15558 Regolith Breccia 1333 grams

Figure 1: Photo of 15558. Sample is 3 inches across. S71-45184.

Introduction

15558 is a large regolith breccia made mostly of mare material. The exact collection site is unknown, but probably at Station 9 near the rille (Ryder 1985). It is similar to 15505 – from same location, but has more fine grained material.

Petrography

Simon et al. (1986) and McKay et al. (1989) reported that 15558 contained clasts of mare and feldspathic KREEP basalt. It also has agglutinates and a great deal of glass. McKay et al. reported that the maturity index $I_s/FeO = 21$. Thin sections show that it has more matrix than clasts (figure 3).

Chemistry

15558 is Fe-rich (figure 6) and has a REE pattern similar to local soil.

Moore et al. (1973) reported 110 ppm carbon in 15558, verifying that it is a soil breccia.

Cosmogenic isotopes and exposure ages

Keith et al. (1972) reported cosmic-ray-induced activity of ${}^{26}Al = 84 \text{ dpm/kg}$, ${}^{22}Na = 36 \text{ dpm/kg}$, ${}^{54}Mn = 23 \text{ dpm/kg}$, ${}^{56}Co = 9 \text{ dpm/kg}$ and ${}^{46}Sc = 3 \text{ dpm/kg}$.

Figure 2: Location of 15558 on map of Apollo 15 site.

Other Studies

The abundance and isotopic ratios of rare gasses were reported in Bogard and Nyquist (1972) and McKay et al. (1989).

Mineralogical Mode for 15558

	(Simon et al. 1986) 54 %				
Matrix					
	20-90 micron	90-100 micron			
Mare Basalt	1.3 %	5.4 %			
KREEP Basalt		0.5			
Feld. Basalt	0.2	0.4			
Plutonic	0.2	1			
Granulitic	0.4	0.7			
Breccia	1	0.5			
Olivine	3.8	1.2			
Pyroxene	10.8	3.4			
Plagioclase	2.7				
Opaques	0.3				
Glass	6.5	3.4			
Agglutinate	1.1	1.4			

Processing

15558 was split along a penetrating fracture (figures 4, 8 and 9) and has not been sawn. There are 7 thin sections.

References for 15558

Bogard D.D. and Nyquist L.A. (1972) Noble gas studies on regolith materials from Apollo 14 and 15. *Proc.* 3rd *Lunar Sci. Conf.* 1797-1819.

Butler P. (1971) Lunar Sample Catalog, Apollo 15. Curators' Office, MSC 03209

Fruland R.M. (1983) Regolith Breccia Workbook. Curatorial Branch Publication # 66. JSC 19045.

Keith J.E., Clark R.S. and Richardson K.A. (1972) Gammaray measurements of Apollo 12, 14 and 15 lunar samples. *Proc. 3rd Lunar Sci. Conf.* 1671-1680.

LSPET (1972a) The Apollo 15 lunar samples: A preliminary description. *Science* **175**, 363-375.

McKay D.S., Morris R.V. and Wentworth S.J. (1984) Maturity of regolith breccias as revealed by ferromagnetic

Mineralogical Mode for 15558

_	(McKay et al. 1989)				
	20-500 mciron	500-1000 micron			
Mare Basalt	1 %	10.5 %			
KREEP basalt	7.9	8.8			
Plutonic	0	10.5			
Breccias	1	12.3			
Olivine	1	0			
Pyroxene	42.2	8.8			
Plagioclase	14.2	5.3			
Opaques	0.3	0			
Glass	14.5	40.4			
Agglutinates	7.3	1.8			

Figure 3: Plane polarized and cross polarized photomicrographs of thin section of 15558. Scale is included.

Lunar Sample Compendium C Meyer 2011

Rock

Figure 4: Photomicrograph of thin section of 15558. Note the large devitrified chondule in top left. S71-52210. Scale unknown

and petrographic indicies (abs). *Lunar Planet. Sci.* **XV**, 530-531. Lunar Planetary Institute, Houston.

McKay D.S., Bogard D.D., Morris R.V., Korotev R.L., Wentworth S.J. and Johnson P. (1989) Apollo 15 regolith breccias: Window to a KREEP regolith. *Proc.* 19th Lunar *Sci. Conf.* 19-41. Lunar Planetary Institute, Houston.

Moore C.B., Lewis C.F., and Gibson E.K. (1972) Carbon and nitrogen in Apollo 15 lunar samples. In *The Apollo 15 Lunar Samples* 316-318. The Lunar Science Institute, Houston.

Moore C.B., Lewis C.F. and Gibson E.K. (1973) Total carbon contents of Apollo 15 and 16 lunar samples. *Proc.* 4th Lunar Sci. Conf. 1613-1923.

Ryder G. (1985) Catalog of Apollo 15 Rocks (three volumes). Curatoial Branch Pub. # 72, JSC#20787

Simon S.B., Papike J.J., Grosselin D.C. and Laul J.C. (1986) Petrology of the Apollo 15 regolith breccias. *Geochim. Cosmochim. Acta* **50**, 2675-2691. Sutton R.L., Hait M.H., Larson K.B., Swann G.A., Reed V.S. and Schaber G.G. (1972) Documentation of Apollo 15 samples. Interagency report: *Astrogeology* 47. USGS

Swann G.A., Hait M.H., Schaber G.C., Freeman V.L., Ulrich G.E., Wolfe E.W., Reed V.S. and Sutton R.L. (1971) Preliminary description of Apollo 15 sample environments. U.S.G.S. Interagency report: 36. pp219 with maps

Swann G.A., Bailey N.G., Batson R.M., Freeman V.L., Hait M.H., Head J.W., Holt H.E., Howard K.A., Irwin J.B., Larson K.B., Muehlberger W.R., Reed V.S., Rennilson J.J., Schaber G.G., Scott D.R., Silver L.T., Sutton R.L., Ulrich G.E., Wilshire H.G. and Wolfe E.W. (1972) 5. Preliminary Geologic Investigation of the Apollo 15 landing site. In Apollo 15 Preliminary Science Rpt. NASA SP-289. pages 5-1-112.

Wentworth S.J. and McKay D.S. (1984) Density and porosity calculations for Apollo 15 and 16 regolith breccias (abs). *Lunar Planet Sci.* **XV**, 906-907. Lunar Planetary Institute, Houston.

Table 1. Chemical composition of 15558.

reference weight SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	Keith73		LSPET72		Simon86		McKay89	
	0.205	(a)	46.31 1.89 12.4 16.54 0.22 10.51 10.81 0.42 0.19 0.21 0.09	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	2 12.3 15.9 0.21 11.5 10 0.45 0.21	(b) (b) (b) (b) (b) (b) (b)	1.89 12.4 17.7 0.22 10.5 10.4 0.41	(b) (b) (b) (b) (b) (b)
Sc ppm V Cr Co Ni Cu Zn Ga Ga Ge ppb As					30.7 120 3127 42 160	(b) (b) (b) (b)	34.1 3300 51.1 201	(b) (b) (b)
Se Rb			5.3	(C)				
Sr Y			123 78	(c) (c)	105	(b)	120	(b)
Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb			22	(c) (c)	510		520	(0)
Cs ppm Ba La Ce Pr					250 24.5 60	(b) (b) (b)	0.22 207 21.4 57	(b) (b) (b) (b)
Nd Sm Eu					41 11.5 1.3	(b) (b) (b)	33 10.6 1.25	(b) (b) (b)
Tb Dy Ho Fr					2.35 15.1 3.5	(b) (b) (b) (b)	2.1	(b)
Tm Yb Lu Hf Ta W ppb					1.3 8.27 1.17 7.8 1	(b) (b) (b) (b) (b)	7.1 0.98 8.3 1.06	(b) (b) (b) (b)
Os ppb Ir ppb							6	(b)
Pt ppb Au ppb Th ppm	3 1 2	(2)	3.6	(c)	3.8	(b)	2.7	(b)
U ppm technique:	1.01 (a) rac	(a) (a) <i>liatic</i>	on countin	g, (b)	1) INAA, (d	(b) (b) ;) X	0.95 RF	(b)

Figure 6: Composition of 15558 compared with Apollo soils and Apollo 15 soil breccias.

Figure 7: Normalized rare-earth-element diagram, comparing breeccia 15558 with soils 15101 and 15601.

Figure 8: Photo of broken samples 15558. S72-50649

Figure 9: Pieces of 15558. Cube is 1 cm. S84-40800.