 0.70909 + 4

Pyroxene
(13>3.3g/cm3) 7.96 0.0063 0.2752 4.187 0.1902 0.71306 + 7

1Uncertainties are estimated to be _<0.3%.

2Uncertainties correspond to last significant figures and are 2 o mean.
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Table 5: Sm-Nd analytical data fi'om 77215.
From Nakamura et al. (1976).

Weight Sm Nd 1 147Sin 2 143Nd 3
Sample (mg) (ppm) 144Nd 144Nd

77215,37

Plagioclase 9.66 4.084 15.784 0.1564 0.51129 + 7

Acetone float 129.39 5.516 19.42 0.1717 0.51178 + 4

Whole rock 21.26 4.372 14.84 0.1780 0.51200 _+7

Pyroxene (1)
(13>3.3g/cm 3) 115.37 2.173 5.329 0.2474 0.51397 +_2

Pyroxene (2)
(0>3.3 g/cm 3) 119.01 2.217 5.724 0.2341 0.51359 _+2

Juvinas

Whole rock

(this study) 92.11 2.021 6.361 0.1920 0.51256 + 2

Whole rock 4

(La Jolla) 0.1936 0.51264 + 4

1Nd concentrations were calculated using our data normalized to 142Nd/146Nd ffi1.58170 in Table 3, and
148Nd/146Nd ffi0.33466 and 150Nd/146Nd ffi0.32752.

2Uncertainties are estimated to be 0.1-0.2%.

3Ratios were normalized to 142Nd/146Nd = 1.5817. Uncertainties correspond to the last figure and are 20 mean.

4G. W. Lugmair, pers. comm. (1976).

Table 6: U-Th-Pb for 77215.

From Nunes et al. (1974.).

Split 77215,37
whole rock olivine plagioclase

wt (mg) 158.4 208 194.2

U (ppm) 0.5068 0.7764 0.2390

Th (ppm) 1.993 1.815 1.198

Pb (ppm) 1.079 1.239 0.6817

232TW238U 4.06 2..42 5.18

238U/204 Pb 1455 479'.0 85.4
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from
Samples

from 77530 contained rock fragments Meyer (1973) prepared a catalog of
meters 77535-77545. Keil et al. (1974) additional small "coarse-fine"

Station 7 prepared a catalog of these rock fragments from these soils.

contained rock fragments.
soil

77515 Poikilitic Impact Melt Breccia

77516 High-Ti Mare Basalt

77517 Unique Fragmental Breccia

77518 Micropoikilitic Impact Melt Breccia

77519 Micropoikilitic Impact Melt Breccia

77525 Impact Melt Breccia

77526 Impact Melt Breccia

77535 High-Ti Mare Basalt

77536 High-Ti Mare Basalt

77537 Impact Melt Breccia

77538 Unusual Fragmental Breccia

77539 Poikilitic Impact Melt Breccia

77545 Poikilitic Impact Melt Breccia

N
I

0 1(] 20 rn APan 24 T

lL.... I I

r.-,-_ LRv

x Area of 77035

77075-77, 77215 77017x x---_* Area of 77510-26

e Pan 23 A 77530-45

^x"

35

Station 7 at Apollo 17 showing location of rake samples. From Wolfe and others (1980).
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77515
Poikilitic Impact Melt Breccia
337.6 g, 7.5 x 6.5 x 5.5 cm

INTRODUCTION (Fig. 2). llmenite is also poikilitic.
Mineral clasts are abundant (mostly WHOLE-ROCK CHEMISTRY

Sample 77515 is a rake sample from plagioclase), but lithic clasts are rare.
soil 77510 at Station 7 (Fig. 1). It is Warner et al. (1977) give the mineral Laul and Schmitt (1975c) have
a vesicular impact melt breccia mode of the matrix 77515 as 52.7% reported the chemical composition of
similar in texture and composition to plagioclase, 44.5% pyroxene, and 77515 (Table 1 and Fig. 4). 77515 is
the boulder sample 77135. 2% ilmenite, very similar in composition to the

boulders at Apollo 17. Warner et al.
(1977) also analyzed the matrix by

PETROGRAPHY MINERAL CHEMISTRY broad beam electron probe analyses.

The texture of 77515 is poikiloblastic The composition of pyroxene,
with irregular pigeonite oikocrysts olivine, ilmenite, and plagioclase is SURFACE STUDIES
enclosing abundant euhedral given in Warner et al. (1978)

plagioclase laths and tablets and (Fig. 3). Engelhardt (1979) has also There are micrometeorite craters on
minor rounded olivine grains studied the ilmenite in 77515. most surfaces.

Figure 1: Photograph of 77515. Cube is 1 cm. 573-19416.
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Figure 2: Photomicrograph of matrixfor 77515',12. Field of view is 3 x 4 mm.

Di Hd

_ v _ v

En Pyroxenecomposition(mole%) Fs
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Forsterite content of olivine (rnoieO/o), __;_ n
,oo 90 8o /o _o _'o ,'o _o 2'o ,b ;

Anorthite content of plagloclasc =(mOle%)

Figure 3: Pyroxene, olivine, andplagioclase composition for 77515. From Warner et al. (1978).
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Figure 4: Normalized rare earth eIement diagram for 77515. Data from Laul and Schmitt (1975).
Note the similarity in composition with the Station 7 Boulder sample 77135.
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Table 1: Whole-rock chemist_ry of 77515.

a) Laul and Schmitt (1975); b) Warner et al. (1977)

Split ,3 (a) (b)
Technique INAA BB e-probe

SiO2 (wt%) - 48.3

TiO2 1.4 1.51

A1203 18.6 18.2

Cr203 0.17 0.19

FeO 8.4 8.1

MnO 0.099 0.09

MgO 11 11.0

CaO 11.0 11.4

Na2 O 0.68 0.70

K20 0.24 0.28

P205 0.27

Nb (ppm)

Zr 420

Hf 9.8

Ta 1.4

U

Th 4.1

Ba 350

1_ 450

Co 38.6

Sc 14

La 29.8

Ce 73

Nd

Sm 14.7

Eu 1.93

Gd

Tb 2.7

Dy 17

Er

Yb 9.6

Lu 1.4

Ge (ppb)

It"

Au
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77516
High-Ti Mare Basalt

103.7 g, 6 x 4 x 2.5 cm

INTRODUCTION
MINERAL CHEMISTRY RADIOGENIC ISOTOPES

Sample 77516 is a rake sample from
soil 77510 at Station 7. It is a The compositions of the minerals in Paces et al. (1991) have studied the

medium-grained, high-Ti mare basalt 7'7516 are given in Fig. 3 (from Rb-Sr and Sm-Nd for whole-rock

that is similar to other Apollo 17 Warner et al., 1978). samples of 77516 and classify it as a
basalts (Fig. 1). _ Type B2 Apollo 17 mare basalt

because the Sr and Nd isotopes do
WHOLE-ROCK CHEMISTRY not fall on the whole-rock isochrons

PETROGRAPHY for other Apollo 17 mare basalt

Warner et al. (1975) and Laul et al. samples (Table 2). This may
Warner et al. (1975) describe this (1975b) have determined the indicate a different source region for
rock as olivine-microporphyritic chemical composition of 77516 this basalt sample.
ihnenite basalt. The texture of the (Table 1 and Fig. 4). This basalt has

matrix is variolitic, with well- very high TiO 2 content (13.7%).

developed sheaves of alternating SURFACE STUDIES
plagioclase and pyroxene (Fig. 2). Classification of Apollo 17 basalts
Large ilmenite phenocrysts extend up has been discussed by Rhodes et ai. There are micrometeorite craters on
to 5 mm. The mode is 47% pyrox- (1976), Lindstrom and Haskin all surfaces.
ene, 5% olivine, 24% plagioclase, (1978), and Pratt et al. (1978) (see
and 19% ilmenite. A silica phase is appendix). Pratt et al. give it a
present. Type B2 classification.

Figure 1: Photograph of 77516. Cube is 1 cm. $73-19409.
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Figure 2: Photomicrograph of thin section 77516,13, showing itmenite phenocrysts and variolitic texture.Field of view is 3 x4 ram.

ita

Di _ X
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Fe/r-e*Mq of ormalcotlto

_, 0:_ 0:s d4 o_ o'._ o_ _ .o
Fe/Fe*Mg of Ilmemte

Figure 3." Pyroxene, olivine, and plagioclase composit!on for 77516. From Warner et al. (1978).
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Figure 4: Normalized rare earth element diagram for 77516. Data from Warner et al. (1975).
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Table 1: Whole-rock chemistry of 77516.
From Warner et al. (1975).

Split ,2 Split ,2
Technique INAA Technique INAA

SiO 2 (wt %) - La 4.7

TiO2 13.7 Ce 18

A1203 7.8 Nd 18

Cr203 0.48 Sm 6

FeO 20.2 Eu 1.25

MnO 0.25 Gd

MgO 9.4 Tb 1.6

CaO 9.4 Dy 10

Na20 0.33 Er

K20 0.04 Yb 6

Nb (ppm) Lu 0.91

Hf 6.2 Ge (ppb)

Ta 1.4 Ir

Co 24.6 Au

Sc 80

Table 2: Rb-Sr and Sm-Nd composition of 77516.
Data from Paces et al. (1991).

Sample 77516,19

wt (mg) 46.77

Rb (ppm) 0.340

Sr (ppm) 110

87Rb/86Sr 0.008913 +_89

87Sr/86Sr 0.699619 _+17

Sm (ppm) 6.39

Nd (ppm) ,_,' 15.5

147Srrd144Nd '' 0.24944 + 48

143Nd/144Nd 0.514130 -+60
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77517
Unique Fragmental Breccia
45.6 g, 4 x 4 x 3 cm (3 pieces)

INTRODUCTION rather than matrix supported. It is clasts is ptagioclase An94_98, olivine
also different from the soil breccias Fo72_81, low-Ca pyroxene

Rake sample 77517 is a light grey, because it does not have glass in the Wo3_14En57_82Fs14_22,and high-Ca
fragmental breccia containing clasts matrix, pyroxene Wo34_41En44_50Fs14_17.
of anorthosite, norite, troctolite (and One clast (1.5 mm) has a basaltic
possibly of spinel cataclasite) in a Breccia 77517 consists of abundant texture with intersecting plagioclase
highly porous, poorly sintered matrix mineral and lithic clasts in a porous, laths (0.5 to 1 mm).
that is composed of fine-grained poorly sintered matrix. The mineral

mineral clasts bound together by clasts are equant and subrounded Warner et al. (1978) have speculated
irregular, wispy overgrowths that (Fig. 2). Grain size is seriate, on the apparent deep-seated origin of
form sinuous grain-to-grain contacts ranging from 400 to 20 lain. Of the the pink spinel-aluminous enstatite,

(Fig. 1). There is no glass in the >50 _'n mineral clasts, plagioclase is forsterite, and anorthite assemblage.
matrix (Warner et al., 1978). Sample ~55%, mafic minerals are ~40% Herzberg (1978) and Baker and
77517 is exotic to the Apollo 17 site, (with more olivine than pyroxene), Herzberg (1980) have provided
containing mineral fragments of pink and pink spinel is 3 to 4%. Pink thermodynamic calculations to
aluminous spinel, aluminous spinel grains range in size up to define the temperature and pressure
enstatite, and forsterite. -400 lain. conditions of such a mineral

assemblage.
Lithic clasts (up to 1 mm) constitute

PETROGRAPHY ~20% of the breccia. They include
very fine-grained breccia clasts and MINERAL CHEMISTRY

Warner et al. (1978) have studied armealed anorthosite, norite, and

breccia sample 77517. This sample u'octolite (ANT) clasts. The range of The compositions of minerals in

is different from the crystalline mineral composition in the ANT 77517 are given in (Fig. 3). Warner
matrix breccias. It is elast supported, et al. (1978) have a table of mineral

Figure 1: Photograph of 77517. Scale is 1 cm. $73-19404.
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Figure 2: Photomicrograph of thin section 77517,',!2. Field of view is 3 x 4 mm.

analyses. The range of plagioclase forsterite + plagioclase and alumi-
composition is very restricted WHOLE-ROCK CHEMISq?RY nous spinel). The brecciated nature
(An96_98). Olivine mineral clasts of this assemblage raises the question
range from Fo81-90 with the majority The composition of 77517 ha.,_not of whether or not it represents an
being Fo81-83. Most pyroxene is been determined, probably because equilibrium assemblage.
orthopyroxene, ranging from individual clasts need to be armlyzed
WO1-5En70-91Fs8-26. The most separately. One glassy area of 600 _na was
Mg-rich pyroxenes are also Al-rich, found to be -77 SiO2, 14% A1203,

and may be related to the abundant SIGNIFICANT CLASTS and 5% K20.
Al-rich pink spinel in the same

brecciated areas, but this cannot be Warner et al. (1978) report a i_last The clasts in this sample deserve

ascertained because of the extreme assemblage corresponding to spinel more study.
brecciation, cataclasite (i.e., aiuminous enstatite +
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Figure 3: Pyroxene quadrilateral diagram and compositions for minerals in 77517. From Warner et al. (1978)
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77518
Micropoikilitic Impact Melt Breccia
42.5 g, 3.5 x 3.5 x 2.5 cm

INTRODUCTION are rare, mostly recrystallized ANT analyses" (Warner et al., 1977).
and feldspathic breccia. These analyses also indicate that this

Sample 77518 is a rake sample from sample is typical of impact melt
soil 77510 at Station 7 (Fig. 1). It is Several pink spinel grains with rocks at Station 7.

a vesicular impact melt breccia plagioclase reaction coronas are
similar in texture to the boulder reported (Warner et al., 1978).
sample 77135 and to 77515. SIGNIFICANT CLASTS

MINERAL CHEMISTRY Warner et al. (1978) report that one
PETROGRAPHY edge of the chip that they studied had

The compositions of minerals in an area of Si-Al-K-rich glass (80%
In thin section, the texture varies 77518 are given in Warner et al. SiO2, 12% AI203, and 8% K20 )
from microgranular to micro- (1978) (Fig. 3). Engelhardt (1979) with a gradational boundary with the
poikilitic (Fig. 2). Pigeonite and has also studied the ilmenite in breccia matrix.
ilmenite chadocrysts enclose 77518.
plagioclase and olivine oikocrysts.
Warner et al. (1977) give the mineral m
mode for 77518. The matrix is about WtlOLE-ROCK CHEMISTRY

52% plagioclase and 44% low-Ca
pyroxene and olivine. One large The chemical composition of 77518
olivine clast contains symplectite (Table 1) has been determined only
chromite intergrowth. Lithic clasts by "broad beam microprobe

Figure 1: Photograph of 77518. Cube is 1 cm. $73-19143.
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Figure 2: Photomicrograph of thin section 77518,12. Field of view is 3 x 4 mm.
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Figure 3: Mineral compositions of 77518. From Warner et al. (1978).
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Table 1: Whole-rock chemistry of 77518.
From Warner et al. (1977).

Split matrix

Technique BB e-probe

SiO2 (wt%) 47.1

TiO2 1.25

A1203 19.7

(5"203 0.15

FeO 7.8

MnO 0.12

MgO 10.5

Ca() 11.7

Na20 0.72

K20 0.42

P205 0.31
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77519
Micropoikilitie Impact Melt Breccia
27.4 g, 3.5 x 2.5 x 1.2 em

INTRODUCTION
PETROGRAPHY

Sample 77519 is a rake sample from
soil 77510 at Station 7 (Fig. 1). Sample 77519 is an aphanitic, dark

grey, coherent, nonvesicular impact
melt rock (Fig. 1). There is no thin
section, and the chemical composi-
tion has not been determined.

Figure 1: Photograph of 77519. Cube is 1 cm. $73-19134.
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77525
Impact Melt Breccia
1.19 g, 1 x 1 x 0.5 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 77525 is a light grey chip of
impact melt, breccia (Fig. 1). It is There are no thin sections of 77525. The chemical composition has not
angular and aphanitic and appears to been determined.
re_mble sample 77217.

Figure 1: Photograph of77525. Scale is 1 cm. $73-19379.



SAMPLE 77526- 319

77526
Impact Melt Breccia
1o07 g, 1.5 x 1 x 0.5 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 77526 is a light greychip of
impactmelt,breccia(Fig. 1). tt is Approximatelyhalf of this chip The chemical compositionhas not
angular,aphanitic,and resembles appears to be aclast of been determined.
sample77517 in overall appearance, c_3,ptocrystallinemicrobreccia.

There are no thinsections of 77526,

Figure 1: Photograph of 77526. Scale is 1 cm. $73-19380.
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77535
High-Ti Mare Basalt
577.8 g, 10.5 x 8.5 x 3.5 cm

INTRODUCTION 77535 has about 1%vugs and Classification of Apollo 17 basalts

cavities with projecting pyroxene and has been discussed by Rhodes et al.
Sample 77535 is a rake sample from opaque crystals. It has zap pits on all (1976), Lindstrom and Haskin

soil 77530 at Station 7. It is a surfaces. (1978), and Pratt et al. (1978) (see
coarse-grained, high-Ti mare basalt appendix). Lindstrom and Haskin
that is similar to other Apollo 17 _ designate 77535 as a Type U basalt,

basalts (Fig. 1). MINERAL CHEMISTRY while Pratt et al. call it a Type B3.

The compositions of the minerals in

PETROGRAPHY 77535 are given in Fig. 3 (from RADIOGENIC ISOTOPES
Warren et al., 1978).

Warner et al. (1978) classify 77535 Nyquist et al. (1976) have reported
as a coarse-grained, plagioclase- Rb-Sr data for the whole rock

poikilitic ilmenite basalt (Fig. 2). WItOLE-ROCK CHEMISTRY (Table 2).
They give the mode as 48%

plagioclase, 31% pyroxene, 17% Rhodes et al. (1976) and Laul et al.
ilmenite, with only trace olivine. (1975b) have determined the
They report -3% silica and trace chemical composition of 77535
zirconolite and armalcolite. (Table 1 and Fig. 4). Gibson et al.

(1976) determined the sulfur content
of 77535.

Figure 1: Photograph of 77535. Cube is I cm. $73-19122.
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Figure 2: Photomicrograph of thin section 77535,11. Field of view is 3 x 4 mm.
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Figure 3: Compositions of minerals in 77535. From Warner et al. (1978).
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Figure4: Normalized rare earth element diagram for 77535. Data from Rhodes et al. (1976).
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Table 1: Whole-rock chemistry of 77535.

a) Laul et al. (1975); b) Rhodes et al. (1976)

Split ,1 (a) ,6 (b)
Technique INAA XRF, IDMS, INAA

SiO2 (wt%) - 38.57

TiO2 12.1 12.39

A120 3 8.6 8.95

Cr203 0.485 0.43

FeO 19.5 18.53

MnO 0.239 0.27

MgO 8.7 8.85

CaO 9.8 10.66

Na20 0.36 0.39

K20 0.066 0.05

P205 0.04

S 0.16

Nb (ppm)

Hf 8.6 8.6

Ta 1.6

Sr 184

Rb 0.55

Li 9.7

Ba 70.7

Co 20.5 20.4

Sc 79 80

La 5.7 5.24

Ce 23 18.3

Nd 22 20.7

Sm 8.8 8.7

Eu 1.94 1.98

Gd 13.6

Tb 2.4

Dy 15 15.8

Er 9.84

Yb 8.1 8.91

Lu 1.3 1.29

Ge (ppb)

lr

Au
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Tablle 2: Rb-Sr composition of 77535.
Data from Nyquist et al. (1976).

Sample 77535,6

wt (nag) 51

Rb (ppm) 0.547

Sr (ppm) 184

87Rb/86Sr 0.0086 + 3

87Sr/86Sr 0.69961 _+8

TB 4.14 + 0.80

TL 4.70 + 0.80

B = Model age assuming I m0.69910 (BABI + JSC
bias)

L - Model age assuming I _ 0.69903 (Apollo 16
anorthosites for T = 4.6 b.y.)
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77536
High-Ti Mare Basalt
355.3 g, 11 x 7.0 x 3.5 cm

INTRODUCTION Sample 77536 has about 1% rugs
with projecting pyroxenes and WHOLE-ROCK CHEMISTRY

Sample 77536 is a rake sample from ilmenite crystals. One side has a

soil 77530 at Station 7. It is a partial glass coating. All sides have Warner et al. (1975) have reported
coarse-grained, high-Ti mare basalt micrometeorite craters. One the chemical composition of 77536
that is similar to other Apollo 17 plagioclase crystal is 3 mm long (Table 1 and Fig. 4). The rare earth
basalts (Fig. 1). It has a very high (Fig. 2). pattern is identical to other Apollo 17
TiO2 content (14.5%). samples, including 77535.

MINERAL CHEMISTRY Classification of Apollo 17 basalts
PETROGRAPHY has been discussed by Rhodes et al.

The compositions of the minerals in (1976), Lindstrom and Haskin
Warner et al. (1978) classify 77536 77536 are given in Fig. 3 (from (1978), and Prattet aL (1978) (see
as a coarse-grained, plagioclase- Warner et al., 1978). Note that some appendix). Lindstrom and Haskin
poikilitic ilmenite basalt (Fig. 2). of the olivine is Fe rich. designate 77536 as a Type U basalt,
They give the mode as 50% plagio- while Pratt et al. call it a Type B3.
close, 27% pyroxene, 19% ilmenite,
with Nl% olivine. They report The sample has very high TiO2
~1.6% silica and trace armalcolite, (14.5%) and Cr203 (0.56%).
zirconolite, and baddeleyite.

Figure 1: Photograph of 77536. Scale is 1 cm. $73-19154.
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Figure 2: Photomicrograph of thin section 77536,8. FieM of view is 3 x 4 mm.
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Figure 3: Mineral compositions of 77536. From Warner et al. (1978).
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Figure 4: Normalized rare earth element diagram for 77536. Data from Warner et al. (1975).
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Table 1: Whole-rock chemistry of 77536.
From Warner et al. (1975).

Split ;2
Technique INAA

SiO 2 (wt%) --

TiO2 14..5

AI203 8.0

0-203 0.56

FeO 18.8

MnO 0.23

MgO 9.2

CaO 1(].2

Na20 0.33

K20 0.07

Nb (ppm)

Hf 8.8

Ta 2

Co 17.8

Sc 78

La 45.1

Ce 21)

Nd 2:5

Sm 8.5

Eu 1.94

Gd

Tb 2.0

Dy 14

Er

Yb 8.5

Lu 1.3

Ge (ppb)

Ir

Au
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77537
Impact Melt Breccia
71.7 g, 5 x 4.5 x 3 cm

INTRODUCTION without fractures and has about No thin sections of 77537 have been

10-20% vesicles ranging in size from prepared.
Sample 77537 is a rake sample from <1 mm to more than 15 mm. Some
soil 77530 at Station 7 (Fig. 1). Itis of the small vesicles are in the walls
a dark grey, vesicular impact melt of the large ones. The large cavities WHOLE-ROCK CHEMISTRY
breccia, have a preferred orientation.

The chemical composition of 77537

Clasts in 77537 are difficult to has not been determined.

PETROGRAPHY discern and are welded into the
matrix. Sample 77537 has micrometeorite

Keil et al. (1974) provided a brief craters on all sides.
description of 77537. It is coherent

Figure 1: Photograph of 77537. Scale is 1 cm. $73-19145.
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77538
Unusual Fragmental Breccia
47.2 g, 4 x 3.5 x 3 cm

INTRODUCTION m silicate liquid immiscibility took
PETROGRAPHY place on a scale larger than the

Rake sample 77538 is a light grey, glassy mesostasis in lunar basalts
fragmental breccia that is composed Warner et al. (1978) have described (Warner et al., 1978; Taylor et al.,
of abundant mineral and lithic clasts 77538 as a clast-rich, friable breccia 1980).

set in a porous, poorly sintered with abundant mineral and lithic
matrix (Fig. 1). It has a very high, clasts in a poorly sintered matrix.
KREEP-Iike trace element content. Mineral clasts are generally MINERAL CHEMISTRY

subequant and subangular, with the

An important feature of this unusual majority being about 100 Inn. Lithic The compositions of minerals in
breccia is the occurrence of both clasts range up to ] mm. Fig. 2 77538 are given in Fig. 3 (from

high-Si, high-K clasts along with illusa'ates a granitic clast in the Warner et al., 1978). Note the Fe-
high-Fe lithic clasts whose ground-up matrix of 77538. rich olivine in this rock.
compositions resemble those of
immiscible-melts produced during The collection of mm-sized clasts of
late-stage magmatic crystallization high-Fe and high-K, high-Si
via apparent silicate liquid composition in 77538 probably
immiscibility, represents the best example that

Figure 1: Photograph of 77538. Scale is 1 cm. $73-19064.
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Figure 2: Photomicrograph of 77538 illustrating one of the granitic clasts in the porous breccia matrix.
FieM of view is 2 x 3 mm. From Warner et al. (1978).

been analyzed by broad-beam The high-Fe clasts are mainly ferro-
WHOLE-ROCK CHEMISTRY electron microprobe analyses augite (Wo 32-40En 15-22Fs42-48)

(Warner et ah, 1978). and ferropigeonite
Laul and Schmitt (1975c) have (Wo 14_15En30_36Fs49_56) that

reported the chemical composition of The high-Si clasts consist mostly enclose blebs of silica and fayalitic
77538 (Table 1 and Fig. 4). This of silica and K-feldspar olivine (Fo12.17), troilite, metal, and
sample has a very high trace element (An 1.4Ab4.5Or 88-93), frequently ilmenite.
content, intergrown in a barred texture, with

small amounts of sodic plagioclase

SIGNIFICANT CLASTS (~An68Ab30Or3), fayalitic olivine
(Fo4-13), ferroaugite

Both graphic-textured high-K, high- (W°40-44En6-9Fs48-51 )' ilmehite,
Si clasts and high-Fe clasts are metal, troilite, and a Ca-rich

present as small patches that have phosphate mineral.
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Table 1: Whole-rock chemistry of 77538.
a) Laul and Schmitt (1975); b) WaIner et al. (1978)

Split ,2 (a) average (b) average (b)
Technique INAA BB e-probe BB e-probe

whole rock 5 clasts 4 clasts

Si02 (wt%) - 74.0 50.3

TiO2 1.2 0.54 2.82

A1203 14.5 12.5 0.96

Cr203 0.24 <0.01 0.17

FeO 10.6 2.21 31.3

MnO 0.15 - -

MgO 5.0 0.08 4.3

CaO 10.3 1.86 9.8

Na20 0.75 0.90 0.12

K20 1.04 7.6 0.29

P205 0.if,T 0.28

Nb (ppm)

Zr 730

Hf 21.5

Ta 3.3

U 4.2

Th 16

Ba 700

Ni

Co 13.5

Sc 22

La 59

Ce 150

Nd 90

Sm 25.1

Eu 1.7

Gd

Tb 5.5

Dy 35

Er

Yb 21.7

Lu 3.2

Ge (ppb)

Ir

Au
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77539
Poikilitic Impact Melt Breccia
39.6 g, 5 x 3 x 2 cm

INTRODUCTION
MINERAL CHEMISTRY SIGNIFICANT CLASTS

Sample 77539 is a rake sample from
soil 77530 at Station 7 (Fig. 1). It is The compositions of minerals in Keil et al. (1974) reported that 77539
a vesicular impact melt breccia that 77539 are given in Fig. 3 (Warner contained a large white clast (30% of
is similar in texture to the matrix of et al., 1978). Engelhardt (1979) has sample?) that is very fine sugary

boulder sample 77135. Sample studied the ilmenite in 77539. material with patches of "yellow-
77539 contains a quasipristine green" mineral up to 2 mm. Warren

et al. (1991) found that this clast is a
"anorthosite" clast (Wanen, 1993). WHOLE-ROCK CHEMISTRY pristine "anorthosite." This clast is

reported as having an extremely fine-
PETROGRAPHY Laul and Schmitt (1975c) have grained granulitic texture. A bulk

reported the composition of 77539 analysis of this clast is given in
The texture of 77539 is (Table 1 and Fig. 4). The analysis of Table 1. Warren (1993) reports that
poikiloblastic, with irregular Laul and Schmitt indicates that their this clast is -99% plagioclase
pigeonite oikocrysts enclosing piece had an excess of plagioclase. (An94.5.96.3), and -1% olivine
abundant euhedral plagioclase laths Warner et al. (1977) analyzed the (Fo72) and pyroxene
and tablets and minor rounded matrix by broad-beam electron probe (Wo9En64Fs27). Metal grains found
olivine grains (Fig. 2). Ilmenite is analyses and reported a composition included in this clast are low in Ni

also poikilitic. Mineral clasts are more typical of impact melts and Co. Although this clast has very
abundant (mostly plagioclase), but (Table 1). low Ir, Warren (1993) lists it as only
lithic clasts are rare. Warner et al. "quasipristine."
(1977) give the mineral mode of the
matrix of 77539 as 50.8%

plagioclase, 45.2% pyroxene, and
2.2% ilmenite.

Figure 1: Photograph of 77539. Cube is I cm. $73-19062.
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Figure 2: Photomicrograph (partially crossed polarizers) of thin section 77539,13, showing poikiloblastic matrix and

part of a large clast (6 mm) of shocked and recrystallized anorthite. Field of view is 3 x 4 ram.
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Figure 3: Compositions of minerals from 77539. From Warner et al. (1978).
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Table 1: Whole-rock chemistry of 77539.

a) Laul and Schmitt (1975); b) Warner et al. (1977); c) Warren et al. (1991)

Split ,8 (a) matrix (Ib) ,15 (c)
Technique INAA BB e-probe INAA

matrix clast

SiO2 (wt%) - 48.1 44.08

TiO2 1.1 0.84 0.11

At20 3 22 17.7 34.2

Cr20 3 0.136 0.16 0.02

FeO 6.9 7.8 0.67

MnO 0.082 0.11 0.012

MgO 8 11.3 0.896

CaO 12.5 11.1 18.9

Na20 0.56 0.73 0.45

K20 0.2 0.27 0.047

Nb (ppm)

Zr 300 46

Hf 8.4 0.94

Ta 1.1 0.106

U 1.2 0.161

Th 3.2 0.62

Ba 240 57

Ni 300 3.0

Co 28 1.18

Sc 11 2.58

La 23.5 4.2

Ce 58 10.4

Nd 38 6.1

Sm 10.5 1.65

Eu 1.65 0.99

Gd

Tb 2.1 0.35

Dy 13 2.12

Er

Yb 7.1 0.99

Lu 1 0.132

Ge (ppb) 16

lr 7 0.012

Au 2 0.028
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77545
Poikilitic Impact Melt Breccia
29.5 g, 3.5 x 3 x 2.5 cm

INTRODUCTION Pigeonite oikocrysts in the matrix of matrix. Wasson et al. (1977)
77545 are large (up to 1 mm) and repeated the analyses and found that

Sample 77545 is a rake sample from form an interlocking network 77545 was typical of the Apollo 17
soil 77530 at Station 7 (Fig. 1). It is throughout the matrix, impact melt rocks (Fig. 4).
a vesicular impact melt breccia
similar in texture and composition to

the boulder sample 77135. MINERAL CHEMISTRY SIGNIFICANT CLASTS

The composition of pyroxene, Warner et al. (1977) studied a large
PETROGRAPHY olivine, ilmenite, and plagioclase is (6 x 6 ram) angular dunite clast in

given in Warner et al. (1978) 77545. The clast has a coarse
The texture of 77545 is (Fig. 3). Engelhardt (1979) has also granoblastic texture, with 0.5 to

poikiloblastic, with irregular studied the iimenite in 77545. 1 mm size olivine grains intersecting
pigeonite oikoerysts enclosing at near 120 deg triple junctions. The
abundant euhedral plagioclase laths clast has been shocked, resulting in
and tablets and minor rounded WHOLE-ROCK CHEMISTRY undulous extinction of the olivine

olivine grains (Fig. 2). Ilmenite is grains and minor recrystallization
also poiki_ritic. Mineral clasts are Laul and Schmitt (1975c) have along fractures. The olivine is Fo89
abundant (mostly plagioelase), but reported the composition of 77545 with minor amounts of chromite
lithic elasts are rare. Warner et al. (Table 1). The major element located along the olivine-olivine

(1977) give the mineral mode of the analyses of the sample studied by grain boundaries. This clast has not
matrix of 77545 as 53.2% Laul and Schmitt do not agree with been analyzed.

plagioelase, 44% pyroxene/olivine, those of Warner et al. (1977) for the
and 1.6% ilmenite.

Figure 1: Photograph of 77545. Cube is I ram. $73-19128.
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Figure 2: Photomicrograph of thin section 77545,8, showing poikilitic matrix and large vesicles.
FieM of view is 3 x 4 ram.
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Table 1: Whole-rock chemistry of 77545.
a) Laul and Schmitt (1975); b) Warner et al. (1977); c) Wasson et al. (1977)

Split ,1 (a) matrix (b) ,3 (e)
Technique INAA BB e-probe INAA

SiO2 (wt%) - 49.6 -

TiO2 1.2 0.77 1.52

A1203 10.9 17.7 18.7

0"203 0.52 0.19 0.20

FeO 10.3 7.4 8.89

MnO 0.11 0.11 -

MgO 10 11.5 12.9

CaO 6.6 11.4 11.06

Na2 O 0.47 0.72 0.71

K20 0.14 0.21 0.24

Nb (ppm)

Zr 240 560

Hf 8.2 11.8

Ta 1 1.4

U 0.9 1.4

Th 3.2 5.4

Ba 220 340

600 60

Co 67 13.5

Sc 11 17

La 21.5 32.2

Ce 55 82

Nd 35 51

Sm 9.8 15.4

Eu 1.3 2.00

Gd

Tb 2 3.1

Dy 12 23

Er

Yb 6.3 11

Lu 0.94 1.52

Ge (ppb)

Ir 7 1.0

Au 2 0.8
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78135
High-Ti Mare Basalt
133.9 g, 5 x 4 x 3 cm

INTRODUCTION contents of Apollo 17 samples,
MINERAL CHEMISTRY including 78135 (Table 2_.

Sample 78135 is a medium-grained,

ilmenite-rich mare basalt collected Brown et al. (1975a) report a "new" Rhodes et al. classify 78135 as a
from the regolith at Station 8 Zr-rich mineral in 78135 that is Type U basalt, but the trace element
(Fig. 1). closely related in composition to data indicate that it may be Type A

terrestrial zirkelite. (see appendix).

PETROGRAPHY
WHOLE-ROCK CHEMISTRY

Brown et al. (1975a) gives the modal
mineralogy of 78135 as 0.4% Rhodes et al. (1976a) measured the
olivine, 24.4% opaques, 20.6% chemical composition of 78135
plagioclase, 50.7% pyroxene, and (Table 1 and Fig. 3). Gibson et al.
4% silica. Plagioclase and pyroxene (1976) determined the sulfur content.
are intergrown in a variolitic texture Keith et al. (1974) and Fruchter et al.
(Fig. 2). (1975) determined the K, U, and Th

Figure 1: Photograph of 78135. Scale is I cm. $73-15003.
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opportunity to study the energy
RADIOGENIC ISOTOPES spectrum (and potential angul_x SURFACE

anisotropy) of the incident proton
Nyquist et al. (1976) have reported flux from the August 1972 solar flare Part of the surface of 78135 is
Rb-Sr data for the whole rock (Rancitelli et al., 1974; Keith et al., covered with a thin film of dark
(Table 3). 1974). Table 2 compares the glass.

induced activity of 78135 withLother

COSMOGENIC samples of Apollo 17 (see also table PROCESSING
RADIOISOTOPES AND in 76215).

EXPOSURE AGES The largest remaining piece of 78135
Drozd et al. (1977) have detem'tined weighs 83 g. There are only three

Some of the Apollo 17 samples an exposure age of 126 m.y. for thin sections.
(including 78135) provided a unique 78135 using the 81Kr-Kr method.

Figure 2: Photomicrograph of thin section 78135,27. Field of view is 3 x 5 nun.
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Table 1: Whole-rock chemistry of 78135.
From Rhodes et al. (1976a).

Split ,5
Technique XRF, I]DMS, INAA

SiO2 (wt%) 37.98

TiO2 12.89

A1203 8.38

Cr203 0.45

FeO 19.05

MnO 0.27

MgO 8.69

CaO 10.71

Na20 0.36

K2o 0.05
P205 0.04

S 0.18

Nb (ppm)

Hf 9.3

Sr 174

Rb 0.58

15 9.2

Ba 74.1

Ni

Co 18.4

Sc 84

La 5.8

Ce 20.2

Nd 22.4

Sm 9.43

Eu 1.93

Gd 14.9

Tb

Dy 17

Er 10.5

Yb 9.21

Lu 1.33

Ge (ppb)

Ir

Au
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Table 2: Solar flare induced activity from large solar flare, August 1972.
From Keith et al. (1974).

Sample Sample Sample
78135 78235 78255

dpm/Kg

26A1 42 + 4 77 _+7 65 + 6

22Na 74_+5 111 +8 50+5

54Mn 180 + 20 55 + 8 10 + 5

56Co 240 + 20 52 + 9 30 _+20

46Sc 76 + 5 1.4 + .9 <15

48V 18 _+5 <12

Th (ppm) .26 .59 .83

U (ppm) .107 .196 .227

K (%) .0525 .049 .059

Table 3: Rb-Sr composition of 78135.
Data from Nyquist et al. (1976).

Sample 78135,5

wt (rag) 50

Rb (ppm) 0.584

Sr (ppm) 174

87Rb/865r 0.0097 _+3

87Sr/86Sr 0.69969 _+6

TB 4.25 _+0.56

TL 4.74 _+0.56

B = Model age assuming I = 0.69910 (BABI +
JSC bias)

L = Model age assuming I = 0.69903
(Apollo 16 anorthosites for T = 4.6 b.y.)
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78155
Feldspathic Granulitic Impactite
401.1 g, largest piece 6.5 x 4.5 x 3.{}cm

INTRODUCTION S_unple 78155 is important because and Lindstrom (1986) have also
its clast population reveals the nature discussed the polymict nature of

Sample 78155 is a friable white of rocks that resided at or near the 78155.
cataclasite that was found in a small hmar surface before 4.2 b.y. (Bickel,
"_pitcrater" (1 meter) in the wall of a 1977, and Warner et al., 1977). Table 1, from Bickel (1977), shows
15-meter crater at Station 8. The the complexity of 78155 based on his
sample itself may have been the study of a number of thin sections.

m

projectile that made the small "pit Roughly 65% of the rock is
crater." It appears to be exotic to the PETROGRAPHY granoblastic matrix with another
site because other pieces of it were 20% "crushed material." The
not found in the nearby rake sample. Bickel (1977) describes 78155 as a mineralogical mode of the matrix is
The transcript shows that the holocrystalline, weakly coherent -75% plagioclase (An95), and ~25%
astronauts originally collected "one polymict breccia that has been mafic silicates (mostly pigeonite
big and several small in bag 567" thermally metamorphosed at a high Wo10En62Fs18) with trace olivine
and recognized that it was very temperature (1100 °C). Warner et al. (Fo60-65), augite, and opaques.
friable. The big piece apparently (1977) group it with other rocks from Figs. 2 and 3 illustrate the grano-
broke up along the arduous way to the early lunar crust as "feldspathic blastic matrix next to a polygonal
Houston (Fig. 1)! granulitic impactites." Lindstrom anorthosite clast.

Figure 1: Photograph of 7,8155. The largest sample is about 6.6 cm. $73-15408.
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Figure 2: Photomicrograph of thin section 78155_48. Field of view is 3 x 4 mm.

Figure 3: Same area of thin section as Fig. 2, but with partially crossed polarizers showing the granoblastic texture of
the matrix and the polygonal texture of the plagioclase clast.
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m

A variety of lithic clasts from the

highlands are described by Bickel MINERAL CHEMISTRY WHOLE-ROCK CHEMISTRY
(1977). Most of the lithic clasts have
mineral compositions like those of Mineral compositions are given in Laul and Schmitt (1973), Hubbard
the matrix (relatively Fe-rich Bickel (1977). The average et al. (1974), Wanke et al. (1976),

pyroxene), but a few clasts have plagioclase composition in 78155 is and Lindstrom and Lindstrom (1986)
more Mg-rich pyroxene (Fig. 4). O_0.8Ab4.7An94.5 , with a narrow have analyzed 78155 (Table 2 and
Type I clasts are fine-grained range from An91 to An97 (Fig. 5). Fig. 7). Moore et al. (1974) and
anorthosites with a felty texture in Average pyroxene is Wo 10En61Fs29 Gibson and Moore (1974) reported
which the interstices between tabular (Fig. 4). Note that pyroxene with sulfur abundance and Brett (1976)

plagioclase are occupied by crystals less than Wo 5 is exceedingly rare in discussed reduction by sulfur loss.
of pigeonite and olivine. Type II this piece of the early lunar crust
lithic clasts in 78155 are coarse (although it is common in impact Morgan et al. (1974) have deter-

grained and display a range in melt breccias from the 3.9 b.y. mined the trace siderophile and
composition (40-80% plagioclase; event). Olivine also has a limited volatile elements (Table 3). Morgan
the major mafic mineral is olivine in range of composition (Fo62_65). et al., Wanke et al., and Lindstrom

Engelhardt (1979) has studied the and Lindstrom have all found high Ir
some, low-Ca pyroxene in others, ihnenite in 78155. (3, 4, and 8 ppb, respectively), indi-
and augite in one) and texture cating that this rock is not pristine.
(subophitic, poikiloblastic, and
gtanoblastic). Hewins and Goldstein (1975) studied This is consistent with the relatively

the provenance of iron metal in high Ni content of the metal.

Evidence of temperatures in excess 78155 (Fig. 6). They found that theNi and Co contents were inter-
of 1100 °C during the metamorphism mediate between those of the coarse- SIGNIFICANT CLASTS
of breccia 78155 are inferred from

coexisting uninverted pigeonite and grained lunar anorthosites and
low-Ca augite (Bickel, 1977) and anorthositic "remelts." Again, there SOlimitedfar, claSttosmallStudieSclastshaVeinthinbeen
equilibrated olivine and ilmenite is a rather narrow range in metal
(Anderson and Lindsley, 1979). composition, sections.

® / ...
GRANOBLASTIC " MINERAL

MATRIX ii" CLASTS •

'f'o, 'f'o, tFo j , _ , , . , . , Fo J , i . _ J=, . _ . J . t , _ . _ . Fa

o7 ),
TYPE I TYPE II ¢'

LITHIC CLASTS" LITHIC CLASTS •

/ :. /,,..i.En v v v* v _,_ En v v v v _ v v Fs

Fo , L ..... J- .. Fo ...... J, J, , . , ....... Fa

Figure 4: Pyroxene compositions in metrix end in clasts in 78155. From Bickel (1977).
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Figure 7: Normalized rare earth element diagram for 78155. Data from Hubbard et al. (1974).

(Fig. 9). Using acid-leaching experi- using the 81Kr.Kr method, and
COMETS ? ments, Oberli et al. were also able to Turner and Cadogan (1975)

obtain a 207 pb/206 Pb age of 4.17 _+ determined an exposure age of
Sill et al. (1974) studied the carbon 0.02 b.y. (Fig. 10). Nunes et al. 30 m.y. by the Ar exposure age
content of 78155 with the hope of (1974 and 1975) also studied the technique.
finding evidence of a cometary U-Pb systematics of 78155 (Table 4),

contribution to breccia 78155. They but there were too many different Pb
found that 78155 was the most components and Pb loss events to MAGNETIC STUDIES
volatile-rich of all samples studied, obtain a unique U/Pb age. However,
13aeCO2, CO, and CH 4 content there is evidence from these studies Nagata et al. (1974 and 1975)

represented 267 ppm carbon, that the early Moon had a high U/Pb reported the intensity of saturation
Hydrocarbons (exclusive of CH4) ratio, magnetization for 78155. Hargraves
were present in approximately and Dorety (1975) have also

60 ppm quantity; the most abundant Nyquist et al. (1974) (Table 5), attempted to study the remanent
ion was m/e = 43. This sample also Murthy and Coscio (1977), and magnetism of 78155.
outgassed hydrogen cyanide Murthy (1978) have determined the

(~5 ppm) and hydrogen sulfide Rb/Sr ratio and Sr isotopes in 78155. SURFACE STUDIES
(,-.6ppm). "[hese studies did not yield Rb/Sr

ages, but they did set limits on the Adams and Charette (1975) have

RADIOGENIC ISOTOPES initial Sr isotopic ratio for the Moon. determined the reflectance spectra of
78155 (Fig. 11). Note the deep

"l_rner and Cadogan (1975a) deter- COSMOGENIC pyroxene absorption band at
mined a 39Ar-40Ar plateau age of RADIOISOTOPES AND 0.91 _na. This absorption band
4.22 _+0.04 b.y., identical to ffs total EXPOSURE AGES appears deeper than for rocks with
Ar age (Fig. 8). Oberli et al. (1979) high contents of pyroxene!
confirmed this Ar age with a plateau Drozd et al. (1977) have determined
of their own at 4.17 + 0.03 b.y. _mexposure age of 22 m.y. for 78155
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Figure 8: 39Ar-40Ar plateau age of 78155 (4.22 +-0.04 b.y.). Note the flat pattern for all temperatures.

From Turner and Cadogan (1975a).
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Figure 9: 39Ar-40Ar plateau age of 78155 (4.17 +-0.03 b.y.). Note the agreement with Turner and Cadogan.

From Oberli et al. (1979).
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Figure 10: 207pb/206pb diagram for 78155. Note the age of 4.17 +_0.02. From Oberli et al. (1979).
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Figure 11: Reflectance spectra of 78155. From Adams and Charette (1975).
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Table 1: Lithology of 78155.
From Bickel (1977).

Maximum size eft

Approximate fragment or clast
Lithology % of rock* (mm)# Grain size (_rn)

Granoblastic matrix 65 4.6 x 3.0 Anorthite: 20-100, mafic silicates:
2-40, oxides: 0.5-75

Mineral clasts

Anorthite 10 3 x 2 -

Pyroxene t 3 0.8 x 0.6 -
Olivine < 1 0.6 x 0.2 -

Polymineralic lithic clasts

Fine-grained, 1-2 2.8 x 1.0 Finer grained:
felty textured Anorthite: 8 x 40 to 16 x 80;
anorthosite marie silicates: 8 x 12

(Type I) Coarser grained:
Anorthite: 20 x 160 to 30 x 200;

mafic silicates: 15 x 25, wedge
shaped up to 60 _trn long

Annealed Type I 1-2 1.2 x 0.8 Same as Type I, but with greater
range in sizes of mafic silicates

Medium and

coarse grained
(Type II) < 1 1.5 x 1.0 See Table 3

Crushed material 20 0.1 Angular fragments < 100 Inn across

*Mode based on visual estimates and limited point counting.
#All the constituents are seriate in size.

tPigeonite is much more abundant than augite.
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Table 2: Chemical composition of 78155.

a) LSPET; b) Wiesmann and Hubbard (1975); c) Hubbard et al. (1974); d ) Laul and Schmitt (1973);
e) Wanke et al. (1976); f) Lindstrom and Lindstrom (1986)

Split _2(a, b, c) ,57 (d) ,127 (e) ,137 (f)
Technique XRF, IDMS INAA INAA INAA

SiO 2 (wt%) 45.57 - 45.35 -

TiO2 0.27 0.22 0.29 0.32

A1203 25.94 26.2 25.34 26.0

Cr203 0.14 0.12 0.14 0.14

FeO 5.82 5.3 5.63 5.62

MnO 0.10 0.076 0.085 -

MgO 6.33 6.2 6.42 6.2

CaO 15.18 15.2 15.19 15.2

Na20 0.33 0.39 0.38 0.39

K20 0.08 0.07 0.073 -

P205 0.04 -

S 0.04 -

Nb (ppm) 4.8 2

Zr 59 - 54 48

Hf 1.4 1.49 1.42

Ta 0.23 0.25 0.22

U 0.28 0.4 0.24 0.25

Th 1.01 0.9 0.84 0.86

W 0.104

Y 16 16

Sr 147 141 165

Rb 2.061 2.01 -

Li 5.2 4.8

Ba 58.8 50 63.6 61

Cs 0.11 0.103

Zn 4 4.13

Oa 4.52

Ni 53 90 80 100

Co 14 14.3 15.8

Sc 11 13.3 12.9

l-,t 4.02 4.3 4.28 3.98

Ce 10.2 12 11.3 9.9

Nd 6.29 8 7.3 5.7

Sin 1.81 1.9 1.69 1.74

Eu 0.874 0.9 0.862 0.835

Gd 2.32 2.3
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Table 2: (Concluded).

Split ,2 (a, b, c) ,57 (d) ,127 (e) ,137 (f)
Technique XRF, IDMS INAA INAA INAA

Tb 0.35 0.39 0.41

Dy 2.64 2.3 2.63

Er 1.69 1.90

Yb 1.73 1.7 1.83 1.57

Lu 0.259 0.23 0.271 0.244

Ga 2.91

F 15

CI 6.9

Re (ppb) 0.24

Ir - 3.9 8

Au - 0.68

Table 3: Trace element data for 78155.

a) Morgan et al. (1974); b) Wanke et al. (1976)

Sample Sample
78155,30 (a) 78155,127 (b)

Ir (ppb) 3.32 3.9

Os (ppb)

Re (ppb) 0.278 0.24

Au (ppb) 0.66 0.68

Ni (ppm) 68 80

Sb (ppb) 20.4

Ge (ppb) 27

Se (ppb) 49 60

Te (ppb) 3.2

Ag (ppb) 1

Br (ppb) 65 68

Bi (ppb) 0.29

Zn (ppm) 2.3 4.13

Cd (ppb) 63

TI (ppb) 5.9

Rb (ppm) 1.76 2.01

Cs (ppb) 84 110

U (ppb) 250 240
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Table 4: U-Th-Pb composition of 78155.
From Nunes et al. (1974).

Split 78155

wt (rag) 112.1

U (ppm) 0.2683

Th (pprn) 0.9352

Pb (ppm) 0.8513

232Th/238U 3.60

238U/204pb 165

Table 5: Rb-Sr composition of 78155.
Data from Nyquist et al. (1974).

Sample 78155,2

wt (mg) 51.6

Rb (pprn) 2.06

Sr (pprn) 146.7

87Rb/86Sr 0.0406 + 4

87Sr/86Sr 0.70164 + 6

TB 4.37 + 0.14

TL 4.48+0.14

B = Model age assuming I = 0.69910 (BABI +
JSC bias)

L = Model age assuming I = 0.69903
(Apollo 16 anorthosites for T = 4.6 b.y.)
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Station 8 Boulder

Station 8 at Apollo 17 was located at ctfipped samples of the original top However, the glass coating on 78255
file base of the Sculptured Hills, surface to get pieces 78235, 78236, had numerous micrometeorite craters
although it was located only about 78237, and 78238. These fell in the (Butler, 1973), indicating that it had
20 meters above the valley floor and dirt, where they were collected along been on top at one time. The
within the zone mapped as dark with some soil (78230). Samples astronauts noted how easy it was to
mantle in detailed pre-mission maps 78235 and 78237 were found to fit roll the boulder on the slope where it
(Jackson et al., 1975). The small together, so were combined. 78236 was located.
boulder at Station 8 was selected for was located a few centimeters away
sampling because it was perched on from where 78235 was chipped. All of the samples from the boulder
the surface. However, it had no Samples 78255 and 78256 were have the same norite lithology,
boulder track leading up the taken from the original bottom although the 78255 sample may have
mountain, and its glass coating may surface of the boulder after it had more plagioclase. The boulder is
mean that it was delivered to the been rolled further and were also coarse grained (~5-10 mm) with
location as a "bomb" (Wolfe and collected with dirt. In the laboratory, about 50% yellow-tan orthopyroxene
others, 198 I). Fig. 1 is a planimetric 78255 and 78256 were found to fit and 50% blue-grey plagioclase.

map of Station 8 showing the together, so 78256 was relabeled as a Distinct structural features such as
location of the samples collected, part of 78255. 78255 had a lower foliations and fracture planes, as well

solar flare--cosmic ray induced as branching glass veins, are
The boulder dimensions are about activity, as would be expected conspicuous features of the boulder
30 x 55 x 55 cm (Fig. 2). The because of the shielding by the and the samples taken from it
astronauts rolled the Station 8 boulder from the solar flare. (Jackson et al., 1975).

Boulder completely over and then

_:__,5_ Norite boulder _ 78220

before rolling _'__ - -\

After rolling -------------_
t x 78155 Pan 25_78230 /

78235, 36, 38

Rake area 78250, 55

78500-18, x 78135
78525-99

N _LRV

l Trench sample_

78420 x-

78440 _ 0 10 20 30 m

78460-65 Pan 26 I I { 1
78480

Figure 1: Planimetric map of Station 8. From Wolfe and others (1981).
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Figure2: Photograph of the Station 8 Boulder showing location of samples. AS17-146-22370.

This boulder is one of the oldest The following summary of the this rock is from Nyquist and Shih

samples from the Moon. Its original crystallization ages for samples of (1992).
crystallization age is about 4.4 b.y.

Summary of Age Determinations

39Ar- 40Ar Rb-Sr Sm-Nd U-Pb

78235 4.426 + 0.065 (a)

78236 4.39 (b) 4.38 +_0.02 (b) 4.43 _+0.05 (b)

4.11 + 0.02 (d) 4.34 + 0.04 (c)

(a) Premo and Tatsumoto (1991); (b) Nyquist et al. (1981); (c) Carlson and Lugmair (1981);
(d) Aeschlimann et al. (1982)

The chemical composition of the reported range from 14 to 27%, 1978) shows that the rock is free of
norite boulder has been difficult to indicating variable amounts of meteorite contamination and is

determine precisely because of the plagioclase in the analyzed splits, chemically "pristine." The lack of
coarse grain size and the small This is also seen in the range of Eu meteorite signature is also indicated

sample allocations (~100 mg) that contents. The low Ir in samples by the low Ni in the metallic iron
have been made for chemical 78235 (Higuchi and Morgaa, 1975) particles in the norite.

analysis. The A1203 contents and 78255 (Warren and WzLsson,
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Summary of Compositional Data

AI203 (wt. %) Th (ppm) Ce (ppm) Eu (ppm) Reference

'78234 14.36 0.62 8.6 0.7 Warren et al. (1987)

78235 20.87 9.2 1.03 Winzer et al. (1975)

0.59 Keith et al. (1974)

78236 17.66 0.6 12.8 0.82 Blanchard and McKay (1981)

"78255 27.40 0.44 7.8 1.21 Warren and Wasson (1979)

0.83 Keith et al. (1974)

6) At rest at an unknown location for 06 20 20+ CDR "I think I'll get one
BOULDER HISTORY about 0.75 m.y. with its bottom up, more swap off there. Well, that

receiving micrometeorite craters on disappeared. Get it this way. That

Jackson et al. (1975) wrote a sug- its glass coating, disappeared, too? That probably
gested history of the norite boulder, went into orbit. Boy, is that pretty

7) Movement to its discovery site at inside. Whoo! We haven't seen
1) Crystallization from a magma, Station 8, where it rested, with top anything like this. I haven't. Unless

with plagioclase and orthopyroxene side up, for an amount of time you've been holding out on me."
on the liquidus. The grain size and approximately equal to that at its

texture argue that the depth of former site. LMP "No, this is a nice crystalline
crystallization was at least 8 km, and rock. This is about a 50-50 mixture
perhaps as much as 30 km.

8) Rolling and sampling by the of what looks like maskelynite or at
Apollo 17 crew. Return to earth, least blue-grey plagioclase, and a

2) Settling of the plagioclase and lh'eliminary examination, very--let's say light yellow-tan
orthopyroxene crystals onto a floored mineral, probably orthopyroxene.
chamber under the influence of lunar 9) Cutting, distribution, dissolution, It's fairly coarsely crystalline. By
gravity, irradiation, and vaporization. Use coarsely crystalline, probably, the

3) Folding of the planer lamination for education of students, average grain size will turn out to be
about 3 or 4 millimeters, maybe half

by unknown process, possibly an a centimeter."
irregular magma chamber floor. FIELD GEOLOGY

4) Shock metamorphism, producing Note: During collection of the
maskelynite and fractures, samples from the Station 8 Boulder

by the astronauts, many observations
5) Shock metamorphism, possibly about the lithology of this coarse-

during excavation or possibly during grained sample were correctly made,
the same event, producing additional proving that field geology could be
fractures and veins, done on the Moon---by humans at

least. Obvious excitement was noted
in their voices.
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78235
Shocked Norite

199 g; 4.0 x 5.0 x 5.5 cm, 3.5 x 4.0 x 5.0 cm (2 pieces)

II_rRODUCTION Sample 78235 is a heavily shocked
plutonic norite of cumulate origin PETROGRAPHY

Samples 78235-238 were chipped off with a glass coating and glass veins
file top of the Station 8 Boulder after (Fig. 1). Some of the glass veins are Dymek et al. (1975), McCallum and

it had been rolled over completely continuous with the glass coating. Mathez (1975), Jackson et al. (1975),
(see section on the Station 8 The degree of shock was sufficient to Sclar and Bauer (1975 and 1976),
Boulder). The chips fell in the dirt, convert some of the plagioclase to Steele (1975), and the astronauts
from which they were then collected, maskelynite. Except for the glass have all described 78235 as a
"Ihe sample bag also included more and the shock features, this rock is a shocked norite. James and Flohr
than 200 g of dirt that may include coarse-grained (5-10 mm), pristine, (1983) consider it the best example
additional fragments of this igneous lunar norite (about half of the Mg suite of lunar norites
important rock. Sample 78237 was plagioclase and half orthopyroxene). (Fig. 2).
combined with 78235 because these It has an initial crystallization age of
two pieces were found to fit together, about 4.4 b.y., making it one of the 78235 has a well-preserved, coarse-
Samples 78236 and 78238 are also oldest lunar rocks sampled during the grained (5-10 mm) cumulus texture
from the top surface of the boulder; Apollo missions, where cumulus plagioclase (-50%)
78255 is from the bottom. These and cumulus orthopyroxene (~50%)

samples are all very similar, form distinct layers (Jackson et al.,
1975; McCallum and Mathez, 1975).
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Figure2: Plagioclase-pyroxene compositional diagram for 78235. 78235 is one of the best examples of the
Mg-suite norites. Fields from James ai_clFlohr (1983).

Postcumulus enlargement of these silica (Sclar and Bauer, 1975 and metal plus troilite in the glass have
minerals eliminated all but a few 1976). This mineral assemblage is compositions within the meteorite
percent of the intercumulus liquid, probably just part of the mesostasis range, indicating meteoritic
Plagioclase (An93_95) and ortho- of the cumulate (McCallum and contamination of the glass.
pyroxene (Wo3 En78Fs19) are Mathez; EIGoresy et al., 1976), but
homogeneous, with no compositional Sclar and Bauer argued that it had a Solar and Bauer (1975 and 1976)
variation among cores, rims, and shock origin, have studied the shock features in
interstitial grains. Interstitial zones 78235. The presence of maskelynite
contain a remarkable suite of The rock has been heavily shocked, indicates that the shock pressure was
accessory minerals formed at a late resulting in partial destruction of the between 300 and 400 kbar, and the
stage from a fractionated, trapped original cumulus texture in some occurrence of glass veins may mean
liquid. In decreasing order of areas. Plagioclase has been partially that the rock experienced pressures
abundance they are silica, apatite, maskelynitized and locally even in excess of 500 kbar. Solar and
REE-rich whitiockite, Fe-Ni-Co melted, while the orthopyroxene Bauer (1976) have speculated that
alloy (Co = 2.6%; Ni ,- 2.4%), shows undulatory extinction, fine oriented rods of metallic iron in
diopside, chromite, troilite, niobian cracking, and mosaicism. Some of the plagioclase and maskelynite are
rutile, zircon, and baddeleyite, the cracking of the pyroxene is due to subsolidus reduction of iron

obviously due to the expansio:a of the during shock.

Sporadically distributed through the partially maskelynitized plagioclase
orthopyroxene and localized in the (Fig. 3). A brown, vesicular,
pyroxene at specific sites along partially devitrified glass fills MINERAL CHEMISTRY
orthopyroxene-plagioclase interfaces fractures in the rock. Flow banding
are ameboid patches and veinlets, in the glass is def'med by cryslaUites MeCallum and Mathez (1975) and
These consist of the four-phase of metal and troilite. Spheric_d Dymek et al. (1975) have analyzed

assemblage iron-chromite-diopside- globules (~20 grn) of metal artd the minerals in 78235. Pyroxene and
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Figure 3: Photomicrograph of thin section 78235,41. Field of view is 3 x 4 mm.

plagioclase are uniform in composi- microprobe analysis. Winzer et al. microstructural data favor Nyquist's
tion (Figs. 4 and 5). Dymek et al. (1975) measured the compositions of thermal model for cooling of 78236
report high AI, Ti, and Cr in small plagioclase and orthopyroxene because formation at 4.4 b.y. may
diopside grains in 78235 separates by isotope dilution mass have produced exsolution lamellae in

(Wo47En45Fs8; A1203 = 2.86, spectroscopy (Fig. 6). Delaney and the orthopyroxene during cooling
TiO2 = 1.01, and Cr203 = 1.11%). Sutton (1991) attempted to determine below 1000 °C in the lunar crust.
McCallum and Mathez have used the the Fe/Mn ratio in plagioclase in Takeda proposed that 78236 was
compositions of the pyroxenes to 78235 using the new synchrotron excavated when this rock reached
estimate a temperature of equili- x-ray technique. Palme et al. (1984) about 1000 °C and then cooled more

bration of-800 °C. discussed trace elements in slowly at moderate temperatures to
plagioclase, produce the Guinier-Preston zones.

McCallum and Mathez (1975) and

Steele (1975) report analyses for McCallum and Mathez, Hewins and Irving et al. (1974) also studied
whitlockite, apatite, chromite, rutile, Goldstein (1975), and Mehta and orthopyroxene with associated
and baddeleyite. The Nb content of Goldstein (1980) have studied the diopside from coarse fines in the
the rutile is extremely high (-14% by provenance of iron metal in 78235 soils adjacent to 78235.
Steele and ~5% by McCallum and (Fig. 7; also see figure in section on
Mathez). About 10% of the REE in 78238).
the rock are tied up in the WHOLE-ROCK CHEMISTRY
whitlockite. Nyquist et al. (1981) Steele (!975) has shown that

It should be remembered that 78235report a few grains of K-feldspar oxahopyroxene with space group
(Or90.sAb2.1An7.1). P2 lca in 78235 means that this rock is a coarse-grained rock, and that

is of plutonic origin. Takeda et al. small sample splits of a coarse-
Bersch et al. (1991) precisely (1982) studied the orthopyroxene grained rock may not represent the
determined the composition of the (Wo3En76Fs21) in 78236 by whole rock. Winzer et al. (1975)
pyroxene. Hansen et al. (1979) and combined single crystal x-ray have determined the major element
Steele et al. (1980) measured the diffraction and TEM techniques and and rare earth element content of the
trace element contents of the showed that there was no augite whole rock: glass, pyroxene, and
plagioclase. Hinthorne et al. (1977), exsolution with (100) in common, plagioclase separates form their
Steele et al. (1980), and Papike et al. They found abundant Guinier- small sample split of 78235 (Table 1,
(1994) determined the trace elements Preston zones, several unit cells Fig. 8). Blanchard and McKay
in plagioclase and pyroxene by ion wide, in the pyroxene. Takeda's (1981 ) have determined the
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low and uniform Ni contents, while the metalgrains in the glass are high inNi, indicating two different origins for metal
in the rock. Datafrom McCallum and Mathez (1975).
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composition of 78236, which is in Glass veins and coating (rind) plot understand how the U-Pb system in

reality another piece of 78235. halfway along the tie line from the minor phases could not have
Warren and Wasson (1978) have plagioclase to pyroxene (Filg. 9). been affected by the shock melting
analyzed 78255. Warren et al. The glass appears to be forined by that is evident in this rock. For these
(1987) analyzed "coarse-fines" in situ melting of the rock without reasons this Pb-Pb age is generally
sample 78234,5, which they believe the addition of other rock not accepted--although it has
to be another piece of 78235-78255. components. A meteoritic generally been confirmed by more
This analysis is included in Table 1 component is indicated by the very recent work.

for comparison, high Ni and Ir in the glass.
Premo and Tatsumoto (1991 and

Higuchi and Morgan (1975) reported 1992) have studied the U-Th-Pb
the trace siderophile and volatile STABLE ISOTOPES isotopic systematics of 78235
elements in 78235 (Table 2). James (Table 5) and determined a

(1994) reviewed the siderophile and Mayeda et al. (1975) report typical crystallization age of 4.426 +
volatile element composition, lunar delta 180 (o/oo) values of 5.67 0.065 b.y. with a disturbance at 3.93

(plagioclase) and 5.41 (pyroxene) for + 0.21 b.y. (Fig. 10). Their work
Keith et al. (1974) have analyzed this pristine lunar rock. also shows that the Moon had a high
large pieces of 78235 and 78255 and U/Pb ratio----about 508. There is also

found that the Th, U, and K contents RADIOGENIC ISOTOPES a hint of a mild event (shock?) at
were slightly different in the two about 900 m.y. in their data.

samples (Table 3). Hinthorne et al. (1977) dated 78235
by the Pb-Pb ion probe method. Nyquist et al. (1981), Aeschlimann

The glass coating and glass veins in Ages from three baddeleyites and et al. (1982), and Carlson and
samples 78235-78255 also give an one zircon in thin section 78235,49 Lugmair (1982) have precisely dated
indication of the bulk composition of were all consistent at 4.25 J: 0.09 b.y. 78236 by 39At- 40Ar, Rb-Sr and
this sample. Winzer et al., Sclar and These data required correction for Sm-Nd methods (see section on
Bauer (1975), Steele, McCallum and unspecified molecular ion interfer- 78236).
Mathez, and Dymek et al. have all ences. It is also difficult to
analyzed the glass (Table 4).

20. I I I I I I I I I I I I I I I

_GIOCLASE 78235 GLASS
- _ (e-"VEINS" _

_ _ \0 - "COATING"J

I i I I I I I l I I I I I i I
0 10 20 30

Wt % MgO

Figure 9: Composition of glass veins in and glass coating on 78235. From Dymek et al. (1975).
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Figure 10: U-Pb Concordia diagrams for 78235from Premo and Tatsumoto (1991), illustrating the U-Pb behavior of
leaches + washes (open squares), both leaches (open diamonds) and residues (solid circles) of mineral separates. Total
U-Pbfor each separate (combining residue + leaches + wash) is shown as a solid square, and theposition of each along
a tie line (residue to leaches + wash; short-dashed lines) shows the effect of the leaching procedure on the U-Pb
systematics of each separate.

COSMOGENIC spectrum (and potential angular Drozd et al. (1977) have determined
RADIOISOTOPES AND anisotropy) of the incident proton an exposure age of 292 + 14m.y. for
EXPOSURE AGES flux from the August 1972 solar flare 78235 using the 81Kr_Krmethod.

(Rancitelli et al., 1974; Keith et al., Aeschlimann et al. (1982) reported
Some of the Apollo 17 samples 1974). Table 3 compares the in- an Ar exposure age of 300 m.y. for
(including 78235) provided a unique duced activity of 78235 with 78255, 78236.
opportunity to study the energy from the underside of the boulder.
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m

SURFACE STUDIES PROCESSING AND
DISTRIBUTION

The original catalog (Butler, 1973)
notes that the glass coating on 78235 The largest piece remaining of 78235
is pitted and in places cracked by weighs 112 g. Thin sections of
spalis from micrometeorite craters, sample 78235 have been widely
Larger pits have penetrated the glass distributed to undergraduate students
to the crystalline rock beneath, as part of the JSC educatior_al thin

section set (Meyer, 1987).
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Table 1: Whole-rock chemistry of 78235.
a) Winzer et al. (1975b); b) Warren et al. (1987); c) Dymek et al. (1975)

Split ,34 (a) 78234 (b)* 78235 (c)
Technique INAA INAA calculated

SiO 2 (wt%) 49.5 50.93 49.8

TiO2 0.16 0.25 0.08

A1203 20.87 14.36 18.4

15"203 0.23 0.40 0.31

FeO 5.05 7.33 6.02

MnO 0.08 0.126 0.10

MgO 11.76 16.43 14.5

CaO 11.71 9.24 10.5

Na20 0.35 0.25 0.3

K20 0.061 0.055 0.05

P205 0.04

Nb (ppm)

Zr 29

Hf 1.66

Ta 0.25

U 0.22

Th 0.62

Sr 107

Rb

Ba 79.6 53

Ni 11.5

Co 29.3

Sc 13

La 3.3

Ce 9.16 8.6

Nd 5.4 4.5

Sm 1.49 1.49

Eu 1.03 0.7

Tb 0.38

Dy 2.26 2.73

Er 1.47

Yb 1.64 2.33

Lu 0.241 0.35
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Table 1: (Concluded).

Split ,34 (a) 78234 (b)* 78235 (c)
Technique INAA INAA calculated

Ga 2.9

Ge (ppb)

k <15

Au 15

*78234 is a "coarse-fine" fragment from the same sample bag as 78235 (see text).

Table 2: Data for 78235.

From Higuchi and Morgan (1975).

Sample Sample
78235,31 black glass

Ir (ppb) 0.135 25.9

Os (ppb)

Re (ppb) 0.0117 1.66

Au (ppb) 0.421 5.08

Ni (ppm) 12 450

Sb (ppb) 0.079 1.1

Ge (ppb) 18.9 131

Se (ppb) 7.5 176

Te (ppb) <0.8 3.5

Ag (ppb) 0.4 0.96

Br (ppb) 6.4 6.7

Bi (ppb) 0.05 0.41

Zn (ppm) 1.5 2

Cd (ppb) 2.9 5.4

TI (ppb) 0.023 0.038

Rb (ppm) 0.922 1.1

Cs (ppb) 64.3 80.3

U (ppb) 360 200
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Table 3: Solar flare induced activity from large solar flare, August 1972.
From Keith et al. (1974).

Sample Sample Sample
78135 78235 78255

dpm/Kg

26A1 42+4 77+7 65+6

22Na 74+5 111 +8 50+5

54Mn 180+20 55+8 10+5

56Co 240 +_20 52 + 9 30 _+20

46Sc 76 + 5 1.4 + .9 <15

48V 18 + 5 <12

Th (ppm) .26 .59 .83

U (ppm) .107 .196 .227

K (%) .0525 .049 .059
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Table 4: Glass chemistry of 78235.

a) Winzer et al. (1975b); b) McCallum and Mathez Ct975); c) Dymek et al. (1975)

(a) (a) (b) (c) (c)
vein rind brown rind vein

Si02 (wt%) 49.8 49.7 49.32 49.42 48.41

TiO2 0.19 0.16 0.16 0.16 0.15

A1203 17.15 17.58 18.64 17.86 18.52

Cr203 0.35 0.33 0.33 0.35 0.34

FeO 7.52 7.39 7.53 6.97 7.67

MnO 0.12 0.11 0.12 0.10 0.12

MgO 14.98 14.51 13.43 14.25 12.96

CaO 9.92 9.86 10.48 10.24 10.52

Na2 O 0.35 0.34 0.39 0.25 0.39

K20 0.06 0.058 0.07 0.06 0.08

P2 05 0.08 0.07 0.05 0.05 0.10

S 0.20

Ba (ppm) 62.5 87.3

Ce 20.5 23.2

Nd 9.52 9.48

Sm 2.04 1.52

Eu 0.815 0.819

Dy 2.97 2.34

El" 1.77 1.66

Yb 1.91 1.63

Lu 0.297 0.258
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Table 5: U-Th-Pb analytical data for 78235.

From Premo and Tatsumoto (1991).

(Footnotes may refer to material not included in this catalog.)

Sample/ Weight % blank zc6pbl 2°4Pb/ Z°TPb/ 2tmpb/ 2_U/ 232Th/
Fraction (mg) Pb Pb'(ppb) U" (ppb) Th" (ppb) 2°4p'0* 2°6pb: 2°6pb: 2°6pb: 2e4pb: 238U=

Residues

WR 67.3 0.30 468 295 363 2862 0.000270 0.5252 0.4185 3913 1.27
(0.31) $ (8.7) (0.06) (0.15) (8.7)

D-Pl-Px 110.0 0.43 196 99.0 63.3 5399 0.000064 0.5188 0.5250 1388O 0.661

(2.6) (57) (0.06) (0.18) (30)
Mask 52.5 3.1 210 108 253 634.3 0.000643 0.5801 0.6522 1550 2.41

(0.29) (44) (0.25) (1.5) (45)
Glass 22.4 0.72 396 197 667 1146 0.000634 0.5322 0.9162 1657 3.50

(0.10) (11) (0.09) (0.10) (11)
Metal 0.12 11 4220 1880 3790 77.83 0.009667 0.5730 0.8t61 95.6 2.08

(0.11) (11) (1.1) (1.0) (13)

Dilute HNOj (1N) leaches

A2-WR -- 1.5 56.!5 6.73 123 95.91 0.009911 0.5929 1.379 31.0 18.9

(0.12) (1.5) (0.15) (0.30) (2.0)

A2-D-PI-Px -- 2.8 18.!5 1.88 27.8 598.1 0.000600 0.5482 1.240 412 15.3

(0.08) (54) (0.35) (0.75) (55)
A2,-mask -- 4.7 19.2 5.93 38,4 406.7 0.000731 0.6062 1.093 984 6.69

(0.34) (73) (0.40) (0.82) (74)

A2-glass -- 24 8.63 2.37 16.7 86.02 0.002377 0.5635 1.219 278 7.27
(0.14) (145) (3.3) (4.7) (150)

A2,-metal -- 67 247 53.4 211 22.59 0.02966 0.6499 1.414 19.2 4.07

(0.26) (7.7) (26) (35) (204)

Dilute HBr (0.1 IV) leaches
AI+WR -- 0.71 152 85.6 638 103.1 0.009424 0.5464 1.585 162 7.70

(0.69) (1.1) (0,11) (0.33) (1.3)
A1-D-PI-Px -- 0,45 153 17.0 164 1804 0.000373 0.5374 1.465 772 995

(0.50) (15) (0.08) (0.31) (15)
Al-mask -- 1.2 103 86.7 601 817.5 0.000748 0.4649 1.541 2940 7.16

(0.24) (19) (0.22) (0.62) (19)

A 1-glass -- 11 28.5 11.9 105 175.5 0.000854 0.5097 1.790 1390 9.16
(022) (190) (2,0) (2.6) (191)

Al-metal -- 65 342 27.1 369 19.20 0.04959 0.8480 1.986 5.40 14,1

(0.02) (11) (5.1) (5.5) (189)

Water Washes

W-WR 70.81 2.7 25.1 4.63 22.2 29.33 0.03354 0.7157 1.662 16.2 4.95

(0.12) (0.46) (0.13) (0.19) (1.5)
W-D-PI-Px 113 6.6 6.25 2.08 7.66 99.20 0.007910 0.5664 1.154 98.8 3.81

(0.21) (8.5) (0.70) (1.5) (10)

W-mask 63.5 3.0 25.7 24.4 137 106.7 0.008455 0.5155 1.056 250 5.81

(0.13) (3.2) (0.38) (1.0) (3.9)

W-glass 22.4 23 7.63 3.05 18.6 45.10 0.01506 0.5967 1.403 69.2 6.29

(0,64) (18) (2.8) (3.1) (27)
W-metal 0.12 83 83.3 11.3 30.6 18.52 0.05650 0.8774 1,961 8.10 2.80

(0.11) (29) (25) (27) (570)

• Concentrations for leaches and washes are calculated using the original weight of the sample fraction.
*Measured ratio, uncorrected for blank Pb or mass fractionation.

z Corrected for blank Pb (amounts are given in the text) using Ludw/g ( 1980, 1985a).

SNumbers in parentheses are 2-sigma errors given in percent for the values just above them.

I Original weights before washing and leaching procedure.
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78236
Shocked Norite
93.06 g, 7.5 x 5.5 x 2.0 cm

INTRODUCTION -' Carlson and Lugmair (1982) and
PETROGRAPHY Nyquist et al. have pointed out the

Sample 78236 is a piece of the same importance of the minor phases to
norite as 78235 (see section on the Nyquist et al. (1981) have discussed age dating studies. An important
boulder at Station 8). It is a heavily the petrography of 78236. Modal part of the Sm and Nd must be tied
shocked, coarse-grained, plutonic analysis and the mineralogy of their up in the whitlockite, and Rb must be

norite of cumulate origin. One side thin section of 78236 agreed with present in the K-feldspar inclusions

of this piece has a thick coating of previous descriptions of 78235 and (Nyquist et al., 1981). Partially
black glass (Fig. 1), and the other 78238. All minerals in 78236 have devitrified dark brown mesostasis

side shows a coarse-grained igneous been shocked to a moderate degree occurs interstitially--mostly
texture (Fig. 2). @30 GPa), with local areas of more intergranular between pyroxene

intense shock (up to ~50 GPa). grains--and contains tiny
78236 has been used extensively for Veins of solidified melt have been clinopyroxene and opaque crystals.
age dating studies, developed in situ. The shock event(s) that have

Figure 1: Photograph of 78236. Cube is I cm. $73-15394.
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Figure 2: Photograph of 78236. Field of view is 5 x 7 cm. $73-17813.

partially altered the texture of this 4.11 + 0.02 (Fig. 4). Nyquist et al. Rb-Sr and Sm-Nd ages determined
rock must have at least partially (1981) also dated 78236 by the by the most retentive samples are
remobilized the radiogenic pairs in 39Ar- 40Ar plateau method, but they 4.38 + 0.02 b.y. (Fig. 7) and 4.43 _+
these minor phases. Some of the obtained an age of 4.39 for a e;ample 0.05 b.y. (Fig. 8), respectively.

plagioclase has lost Ar while being of the whole rock (Fig. 5). TILeAr Nyquist et al. note that all of the
converted to maskelynite, released during the low temperatures isotopic systems in 78236 have been

has a younger age. reset to some degree. They discuss
this from two points of view--shock

WHOLE-ROCK CHEMISTRY Carlson and Lugmair (19811 dated effects and slow cooling of the rock
78236 by the Sm-Nd internal after crystallization.

Blanchard and McKay (1981) have isochron method (Table 2). A

determined the major and trace crystallization age of 4.34 5:0.05 is Jost and Marti (1982) and Marti
element content of 78236 and found indicated by a best fit isochron (1983) have recognized a low
it to be the "same" as that of 78235 (Fig. 6). However, one of the:hand- temperature release pattern of

(Table 1 and Fig. 3). picked plagioclase and one of the spallation Xe in plagioclase separates
pyroxene separates were outside of from 78236 that is different from the

RADIOGENIC ISOTOPES the 5:50 m.y. error envelope, and high temperature release pattern,
evidence of isotopic resetting was possibly due to recoil events from
noted, adjacent mineral phases.

Sample 78236 was used for age
dating studies of the norite boulder.
Aeschlimaun et al. (1982) dated the Nyquist et al. (1981) also dated Sample 78235 has been dated by the

Plagioclase in 78236 by the 78236 by the Rb-Sr (Table 3) and U-Pb method (see section of 78235).
9Ar-40Ar plateau technique at Sm-Nd methods (Table 4). The
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COSMOGENIC SURFACE STUDIES PROCESSING
RADIOISOTOPES AND

EXPOSURE AGES The original catalog (Butler, 1973) The largest piece of 78236 remaining
notes that the glass coating on 78236 weighs 79 g. There are only two thin

Aeschlimarm et al. (1982) report an has been pitted by micrometeorites, sections, but there are numerous
Ar exposure age of 300 m.y. Drozd The largest spall is 6 mm; the sections of 78235.
et al. (1977) have determined an average pit size is reported to be
exposure age of 292 + 14 m.y. for 0.5 mm.
78235 using the 81Kr-Kr method.
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Figure 3: Normalized rare earth element diagram for 78236. Data from Blanchard and McKay (1981).
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Table 1: Whole-rock chemistry of 78236.

a) Blanchard and McKay (1981); b) Dymek et al. (1975)

Split ,3 (a) 78235 (b)
Technique XRF, INAA calculated

SiO2 (wt%) 50.15 49.8

Ti02 0.18 0.08

A1203 17.66 18.4

Cr203 0.31 0.31

FeO 6.49 6.02

MnO 0.12 0.10

MgO 14.28 14.5

CaO 10.12 10.5

Na20 0.31 0.30

K20 0.04 0.05

P205 0.08

S 0.02

Nb (ppm)

Zr

Hf 1.7

Ta 0.2

U

Th 0.6

Ni

Co 28.2

Sc 11.2

La 4.47

Ce 12.8

Nd

Sm 1.93

Eu 0.82

Gd

Tb 0.53

Dy
Er

Yb 2.12

Lu 0.32

Ge (ppb)

k

Au



SAMPLE 78236 - 387

Table 2: Sm-Nd analytical data for 78236.
From Carlson and Lugmair (1981).

Separate Weight ISm] [Nd] 147Sm/144 Nd a 143Nd/144Nd a
(mg) (ppm) (ppm)

PI-1 12.16 1.47 6.24 0.1426 0.511333
2 40

P1-2 20.08 1.40 5.99 0.1412 0.511186
1 16

PI-3 17.43 1.62 7.24 0.1352 0.511026
1 19

PI-4 24.22 0.466 1.86 0.1513 0.511442
2 36

P1-5 18.17 1.59 7.02 0.1369 0.511041
1 18

Px- 1 46.35 0.814 1.81 0.2726 0.514956
3 24

Px-2 67.45 0.812 1.39 0.3540 0.517354
3 20

Px-3 71.41 0.785 1.45 0.3270 0.516466
3 25

Px-4 74.22 0.774 1.18 0.3968 0.518543
3 29

aQuoted uncertainties are 2Omean; the Ncldata are first corrected for isotopic fractionation to

148NdO/144NdO = 0.242436 and thereafter for oxygen (148Nd/144Nd = 0.241572).



SAMPLE 78236- 388

Table 3: K, Rb, and Sr analytical results for 78236.
From Nyquist et al. (198_[).

wt. K Rb Sr 87Rb (a) 87Sr (b)

Sample (mg) (ppm) (ppm) (ppm) 86Sr 86Sr

WR(c) 35.3 - 0.862 104.0 0.02398 + 17 0.70057 +_4

Plag 1(d) 8.7 844 1.056 207.1 0.01475 + 11 0.70005 _+6

Plag 2(d) 79.9 - 1.168 206.9 0.01634 + 12 0.70011 _+5

Mask 1(d) 8.7 789 0.796 209.9 0.01097 + 8 0.69979 + 7

Mask 2 (d) 41.2 - 0.966 206.5 0.01354 + 10 0.70003 + 5

Mask 3 (e) 23.4 - 1.450 210.3 0.01995 -+15 0.70030 + 5

Px 1(d) 19.6 42.6 0.237 1.56 0.44 -

Px 2(d) 120.2 - 0.195 2.42 0.233 +-2 0.71282 + 8

Px 3(e) 58.5 - 0.25 (g) 2.013 - 0.72135 + 9

Px 4(c) 55.5 - 0.259 6.20 0.1208 + 9 0.70531 + 6

Px 5(c) 55.3 - 0.407 2.312 0.508 + 4 0.73095 + 8

Px 6(c) 70.9 - 0.526 4.8.6 0.313 -+3 0.72176 + 5

DBG(c) 3.3 - 0.956 99.06 0.0279 + 2 0.70069 + 6

NBS 987(0 0.71021 + 3

(a) Uncertainties correspond to last figures.

(b) Uncertainties correspond to last figures and are 2Om. Normalized to 88Sr/86Sr = 8.37521.

(c) Final Rb-Sr procedure.
(d) Initial Rb-Sr procedure.

(e) Interim Rb-Sr procedure.

(f) Average of 8 analyses from April, 1980 to April, 1981.

(g) Rb content calculated assuming a 4.3 AE age.
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Table 4: Sm-Nd analyticaldata for 78236.

From Nyquist et al. (1981).

wt. Sin(a) Ndl 147Sm (b) 143Nd (c) 145Nd 144_n (d)

Sample (rag) (ppm) (ppm) 144_-- 144Nd 144Nd _ (x 10 "5)

WR 35.3 2.001 7.0"20 0.1724 + 2 0.511191 + 29 0.34896 _+3 0.8

Plag 2 79.9 1.640 6.811 0.1456 +_2 0.510363 + 18 0.34897 + 5 0.5

Mask 2 41.2 1.122 4.697 0.1445 + 2 0.510334 +_39 0.34894 + 4 0.2

Mask 3 23.4 1.400 6.050 0.1399 +_2 0.510354 + 34 0.34897 +_5 0.2

Px 2 120.2 0.9361 1.526 0.3710 + 4 0.516731 + 85 0.34890 + 10 7.2

Px 3 58.5 0.9211 1.552 0.3589 + 4 0.516475 + 36 0.34902 + 4 0.8

Px 4 55.5 1.027 2.329 0.2667 + 3 0.513883 + 21 0.34898 + 4 0.2

Px 5 55.3 0.9783 2.0"2.6 0.2920 + 3 0.514678 + 18 0.34900 + 3 0.4

Px 6 70.9 0.9800 2.228 0.2660 + 3 0.513738 + 31 0.34902 + 4 0.3

Ames Nd(e) 0.511146 + 28 0.34898 + 3

La Jolla Nd(f) 0.511116+33 0.34893+3

(a) Calculated using measured Sm isotopic composition.

(b) Uncertainties correspond to last figures and do not include the g0.1% uncertainty in the Sm/Nd ratio of the spike.

(c) Uncertainties are 2Om and correspond to last figures. Normalized to 148Nd/144Nd = 0.24308.

(d) Estimated assuming mass 147 due entirely to 147Sin.

(e) Average of 4 analyses for January, 1980 to July, 1980.

(f) Single analysis--January, 1981.



SAMPLE78238- 391

78238
Shocked Norite

57.58 g, 5.9 x 4.5 x 3.5 cm

INTRODUCTION Bauer (1975) found that the
composition of iron metal in 78238 RADIOGENIC ISOTOPES

Sample 78238 is another piece of the was high in Co and low in Ni

same norite as 78235 (see section on (Fig. 3). These Co-rich metal grains Sample 78238 has not been dated.
the boulder at Station 8). It is a are found in both the shocked coarse

heavily shocked, coarse-grained, zones and finer-grained crushed THE SURFACE
plutonic norite of cumulate origin. It zones in the rock. These high-Co

also has a coating of black glass. It metal grains presumably crystallized The original catalog (Butler, 1973)
has a penetrating vein of black glass slowly from intercumulus liquid, notes that the glass coating on 78238
which includes vesicles (Fig. 1). Mehta and Goldstein (1980) have is pitted. There are 10-15 pits/cm 2

studied metal in glass and found it to on the T, N, and S surfaces.
contain more Ni.

MINERAL CHEMISTRY
i

PROCESSING
Fig. 2 shows the shocked plagioclase WHOLE-ROCK CHEMISTRY

and crushed pyroxene. McCallum The largest piece of 78238 weighs
and Mathez (1975), Hewins and The composition of 78238 has not 56 g. There are only three thin
Goldstein (1975), and Sclar and been determined, sections.

Figure 1: Photograph of 78238. Cube is 1 cm. $73-15461.
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Figure 2: Photomicrograph of thin section 78238,8. Field of view is 3 x 4 ram.
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Figure 3: Composition oJ metal grains in 78238. From Hewins and Goldstein (1975).



SAMPLE 78255 - 393

78255
Shocked Norite
48.31 g, 4 x 3 x 2 cm (2 pieces)

INTRODUCTION
PETROGRAPHY MINERAL CHEMISTRY

Sample 78255 was chipped off the
"bottom" of the Station 8 Boulder Sample 78255 is a heavily shocked, Bersch et al. (1991) have precisely

and collected from the soil (see coarse-grained, plutonic norite of determined the composition of
section on the Station 8 Boulder). cumulate origin. It also has a glass pyroxene in 78255.
Sample 78256 was combined with coating and penetrating veins of

78255. The bag in which they were glass including vesicles (Fig. 1). It
returned included 50.57 g of dirt that is the same rock as 78235 (see
may include additional fragments of section of 78235 for petrographic WHOLE-ROCK CHEMISTRY
78255. The glass coating on 78255 description). Fig. 2 illustrates
has been pitted by micrometeorites, shocked plagioclase and glass Warren and Wasson (1978) provided

veinlets, an analysis of 78255 (Table 1 and

Figure 1: Photograph of 78255. Scale is 1 cm. $73-15189.
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Fig. 3). This analysis was very high RADIOGENIC ISOTOPES SURFACE STUDIES
in Al203 (27.4%), indicating that
their sample split may have had

excess plagioclase. Note that the Eu Although sample 78255 has not been The glass coating on 78255 is
is also high. Photos of the hand dated, it should give an age identical reported to have numerous micro-
specimen indicate that the sample to that of 78235-78236. meteorite craters (Butler, 1973)which is an interesting observation,
may have a higher content because 78255 was from the

plagioclase than 78235. This is COSMOGENIC "bottom" of the boulder, which
consistent with plutonic layering RADIOISOTOPES AND
observed by Jackson et al. (1975). EXPOSURE AGES means it had rolled around on the
The Ir content is slightly elevated, surface--even before the astronauts
but low enough to conclude that this Keith et al. (1974) have determined got there.

sample is a pristine lunar rock. the amount of 56Co, 46Sc, and 54Mn
in 78255 (see table in 78235 ,,;ection).

Keith et al. (1974) determined K, U,
and Th (see table in section on
78235). These data should be

representative of the rock as a whole,
and it is interesting to note that they
are slightly different from those of
78235.

Figure 2: Photomicrograph of thin section 78255. FieM of view is 4 x 5 ram.
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Figure 3: Normalized rare earth element diagram for 78255. From Warren and Wasson (1978).
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Table 1: Whole-rock chemistry of 78255.
From Warren and Wasson (1978).

Split ,4
Technique INAA, RNAA

SiO2 (wt%) 47.2'9

TiO2 0.068

A1203 27.40

Cr203 0.145

FeO 2.64

MnO 0.046

MgO 5.98

CaO 14.98

Na20 0.446

K20 0.084

Nb (ppm)

Zr 49

Hf 0.67

Ta 0.086

U 0.]9

Th 0.44

Ba 86

Zn 0.95

Ni 21.7

Co 22.6

Sc 4.6

La 3.3

Ce 7.8

Nd 5

Sm 1.2

Eu 1.21

Tb 0.23

Dy

Er

Yb 0.98

Lu 0.14

Ga 5.1

Ge (ppb) 58.3

Ir 0.43

Au 0.107



SAMPLE 78465 - 397

78465
Soil Breccia
1.039 g, 1.5 x 1 x 1 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

This fragment was sieved from
trench soil 78460. It is the only rock Sample 78465 is a friable dark There are no data on 78465.
fragment larger than 1 cm from the matrix breccia. It has a glass splash
trench, and it was sampled from on one end (Fig. 1).
between 1-6 cm deep in the trench
soil (Wolfe and others, 1981). There is no thin section of this

sample.

Figure 1: Photograph of 78465. The sample is I cm across. $73-19724.
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Rake Fragments
from Station 8

RAKE FRAGMENTS FROM Keil et al. (1974) prepared a catalog 78504 (the 4-I0 mm size range).
STATION 8 of the rake samples from Station 8 There may also be important

and reported studies of them in particles in the residual dirt from the
Station 8 was located only about several catalogs from the Unwersity rake sample 78530 (89 g) and the
20 meters above the Taurus-Littrow of New Mexico (Warner et al., trench soils (78220-78280). There is
Valley (Wolfe and others, 1981). 1978). Fig. 1 shows the location of only time here to refer to a few of the

The comprehensive sample at tile rake sample and rake soil on the studies of the numerous coarse-fine
Station 8 consisted of both a rake rim of a subdued small crater particles.
sample and a soil sample from which (10 meters).
rock fragments and "coarse-fine" Irving et al. (1974) and Steele and
fragments were separated. Soil Table 1 gives a summary of the rake Smith (1975) have studied a number
78500 (called the rake soil) samples. Judging from the large of coarse fines from Apollo 17.
contained rock fragments 78505- number of mare basalts and small Bence et al. (1974) have studied a
78518, and the rake sample number of highland breccias, the small fragment, 78503,7,1, which

contained 78525-78599 (the residual Sculptured Hills formation was not they claim is the equivalent of
dirt in the rake bag was called well sampled at Station 8. Meyer 77017. Jolliff et al. (1993) has begun
78530). A soil sample from trench (1973) prepared a catalog of an extensive study of the coarse fines
78460 also yielded one particle additional small "coarse-fine" from the talus slopes of Massifs
greater than 1 cm (78465). fragments from the Apollo 17 soils, surrounding the Taurus-Littrow

There was a total of 84 particles in Valley.

F Noriteboulder _ 7822
3_,

5) before rolling __"""L__"__-\
After rolling _x/_

x 781 . Pan 25)tc¢ 78230 _

. 78233638
Rake area 78250, 55
78500-18 x 78135
78522-99

N (_LRV

l Trench samples)

78420 x-

78440 A 0 10 20 30 m

78460-65 Pan 26 I I I I
78480

Figure 1: Map of Station 8showing location of the rake sample.
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Table 1: Summary of the "Rake Samplles" from Station 8.

78465 Soil Breccia 78556 Dark Matrix Soil Breccia

78505 High-Ti Mare Basalt 78557 Dark Matrix Soil Breccia

78506 High-Ti Mare Basalt 78558 Dark Matrix Soil Breccia

78507 High-Ti Mare Basalt 78559 Dark Matrix Soil Breccia

78508 Light Matrix Soil Breccia 78565 Dark Matrix Soil Breccia

78509 High-Ti Mare Basalt 78566 Dark Matrix Soil Breccia

78515 Dark Matrix Breccia 78567 Dark Matrix Soil Breccia

78516 Dark Matrix Soil Breccia 78568 Breccia

78517 Friable White Cataclasite 78569 High-Ti Mare Basalt

78518 Dark Matrix Soil Breccia 78575 High-Ti Mare Basalt

78525 Agglutinate 78576 High-Ti Mare Basalt

78526 Green Glass Vitrophyre 78577 High-Ti Mare Basalt

78527 Granulitic Noritic Breccia 78578 High-Ti Mare Basalt

78528 Basalt 78579 High-Ti Mare Basalt

78535 Dark Matrix Breccia 78585 High-Ti Mare Basalt

78536 Dark Matrix Breccia 78586 High-Ti Mare Basalt

78537 Dark Matrix Breccia 78587 High-Ti Mare Basalt

78538 Dark Matrix Breccia 78588 High-Ti Mare Basalt

78539 Dark Matrix Breccia 78589 High-Ti Mare Basalt

78545 Dark Matrix Breccia 78595 High-Ti Mare Basalt

78546 Dark Matrix Breccia 78596 High-Ti Mare Basalt

78547 Dark Matrix Breccia 78597 High-Ti Mare Basalt

78548 Soil Clod 78598 High-Ti Mare Basalt

78549 Soil Clod 78599 High-Ti Mare Basalt

78555 Soil Breccia
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78505
High-Ti Mare Basalt
506.3 g, 6.5 x 7.5 x 8.0 cm

INTRODUCTION
MINERAL CHEMISTRY COSMOGENIC

Sample 78505 was collected as part RADIOISOTOPES AND
of a soil sample at Station 8. It is a The compositions of minerals in EXPOSURE AGES
typical ilmenite-rich mare basalt 78505 are given in Warner et al.
from Apollo 17 (Fig. 1). (1978) (Fig. 3). Heiken and Keith et al. (1974) have reported the

Vaniman (1989) studied ilmenite, solar flare and cosmic ray induced
and Roedder (1979a) studied the activity of 26A1, 22Na, 54Mn, 56Co,

PETROGRAPHY melt inclusions in ilmenite in 78505. and 46Sc (Table 2).

Brown et al. (1975) give the modal Drozd et al. (1977) have determined
mineralogy of 78505 as 0.5% WHOLE-ROCK CHEMISTRY an exposure age of 121 m.y. for

olivine, 21% opaques, 27.7% plagio- 78505 using the 81Kr_Kr method.
clase, 47.7% pyroxene, and 1.9% Tile chemical composition of 78505
silica (Fig. 2). Warner et al. (1978) is reported in Warner et al. (1975a)
refer to this rock as plagioclase- (Table 1 and Fig. 4). Keith et al. MAGNETIC STUDIES
poikilitic ilmenite basalt. (I 974) have determined the K, U,

and Th contents of 78505 (Table 2). Stephenson et al. (1975 and 1977)
used 78505 to look for changes in the
Moon's magnetic field.

Figure 1: Photograph of 78505. Scale is 1 cm. $73-15384.
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Figure 2: Photomicrograph of thin section 78505,61. Field of view is 3 x 4 mm.
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Figure 3: Compositions of minerals in 78505. Erom Warner et al. (1978).
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Figure 4: Normalized rare earth element diagram for 78505. Data fi'om Warner et al. (1975a).
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Table 1: Whole-rock chemistry of 78505.
From Warner et al. (1975a).

Split ,32 Split ,32
Technique INAA Technique INAA

SiO2 (wt%) - La 5.9

TiO2 12.0 Ce

AI203 10.6 Nd

Cr203 0.436 Sm 9.4

FeO 18.6 Eu 2.1

MnO 0.227 Gd

MgO 9.5 Tb

CaO 9.9 Dy 15

Na20 0.458 Er

K20 0.07 Yb 8.9

Nb (ppm) Lu 1.2

Ni Ge (ppb)

Co 18.7 h"

Sc 74 Au

Table 2: Solar flare induced activity from large solar flare, August 1972.
From Keith et al. (1974).

S_naple
7_505

dpm/Kg

26A1 72 :- 10

22Na 67 :--.8

54Mn 100 _+6

56Co 59 :--.13

46Sc 45 __.4

Th (ppm) .39 + .05

U (ppm) .135 + .012

K (%) .0508 + .008
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78506
High-Ti Mare Basalt
55.97 g, 4 x 4.5 x 3 cm

INTRODUCTION Brown et al. (1975) give the modal
mineralogy of 78506 as 2.0% WHOLE-ROCK CHEMISTRY

S_unple 78506 was collected as part olivine, 22.6% opaques, 20.7%
of a soil sample at Station 8. It is a plagioclase, 52.4% pyroxene, and Rhodes et al. (1976a) reported the
typical ilmenite-rich mare basalt 2.3% silica. Irregular vugs take up chemical composition of 78506, and
from Apollo 17. It has a network of about 10% of the volume of the rock. Gibson et al. (1976) determined the
large vugs (Fig. 1). sulfur content. These analyses are

-- given in Table 1 and Fig. 3.
MINERAL CHEMISTRY

PETROGRAPHY

Brown et al. (1975) have reported a RADIOGENIC ISOTOPES
Pyroxene and plagioclase have "new" Zr-rich mineral in 78506 that
crystallized together in a nice coarse- is related to zirconolite. Nyquist et al. (1976) have reported
grained subophitic texture (Fig. 2). Rb-Sr data for the whole rock

(Table 2).

Figure 1: Photograph of 78506. Scale is 1 cm. $73-15467.
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Figure 2: Photomicrograph of thin section 78506,27. Field of view is 3 x 4 ram.
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Figure 3: Normalized rare earth element diagram for 78506. Data from Rhodes et al. (1976a).
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Table 1: Whole-rock chemistry of 78506.
From Rhodes et al. (1976a).

Split ,29 Split ,29
Technique XRF, IDMS, 1NAA Technique XRF, IDMS, INAA

SiO2 (wt%) 38.55 Ni

TiO2 12.93 Co 17.6

A1203 8.99 Sc 73

Cr203 0.51 La 5.1

FeO 19.36 Ce 17.8

MnO 0°27 Nd 19.6

MgO 9,59 Sm 8.19

CaO 9,94 Eu 1.85

Na20 0,39 Gd 12.9

K20 0.05 Tb

P205 0.02 Dy 14.9

S 0.16 El- -

Nb (ppm) Yb 7.99

Hf 8,2 Lu 1.11

Sr 175 Ge (ppb)

Rb 0.44 Ir

Li 9.4 Au

Ba 65.9

Table 2: Rb-Sr composition of 78506.
Data from Nyquist et al. (1976).

Sample 78506,29

wt (mg) 50

Rb (ppm) 0.442

Sr (pptr0 175

87Rb/86Sr 0.0073 + 3

87Sr/86Sr 0.69961 + 6

TB 4.85 _+0.78

TL 5.50 _+0.78

B = Model age assuming I = 0.69910 (BABI +
JSC bias)

L = Model age assuming I = 0.69903
(Apollo 16 anorthosites for T = 4.6 b,y.)
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78507
High-Ti Mare Basalt
23.35 g, 3.8 x 3.4 x 1.5 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 78507 was collected as part
of a soil sample at Station 8. It is a Sarnple 78507 is a very vuggy, Ma et al. (1979) have reported the
typical ilmenite-rich mare basalt coarse-grained mare basalt. The chemical composition of 78507
from Apollo 17 (Fig. 1). large pyroxenes surround ilmenite. (Table 1 and Fig. 3).

Plagioclase is intergrown with
pyroxene (Fig. 2). Based on its trace element content,

sample 78507 would be classified as
a Type B Apollo 17 basalt (see

appendix).

Figure 1." Photograph of 78507. Scale is 1 cm. $73-16144.
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Figure 2: Photomicrograph of thin section 78507,4. Field of view is 3 x 4 mm.
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Figure 3: Normalized rare earth element diagram for 78507. Data from Ma et al. (1979).
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Table 1: Whole-rock chemistry of 78507.
From Ma et al. (1979).

Split ,1
Technique INAA

SiO 2 (wt%)

TiO2 11.9

A1203 8.8

Cr2()3 0.536

FeO 18.0

MnO 0.222

MgO 10

CaO 9.7

Na20 0.407

K20 0.037

Nb (ppm)

Zr

Hf 5_5

Ta 1.3

Ni

Co 21

&: 79

La 3.4

Ce 13

Nd 16

Sm 6

Eu 1.59

Gd

Tb 1.4

Dy 10

El"

Yb 5.8

Lu 0.86

Ge (ppb)

Ir

Au
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78508
Light Matrix Soil Breccia
10.67 g, ~2 x I x 1 cm

INTRODUCTION
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 78508 was collected as part
of a soil sampleatStation8. It is a Butler(1973) described78508 as 78508 has never been studied. There
typicalsoil breccia from Apollo 17, friable, mediumgrey, matrix-rich areno thin sections, chemical
althoughperhapsof a somewhat brecciawith clastsgenerallyof analyses, or references in the
lightercolor, millimeter size composing less than literature.

5%. Small clasts are generally white
plagioclase,mare basalt,black
aphanite,and orangeglass.

Figure 1: Photograph of 78508. Cube is 1 cm. $73-18608.
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78509
High-Ti Mare Basalt
8.68g, 1.5 x 1.0 x 1.0cm

INTRODUCTION Sample 78509 is classified as a
WHOLE-ROCK CHEMISTRY Type B Apollo 17 basalt (see

Sample 78509 was collected as part appendix).
of a soil sample at Station 8, Itisa Ma et al. (1979) have reported the
typical ilmenite-rich mare basalt chemical composition of 78509
from Apollo 17 (Fig. 1). ('Fable 1 and Fig. 3). The soil

(78501) has a high percentage of
mare basalt.

PETROGRAPHY

Sample 78509 is a typical vuggy
mare basalt (Fig. 2) with medium
grain size (Butler, 1973).

Figure 1. Photograph of 78509, Cube is 1 cm. $73-18608,
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Figure 2. Photomicrograph of thin section 78509,5. Field of view is 3 x 4 mm.
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Figure 3. Normalized rare earth element diagramfor 78509. Datafor the local soil are also included for comparison.
Data from Ma et al. (19179).
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Table 1: Whole-rock chemistry of 78509.
From Ma et al. (1979).

Split ,1

Technique INAA

SiO 2 (wt%)

TiO2 12.3

A1203 9.2

Cr20_ 0.388

FeO 19.0

MnO 0.252

MgO 8

CaO 10.9

Na20 0.414

K20 0.04

Nb (ppm)

Hf 5.1

Ta 1.3

Ni

Co 22

Sc 89

La 3.9

Ce 14

Nd 16

Sm 5.8

Eu 1.22

Gd

Tb 1.3

Dy 9

Er

Yb 5.5

Lu 0.8

Ge (ppb)

k

Au
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78515
Dark Matrix Breccia
4.76 g, 1.5 x 1.5 x 1.0 cm

INTRODUCTION m,
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Sample 78515 was collected as part
of a soil sample at Station 8. It Butler (1973) describes 78515 as Jerde et al. (1987) have reported the
appears to be an exotic breccia with moderately coherent, medium grey, chemical composition of 78515
relatively high AI203 (22.8%). matrix-rich breccia with clasts (Table 1). The sample has very high

composing less than 5% of the rock. Ir (14 ppb). The rare earth element

It also has an unusual rare earth However, the texture of this sample pattern is not like the local soil

element pattern, is not like typical soil breccias (Fig. 2).
(Fig. 1). Jerde et al. (1987) deter-

mined that the maturity (Is/FeO) of
78515 was very low. Consequently, PROCESSING
it may not be a soil breccia.

The largest piece of 78515 weighs
4.39 g. The only thin section is too
small to study.

Figure 1: Photograph of 78515. Scale is 1 cm. $73-18607.
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Figure 2: Normalized rare earth element diagram for 78515. Data from Jerde et aL (]987).
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Table 1: Whole-rock chemistry of 78515.
From Jerde et al. (1987).

Split ,1 Split ,1
Technique INAA Technique INAA

SiO2 (wt%) 44.08 Ni 340

TiO2 1.67 Co 31.9

A1203 22.87 Sc 18.7

0"203 0A8 La 4.3

FeO 7.72 Ce 11.3

MnO 0.11 Nd 8.2

MgO 7.52 Sm 2.56

CaO 14.42 Eu 0.93

Na20 0.37 Gd

K20 0.054 Tb 0.62

Nb (ppm) Dy 4.1

Zr 200 Er

Hf 1.8 Yb 2.2

Ta 0.29 Lu 0.36

U 0.24 Ga 3.6

Th 0.75 Ge (ppb)

Sr 130 Ir 14.8

Ba 69 Au 4.9

Cs 0.26



SAMPLE 78516- 423

78516
Dark Matrix Soil Breccia

3.18 g, 1.5 x 1.0 x 1.0 cm

INTRODUCTION 5%. Small clasts are generally white Sample 78518 appears to be the
plagioclase, mare basalt, black same material.

S_unple78516 was collected as part aphanite, and orange glass (Fig. 1).
of a soil sample at Station 8. It is a
friable soil breccia and contains The thin section of 78516 shows that WHOLE-ROCK CHEMISTRY

orange glass beads, it contains a seriate distribution of
small mineral fragments in brown Jerde et al. (1987) have reported the
glass matrix (Fig. 2). Orange glass chemical composition of 78516

PETROGRAPHY beads are a distinctive feature. (Table 1 and Fig. 3). It has a
composition almost exactly like that

Butler (1973) described 78516 as Jerde et al. (1987) have determined of the soil from which it was
friable, medium grey, matrix-rich that the maturity (Is/FeO) of 78516 is collected (78501), and it has a high Ir
breccia with clasts generally of snbmature, content.
millimeter size composing less than

Figure 1." Photograph of 78516. Cube is I crn. $73-18607.
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Figure 2: Photomicrograph of thin section 78516,3. Field of view is 3 x 4 mm.

1000 I I I I I I I I I I I 1000

I O0
I_ 100

"0 []

o= -_ - r _NI__ •_
t,- • • m

78516 _

E
1010

[] 78501 soil

1 I 0 i I I t I I I :: 1
La Ce Nd SmEuGdTb Dy Er YbLu

Figure 3: Normalized rare earth element diagram for 78516. Data from Jerde et al. (1987).
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Table 1: Whole-rock chemistry of 78516.
From Jerde et al. (1987).

Split ,1 Split ,1

Technique INAA Technique INAA

SiO2 (wt%) 44.51 Ni 250

TiO2 2.47 Co 35.7

A1203 18.09 Sc 26.1

(2r203 0.31 La 10.1

FeO 10.41 Ce 26

MnO 0. ]6 Nd 17

MgO 10.94 Sm 5.3

CaO 11.75 Eu 1.21

Na20 0.41 Gd

K20 0.11 Tb 1.14

Nb (ppm) Dy 6.9

Zr 190 Er

Hf 3.9 Yb 4.3

Ta 0.52 Lu 0.67

U 0.44 Ga 4.4

Th 1.79 Ge (ppb)

Sr 180 Ir 10.7

Ba 100 Au <4

Cs 0.32



SAMPLE 78517 - 427

78517
Friable White Cataclasite
1.82 g, 1.1 x 1.0 x 1.0 cm

INTRODUCTION (80%) and green (20%) minerals. It should be noted that anorthosites

However, the thin sections of a small senso stricto are rare at the Apollo 17
Sample 78517 was collected as part piece of 78517 (Fig. 2) exhibit a site (Warren et al., 1991).
of a soil sample at Station 8. It "granulitic" texture with "shear"
appears to be a shocked anorthosite zones of crushed material (Warren,

or cataclasite (Fig. 1). It apparently private communication). Metal PROCESSING
is nonpristine, grains have high Ni contents (14%)

and low Co (0.95%) (unpublished). A portion of this sample was
allocated to P. Warren in 1978, and

PETROGRAPHY - two thin sections were made.
CHEMISTRY

The Preliminary Examination Team

described this small sample as a Analyses of this sample are not yet
friable white cataclasite (Butler, published. Sample 78517 has a low
1973). During splitting for alloca- rare earth element content; Ir is

tion in 1978, this sample appeared to ~14 ppb, Au is ~9 ppb, and Ni is
have the relict texture of a coarse ~320 ppm (Warren, unpublished).
plutonic rock composed of white

Figure 1: Photograph of 78517. Cube is 1 cm. $73-18607.
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Figure 2. Photomicrograph of thin section 78517,3 with partially crossed polarizers. Field of view is 2.5 x 1.25 mm.
(Photo courtesy of Paul Warren.)



SAMPLE 78518 - 429

78518
Dark Matrix Soil Breccia

0.88 g, 1.0 x 0.5 x 0.5 cm

INTRODUCTION
PETROGRAPHY

Sample 78518 was collected as part

of a soil sample at Station 8. It is a Butler (1973) described 78518 as
dark matrix soil breccia, very similar friable, medium grey, matrix-rich
to 78516 and 78555. breccia with clasts generally of

millimeter size composing less than
5%. Small clasts are generally white
plagioclase, mare basalt, black
aphanite, and orange glass.

Figure 1: Photograph of 78518. Cube is I cm. $73-18607.
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78525
Agglutinate
5.11 g, 2.6 x 2.1 x 1.7 cm

INTRODUCTION
PETROGRAPHY

Sample 78525 was collected as part
of the large rake sample at Station 8 This relatively large agglutinate
(Keil et al., 1974). consists of about half fragments of

dark matrix microbreccia welded in a

vesicular black glass (Butler, 1973).

Smnple 78525 has not been studied.

Figure 1: Photograph of 78525. Scale is 1 cm. $73-21033.



SAMPLE 78526 - 433

78526
Green Glass Vitrophyre
8.77 g, 2.2 x 1.6 x 1.6 cm

INTRODUCTION chromite euhedra. Relic grains of Warner et al. (1978a) report that
olivine, pigeonite, plagioclase, metal grains have a range in

Sample 78526 was collected as part chromite, and metal are present in composition: in the porphyritic
of the large rake sample at Station 8 the glass, and two types of very low lithology, 1.0-6.7% Ni and 1.3-2.8%
(Keil et al., 1974). It is a very Ti (VLT) mare basalt are present as Co; in the granular lithology,
primitive volcanic glass, with very lithic clasts. 0.8-1.6% Ni and 1.0-1.4% Co; and
low Ti and REE contents, individual grains in the glass,

Warner et al. (1978a) have studied 1.2-18.9% Ni and 1.0-3.4% Co.

PETROGRAPHY 78526 carefully and have concluded None of the metal in 78256 appears
that :itwas formed as an impact melt to be of meteoritic origin, as all the
that mixed at least two very different grains analyzed by Warner et al.

Butler (1973) described this sample low Ti basalts, contain >1 wt % Co.
as a "mixture of coherent grey

breccia disrupted by numerous veins Papike and Vaniman (1978) classify
of paie green glass" (Fig. 1). A thin this glass as a VLT basalt.
section of the glass shows that WHOLE-ROCK CHEMISTRY
needles and chains of olivine and

pyroxene have started to grow MINERAL CHEMISTRY Laul and Schmitt (1975c) have
(Fig. 2). Warner et al. (1978f) find reported the chemical composition of
that two textural domains are pre- The compositions of minerals in 78526 (Table 1 and Fig. 4). In 1977,
valent in the glass. One has feathery 78526 have been reported by Warner Murali et al. repeated the analysis
pyroxene and acicular, chain olivine et al. (1978f) (Fig. 3). Plagioclase is and got identical results. Hughes and
and pyroxene; the other has abundant almost pure anorthite. Schmitt (1985) have used the
small "hopper" olivine and tiny composition of 78526 to discuss the

Figure 1: Photograph of 78526. Scale is I cm. $73-33667.
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i i

Zr-Hf-Ta fractionation during lunar
evolution. SIGNIFICANT CLASTS SURFACE STUDIES

Jovanovic and Reed (1978) have Small clasts of VLT basalt are The surface of 78526 has many
determined CI, Br, I, U, and P in included in the glass. In hand micrometeorite craters.
78526. specimen, large elasts of basalt

appear to be present. At the time of
cataloging, 78526 is being a,'.tively
studied by P. Warren and
M. Tatsumoto.

Figure 2: Photomicrograph of thin section 78526,18. Field of view is 3 x 4 mm.
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Figure 4: Normalized rare earth element diagram for 78526. Data from Laul and Schmitt (1975).
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Table 1: Whole-rock chemistry of 78526.
a) Laul and Schmitt (1975c); b) Murali et al. (1977a)

Split ,1 (a) ,6 (b)
Technique INAA INAA

SiO 2 (wt%) - -

TiO2 0.8 1.1

A1203 11.1 10.7

Cr203 0.74 1.02

FeO 17.4 17.6

MnO 0.261 0.278

MgO 11 12

CaO 10 9.7

Na20 0.15 0.16

K20 0.02 0.015

Nb (ppm)

Zr - 226

Hf 0.5 0.7

Ta 0.06

Ni

Co 45.4 44

Sc 51 48

La 1.2 1.3

Ce

Nd

Sm 1 1.1

Eu 0.3 0.25

Gd

Tb 0.28 0.27

Dy 2 1.8

Er

Yb 1.4 1.4

Lu 0.23 0.24

Ge (ppb)

lr

Au
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78527
Granulitic Noritic Breccia

5.16 g, 1.8 x 1.3 x 1.2 cm

INTRODUCTION orthopyroxene (Wo 3En77Fs20 ), 2% (Fig. 3). Metal grains in 78527 are
olivine (Fo77), and ,-0.3% acces- all high in Ni (25-53%) and Co (1.9-

Sample 78527 was collected as part sories, including minor high-Ca 2.2%).
of a large rake sample at Station 8 pyroxene (Wo42En48Fs10),
(Kiel et al., 1974). It is a light- armalcolite, ilmenite, rutile, chro-
colored, recrystallized norite (Fig. 1). mite, baddeleyite, zirconolite, zircon, WHOLE-ROCK CHEMISTRY

K-feldspar, metal, and troilite. The
rock consists of large, seriate, Laul and Schmitt (1975c), Murali

PETROGRAPHY subangular plagioclase (up to 2 mm) et al. (1977a), and Warren et al.
and orthopyroxene (up to 0.8 ram) (1983) have reported the chemical

Butler (1973) described this sample crystals in a fine-grained recrystal- composition of 78527 (Table 1 and
as a "brecciated, coarse-grained (up lized matrix (Fig. 2). Minor olivine Fig. 4). This composition and the
to 4 mm) gabbroic rock with a dark occurs as large polygonized grains, mineral composition are similar to
glass coating. The plagioclase is that of pristine lunar norite 78235.

probably maskelynite, and the mafic Cushing et al. (1993) include 78527 Warren (1993) lists it as a potentially
silicate is pale green." In a few in their suite of lunar granulites, pristine lunar sample. However, it
places the sample is thinly coated by has a relatively high Ir content.
dark breccia material, suggesting that --'
it was a clast in a soil breccia. MINERAL CHEMISTRY

Nehru et al. (1978) describe 78527 as The compositions of minerals in
a recrystallized norite, containing 78527 are given in Nehru et al.
~52% plagioclase (An94), 45% (1978) an4Warren et al. (1978t3

Figure i: Photograph of 78527. The white spot in the center is an artifact. Scale is I cm. $73-21026.
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Figure 2: Photomicrograph of thin section 78257. Field of view is 3 x 4 mm. From Warner et al. (1978).
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Figure 3: Compositions of minerals in 78527. From Warner et al. (1978).
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Figure 4: Normalized rare earth element diagram for 78527. Data from Laul and Schmitt (1975).
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Table 1: Whole-rock chemistry of 78527.

a) Laul and Schmitt (1975c); b) Murali et al. (1977a); c) Warren et al. (1983)

Split ,2 (a) ,2 (b) ,5 (c)
Technique INAA INAA INAA

SiO2 (wt%) - - 45.37

TiO2 0.6 0.3:3 0.37

A1203 16.8 13.3 14.93

Cr203 0.21 0.191 0.215

FeO 7.4 8.3 9.90

MnO 0.09 0.087 0.12

MgO 15 14 19.75

CaO 9.2 7.8 8.12

Na20 0.42 0.36 0.35

K20 0.065 0.054 0.07

Nb (ppm)

Zx - <350

Hf 2.9 3.2 2.76

Ta 0.3 0.3,3 0.33

U - 0.29

Th 1.4 0.7 1.6

Ba 150 110 140

Ni 120 170 102

Co 31.6 35 47

Sc 9.4 8 9.4

La 8.5 7.9 9.3

Ce 20 (25) 25.5

Nd 14

Sm 3.9 2.!) 3.72

Eu 1.07 0.!7"/ 0.98

Gd

Tb 0.8 0.7 0.83

Dy 5.5 4:1 5.7

Er

Yb 5 3.4 3.76

Lu 0.73 0.59 0.61

Ge (ppb) 86

k 6 2.8

Au 0.23



SAMPLE 78528 - 443

78528
Basalt
7.00 g, 2.0 x 1.5 x 1.2 cm

INTRODUCTION
PETROGRAPHY

Sample 78528 was collected as part
of a soil sample at Station 8. It 78528 is a fine-grained mare basalt
appears to be a typical ilmenite-rich with breccia attached to its surface.
mate basalt from Apollo 17 (Fig. 1). It may have been a clast in a breccia

(Butler, 1973).

This sample has not been studied.

Figure 1: Photograph of 78528. Scale is I cm. $73-21028.



SAMPLE 78535 - 445

78535
Dark Matrix Breccia

103.4 g, 2 pieces: 6.0 x 5.0 x 4.1 cm; 1.5 x 1.5 x 0.5 cm

INTRODUCTION basalt. Keil et al. (1974) and Warner
et al. (1978f) have also described WHOLE-ROCK CHEMISTRY

Sarflple 78535 is a coherent soil 78535 in their catalogs.
breccia that was collected as part of a Laul and Schmitt (1975c) have
large rake sample at Station 8 In thin section, the breccia matrix reported the chemical composition of
(Fig. 1). 78535 appears to be similar consists of abundant small mineral 78535 (Table 1). The chemical

to 78546, which is perhaps the best clasts together with dark brown glass composition is almost exactly like
studied of this group of soil breccias, that firmly cements the rock (Fig. 2). that of the local soil (78501) (Fig. 3).

Warner et al. found abundant

mineral, glass, and lithic clasts. SIGNIFICANT CLASTS
PETROGRAPHY Lithic clasts include anorthosite and

mare basalt. Orange and devitrified Fig. 1 shows a relatively large
Butler (1973) describes 78535 as orange glass spherules are common.
moderately coherent, medium grey, (8 mm), chalky white clast that

matrix-rich breccia with clasts Warner et al. (1979) have studied the apparently has not been studied.
composing less than 5% of the rock. glass compositions in 78535.
Clasts are predominantly white and
consist of plagioclase and mare

Figure 1: Photograph of 78535. Scale is 1 cm. $73-21429.
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Figure 2: Photomicrograph of thin section of 78535,7. Field of view is 3 x 4 mm.
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Figure 3: Normalized rare earth element diagram for 76'535 compared with data from local soil.
Data from Laul and Schmi/,t (1975c).
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Table 1: Whole-rock chemistry of 78535.
From Laul and Schmitt (1975c).

Split ,3
Technique INAA

SiO2 (wt%)

TiO2 3.9

A1203 17.2

0"203 0.30

FeO 11.3

MnO 0.14

MgO 9.7

CaO 11.6

Na20 0.38

K20 0.09

Nb (ppm)

Hf 4.4

Ta 0.75

U

Th 1.0

Ba

Ni 200

Co 30.7

Sc 32

La 8.3

Ce 24

Nd

Sm 5.9

Eu 1.2

Gd

Tb ].2

Dy 7.2

El'

Yb 4.7

Lu 0.72

Ge (ppb)

Ir

Au



SAMPLE78536- 449

78536
Dark Matrix Breccia

8.67 g, 3.0 x 1.8 x 1.3 cm

INTRODUCTION Clasts are predominantly white and
PETROGRAPHY consist of plagioclase and mare

Sample 78536 is a coherent soil basalt.

breccia that was collected as part of Butler (1973) describes 78536 as

a large rake sample at Station 8 moderately coherent, medium grey, Sample 78536 has not been studied.
(Fig. 1). It is similar to 78535 (Keil matrix-rich breccia with clasts
et al., 1974). composing less than 5% of the rock.

Figure 1: Photograph of 78536. Scale is 1 cm. $73-33419.



SAMPLE 78537 - 451

78537
Dark Matrix Breccia
11.76 g, 3.0 x 2.0 x 1.9 cm

INTRODUCTION Thin sections of 78537 show that it
PETROGRAPHY has a brown glass matrix including

Sample 78537 is a coherent soil orange glass spheres and mare basalt
breccia that was collected as part of Butler (1973) describes 78537 as fragments (Fig. 2). This breccia is
a large rake sample at Station 8 moderately coherent, medium grey, probably from the mare surface near
(Fig. 1). This brown glass matrix matrix-rich breccia with clasts Station 8.
breccia is similar to 78535. composing less than 5% of the rock.

Clasts are predominantly white and Warner et al. (1979) have studied the
consist of plagioclase and mare glass compositions in 78537.basalt.

Figure 1: Photograph of 78537. Scale is I cm. $73-33404.
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Figure 2: Photomicrograph of thin section 78537,17. Field of view is 3 x 4 mm.



SAMPLE 78538 - 453

78538
Dark Matrix Breccia

5.82 g, 2.1 x 1.8 x 1.0 cm

INTRODUCTION m
PETROGRAPHY

Sample 78538 is a coherent soil
breccia that was collected as part of Butler (1973) describes 78538 as
a large rake sample at Station 8 moderately coherent, medium grey,
(Fig. 1). It is similar to microbreccia matrix-rich breccia with clasts
78535, but perhaps is darker grey composing less than 5% of the rock.
(Keil et al., 1974). Clasts are predominantly white and

consist of plagioclase and mare
basalt.

Figure I: Photograph of 78538. Scale is 1 cm. $73-21010.



SAMPLE 78539 - 455

78539
Dark Matrix Breccia
3.73 g, 2.4 x 1.5 x 1.1 cm

ml

INTRODUCTION Keil et al. (1974) suggest that the
PETROGRAPHY matrix of this fragment of soil

Sample 78539 is a coherent soil breccia is "somewhat transitional to

breccia that was collected as part of Butler (1973) describes 78539 as soil clods."
a large rake sample at Station 8 moderately coherent, medium grey,
(Fig. 1). It is similar to 78535. matrix-rich breccia with clasts

composing less than 5% of the rock.
Clasts are predominantly white and
consist of plagioclase and mare
basalt.

/

Figure 1: Photograph of 78539. Scale is I cm. $73-33443.



SAMPLE 78545 - 457

78545
Dark Matrix Breccia
8.60 g, 2.5 x 2.0 x 2.0 cm

INTRODUCTION Clasts are predominantly white and
PETROGRAPHY consist of plagioclase and mare

Sample 78545 is a coherent soil basalt.
breccia that was collected as part of Butler (1973) describes 78545 as

a large rake sample at Station 8 moderately coherent, medium grey, Keil et al. (1974) describe one large
(Fig. 1). It is similar to 78535. matlix-rich breccia with clasts clast of mare basalt.

composing less than 5% of the rock.

Figure 1: Photograph of 78545. Scale is I cm. $73-33398.
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78546
Dark Matrix Breccia
42.66 g, 4.9 x 3.9 x 2.5 cm

INTRODUCTION Warner et al. (19780 report that

78546 has a relatively high propor- MINERAL CHEMISTRY
Sample 78546 is a coherent soil tion of clasts to matrix. Part of the

breccia that was collected as part of a breccia is intruded by irregular, Warner et al. (1979) have studied the
large rake sample at Station 8 sometimes vesicular, glass veins, glass compositions in 78546.
(Fig. 1). Warner et al. (1978f) state Lithic clasts include a large poikilitic Shearer et al. (1991) have used the
that 78546 is similar to 78535. anorthositic norite or gabbro, several ion microprobe to analyze glass
Fruland (1983) included 78546 in the mare basalt clasts (mostly fine- beads in 78546.
suite of soil breccias to be studied by grained), and abundant fine-grained

the Regolith Initiative. breccia clasts. Orange glass and WHOLE-ROCK CHEMISTRY
devitrified orange glass spherules are

PETROGRAPHY abundant. Minor pale yellow, green, Laul and Schmitt (1975c) and Simon

and colorless glass fragments are et al. (1990) have reported the
also reported.

Butler (1973) describes 78546 as chemical composition of 78546
(Table 1 and Fig. 3). This breccia

moderately coherent, medium grey, Simon et al. (1990) give the has a high Ti content. The REE
matrix-rich breccia with clasts com- mineralogical mode of 78546 and
posing less than 5% of the rock. content is similar to the Station 8 soil

compare it with other regolith (78501).Clasts are predominantly white and breccias.
consist of plagioclase and mare
basalt (Fig. 2).

Figure 1: Photograph of 78546. Scale is 1 cm. $73-21410.
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SURFACE PROCESSING

One side of 78546 had numerous The largest piece of 78546 remaining
micrometeorite craters (Butler, weighs 32 g. There are three thin
1973). sections of 78546.

Figure 2: Photomicrograph of thin section 78546,8. Field of view is 3 x 4 mm.
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Figure 3: Normalized rare earth element diagram for 785415. Data f7'om Laul and Schmitt (1975c).
Data for local soil 78501 are for comparison.
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Table 1: Whole-rock chemistry of 78546.
a) Simon et al. (1990); b) Laul and Schmitt (1975c)

Split ,10 (a) ,3 (b) Split ,10 (a) ,3 (b)
Technique INAA INAA Technique INAA INAA

SiO2 (wt%) - - Cs 0.13

TiO2 4.33 4.2 Zn 60

A1203 13.9 15.3 Ni 100 150

Cr203 0.41 0.33 Co 37.1 35.3

FeO 13.6 13.2 Sc 40 31

MnO 0.18 0.16 La 8.62 7.8

MgO 10.6 10 Ce 22.7 22

CaO 11.5 11 Nd 17.8 16

Na20 0.47 0.45 Sm 5.8 5.5

K20 0.11 0.10 Eu 1.4 1.4

Nb (ppm) Gd 7.3

Zr 110 - Tb 1.3 1.2

Hf 4.7 4.7 Dy 8.6 7.6

Ta 0.76 0.67 Tm 0.71

U 0.33 - Yb 4.42 3.9

Th 1.15 0.8 Lu 0.66 0.56

Sr 150 Ge (ppb)

Rb 10.8 Ir 4.5 6

Ba 110 100 Au 6.0 1



SAMPLE 78547 - 463

78547
Dark Matrix Soil Breccia
29.91 g, 4.0 x 2.8 x 2.4 cm

INTRODUCTION Keil et al. (1974) and Warner et al.
(1978f) included this sample in their WHOLE-ROCK CHEMISTRY

S_maple78547 is a friable soil breccia catalogs (Fig. 2). Warner et al. noted
that was collected as part of a large that it contained a fragmentof very Lanl and Schmitt (1975c) have
rake sample at Station 8 (Fig. 1). low-Ti basalt, a few recrystallized reported the chemical composition of

ANT clasts, and a variety of 78547 (Table 1). This soil breccia
feldspathic breccia clasts. Also has only about half the TiO2 (2.2%)

PETROGRAPHY included are glass spherules,angular of the local soil 78501 (5.2%). It
glass fragments, and several also has a lower and flatterREE

Butler (1973) described 78547 as agglutinates (proof of soil origin), pattern (Fig. 3) and may be a soil
friable, medium grey, matrix-rich breccia derived from furtherup the
breccia with clasts generally of slope of the Sculptured Hills.
millimeter size composing less than MINERAL CHEMISTRY
5'70. Small clasts are generallywhite
plagioclase, mare basalt, black Warneret al. (1979) have studied the SIGNIFICANT CLASTS
aphanite, and orange glass, glass compositions in 78547.

One clast is .-,7mm across (Fig. 1).
This clast has not been studied.

Figure 1: Photograph of 78547. Scale is 1 cm. $73-21404.



SAMPLE 78547- 464

Figure 2: Photomicrograph of grains from 78547. From Warner et al. (197839.
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Figure 3: Normalized rare earth element diagramfor 78547 with data from soil 78501for comparison.
Data from Laul and Schmitt ('1975).



SAMPLE 78547 - 465

Table 1: Whole-rock chemistry of 78547.
From Laul and Schmitt (1975c).

Split ,3

Technique INAA

SiO 2 (wt%)

TiO2 2.2

A1203 16.3

Cr203 0.36

FeO 11.8

MnO 0.16

IVlgO 11

CaO 11.1

Na20 0.36

1<2o 0.085
Nb (ppm)

Zr

Hf 2.9

Ta 0.47

U

Th 1.0

N 150

Co 33

Sc 30

La 6.4

Ce 18

Nd

Sm 4.2

Eu 0.94

Gd

Tb 0.8

Dy 5

Er

Yb 3.4

Lu 0.48

Ge (ppb)

Ir

Au



SAMPLE 78548 - 467

78,548
Soil Clod
15.95 g, 2.6 x 2.2 x 2.1 cm

INTRODUCTION Keil et al. (1974) and Warner et al.

(19780 discussed this sample in their WHOLE-ROCK CHEMISTRY
Sample 78548 is a very friable soil catalogs. They noted that it contains
brec,cia that was collected as part of a clasts of mare basalt and highland Laul and Schmitt (1975c) have
large rake sample at Station 8 materials, and that there are reported the chemical composition of
(Fig. 1). It broke up into soil during fragments of pale green glass, or 78548 (Table 1 and Fig. 3). It has a

•chemical composition exactly likeprocessing (Fig. 2). green glass vitrophyre, similar to
78526, as well as other glasses, that of the rake soil (78501).

PETROGRAPHY
MINERAL CHEMISTRY

Butler (1973) described 78548 as

very friable, medium grey, matrix- Warner et al. (1979) have studied the
rich breccia with clasts generally of glass compositions in 78548.
millimeter size composing less
than 5%.

Figure 1: Photograph of 78548. Scale is I cm. $73-33400.



SAMPLE 78548 - 468

k

t

Figure 2: Photomicrograph of grains from 78548. From Warner et al. (1978f).
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Figure 3: Normalized rare earth element diagramfor 78548. Data from Laul and Schmitt (1975).
Data for 78501 soil are for ogmparison.



SAMPLE 78548 - 469

Table 1: Whole-rock chemistry of 78548.
From Laul and Schmitt (1975c).

Split ,3
Technique INAA

SiO 2 (wt%)

TiO2 5.2

A1203 16.0

Cr203 0.34

FeO 13.2

MnO 0.167

MgO 10

Ca() 11.3

Na20 0.41

K20 0.09

Nb (ppm)

Hf 5

Ta 0.9

U

Th 0.8

Ni 120

Co 31.2

Sc 41

La 7.9

Ce 24

Nd

Sm 6.6

Eu 1.4

Gd

Tb 1.5

Dy 9.3

Er

Yb 5.7

Lu 0.81

Ge (ppb)

Ir

Au



SAMPLE 78549 - 471

78549
Soil Clod

16.09 g, 2.2 x 2.6 x 1.4 cm

INTRODUCTION : _ Keil et al. (1974) and Warner et al.
(19780 included this sample in their wHOLE,ROCK CHEMISTRY

Sample 78549 is a very friable soil catalogs. They noted that it
breccia that was collected as part of a contained feldspathic breccia clasts, Laul and Schmitt (1975c) have
large rake sample at Station 8 minor basalt fragments, and some reported the chemical composition of
(Fig. 1). It broke up into soil during agglutinates (which prove that it was 78549 (Table 1 and Fig. 3). This
processing (Fig. 2). a soil), sample has only about half the TiO 2

• of the 78501 soil. It may be a soil
breccia from upslope on the

PETROGRAPHY MINERAL CHEMISTRY Sculptured Hills.

Butler (1973) described 78549 as Warner et al. (1979) have studied the
friable, medium grey, matrix-rich glass compositions in 78549.
beeccia with clasts generally of
millimeter size composing less than
5%. Small clasts are generally white
plagioelase, mare basalt, black

aphanite, and orange glass.

Figure 1: Photograph of 78549. Scale is I cm. $73-21015.



SAMPLE 78549 - 472

Figure 2: Photomicrograph of grains from 78549. From Warner et al. (197839.
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Figure 3: Normalized rare earth element diagram for 78549. Data from Laul and Schmitt (1975).
Data for 78501 soil are for comparison,,



SAMPLE 78549 - 473

Table 1: Whole-rock chemistry of 78549.
From Laul and Schmitt (1975c).

Split ,1
Technique INAA

SiO2 (wt%)

TiO2 2.6

A1203 18.0

Cr203 0.294

FeO 11.4

MnO 0.142

MgO 10

CaO 11.9

Na20 0.39

K20 0.10

Nb (ppm)

Zr

Hf 4.3

Ta 0.63

U 0.4

Th 1.2

Ba 140

Ni 300

Co 41.8

Sc 26

La 9.4

Ce 25

Nd 18

Sm 5.4

Eu 1.2

Gd

Tb 1.1

Dy 7.3

EI-

Yb 4.1

Lu 0.6

Ge (ppb)

k 10

Au 3



SAMPLE 78555 - 475

78555
Soil Breccia

6.64 g, 2.6 x 1.8 x 1.1 cm

IICrRODUCTION I(eil et al. (1974) and Warner et al.
(19780 included this sample in their MINERAL CHEMISTRY

Sample 78555 is a very friablesoil catalogs. They noted that it was very
breccia that was collected as part of a porous and contained fine-grained Warner et al. (1979) have studied the
large rake sample at Station 8 bleccia clasts, minor basalt glass compositions in 78555.
(Fig. 1). fi:agments,and some agglutinates

(which prove that it was a soil). WHOLE-ROCK CHEMISTRY
Glass spherules and angular glass

PETROGRAPHY fragments are abundant. Jerde et al. (1987) have reported the
chemical composition of 78555

Butler (1973) described 78555 as Jerde et al. (1987) have determined (Table 1 and Fig. 3). It has a TiO2
friable, medium grey, matrix-rich file maturity (Is/FeO) of 78555 tobe content about half that of the local
breccia with clasts generally of that of a submature soil.
millimeter size composing less than soil and may be another soil breccia
5%. Small clasts are generally white from npslope on the Sculptured
plagioclase, mare basalt, black Hills.
aphanite, and orange glass.

i i:¸

Figure 1: Photograph of 78555. Scale is i cm. $73-21021.



SAMPLE 78555 - 476

Figure 2: Photomicrograph of thin section of 78555,4. Field of view is 3 x 4 ram.
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Figure 3: Normalized rare earth _elementdiagram for 78555. DaJ!afrom Jerde et aL (1987).
Data for 78501 soil are for comparison.



SAMPLE78555- 477

Table 1: Whole-rock chemistry of 78555.
From Jerde et al. (1987).

Split ,6 Split ,6
Technique INAA Technique INAA

SiO2 (wt%) 44.5:1 Ni 260

TiO2 2.4,2 Co 35.6

A1203 17.97 Sc

(2r203 0.35 La 9.9

FeO 9._) Ce 25

MnO 0.15 Nd 16

MgO 11.2,'7 Sm 5.3

CaO 11.4..9 Eu 1.17

Na20 0.39 Gd

K20 0.11 Tb 1.1

Nb (ppm) Dy 8.1

Zr 180 Er

Hf 3.7 Yb 4.2

Ta 0.56 Lu 0.65

U 0.53 Ga 4.2

Th 1.86 Ge (ppb)

Sr 160 Ir 11

Ba 130 Au 3.3

Cs 0.55



SAMPLE 78556 - 479

78556
Dark Matrix Soil Breccia
9..50 g, 3.4 x 2.0 x 1.3 cm

INTRODUCTION --'
PETROGRAPHY plagioclase, mare basalt, black

aphanite, and orange glass.
Sample 78556 is a very friable soil

breccia that was collected as part of a Butler (1973) described 78556 as This sample has not been studied. It
large rake sample at Station 8 friable, medium grey, matrix-rich appears to be similar to 78555 (Keil
(Fig. 1). breccia with clasts generally of et al., 1974).

millimeter size composing less than

5%. Small clasts are generally white

Figure 1: Photograph of 78556. Scale is 1 cm. $73-21020.



SAMPLE 78557 - 481

78557
Dark Matrix Soil Breccia
7.1!9g, 3.0 x 1.8 x 1.2 cm

INTRODUCTION --'
PETROGRAPHY plagioclase, mare basalt, black

aphanite, and orange glass.
Sample 78557 is a very friable soil

breccia that was collected as part of a Butler (1973) described 78557 as This sample has not been studied. It
large rake sample at Station 8 friable, medium grey, matrix-rich appears to be similar to 78555 (Keil
(Fig. 1). brex,cia with clasts generally of et al., 1974).

millimeter size composing less than
5%. Small clasts are generally white

Figure 1: Photograph of 78557. Scale is I cm. $73-21012.



SAMPLE 78558 - 483

78558
Dark Matrix Soil Breccia
3.'78 g, 2.2 x 1.5 x 1.4 cm

INTRODUCTION --'
PETROGRAPHY clase, mare basalt, black aphanite,

and orange glass.
Sample 78558 is a very friable soil
breccia that was collected as part of a Butler (1973) described 78558 as This sample has not been studied. It
large rake sample at Station 8 friable, dark grey, matrix-rich breccia appears to be similar to 78555 (Keil
(Fig. 1). with clasts generally of millimeter et al., 1974).

size composing less than 5%. Small
cl_Lstsare generally white plagio-

Figure 1: Photograph of 78558. Scale is I cm. $73-21019.



SAMPLE78559- 485

78559
Dark Matrix Soil Breccia

3.05 g, 2.2 x 1.5 x 0.8 cm

INTRODUCTION "-' clase, mare basalt, black aphanite,
PETROGRAPHY and orange glass.

Sample 78559 is a very friable soil

breccia that was collected as part of a Butler (1973) described 78559 as This sample has not been studied. It

large rake sample at Station 8 friable, dark grey, matrix-rich breccia appears to be similar to 78555 (Keil
(Fig. 1). with clasts generally of millimeter et al., 1974).

size composing less than 5%. Small

clasts are generally white plagio-

Figure 1: Photograph of 78559. Scale is I cm. $73-21008.



SAMPLE 78565 - 487

78565
Dark Matrix Soil Breccia
3.50 g, 1.9 x 1.5 x 1.0 cm

ii

INTRODUCTION clase, mare basalt, black aphanite,

PETROGRAPHY and orange glass.
S_unple 78565 is a very friable soil
breccia that was collected as part of a Butler (1973) described 78565 as This sample has not been studied. It
large rake sample at Station 8 friable, dark grey, matrix-rich breccia appears to be similar to 78555 (Keil
(Fig. 1). with clasts generally of millimeter et al., 1974).

size composing less than 5%. Small
clasts are generally white plagio-

Figure 1: Photograph of 78565. Scale is 1 cm. $73-33414.



SAMPLE 78566 - 489

78566
Dark Matrix Soil Breccia

0.77 g, 0.5 x 0.5 x 0.5 cm

INTRODUCTION clase, mare basalt, black aphanite,
PETROGRAPHY and orange glass.

Sample 78566 is a very friable soil

breccia that was collected as part of a Butler (1973) described 78566 as This sample has not been studied. It
large rake sample at Station 8 friable, dark grey, matrix-rich breccia appears to be similar to 78555 (Keil
(Fig. 1). with clasts generally of millimeter et al., 1974).

size composing less than 5%. Small
clasts are generally white plagio-

Figure 1: Photograph of 78566. Scale is 1 cm. $73-21011.



SAMPLE 78567 - 491

78567
Dark Matrix Soil Breccia
18.88 g, 3.1 x 2.4 x 2.2 cm

INTRODUCTION size composing less than 5%. Small

cl*,sts are generally white plagio- MINERAL CHEMISTRY
Sample 78567 is a coherent soil clase, mare basalt, black aphanite,
breccia that was collected as part of and orange glass. Warner et al. (1979) have studied the
a large rake sample at Station 8 glass compositions in 78567.

(Fig. 1). It is similar to 78546. Compared with other soil breccias,
thin sections of this sample show that The chemical composition of this

PETROGRAPHY it has less fine-grained matrix and sample has not been determined.
more mineral fragments (Fig. 2).
Keil et al. (1974) and Warner et al.

Butler (1973) described 78567 as (1978f) have provided very brief
friable, dark grey, matrix-rich breccia descriptions.
with clasts generally of millimeter

Figure 1: Photograph of 78567. Scale is 1 cm. $73-21017.



SAMPLE 78567 - 492

Figure 2: Photomicrograph of thin section 78567,7. Field of view is 3 x 4 ram.



SAMPLE 78568 - 493

78568
Br_cia

3.57 g, 1.6 x 1.5 x 1.3 cm

INTRODUCTION Keil et al. (1974) and Warner et al.

(19'780 have given brief descrip- MINERAL CHEMISTRY
Sample 78568 is a coherent soil tions. One side of the particle has a
breccia that was collected as part of white coating (Fig. 1). The interior Warner et al. (1979) have studied the
a large rake sample at Station 8 has a brown glass matrix character- glass compositions in 78568.
(Fig. 1). It is similar to 78535. istic of a soil breccia (Fig. 2).

Warner et al. noted that glass spheres The chemical composition of this
were not very common. Lithic clasts sample has not been determined.

PETROGRAPHY include a medium-grained, granular,
very low-Ti basalt, several fine-grain

Butler (1973) describes 78568 as high-Ti basalts, a variety of fine-
moderately coherent, medium grey, grained breccia fragments, and a
matrix-rich breccia with clasts large devitrified anorthosite clast.
composing less than 5% of the rock.
Clasts are predominantly white and
consist of plagioclase and mare
basalt.

Figure 1: Photograph of 78568. Scale is 1 cm. $73-21007.



SAMPLE78568- 494

Figure 2: Photomicrograph of thin section 78568,3. Field of view is 3 x 4 mm.



SAMPLE 78569 - 495

78569
High-Ti Mare Basalt
14.53 g, 2.3 x 1.9 x 1.5 cm

II_rRODUCTION manalcolite, tranquillityite, and
zh'conolite (Keil et al., 1974 and WHOLE-ROCK CHEMISTRY

Sample 78569 was collected as part Warner et ai., 19780.
of the large rake sample at Station 8. Laul et al. (1975b) and Warner et al.

It is a typical ilmenite-rich mare Partial breccia coating suggests this (1975b) have reported the chemical
basalt from Apollo 17 (Fig. 1). basalt may have been a breccia clast composition of 78569 (Table 1 and

. (Butler, 1973). Fig. 4).

PETROGRAPHY

MINERAL CHEMISTRY

Sarnple 78569 is a fine- to medium-

grained mare basalt with -48% The compositions of minerals in this
pyroxene, 27% plagioclase, 4% basalt sample are given in the catalog
olivine, and 17% ilmenite (Fig. 2). by Warner et al. (1978f) (Fig. 3).
There are trace amounts of silica,

Figure I: Photagraphof78569. Scale is 1 nun. $73-21035.



SAMPLE 78569 - 496

Figure 2: Photomicrograph of thin section 78569,7. Field of view is 3 x4 mm.
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Figure 3: Mineral compositions for 78569. From Warner et al. (1978f).



SAMPLE 78569- 497
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Figure 4: Normalized rare earth element diagram of 78569. Data from Warner et al. (1975b).



SAMPLE 78569 - 498

Table 1: Whole-rock chemistry of _
From Warner et al. (1975b).

Split _
Technique INtL_

SiO2 (wt%)

TiO2 12.3

A1203 8.7

0"203 0.4

FeO 19.3

MnO 0.24

MgO 7.8

CaO 10.6

Na20 0.40

K20 0.075
Nb (ppm)

Hf 8.8

Ta 1.7

Co 19.2

Sc 76

La 6.6

Ce 23

Nd 25

Sm 10.3

Eu 2

Gd

Tb 2.6

Dy 18

Er

Yb 9.2

Lu 1.4

Ge (ppb)

Ir

Au



SAMPLE 78575 - 499

78575
High-Ti Mare Basalt
140.0 g, 5.8 x 4.8 x 3.4 cm

INTRODUCTION also reported (Keil et al., 1974, and
Warner et al., 19781"). MINERAL CHEMISTRY

Sample 78575 was collected as part
of the large rake sample at Station 8. The texture of 78575 is described as The compositions of minerals in this

It is a coarse-grained, vuggy, allotdomorphic-granular by Warren basalt sample are given in the catalog
ilmenite-rich mare basalt from et al. (Fig. 2). Coarse pyroxenes are by Warner et al. (1978f) (Fig. 3).
Apollo 17 (Fig. 1). subequant to equant, uniformly

- granular, and tend to cluster. WHOLE-ROCK CHEMISTRY
Plagioclase occurs as broad, tabular,

PETROGRAPHY nonpoikilitic crystals. Ilmenite Warner et al. (1975b) have reported
crystals are subequant and form the chemical composition of 78575The modal mineralogy of 78575 is chains.

-51% pyroxene, 30% plagioclase, (Table 1 and Fig. 4).
16% ilmenite, and trace olivine.

Trace amounts of silica, armalcolite, Sample 78575 is a Type B Apollo 17
tranquillityite, and zirconolite are basalt (see appendix).

Figure 1: Photograph of 78575. Scale is I cm. $73-21414.



SAMPLE 78575 - 500

Figure 2: Photomicrograph of thin section 78575,,5. Field of view is 3 x 4 ram.
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Figure 3: Chemical compositions of minerals in 78575. From Warner et al. (1978f).



SAMPLE 78575 - 501
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Figure 4: Normalized rare earth element diagram of 78575. Data from Warner et al. (1975b).



SAMPLE 78575 - 502

Table 1: Whole-rock chemistry of 78575.
From Warner et al. (1975b).

Split ,3
Technique INAA

SiO 2 (wt%)

TiO2 11.8

A1203 9.0

0"203 0.46

FeO 17.0

MnO 0.216

MgO 7.5

CaO 11.0

Na20 0.36

K20 0.04

P205

Nb (ppm)

Hf 5.4

Ta 1.2

Ni

Co 16.1

Sc 75

La 3.6

Ce 15

Nd

Sm 6.7

Eu 1,47

Gd

Tb 1,8

Dy 11

Er

Yb 6,6

Lu 0.95

Ge (ppb)

Ir

Au



SAMPLE78576- 503

78.576
High-Ti Mare Basalt
11.64 g, 3.0 x 1.6 x 1.5 cm

INTRODUCTION mode is estimated as ~50% pyrox-
ene, 29% plagioclase, and 18% WHOLE-ROCK CHEMISTRY

Sample 78576 was collected as part ilmenite with trace olivine, silica,

of the large rake sample at Station 8. armalcolite, tranquillityite, The chemical composition of 78576
It is a coarse-grained, vuggy, zirconolite, and spinel, has been reported by Warner et al.
ilmenite-rich mare basalt (Fig. 1). (1975b) (Table 1 and Fig. 5). The

Keil et al. (1974) and Warner et al. very high TiO 2 content (13.6%) and
(1978f) refer to the texture as REE pattern are typical of Apollo 17

PETROGRAPHY plagioclase-poikilitic, basalts.

The interior texture of 78576 is Trace element data indicate that

variolitic with coprecipitating MINERAL CHEMISTRY 78576 is a Type B Apollo 17 basalt
plagioclase and pyroxene in radiating (see appendix).
clusters (Fig. 2). Fig. 3 shows the Warner et al. (19781) have reported
pyroxene needles "end on" and also the mineral compositions of 78576
illustrates the chainlike behavior of (Fig. 4).
the euhedral ilmenite crystals. The

Figure 1: Photograph of 78576. Scale is 1 cm. $73-21036.



SAMPLE 78576 - 5O4

Figure 2: Photomicrograph of thin section 78576,6. Field of view is 3 x 4 ram.
Note radiating cluster of pyroxene and plagioclase crystals.

Figure 3: Photomicrograph of thin section 785:76,6. Field of view is 3 x 4 mm.
Note "end on" texture of pyroxene needles.



SAMPLE 78576 - 505
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Figure 4: Chemical compositions of minerals in 78576. From Warner et al. (1978f).



SAMPLE 78576 - 506
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Figure 5: Normalized rare earth element diagram of 7_576. Data from Warner et al. (1975b).



SAMPLE 78576 - 507

Table 1: Whole-rock chemistry of 78576.
From Warner et al. (1975b).

Split ,3
Technique INAA

SiO2 (wt%)

TiO2 13.6

A1203 8.2
0"203 0.60

FeO 19.1

MnO 0.23

MgO 9.0

C.aO 9.4

Na20 0.35

1(20 0.04

P205

Nb (ppm)

Hf 6.8

Ta 1.5

Co 24

Sc 82

La 4.3

Ce 24

Nd

Sm 6.4

Eu 1.49

Gd

Tb 1.9

Dy 12

Fz

Yb 6.5

Lu 1.1

Ge (ppb)

Ir

Au



SAMPLE 78577 - 509

78577
E[igh-Ti Mare Basalt
8,,84 g, 3.0 x 1.7 x 1.1 cm

INTRODUCTION pyroxene and plagioclase which
surrounded the ilmenite and olivine WHOLE-ROCK CHEMISTRY

S_maple 78577 was collected as part phenocrysts (Fig. 2).
of the large rake sample at Station 8 Ma et al. (1979) have reported the
(Keil et al., 1974). This sample is a chemical composition of 78577
coarse-grained, vuggy, ilmenite-rich MINERAL CHEMISTRY (Table 1 and Fig. 3). This REE
mare basalt (Fig. 1). pattern is typical of Apollo 17

The compositions of minerals in high-Ti basalts.
" 78577 have not been determined.
PETROGRAPHY

Tile texture of mare basalt 78577 was

controlled by coprecipitation of

Figure 1: Photograph of 78577. Scale is 1 cm. $73-21034.



SAMPLE 78577 - 510

Figure 2: Photomicrograph of thin section 78577,4. Field of view is 3 x 4 ram.
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Figure 3: Normalized rare earth element diagram of 78577. Data from Ma et aL (1979).



SAMPLE 78577 - 511

Table 1: Whole-rock chemistry of 78577.
From Ma et al. (1979).

Split ,1
Technique INAA

SiO 2 (wt%)

TiO2 12.1

A1203 8.8

0.42
FeO 18.9

MnO 0.244

MgO 9

CaO 10.6

Na20 0.416

K20 0.051

Nb (ppm)

Zr

I-If 7.2

Ta 1.5

Co 20

Sc 82

La 4.7

Ce 18

Nd 21

Sm 8.3

Eu 1.73

Gd

Tb 1.9

Dy 13

Er

Yb 7.6

Lu 1.04

Ge (ppb)

lr

Au



SAMPLE 78578 - 513

78578
High-Ti Mare Basalt
17.13 g, 3.6 x 1.7 x 1.7 cm

I/'¢rRODUCTION basalt. It has about 51% pyroxene,
28% plagioclase, and 16% ilmenite WHOLE-ROCK CHEMISTRY

Sample 78578 was collected as part with a trace of olivine, silica,
of the large rake sample at Station 8 armalcolite, tranquillityite, and Laul et al. (1975b) and Warner et al.
(Keil et al., 1974). This sample is a baddeleyite. (1975b) have reported the chemical
coarse-grained, vuggy, ilmenite-rich composition of 78578 (Table 1 and
mare basalt (Fig. 1). Fig. 4). It is a high-Ti basalt with

MINERAL CHEMISTRY typical REE pattern.

PETROGRAPHY The mineral compositions were

reported in Warner et al. (1978f)
Fig. 2 illustrates the plagioclase- (Fig. 3).
poikilitic texture of this ilmenite

Figure l: Photograph of 78578. Scale is 1 cm. $73-21032.



SAMPLE 78578 - 514

Figure 2: Photomicrograph of thin section 78578,7. Field of view is 3 x 4 mm.
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Figure 3: Mineral compositions for 78578. From Warner et al. (1978f).



SAMPLE 78578 - 515
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Figure 4: Normalized rare earth element diagram of 78578. Data from Warner et al. (1975b).



SAMPLE78578- 516

Table 1: Whole-rock chemistry of 78578.
From Warner et al. (1975b).

Split ,3
Technique 1NAA

SiO 2 (wt%)

TiO 2 11.2

A1203 9.0

Cr203 0.42

FeO 18.6

MnO 0.23

MgO 8.2

CaO 10

Na20 0.4

K20 0.07

Nb (ppm)

Hf 7.7

Ta 1.5

Co 19.4

Sc 75

La 5.4

Ce 25

Nd 22

Sm 8.6

Eu 1.9

Gd

Tb 2.2

Dy 14

Er

Yb 7.8

Lu 1.1

Ge (ppb)

Ir

Au



SAMPLE 78579 - 517

78579
High-Ti Mare Basalt
6.0'7g, 2.4 x 2.0 x 1.0 cm

INTRODUCTION microporphyritic and plagioclase-
poikilitic. The mineralogical mode VCHOLE-ROCK CHEMISTRY

Sample 78579 was collected as part is ~48% pyroxene, 28% plagioclase,
of the large rake sample at Station 8 16% ilmenite, and 4% silica. There Murali et al. (1977b) have reported

(Keil et al., 1974). This sample is a is also a trace of olivine, armalcolite, the chemical composition of 78579

coar.';e-grained, vuggy, ilmenite-rich and tranquiUityite. (Table 1 and Fig. 4).
mare basalt (Fig. 1).

MINERAL CHEMISTRY
PETROGRAPHY

Warner et al. (19781) determined the
The texture of mare basalt 78579 is compositions of all the minerals in
transitional between olivine- 78579 (Fig. 3).

Figure 1: Photograph of 78579. Scale is I cm. $73-21031.



SAMPLE 78579 - 518

Figure 2: Photomicrograph of thin section 78579,4. Field of view is 3 x 4 ram.
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Figure 3: Mineral compositions for 78579. From Warner et al. (1978f).



SAMPLE78579- 519
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Figure 4: Normalized rare earth element diagram of 78579. Data from Murali et al. (1977b).



SAMPLE 78579 - 520

Table 1: Whole-rock chemistry of 78579.
From Murali et al. (1977b).

Split ,1
Technique INAA

SiO2 (wt%) --

TiO2 12.0

A1203 8.5

cr2o3 o.44_
• FeO 19.8

MnO 0.241

MgO 8.2

CaO !).9

Na20 0.37

K20 I).064

Nb (ppm)

Zr

Hf 9.7

Ta 1.8

Co 17.9

Sc 77

La '7.9

Ce 31

Nd

Sm '9.9

Eu 12.14

Gd

Tb 2.8

Dy 17

Er

Yb 11.1

Lu 1.54

Ge (ppb)

Ir

Au



SAMPLE78585- 521

78585
I-I_gh-Ti Mare Basalt

44.60 g, -,3.0 x 3.5 x 4.0 cm

IN'HIODUCTION thin section it is opaque with ~10%
thin chains of skeletal olivine WHOLE-ROCK CHEMISTRY

Saznple 78585 is a dark black, (Fig. 2). Since it has high TiO 2
aphanitic mare basalt from the large (11.8%), the opaqueness is due to Ma et al. (1977) have reported the
rake sample at Station 8 (Fig. 1). free ilmenite, which commonly chemical composition of 78585

nucleates on olivine (Fig. 3). (Table 1 and Fig. 4). The rare earth

In hand specimen, one surface of dement pattern is similar to those of
78.'i85 appears to have a large brown the other Apollo 17 basalts. Rhodes
clast, but this is a cavity filled with MINERAL CHEMISTRY and Blanchard (1983) also performed
regolith dirt. an analysis of 78585, but give no

Mineral compositions have not been data.
m determined. This sample was not
PETROGRAPHY studied by Warner et al. (19780. The low Hf content indicates that

78585 is aType B Apollo 17 basalt

Butler (1973) describes 78585 as a (see appendix).
veiy fine-grained mare basalt. In

Figure 1: Photograph of mare basalt 78585. Scale is 1 cm. $73-21400.



SAMPLE 78585 - 522

Figure 2: Photomicrograph of thin section 78585,'-;. Field of view is 3 x 4 mm.

Figure 3: Reflected light photomicrographz_f same area as Fig. 2.



SAMPLE 78585- 523

1000 I f I I I I "1 I ' I' I I 1000

100 100
"= 78585"0
C

C2.
E

10 10

1 I I I I I I I I : : ! 1

La Ce Nd Sm EuGdTbDy Er YbLu

Figure 4: Normalized rare earth element diagram of 78585. Datafrom Ma et al. (1977).



SAMPLE78585- 524

Table 1: Whole-rock chemistry of 78585.
From Ma et al. (1977).

Split :,7
Technique INAA

SiO2 (wt%) --

TiO2 12.2

A1203 9.1

Cr203 0.361

FeO 19.6

MnO 0.245

MgO 7

CaO 11

Na2 O 0.396

K20 0.041

Nb (ppm)

Hf 6.4

Ta 1.6

Co 21

Sc 86

La 5.6

Ce 20

Nd 21

Sm 7.5

Eu 1.42

Gd

Tb 1.8

Dy 12

Er

Yb 6.9

Lu 0.97

Ge (ppb)

Ir

Au



SAMPLE 78586 - 525

78586
High-Ti Mare Basalt
1.0.73 g, 2.6 x 1.8 x 1.5 cm

INTRODUCTION
MINERAL CHEMISTRY RADIOGENIC ISOTOPES

Sample 78586 is a dark black,

aphanitic mare basalt from the large Warner et al. (19781")have deter- Paces et al. (1991) have studied the
rake sample at Station 8 (Fig. 1). mined the compositions of minerals Rb-Sr and Sm-Nd for whole-rock

in 78586 (Fig. 3). samples of 78586 (Table 2) and
- classify it as a Type B2 Apollo 17
PETROGRAPHY mare basalt because the Sr and Nd

WHOLE-ROCK CHEMISTRY isotopes do not fall on the whole-

Keil et al. (1974) and Warner et al. rock isochrons for other Apollo 17
(1978f) describe the texture of 78586 Laul et aL (1975b) and Warner et al. mare basalt samples. This may
as vitrophyric (Fig. 2). Skeletal (1975b) have reported the chemical indicate a different source region.
olivine and acicular ilmenite crystals composition of 78586 (Table 1 and
exist in a groundmass of arcuate, Fig. 4).
feathery pyroxene crystals and glassy
mesostasis. Minor armalcolite The low Hf indicates that 78586 is a

phenocrysts are reported by Warner Type B basalt (see appendix).
et al. (1978f).

Figure 1: Photograph of78586. Scale is 1 cm. $73-21029.



SAMPLE 78586 - 526

Figure 2: Photomicrograph of thin section 78586,5. Field of view is 3 x 4 mm.
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Figure 3: Mineral compositions for 78586. From Warner et al. (1978f).



SAMPLE 78586- 527
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Figure 4: Normalized rare earth element diagram of 78586. Data from Warner et al. (1975b).



SAMPLE78586- 528

Table 1: Whole-rock chemistry of 78586.
From Warner et al. (1975b).

Split ,3 Split ,3
Technique INAA Technique INAA

SiO 2 (wt%) - 1.,a 5.2

TiO 2 12.5 Ce 20

AI203 8.7 Nd

0-203 0.37 Sm 7.5

FeO 19.4 F,u 1.44

MnO 0.25 Gd

MgO 7.4 Tb 1.9

CaO 10.3 Dy 12

Na20 0.41 ]_

K20 0.055 Yb 6.9

Nb (ppm) Lu 1.0

Hf 6.2 Ge (ppb)

Ta 1.6 'h-

Co 20.8 Au

Sc 82

Table 2: Rb-Sr and Sm-Nd composition of 78586.
Data from Paces et al. (1991).

Sample 7_86,7

wt (mg) 46,81

Rb (ppm) 0.389

Sr (ppm) 129

87Rb/86Sr 0.008637 + 86

87Sr/86Sr 0.699704 _+18

Sm (ppm) 7.58

Nd (ppm) 18.6

147Sm/144Nd 0.24637 + 49

143Nd/144Nd 0.513989 _+10



SAMPLE 78587 - 529

78587
High-Ti Mare Basalt
11.48 g, 2.5 x 2.0 x 1.2 cm

INTRODUCTION has skeletal olivine and skeletal,

acicular ilmenite microphenocrysts WHOLE-ROCK CHEMISTRY
Sample 78587 is a dark black, in an extremely fine-grained, wholly
aphanitic mare basalt from the large crystalline groundmass (Fig. 2). Warner et al. (1975b) have analyzed
rake sample at Station 8 (Fig. 1). Sparse microphenoerysts of armal- 78587 (Table 1 and Fig. 5). It has

colite and chromian ulvospinel are high Ti and typical rare earth element
present (Fig. 3). abundance.

I'ETROGRAPHY

The low Hf content of 78587

Keil el: al. (1974) describe sample MINERAL CHEMISTRY indicates that it is a Type B
78587 as very fine-grained and rich Apollo 17 basalt (see appendix).
in opaques. Warner et al. (19780 The mineral compositions were
classify this sample as olivine- reported in Warner et al. (19780
microporphyritic ilmenite basalt. It (Fig. 4).

ii!!!!i_ii

Figure h Photograph of 78587. Scale is I cm. $73-21030.



SAMPLE 78587- 530

Figure 2: Photomicrograph of thin section 78587,6. Field of view is 3 x 4 ram.

Figure 3: Photomicrograph in reflected light of same area as Fig. 2.



SAMPLE 78587 - 531
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Figure 4: Mineral compositions for 78587. From Warner et aL (]978f).



SAMPLE78587- 532
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SAMPLE 78587 - 533

Table 1: Whole-rock chemistry of 78587.
From Warner et al. (1975b).

Split ,3
Technique INAA

SiO2 (wt%)

TiO2 12.2

A1203 8.8

Q:203 0.375

FeO 19.4

MnO 0.235

MgO 7.0

CaO 10.3

Na20 0.37

K20 0.046

Nb (ppm)

Hf 6.0

Ta 1.6

Ni

Co 20.3

Sc 81

I_t 5.7

Ce 23

Nd

Srn 6.6

Eu 1.41

Gd

Tb 1.6

Dy 10

Er

Yb 6.7

Lu 1.0

Ge (ppb)

Ir

Au



SAMPLE 78588 - 535

78588
High-Ti Mare Basalt
3.77 g, 1.4 x 1.2 x 0.9 cm

II_RODUCTION count shows ~6.5% olivine, 43%

pyroxene, 28% plagioclase, 16% WHOLE-ROCK CHEMISTRY
Sample 78588 is a dark grey mare ilmenite, and ~5% silica.
basalt from the large rake sample at Murali et al. (1977b) have reported
Station 8 (Fig. 1). the chemical composition of 78588

MINERAL CHEMISTRY (Table 1 and Fig. 4). The Ce

" analysis needs to be checked again.
PETROGRAPHY The minerals in 78588 have been

analyzed during the cataloging The relatively high Hf content

Warner et al. (19780 describe 78588 process by Warner et al. (1978f) indicates that 78588 is a Type A
as an olivine-microporphyritic (Fig. 3). basalt (see appendix).
ilmenite basalt (Fig. 2). A modal

Figure 1: Photograph of 78588. Scale is I cra_ $73-21023.



SAMPLE 78588- 536

Figure 2: Photomicrograph of thin section 78588,5. Field of view is 3 x 4 mm.
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Figure 3." Mineral compositions for 78588. F'rom Warner et al. (1978f).



SAMPLE 78588 - 537

1000 I I I I I I ! I I I I 1000

78588

100 100o_
l,...

e-

e_
E
_ 10 10

1 I I I I I I _ i t = : 1

La Ce Nd SmEuGdTbDy Er YbLu

Figure4: Normalized rare earth element diagram of 78588. Data from Murali et al. (1977b).



SAMPLE 78588 - 538

Table 1: Whole-rock chemistry of 78588.
From Murali et al. (1977b).

Split ,1
Technique INAA

SiO2 (wt%)

TiO2 13.0

AI203 8.9

Cr203 0.469

FeO 20.3

MnO 0.25

MgO 8.9

CaO !}.9

Na20 0.38

K20 0.69

Nb (ppm)

Hf 10.8

Ta 1.9

Co 18.6

Sc 76

La 6.6

Ce (*5)

Nd

Sm 9.9

Eu 2.15

Gd

Tb 3

Dy 18

Er

Yb 9.8

Lu 1.44

Ge (ppb)

Ir

Au



SAMPLE 78589 - 539

78589
High-Ti Mare Basalt
4.10 g, 1.8 x 1.4 x 1.2 cm

INTRODUCTION sometimes skeletal, olivine and
skeletal, often acicular, ilmenite WHOLE-ROCK CHEMISTRY

Sanlple 78589 is a dark grey, fine- microphenocrysts in a variolitic

grained mare basalt from the large groundmass (Fig. 2). Murali et al. (1977b) have reported
rake sample at Station 8 (Fig. 1). the chemical composition of 78589

(Table 1 and Fig. 4). The analysis
MINERAL CHEMISTRY for Ce needs to be checked.

PETROGRAPHY

Warner et al. (19780 have deter-

Warner et al. (1978f) describe the mined the chemical compositions of
texture of 78589 as predominantly the minerals in 78589 (Fig. 3).
very.fine-grained, with subequant,

Figure 1: Photograph of 78589. Scale is 1 cm. $73-21024



SAMPLE 78589 - 540

Figure 2: Photomicrograph of thin section 78589,5. FieM of view is 3 x 4 men.
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Figure 3: Mineral compositions for 78589. From Warner et al. (1978f).



SAMPLE 78589 - 541
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Figure 4: Normalized rare earth element diagram of 78589. Data from Murali et al. (1977b).



SAMPLE78589- 542

Table 1: Whole-rock chemistry of 78589.
From Murali et al. (1977b).

Split ,1
Technique E_AA

SiO2 (wt%)

TiO 2 ]2.6

A1203 9.2

Cr203 0.324

FeO 20.4

MnO 0.25

MgO 7.9

CaO 11.4

Na20 0.4

K20 0.047

Nb (ppm)

Hf 7.7

Ta 1.6

Co 19.2

Sc 83

La 6.3

Ce 33

Nd

Sm 7.4

Eu 1.59

Gd

Tb 1.9

Dy 12

Er

Yb 7.9

Lu 1.12

Ge (ppb)

Ir

Au



SAMPLE 78595 - 543

78595
High-Ti Mare Basalt
4.19 g, 1.3 x 1.4 x 1.2 cm

II_¢I'RODUCTION fine-grained groundmass has a
variolitic texture (Fig. 2). WHOLE-ROCK CHEMISTRY

Sample 78595 is a medium dark
grey, fine-grained mare basalt from Warner et al. (1975a) have reported
the large rake sample at Station 8 MINERAL CHEMISTRY the chemical composition of 78595
(Fig. 1). (Table 1 and Fig. 4).

Warner et al. (19781")have deter-
- mined the chemical compositions of
PF,TROGRAPHY the minerals in 78595 (Fig. 3).

Pyroxenes are chemically zoned.
Sample 78595 has slightly resorbed
equant olivine phenocrysts. The

Figure 1: Photograph of 78595. Scale is 1 cm. $73-21025.



SAMPLE 78595 - 544

Figure 2: Photomicrograph of thin section 7859'_;,6. Field of view is 3 x 4 mm.
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Figure 3: Mineral compositions for 78595. From Warner et al. (1978f).
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Figure 4: Normalized rare earth element diagram of 78595. Data from Warner et al. (1975a).
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Table 1: Whole-rock chemistry of 78595.
From Warner et al. (1975a).

Split ;_
Technique 1NAA

SiO2 (wt%)

TiO2 12.8

A1203 9.0

Cr203 C.443

FeO 19.9

MnO C_.253

MgO 9.1

CaO 11.0

Na20 0.387

K20 0.063

Nb (ppm)

N

Co 20.5

Sc 86

La 7.5

Ce

Nd

Sm 10.5

Eu 2.05

Gd

Tb

Dy 16

Er

Yb 9.9

Lu 1.4

Ge (ppb)

lx

Au



SAMPLE 78596 - 547

78596
High-Ti Mare Basalt
7.55 g, 2.0 x 1.5 x 1.5 cm

INTRODUCTION
MINERAL CHEMISTRY WHOLE-ROCK CHEMISTRY

Sample 78596 is a dark grey, fine-
grained mare basalt from the large Warner et al. (19780 have deter- Murali et al. (1977b) have reported
rake sample at Station 8 (Fig. 1). - mined the chemical compositions of the chemical composition of 78596

the minerals in 78596 (Fig. 3). (Table 1 and Fig. 4). This analysis
-- may need to be repeated because the

PETROGRAPHY Ce seems too high.

S_mple 78596 has slightly resorbed Sample 78596 is a Type A Apollo 17
equant olivine phenocrysts. The basalt (see appendix).
fine-grained groundmass has a
variolitic texture (Fig. 2).

!i i !!!i̧

Figure 1: Photograph of 78596. Scale is I cra. $73-21037.



SAMPLE 78596- 548

Figure 2: Photomicrograph of thin section 78596,6. Field of view is 3 x 4 mm.
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Figure 3: Mineral compositions for 78596. From Warner et al. (1978f).
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Figure 4: Normalized rare earth element diagram of 78596. Data from Murali et at. (1977b).
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Table 1: Whole-rock chemistry of 78596.
From Murali et al. (1977b).

Split ,4
Technique INAA

SiO 2 (wt%) -

TiO 2 11.5

A1203 8.4

Cr203 0.424

FeO 19.5

MnO 0.24

MgO 8.1

CaO 10.4

Na2 O 0.37

K20 0.065

Nb (ppm)

Hf 9.6

Ta _L.8

Co 18.2

Sc 79

La 6.8

Ce 45

Nd

Sm 10.1

Eu :2.08

Gd

Tb 12.6

Dy 17

Er

Yb 10.6

Lu 1.51

Ge (ppb)

lr

Au



SAMPLE78597- 551

78597
High-Ti Mare Basalt
319.1 g, 6.7 x 5.7 x 5.0 cm

INTRODUCTION instrumental neutron activation

MINERAL CHEMISTRY analysis data.

Sample 78597 is a dark grey,
medium-grained mare basalt from Warner et al. (19780 have deter- Gibson et al. (1976) determined the

the large rake sample at Station 8 mined the chemical compositions of sulfur content.
(Fig. 1). the minerals in 78597 (Fig. 3).

RADIOGENIC ISOTOPES
PETROGRAPHY WHOLE-ROCK CHEMISTRY

Nyquist et al. (1976) have reported
This basalt has a porphyritic texture Laul et al. (1975b) and Warner et al. Rb-Sr data for the whole rock
with relatively large olivine pheno- (1975b) have reported the chemical (Table 2).
crysts. The gronndmass has a composition of 78597 (Table 1).
variolitic texture with intergrown Rhodes et al. (1976a) have also O'Kelley et al. (1974a) used the
pyroxene and plagioclase needles in reported the chemical composition of induced radioactivity of 78597 to
radial clusters (Fig. 2). The plagio- 78597 (Fig. 4). Please note that the study the solar flare of August 1972
clase laths have a well-developed isotope dilution mass spectroscopy (Table 3).
intrafasiculate texture, data give a superior view of the true

shape of the rare earth element

Sample 78597 has a network of pattern of these Apollo 17 basalts, as
interconnecting vugs. compared with the poorly defined

Figure I: Photograph of 78597. Scale is I cm. $73-21424.



SAMPLE 78597 - 552

Figure 2: Photomicrograph of thin section 78597,11. Note the hollow plagloclase laths.
Field of view is 3 x 4 ram.
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Figure 3: Mineral compositions for 78597. From Warner et al. (1978f).
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Figure 4: Normalized rare earth element diagram of 78597. Data from Rhodes et al. (1976a).
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Table 1: Whole-rock chemistry of 78597.
a) Warner et al. (1975b); b) Rhodes et al. (1976a)

Split ,1 (a) ,4 (b)

Technique INAA XRF, IDMS, INAA

SiO 2 (wt%) - 38.54

TiO2 11.8 12.39

AI203 9.0 8.85

Cr203 0.348 0.32

FeO 18.0 19.67

MnO 0.24 0.29

MgO 7.1 7.83

CaO 10.7 10.94

Na20 0.42 0.39

K20 0.06 0.04

P205 0.11

S 0.19

Nb (ppm)

Hf 6.2 6.8

Ta 1.5

Sr 130

Rb 0.37

Li 9.9

Ba 60.6

Co 18.5 20.7

Sc 75 85

La 5.3 5.67

Ce 18 17.9

Nd 18.8

Sm 7.3 7.17

Eu 1.4 1.48

Gd 11.2

Tb 1.9

Dy 12 13

Er 7.94

Yb 6.7 7.37
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Table 1: (Concluded).

Split ,1 (a) ,4 (b)
Technique INAA XRF, IDMS, INAA

Lu 1.0 1.07

Ge (ppb)

Ir

Au

Table 2: Rb-Sr composition of 78597.
Data from Nyquist et al. (1976).

Sample 78597,4

wt (rag) 61

Rb (ppm) 0.370

Sr (ppm) 130

87Rb/86Sr 0.0082 + 3

87Sr/86Sr 0.69954 + 6

rib 3.76 + 0.66

TL 4.34 _+0.66

B ffiModel age assuming I ffi0.69910 (BABI +
JSC bias)

L ffiModel age assuming I = 0.69903

(Apollo 16 anorthosites for T = 4.6 b.y.)

Table 3: Solar flare induced activity.
From O'Kelley et al. (1974a).

78597 (a)

dpm/Kg

26A1 48 ___4

22Na 33 + 4

54Mn 80 + 10

56Co 80 + 20

46Sc 25 _+10

48V



SAMPLE78598- 557

78598
High-Ti Mare Basalt
224.1 g, 8.6 x 4.5 x 4.5 cm

INTRODUCTION fine ilmenite crystals separated by

feathery pyroxene crystals and glassy WHOLE-ROCK CHEMISTRY
Sample 78598 is a dark grey, mesostasis (Figs. 2 and 3).
aphanitic mare basalt from the large Laul et al. (1975b) and Warner et al.
rake sample at Station 8 (Fig. 1). (1975b) have reported the chemical

MINERAL CHEMISTRY composition of 78598 (Table 1 and
-- Fig. 5).
PETROGRAPHY Warner et al. (1978f) have deter-

mined the chemical compositions _f The high Hf content indicates that

Thin sections of 78598 reveal a the minerals in 78598 (Fig. 4). 78598 is a Type A Apollo 17 basalt
dendritic network of evenly spaced, (see appendix).

I

Figure 1: Photograph of 78598. Scale is 1 cm. $73-21770.
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Figure 2: Photomicrograph of thin section 78598,5. Field of view is 3 x 4 ram.

Figure 3: Photomicrograph in reflected light of same area as Fig. 2.
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Figure 4: Mineral compositions for 78598. From Warner et al. (1978J9.
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Figure 5: Normalized rare earth element diagram of 78598. Data from Warner et al. (1975b).
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Table 1: Whole-rock chemistry of 78598.
From Warner et al. (1975b).

Split ,3
Technique INAA

SiO 2 (wt%)

TiO2 8.9

AI203 10

6t2o3 0.2
FeO 18.5

MnO 0.246

MgO 5.2

CaO 11.5

Na20 0.44

K2o 0.075
Nb (ppm)

I-If 9.7

Ta 1.8

Co 15

Sc 72

La 7.8

Ce 30

Nd 30

Sm 11.6

Eu 2.4

Gd

Tb 3

Dy 19

Yb 10.3

Lu 1.5

Ge (ppb)

I1"

Au



SAMPLE78599- 563

78599
High-Ti Mare Basalt

198.6 g, 7.2 x 4.7 x 3.0 cm

INTRODUCTION Trace element data indicate that

MINERAL CHEMISTRY 78599 is a Type A Apollo 17 basalt
Sample 78599 is a dark black, f'me- (see appendix).
grained mare basalt from the large Warner et al. (1978f) have deter-
rake sample at Station 8 (Fig. 1). mined the chemical compositions of

the minerals in 78599 (Fig. 3). RADIOGENIC ISOTOPES

Nyquist et al. (1976) have reported
PETROGRAPHY WHOLE-ROCK CHEMISTRY Rb-Sr data for the "whole rock"

(Table 2).
Sample 78599 is a fine-grained Warner et al. (1975b) and Rhodes
basalt with small phenocrysts of et al. (1976a) report the chemical
olivine and ilmenite in a fine-grained composition of 78599 (Table 1 and SURFACE STUDIES
groundmass with a variolitic texture Fig. 4). Gibson et al. (1976) deter-
(Fig. 2). mined the sulfur content of 78599. Micrometeorite craters are abundant

on at least one surface.

Figure 1: Photograph of 78599. Scale is 1 cm. $73-21392.



SAMPLE 78599 - 564

Figure 2: Photomicrograph of thin section 7859!9,6. FieM of view is 3 x 4 mm.
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Figure 3: Mineral compositions for 78599. From Warner et al. (1978f).
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Figure 4: Normalized rare earth element diagram of 78599. Data from Rhodes et al. (1976a).
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Table 1: Whole-rock chemistry of 78599.
a) Warner et al. (1975b); b) Rhodes et al. (1976a)

Split ,4 (a) ,3 (b)
Technique INAA XRF, 1DMS, INAA

SiO 2 (wt%) - 38.44

TiO 2 13.0 12.52

A1203 9.2 8.67

Cr203 0.5 0.43

FeO 20.2 19.14

MnO 0.234 0.28

MgO 7.8 8.47

CaO 10.4 10.48

Na20 0.41 0.38

K20 0.076 0.06

P205 0.04

S 0.18

Nb (ppm)

Hf 9.6 10.1

Ta 2.1

Sr 190

Rb 0.71

li 10.4

Ba 83.2

Co 20.6 18.4

Sc 84 79

La 7.1 6.45

Ce 27 23.7

Nd 25.8

Sm 10.2 11

Eu 2.2 2.12

Gd 16.6

Tb 2.5

Dy 16 18.8

Er 11.2

Yb 9.4 10.2

Lu 1.6 1.46

Ge (ppb)

Ir

Au
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Table 2- Rb-Sr composition of 78599.

Data from Nyquist et al. (1976).

Sample 78599,3-2

wt (nag) 50

Rb (ppm) 0.707

Sr (ppm) 190

87Rb/86Sr 0.0108 + 3

87Sr/86Sr 0.69978 _+5

TB 4.39 + 0.45

TL 4.83 _+0.45

B = Model age assuming I _ 0.69910 (BABI +
JSC bias)
L = Model age assuming I ---0.69903

(Apollo 16 anorthosites for T = 4.6 b.y.)
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APPENDIX
On the Classification of High-Ti
Mare Basalts from Apollo 17

All the large Apollo 17 basalts have ilmenite basalt" from "plagioclase- (Fig. 4, Paces et al., 1991). How-
very high TiO2 contents (8-14%). poikilitic ilmenite basalt," but these ever, for those samples whose ages
On the basis of differences in trace differences are mostly due to have not been determined by internal
element concentrations (quality data variable cooling rates of the volcanic isochron technique, classification
from large splits of fine-grain-size liquid, based on isotopic data is model
samples), Rhodes et al. (1976) dependent assuming an age of
recognized three types (A, B and C). Neal and Taylor (1992) have recently ~3.7 b.y.!
They found the Ba/Rb ratio to be reviewed the petrogenesis of lunar

especially useful (Fig. 1). Since basaits. On the basis of La versus Very low Ti basalt (VLT), a rare but
then, other authors (Lindstrom and LalSm and Hf versus Cr/La plots, important rock type at Apollo 17, is
Haskin, 1978; Pratt et al., 1978) have Neal et al. (1990) have distinguished found only in the core tubes and as
proceeded to continue to classify the Types A and B Apollo 17 basalts, clasts in some of the breccias (Fig. 5,
high-Ti mare basalts (often on the Figs. 2 and 3 plot the data for the Vaniman and Papike, 1977;
basis of data from sample splits as basalt samples included in this Wentworth et al., 1979; Lindstrom

small as 50 mg). Some authors volume, et al., 1994). The only large sample
(Warner et al., 1978) have used of VLT basalt is the glass breccia
petrographic differences to Isotopic data have also been used to 78526.
distinguish "olivine porphyritic help classify the Apollo 17 basalts

170

160 •
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× 70017
150 x

75015 S OO,.a 130 0

g
120

©

110

50 74275 I
I I f I I I I I I i

36 40 44 48 52

100 Mg/(Mg + Fe)

Figure 1: Ba/Rb ratios for some Apollo 17 basalts (from Rhodes et al., 1976). In this diagram
the circles are Type A, triangles are Type B, and squares are Type C.
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regolith attached, will not accurately

CAUTIONARY NOTE provide the composition of the
original basaltic liquid. Sample

The quality of analytical data depend splits that are too small with respect
critically on sample size versus grain to their grain size will yield
size, analytical technique, and questionable data (Clanton and
cleanliness of sample. Basalts that Fletcher, 1976).
were clasts in breccias, or have
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Figure 2: La versus La/Sm for Apollo 17 basalts (this volume only). Fields from Neal et al. (1992).
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Figure 3: Hf versus Cr/La for Apollo 17 basalts (this volume only). Fields from Neal et al. (1992).
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for some Apollo 17 basalts. From Paces et al. (1991).
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APOLLO 17 ROCKS

Sample Type Vol. Page Sample Type Vol. Page Sample Type Vol. Page

70017 basalt 2 1 71048 basalt 2 169 71528 basalt 2 305

70018 2 13 71049 basalt 2 173 71529 basalt 2 309

70019 2 15 71055 basalt 2 177 71535 basalt 2 313

70035 basalt 2 25 71065 basalt 2 187 71536 basalt 2 317

70075 basalt 2 39 71066 basalt 2 191 71537 basalt 2 321

70135 basalt 2 45 71067 basalt 2 195 71538 basalt 2 325

70136 " basalt 2 59 71068 basalt 2 199 71539 basalt 2 329

70137 basalt 2 63 71069 basalt 2 201 71545 basalt 2 335

70138 basalt 2 67 71075 basalt 2 205 71546 basalt 2 339

70139 basalt 2 73 71085 basalt 2 207 71547 basalt 2 345

70145 basalt 2 79 71086 basalt 2 211 71548 basalt 2 349

70146 basalt 2 83 71087 basalt 2 215 71549 basalt 2 353

70147 basalt 2 87 71088 basalt 2 219 71555 basalt 2 357

70148 basalt 2 91 71089 basalt 2 223 71556 basalt 2 361

70149 basalt 2 95 71095 basalt 2 227 71557 basalt 2 365

70155 basalt 2 97 71096 basalt 2 231 71558 basalt 2 369

70156 basalt 2 101 71097 basalt 2 235 71559 basalt 2 373

70157 basalt 2 105 71135 basalt 2 241 71565 basalt 2 377

'70165 basalt 2 109 71136 basalt 2 245 71566 basalt 2 381

'70175 basalt 2 113 71155 basalt 2 249 71567 basalt 2 385

70185 basalt 2 115 71156 basalt 2 255 71568 basalt 2 389

70215 basalt 2 121 71157 basalt 2 259 71569 basalt 2 393

';'0255 basalt 2 131 71175 basalt 2 263 71575 basalt 2 401

70275 basalt 2 137 71505 basalt 2 269 71576 basalt 2 405

70295 2 141 71506 basalt 2 273 71577 basalt 2 409

"/0315 basalt 2 143 71507 basalt 2 277 71578 basalt 2 413

"71035 basalt 2 147 71508 basalt 2 281 71579 basalt 2 417

71036 basalt 2 151 71509 basalt 2 285 71585 basalt 2 421

'71037 basalt 2 153 71515 basalt 2 289 71586 basalt 2 425

71045 basalt 2 157 71525 basalt 2 293 71587 basalt 2 429

71046 basalt 2 161 71526 basalt 2 297 71588 basalt 2 433

71047 basalt 2 165 71527 basalt 2 301 71589 basalt 2 437
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71595 basMt 2 441 72559 1 203 74285 bas_t 3 75

71596 basMt 2 445 72705 1 207 74286 basMt 3 81

71597 basMt 2 449 72735 1 211 74287 basMt 3 85

72135 3 1 72736 1 215 75015 basMt 3 91

72145 3 5 72737 1 21!) 75035 basMt 3 97

72155 basalt 3 7 72738 1 221 75055 basalt 3 109

72215 1 3 73145 1 225 75065 basMt 3 121

'72235 1 21 73146 1 227 75066 3 125

72255 1 33 73155 1 231 75075 basNt 3 127

72275 1 55 73156 1 235 75085 basNt 3 141

72315 1 93 73215 1 237 75086 basNt 3 145

72335 1 101 73216 1 277 75087 basalt 3 149

72355 i 105 73217 1 281 75088 basNt 3 153

72375 1 109 73218 1 291 75089 basNt 3 157

72395 1 113 73219 basNt 1 29'3 75115 basNt 3 159

72415 1 127 73225 1 295 76015 4 11

72416 1 137 73235 1 297 76035 4 25

72417 1 139 73245 1 309 76036 4 27
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72435 1 149 73275 1 32;5 76055 4 31

72505 1 161 73285 1 343 76135 4 39

72535 1 163 74115 1 3z_ 76136 bas_t 4 41

72536 1 167 74116 1 3_ff 76137 4 45

72537 1 171 74117 1 3_ 76215 4 47

72538 1 173 74118 1 351 76235 4 57

72539 1 175 74119 1 353 76236 4 65

72545 1 179 74235 basalt 3 15 76237 4 67

72546 1 181 74245 bas_t 3 23 76238 4 69

72547 1 183 74246 3 29 76239 4 71

72548 1 185 74247 bas_t 3 31 76245 4 73

72549 1 189 74248 bas_t 3 35 76246 4 75

72555 1 193 74249 bas_t 3 139 76255 4 77

72556 1 195 74255 bas_t 3 43 76265 4 89

72557 1 197 74265 3 55 76275 4 91

72558 1 199 74275 bas_t 3 57 76285 4 97
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76286 4 99 77135 4 267 78535 4 445

76295 4 103 77215 4 283 78536 4 499

76305 4 113 77515 4 299 78537 4 451

76306 4 113 77516 basalt 4 303 78538 4 453

76307 4 113 77517 4 307 78539 4 455

76315 4 115 77518 4 311 78545 4 457

76335 4 125 77519 4 315 78546 4 459

76505 4 129 77525 4 317 78547 4 463
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76535 4 137 77535 bas_t 4 321 78549 4 471

76536 4 153 77536 basalt 4 327 78555 4 475

76537 bas_t 4 159 77537 4 331 78556 4 479
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76539 basalt 4 165 77539 4 337 78558 4 483

76545 4 169 77545 4 341 78559 4 485

76548 4 175 78135 bas_t 4 345 78565 4 487

76555 4 177 78155 4 351 78566 4 489

76556 4 179 78235 4 367 78567 4 491

76557 4 181 78236 4 381 78568 4 493

76558 4 183 78238 4 391 78569 bas_t 4 495

76559 4 185 78255 4 393 78575 bas_t 4 499

76565 4 187 78465 4 397 78576 bas_t 4 503

76566 4 193 78505 bas_t 4 401 78577 bas_t 4 509

76567 4 195 78506 bas_t 4 405 78578 basalt 4 513

76568 bas_t 4 197 78507 bas_t 4 409 78579 bas_t 4 517

76569 4 199 78508 4 413 78585 bas_t 4 521

76575 4 201 78509 bas_t 4 415 78586 bas_t 4 525

76576 4 205 78515 4 419 78587 basflt 4 529

76577 4 209 78516 4 423 78588 bas_t 4 535

77017 4 2!1 78517 4 427 78589 bas_t 4 539

77035 4 227 78518 4 429 78595 basalt 4 543

77075 4 241 78525 4 431 78596 bas_t 4 547

'77076 4 251 78526 4 433 78597 basMt 4 551

'77077 4 253 78527 4 439 78598 bas_t 4 557

77115 4 257 78528 bas_t 4 443 78599 bas_t 4 563
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79035 3 163

79115 3 169

79125 3 175

79135 3 177

79155 basalt 3 185

79175 3 193

79195 3 195

79215 3 197

79225 3 209

79226 3 211

79227 3 213

79228 3 213

79245 3 215

79265 bas_t 3 217

79515 basalt 3 221

79516 basalt 3 225
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79519 bas_t 3 233

79525 basalt 3 235

79526 bas_t 3 237

79527 bas_t 3 239

79528 basalt 3 241

79529 bas_t 3 243

79535 bas_t 3 245

79536 bas_t 3 247

79537 bas_t 3 249
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