

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FINAL

PHOTOGRAPHIC AND TV PROCEDURES

APOLLO 13

APRIL 3, 1970

PREPARED BY EXPERIMENTS SECTION MISSION OPERATIONS BRANCH FLIGHT CREW SUPPORT DIVISION

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

APOLLO 13

FINAL

PHOTOGRAPHIC AND TV PROCEDURES

eague Prepared by: Wallace N. Teague

Experiments Section

Approved by:

John W. McKee Chief, Experiments Section

Approved by:

Helmet A. Kuehnel Chief, Mission Operations Branch

Approved by:

att

Warren J. North Chief, Flight Crew Support Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

APOLLO 13

PHOTOGRAPHIC AND TV PROCEDURES

Prepared by: 4 2 Aline lace N. Teague

Experiments Section

Approved by: Donald K. Slayton Director of Flight Crew Operations

Approved by: 7.50 McDivitt Apollo Spacecraft Program imes A. Manager,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MANNED SPACECRAFT CENTER

HOUSTON, TEXAS

.

.

.

TABLE OF CONTENTS

			Page
1.0	Introd	luction	1-1
2.0	Photog	graphic and Television Objectives and Procedures	2-1
	Photog	graphic Co de	2-1
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Table Table	CSM and LM Engineering Distant Earth/Moon Photography Lunar Surface Structure (Lunar Orbit) Landing and Exploration Sites Lunar Surface Engineering Crew and Surface Structure Dim Light Photography Crew and Spacecraft Mission Documentation 2.1 Camera Settings - Lunar Orbit 2.2 Camera Settings - EVA Photography	2-4 2-7 2-9 2-11 2-19 2-22 2-24 2-28 2-31 2-33 2-35 2-36
	Table	2.3 Scheduled TV - CSM and Surface	2-37
3.0 4.0	Alloca Photo	ation of Equipment and Film	3-1 4-1
	4.1	Flight Director's SSR	4-2
	4.2	Flight Crew Mission Support	4-3
5.0	Photo	graphic Summary	5 - 1

1.0 INTRODUCTION

This document delineates the photographic objectives and defines the crew procedures and photographic equipment required to accomplish these objectives.

Section 2.0 describes each photographic objective, and the required crew procedures and equipment.

The camera settings for lunar surface and orbital photography are presented in Figures 2.1-2.2.

Section 3.0 tabulates the allocation of equipment and film for each category of photography.

Section 4.0 describes the realtime support requirements and the nominal MCCH interfaces with FCSD elements.

Section 5.0 provides a summary of all photographic and television activities scheduled for the mission.

Additional information concerning lunar surface photographic activities can be found in the Lunar Surface Procedures, prepared by the Lunar Surface Operations Office, Mission Operations Branch, Flight Crew Support Divsion.

All comments on this plan should be directed to W. N. Teague, CF71, Experiments Section, Mission Operations Branch, FCSD Extension 3091.

2.0 PHOTOGRAPHIC AND TELEVISION OBJECTIVES AND PROCEDURES

PHOTOGRAPHIC CODE

OBJECTIVE The general target or task to be accomplished. The nomenclature may also indicate the sole use of photographic equipment for clarity purposes.

TASK.

The specific photographic target type or the target itself.

EXAMPLE:

2.1.A 2

2 - PROCEDURES SECTION

- 1 CATEGORY
- A OBJECTIVE
 - 2 TASK

The equipment to be used for each photographic task will appear in the following coded form:

AAA/BBB/CCC/DDD - XXXX, XXXX (M,N,O) P

AAA - Location from which photos are taken

CM - Command Module

- 1 LH Side Window
- 2 LH Rendezvous Window
- 3 Hatch Window
- 4 RH Rendezvous Window
- 5 RH Side Window

LM - Lunar Module

- 1 LH Window
- 2 Rendezvous Window
- 3 RH Window

EV - Extra-vehicular

```
BBB - Camera used
 DAC - Data Acquisition Camera
  EL - Electric Hasselblad
  DC - Data Camera (Lunar Surface Hasselblad)
  TV - TV Camera
 CSC - Close-up Stereo Camera
 LTC - Lunar Topographic Camera
LDAC - Lunar Surface Data Acquisition Camera
 CCC - Lens Used
       5, 10, 18, 60, 75, 80, 250, 500mm
 DDD - Film Type
 CEX - Color Exterior, S0368
HCEX - High Speed Color Exterior, S0168 (ASA 160)
 CIN - Color Interior, S0168 (ASA 1000)
  BW - Black and White, 3400
 HBW - High Speed Black and White, S0267
VHBW - Very High Speed Black and White, 2485
XXXX - Data Recording Aids
SPOT - Spotmeter
 IVL - Intervalometer
MIR - Right Angle Mirror
BRKT - DAC Mounting Bracket, EL Camera Adapter,
      EL Camera Bracket Assy (500mm Lens)
ULC - Utility Light Clamp
POLZ - Polarizing Filter
HAND - Camera Handle and Trigger
SEXT - Sextant Adapter
CONT - Remote Control Cable
RING - Ring Sight
LTWS - Light Tight Window Shades
```

M - Lens Aperture Setting

Example: f2.8 <u>S</u> indicates spotmeter reading CC indicates setting on Cue Card

Decal indicates setting on decal on camera Chart indicates setting on chart

N - Shutter Speed

Example: 125 = 1/125 of a second 2 sec = 2 seconds

0 - Focus Distance (in feet)

<u>P</u> - For EL and DC, Number of frames For DAC, Frame Rate, Magazine %, and Time (MIN)

```
CODE EXAMPLE:
CM4/DAC/18/CEX-BRKT,SPOT (S,250,∞) 12fps, .5 mag (4 min)
```

Meaning: Photos taken from CM right hand rendezvous window using the DAC with 18mm lens and S0368 film. The camera will be bracket mounted with the following camera settings: f-stop from spotmeter reading, shutter speed 1/250 of a second, focus at infinity, 12 frames per second, .5 mag or 4 MIN to be used.

2-3

a. Description

The LM and S-IVB will be photographed during transposition, docking, and LM ejection providing engineering data on these operations. The LM will also be photographed during rendezvous, formation flying, and jettison following ascent.

b. Procedures (on following page)

2.1.A Transposition/Docking

<u>1</u> <u>DAC</u> CM2/DAC/18/CEX-BRKT, MIR (f8,250,7) 12fps, .7 mag (5 MIN) <u>2</u> <u>EL</u> CM2/EL/80/CEX- (f8,250,focus) 10 <u>3 TV</u> CM4/TV-PEAK, BRKT (f44) 1 HR 08 MIN Hi Gain: Ρ Y LM Ejection 2.1.B 1 DAC CM2/DAC/18/CEX-BRKT, MIR (f8,250,7) 6fps, .3 mag (5 MIN) <u>2</u> <u>EL</u> <u>CM4/EL/80/CEX- (f8,250,focus) 5</u> 2.1.C LM Undocking 1 DAC/CM <u>CM2/DAC/18/CEX-BRKT</u>, MIR (f8,250,7) 6fps, 1 mag (16 MIN) 2 EL/CM CM2/EL/80/CEX- (f8,250, focus) 10 <u>3 DC/LM</u> <u>LM</u> /DC/60/HCEX- (f11,250,focus) 10 4 DAC/LM

LM/DAC/10/CEX- (f8,250,7) 6fps .25 mag (4 MIN)

2-5

<u>1</u> <u>DAC</u> CM2/DAC/18/CEX-BRKT, MIR (f8,250,7) 6fps, 1 mag (16 MIN) EL/CM 2 CM /EL/80/CEX- (f8,250,focus) 10 (1) Photograph LM as it enters F.O.V. (2) Photograph LM from station Keeping Distance (50 - 100')3 DC/LM <u>LM_7DC/60/HCEX- (f11,250,focus) 5</u> Photograph CSM from station keeping distance as it performs a 360° Pitch maneuver. TV 4 CM4/TV:PEAK, BRKT (f44) 12 MIN Hi Gain: Р Y LM Jettison 2.1.E 1 CM4/DAC/18/CEX - BRKT, MIR (f8,250,7) 12 fps, .5 mag (4 MIN) 2 CM/DAC/SEXT/CEX-(fixed,250,fixed) 12fps, .5 mag (4 MIN) - crew option

2.2 Distant Earth/Moon Photography

a. Description

The Earth will be photographed just after TLI on a crew option basis for high resolution terrain studies. In addition the Earth will be photographed during TLC and TEC for oceanographic, global weather and documentation purposes. Several photographs should be taken each day during TLC and TEC as spacecraft attitude and crew time permit. Photographs should be taken at approximately 4 hour intervals. The Moon will be photographed during TLC and TEC for documentation purposes.

b. Procedures (on following page)

2.2.A Earth CM_/EL/80 or 250/CEX - RING (f11,250,∞) 30

> Photograph the earth after TLI, concentrating on cloud free areas using 250mm lens.

- 2.2.B Earth Weather CM_/EL/250/CEX - RING (f11,250,∞) 10 During <u>TLC</u> photograph earth from approximately 35,000 naut. mi, every 20 min. for 3 hr. Record GET of each photograph
- 2.2.C Moon CM_/EL/80 or 250/BW - RING (f5.6,250,∞) 10 CM_/EL/80 or 250/CEX- RING (f5.6,250,∞) 10

Photograph during TLC and TEC. For full view of Moon use 80mm lens from GET (TLC) 82:21 to GET (TEC) 175:34

 $\frac{2.2.D}{CM} = \frac{\text{Earth}/Moon TV}{CM}$

1

2.3

Lunar Surface Structure (Lunar Orbit)

a. Description

Lunar Orbital Science targets will be photographed with the Hasselblad EL.

b. Procedures (on following Page).

2-9

2.3.A Lunar Orbital Science Photography CM_/EL/80 or 250/CEX - (CC,250,∞) 327

Maintain ORB RATE R 0°, P 230°, Y	0°
REV. 15	14
REV. 16	23
REV. 26	5, 13, 25, 56, 46A
REV. 28	18, 33, 58
REV. 29	10, 12, 15, 21
REV. 30	11, 16
REV. 41	17, 27, 30, 69
REV. 42	32, 38, 40, 47, 59, 63
REV. 43	26, 48, 52, 66

2.

Record

- (a) Mag ID
- (b) FR Nos.
- (c) Target
- (d) GET of photography
- (e) Non-nominal data

2.4 Landing and Exploration Sites

a. Description

During descent and ascent the lunar surface will be photographed to record LM movement, surface disturbances and to aid in determining the landed LM location.

Following an orbital plane change after LM jettison, stereo strip photographs will be taken of candidate exploration sites during two separate revs using the EL with 80mm lens. During one stereo strip and two landmark revs the DAC will simulataneously photograph the surface through the sextant.

Photographs of the site northwest of Censorinus will be obtained with the Lunar Topographic Camera at low altitude. This photography will occur after the DOI maneuver and prior to initial separation of the CSM and LM. After the CSM returns to a 60 nautical mile altitude high resolution photographs of sites near Davy Rille and northwest of Censorinus will be taken with the Lunar Topographic Camera. One pass will be made with the camera axis vertical and a second pass will be made with the camera axis aligned 30 degrees forward of the local vertical. The above photography will:

- 1. Improve the accuracy of ground point locations on the surface.
- Define lunar topography to support scientific studies.
- 3. Provide photography which can be used for topographic analysis of the approach paths to candidate exploration sites.

.

- 4. Provide crew training flim.
- 5. Improve knowledge of landing sites
- b. Procedures (On following page)

2.4.A Descent/Ascent

- <u>1</u> <u>Descent</u> PDI + 6 MIN <u>LM3/DAC/10/CEX - (f2.8,500,) 12 fps, .75 mag (6 MIN)</u>
- 2 Ascent APS burn minus 1 MIN <u>LM3/DAC/10/CEX</u> - (f2.8,500,) 12 fps, 1 mag (8 MIN)

2.4.B Vertical Stereo Strip

- 1 Rev 26 CM4/DC/80/BW - BRKT, IVL (f4,250,) 180 CM /DAC/SEXT/CEX - (fixed,chart,fixed) 1 fps, .66 mag (60 MIN) +X axis aligned to local vertical
 - (1) TRN 45°, SFT 0°
 - (2) V83 (Align FDAI 1) ORDEAL R 0, P 258, Y 0
 - (3) V79 R1 (Pitch rate) -0.0507 R2 (Deadband) +000.50 R3 (Y axis) +11111
 - (4) V06 N65 (AGC time displayed on DSKY)
 - (5) ENTER, DAC on and DC on simultaneously GET ________ and record time from AGC clock
 - (6) V16, N65 (SFT and TRN angles displayed on DSKY)

```
2 <u>Rev 41</u>
    CM4/DC/80/BW - BRKT, IVL (f4,250, ) 180
    CM/DAC/SEXT/CEX-(fixed, chart, fixed) 1 fps, .33 Mag (33 MIN)
    X axis aligned to local vertical
    (1) V83 (Align FDAI)
        ORDEAL R O, P 258, Y O
    (2) V79 R1 (Pitch rate) -0.0507
            R2 (Deadband) +000.50
            R3 (Y axis)
                            +11111
    (3) DC - on at GET ____:__:___:___
   (4) DC - off at GET ____:___:___
  Record
(a)Mag IDs
(b)Fr Nos and mag % remaining
(c)Non-nominal data
```

(1) ORDEAL R 0, H By GET	P 338 ¥ 0		n an
(2) V79 R1 (Pitch R2 (Deadh R3 (Y Axt	n rate) -0.05 pand) +000. is) +1111	007 50 1	
(3) Exit V79, P22	2	· · ·	
(4) At T2 - 1 MIN DAC - on	n get	_::	
(5) DAC - off aft	ter completio	on of tracking	
Site	Rev	Long.	Shutter S
Pickering B	2	7°.3542 E	1/60
H-2	3	4°.7666 W	1/60
13-1	12	15°.616 W	1/60
13-2	15	15°.316 W	1/60
13-3	··· 30	15°.483 W	1/60
Taruntius 0	17	54°.3166 E	1/250
130	17	23°.6789 E	1/125
Theon Senior B	15	14°.0568 E	1/125
Mosting A	18	5°.2833 W	1/60
Secchi B	18	41 . °4833 E	1/250
Euclides F	29	33°.7069 W	1/60
Reaumur X	29	0°.6725 W	1/125
Moltke	30	24°.1283 E	1/250
CP-1	44	107°.15 E	1/60
CP-2	44	68°.1 E	1/125
CP-3	45	12°.5166 E	1/250
CP-4	45	20°.1333 W	1/125
CP-5	44	44°.2 W	1/60
Davy Rille	44	6°.1 W	1/250
LS-1	12	17°.5 W	1/60
19_7	13	17°,5 W	1/60

(b)Mag % remaining
(c)Non-nominal data

2–15

```
Lunar Topographic Camera Photography
2.4.D
        CM3/LTC/BW-(fixed, 100, fixed)
```

INSTALLATION

```
(1)
    Mount and verify direction of flight
```

- (2) SCI pwr Sw (Panel 227) OFF
- (3) AC Utility Pwr (Panel 201) OFF
- (4) Connect vacuum line (Panel 251 and Cam)
 (5) Overboard drain DUMP
- (6) Connect Pwr Cable (Panel 227, 201, & LTC)
- (7) Connect Control Box, verify Pwr-OFF, MODE STBY
- (8) Remove pip pin from lens cone

CECKOUT

(1) Verify elect. pwr: Non ESS Bus - MNB (5) CB SCI Eq-hatch (1) CLOSED (5) SCI Inst Pwr - ON (Panel 227) AC Pwr - ON (Panel 201)

- (2) Pwr ON
- (3) MODE Single
- (4) Frame Rate 8/min
- (5) Range 10
- (6) Operate "Single Frame" 2 frames

(7) MODE - AUTO (3-5 frames) (Verify FMC and frame

- control operation, "end-of-film" light out)
- (8) MODE STBY
- (9) PWR OFF

OPERATE

- (1) Verify: Pip pin out of FMC) Shutter speed (4) MODE - STBY Frame Rate (5) Pwr - OFF Range Direction of Flight Record Frame Counter MODE - STBY
 - (2) PWR ON (1 min before use
 - (3) MODE AUTO/SINGLE

 - (6) Frame remaining...

FILM MAG CHANGE

- (1) To save remaining film Advance 4 frames To run film out - film advance until "end of film" light
- (2) MODE STBY
- (3) PWR OFF
- (4) Mag lock knob CCW to stop mag moves out
- (5) Replace mags without touching platen
- (6) Mag locking CW to stop
- (7) Perform LTC checkout

LTC REMOVAL

- (1) Install pip pin in lens cone
- (2) Overboard drain OFF
- (3) PWR (AC, SCI, Box) OFF
- (4) Disconnect Box, elect. and vacuum
- REV. 4 Censorinus/39°E to 30°E
- REV. 27 6, 9, Censorinus/Vert., 29, 34, 42, 46/54
- REV. 28 Censorinus/Oblique
- REV. 42 Vert./102°E to Terminator
- REV. 43 Oblique/102°E to 32°W

TEI High Altitude Mapping Photography

____¥_____ R P T Start T Stop Rng

<u>2.4.E</u>		High Resolution/Oblique Photography CM4/EL/500/BW - BRKT, CONT (f8,125,) 170 CM2/DAC/18/CEX - BRKT, (f8,125,) 6 fps, 2 mag (32 MIN) (Performed only if LTC fails)
		Northwest of Censorinus T1 T2 - T2 - T2 - T2 - T2 - T2 - T
	(1)	Align COAS along 500mm BRKT, 10° pitched up from +X axis
	(2)	R, P, Y by GET:::
	(3)	At Tl start EL and DAC - initiate photos approximately every 20 secs
	(4)	At T2 DAC and EL - off
		Davy Rille & Descartes T1::: T2::::
	(1)	Align COAS along 500mm BRKT, 10° pitched up from +X axis
	(2)	R, P, Y by GET::
	(3)	Track target through COAS using RHC
	(4)	At Tl start EL—initiate photos approximately every 20 secs
	(5)	At T2 DAC and EL - off
	(6)	Repeat steps 2-5.
	R((a)) (b)] (c)]	ecord Mag ID FR Nos Non-nominal data

2-18

•

2.5 Lunar Surface Engineering

a. Description

.

i

Ì

ł

The LM and Lunar surface experiment equipment will be photographed for postflight analysis and evaluation of performance.

b. Procedures (on following page)

1 - <u>1</u> -

x

÷

8.5.5

2.5.A ALSEP Site Photography EV/DC/60/HCEX - (f11,250,focus) 22

- 1 Heat Flow Experiment (HFE) S037
 - (1) Probe 10 ft, X SUN, each side
 - (2) Electronics 5 ft, X SUN
- 2 Passive Seismic Experiment (PSE) SO31
 - (1) C/S in foreground, 5 ft.
 - (2) C/S in background, 5 ft.
 - (3) X SUN, 3 ft.
- <u>3 Charged Particle Lunar Environment Experiment (CPLEE) S038</u> C/S in background, 5 ft.
- 4 Cold Cathode Gauge Experiment (CCGE) S058
 - (1) X SUN, 5 ft.
 - (2) C/S in background, 10 ft.
- 5 Central Station C/S
 - (1) X SUN, 5 ft.
 - (2) DN SUN, 5 ft.
- 6 Lunar Dust Detector Experiment (LDDE) M515 Photographed on C/S
- 7 Radioisotope Thermoelectric Generator (RTG) X SUN, 5 ft.
- 8 Core Sample Drilling Approximately 10 photos, X SUN.

2.5.B LM Photography

<u>1</u> <u>DC</u>

_____ EV/DC/60/HCEX-(f11,250,focus)

2 DAC

EV/LDAC/10/CEX - (f8,250,∞)

The LM will be photographed only if an anomalous condition exists.

and the second second

.

2.6 CREW AND SURFACE

a. Description

The movements of the crew in the performance of various lunar surface tasks will be photographed to assist in the preparation of crew tasks during future missions.

Photographs will also be taken of the crew environment that is related to the ability of the crew to function on the lunar surface. The environment includes lighting; lighting contrast; lunar surface terrain features; and soil cohesion, adhesion, and bearing strength.

b. Procedures (on following page)

2.6.A Crew Activities (Lunar Surface)

1 SEQ Bay Operations EV/LDAC/10/CEX-(f8,250,∞) 12 fps

د ربر

And the second second

- 2 Drilling Operations EV/LDAC/10/CEX-(f8,250∞) 12 fps
- 3 Barbell Carry EV/LDAC/10/CEX-(f8,250∞) 24 fps
- <u>4</u> <u>Trench Digging</u> <u>EV/LDAC/10/CEX-(f8,250,∞) 12 & 24 fps</u>
- 5 Boulder Rolling EV/LDAC/10/CEX-(f8,250,∞) 24 fps
- 6 Crew Movement (loping, walking, etc.) EV/LDAC/10/CEX-(f8,250∞) 12 & 24 fps

2.6.B Crew Egress Photography

 $\frac{1}{\frac{\text{CDR EGress}}{\text{LM/DC/60/HCEX-(f5.6,250,5)}}} 6$

LM3/LDAC/10/CEX-(f2.8,60,∞) 12 fps

2 <u>LMP Egress</u> EV/DC/60/HCEX-(f5.6,250,15) 6

EV/LDAC/10/CEX-(f2.0,125,∞) 12 fps

- 2.6.C Photometric Chart EV/DC/60/HBW-(,250,5) 10
 - (1) Select large boulder
 - (2) Hold chart in front of boulder, facing sun.
 - (3) Take 4 photos normal to chart of f5.6, f8, f11, f16, and 1 photo, f11, at 45° azimuth.
 - (4) Crewmen exchange positions and repeat photography.

2.7 Surface and Sub-Surface Structure

a. Description

Panoramic photographs of the lunar surface and stereo photographs of samples, sample areas, and selenological features will be taken to provide data for scientific study.

b. Procedures (on following page)

2.7.A Lunar Surface/LM

- $\frac{1}{EV/DC/60/HCEX-(f8,250,5)2}, X SUN$
- 2 <u>+Z pad/surface</u> EV/DC/60/HCEX-(f5.6,250,5)2, UP Sun
- <u>3</u> <u>+Y pad/surface</u> EV/DC/60/HCEX-(f8,250,5)2, X Sun
- <u>4</u> <u>-Z pad/surface</u> EV/DC/60/HCEX-(f11,250,5)2, DN SUN
- 2.7.B Contingency Sample Area EV/DC/60/HCEX-(f8,250,5)2, X SUN
- 2.7.C Panoramas
 - $\frac{1}{EV/DC} = \frac{EVA \ 1}{EV/DC/60/HCEX-(Deca1, 250, 74) \ 40}$
 - $\frac{2}{EV/DC} = \frac{EVA 2}{EV/DC/60/HBW-(Deca1, 250, 74) 100}$
- 2.7.D Documented Samples EV/DC/60/HBW-(Deca1,250,5) 5
 - (1) Select sample and position gnomon.
 - (2) Take two stereo photos, X SUN.
 - (3) Take one horizon photo, 15 ft. DN SUN.
 - (4) Bag sample
 - (5) Take two photos of sample area. DN SUN & X SUN.

- <u>2.7.E</u> <u>Core Tube Samples</u> EV/DC/60/HBW-(f8,250,15 & 5) e
 - (1) Position gnomon up sun.
 - (2) Drive tube into surface
 - (3) Take one horizon photo, 15 ft, X SUN.
 - (4) Remove core tube.
 - (5) Take stereo pair, 5 ft, X SUN.
- 2.7.F Environmental Sample EV/DC/60/HBW-(Decal,250,5) 4

Photo procedures are the same as for a documented sample. Horizon photo is not required.

2.7.G Gas Analysis Sample EV/DC/60/HBW-(Decal, 250, 5)4

Same procedures as 2.7.F.

2.7.H Magnetic Sample

Same procedures as 2.7.F.

- 2.7.1 Trench
 - <u>1</u> <u>Site Photographs</u> <u>EV/DC/60/HBW-(Decal,250,15)2</u>
 - (1) Position gnomon up sun.
 - (2) Photograph site X Sun & DN Sun.
 - $\frac{2}{EV/DC/60/HBW-(f5.6,125,5)}$
 - (1) Take stereo pair on both sides of trench, X Sun.
 - (2) Take one photo up sun.
 - (3) Take one photo down sun.
 - (4) Take CSC photos of trench.

2.7.J Soil Mechanics

Photograph boot print in trench

2.7.K Close-up Stereo Camera Photography

Photograph unexpected features, rock/ soil junction, surface patterns, rock surfaces, small craters.

- 2.7.L TV Panorama EV/TV-PEAK (f44)
 - (1) Position TV 50 ft from LM between
 +Y and -Z axes.
 - Scan surrounding terrain allowing 10 seconds for each field of view. Avoid pointing the camera closer than 45° of up-sun.

2.7.M Polarization Photography

- <u>1</u> <u>Near Field</u> <u>EV/DC/60/HBW-POLZ(f5.6,125,5) 11</u>
 - (1) Place gnomon in clump of rocks.
 - (2) LMP photograph rocks before and after sampling, DN SUN.
 - (3) CDR take one photograph at each of 3 filter positions at phase angles of 90°, 110° and 130°.
 (9 photos)
 - (4) Move to crater rim.
 - (5) Photograph far wall at each filter position.
 - (6) Move approximately 100 ft. around rim and repeat photography
 - (7) Remove and discard polarizing filter.

a. Description

Photographs of various dim light, astronomical phenomena will be acquired in lunar orbit and during TEC. Experiment S 178, Gegenschein From Lunar Orbit, is included in this group.

b. Procedures (on following page)

2.8.A Solar Corona

<u>CM4/EL/80/VHBW-BRKT</u> CONT. (f2.8,∞) 15

Sun	angle below	horizon		Exposure time
	1/2°			1/125 sec.
· .	1°			1/15 sec.
	5°	,	· · · · ·	1,1/4,1/8 sec.

2.8.B Zodiacal Light

 $\overline{CM4/DAC/18/VHBW}$ -BRKT, MIR (f0.9, ∞)

Sun	angle	below h 75°	norizon	. · · · ·	Exposure time 18 sec.
		65°			16 sec.
		55°			12 sec.
		45°	÷ '		9 sec.
		35°			7 sec.
· ·		25°			5 sec
÷ .		15°		•	2 sec.
		3°	. •		1/60 sec.

Three exposures at each sun angle are required.

2.8.C Gegenschein From Lunar Orbit - S178

CM4/DAC/18/VHBW-BRKT, MIR (f0.9,20 sec.,∞) 9 frames Two 20 second exposures followed by one 5 second exposure will be made with the camera pointed toward the anti-solar point, the Moulton point, and at a point midway.

2.8.D Lunar Limb Brightening CM4/DAC/18/VHBW-BRKT, MIR (f2.0, 125,∞) 12 fps, 40 sec.

- 2.8.E Contamination/Starfield CM4/EL/80/VHBW-BRKT, CONT (f2.8,∞) 12
 - Betelgeuse Photograph a starfield, including Betelgeuse, in darkness and in sunlight. Exposure times of 1/4, 1, 4 seconds.
 - (2) <u>Regulus</u> Photograph a starfield, including Regulus in darkness and in sunlight. Exposure times of 1/4, 1, 4 seconds.

2.8.F Water Dump Photography

- (a) CM4/DAC/18/VHBW-BRKT, MIR (f2.0,125,10) 6 fps, 30 sec.
- (b) Change focus to ∞ and exposure time to 1/60 sec and continue photography. Use remaining VHBW film.

2.9 CREW AND SPACECRAFT

a. Description

Crew activities and controls and displays in the CSM and LM will be photographed to:

1. Evaluate crew tasks in a zero-gravity environment

- 2. Evaluate crew mobility in the LM
- 3. Evaluate the crew transfer from vehicle to vehicle through the tunnel
- 4. Document systems performance

b. Procedures (on following page)

2.9.A Spacecraft Interior - DAC CM_/DAC/5/CIN - SPOT (f2.8,60,fixed), 6 fps, 1 mag (16 MIN)

Spotmeter is required for good interior photography

1/2 Stowing/Unstowing Equipment (Aft Bulkhead)

3 LM to CSM Crew Transfer

4/5 Donning/Doffing Spacesuit

Record

- (a) Mag ID
- (b) % Mag remaining(c) GET DAC on
- (d) Non-nominal data

2.9.B Spacecraft Interior - TV CM/TV - ALC

2.10 Mission Documentation

a. Description

والأرجاح فالمتحاد والمتحاط ومرادي

Crew photography of phenomena or activities which have not been called out specifically as requirements but which will support scientific, engineering, or documentation objectives.

b. Procedures (on following pages)

2.10.A Crew Observations (TLC/Lunar Orbit/TEC) CM_/EL/80/CEX - (Decal), 40

.

<u>2.10.B</u> Earth/LM/Lunar Surface EV_/DC/60/HCEX - (f11,250,15/74) 4

.

TABLE 2.1 CAMERA SETTINGS-EVA PHOTOGRAPHY

51

NASA - MSC

2-36

DAY	DATE	CST	GET	DURATION	ACTIVITY/SUBJECT	VEH	STA
SATURDAY	APR 11	2:49 PM	01:36	5 MIN	CAPE KENNEDY	CSM	MILA
SATURDAY	APR 11	4:28 PM	03:15	1 HR 08 MIN	TRANSPOSITION & DOCKING	CSM	GDS
SUNDAY	APR 12	7:28 PM	30 : 15	30 MIN	SPACECRAFT INTERIOR (MCC-2)	CSM	GDS
MONDAY	APR 13	11:13 PM	58:00	30 MIN	INTERIOR & IVT TO LM	CSM	GDS
WEDNESDAY	APR 15	1:03 PM	96 : 50	15 MIN	FRA MAURO LANDING SITE	CSM	MAD
THURSDAY	APR 16	1:23 AM	108:10	3 HR 52 MIN	LUNAR SURFACE (EVA-1)	LM	GDS/HSK
THURSDAY	APR 16	9:03 AM	127 : 50	6 HR 35 MIN**	LUNAR SURFACE (EVA-2)	LM	GDS
FRIDAY	APR 17	9:36 AM	140:23	12 MIN	DOCKING	CSM	MAD
SATURDAY	APR 18	11:23 AM	166:10	40 MIN	LUNAR SURFACE	CSM	MAD*
SATURDAY	APR 18	1:13 PM	168:00	25 MIN	LUNAR SURFACE (POST TEI)	CSM	MAD*
MONDAY	APR 20	6:58 PM	221:45	15 MIN	EARTH SPACECRAFT INTERIOR	CSM	GDS

APOLLO 13 TV SCHEDULE

.

· ·

. ,

*Recorded Only

.

. .

.

**TV On Time

18mm Lens 75mm Lens 75mm Lens Atght Angle Hirror Mcc Power Cable(2) Mcc Power Cable(1) Mcc Power Cable (16mm) Sextant Adapter Soom Lens Zoom Lens Sextant Adapter Som Iters Sextant Adapter Sextant Adapter Soom Iters Innor Topographic Camera Sextant Topographic Camera Sextant Adapter Sextant Topographic Camera Sextant Adapter Mont Topographic Camera Sextant Adapter Sextant Adapter
LUT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X X X X X X X X X X X X X X X X X X X
X X X X X 995 995
x x
x x x x x 100 397 36 1 1 1 1 2 2
40 4
10231 4 2 4 3 1 16 2 1 2 3:55m227

4

.

Camera Bracket ASSy(70mm) Polarizing Fil. Camera Handle. Trigger (2)

x

X

X X X X X

x x

Close-up Stereo Cámera

X

X

X

X

DAC (2) Sent Lens 10mm Lens

X X

x

Remote Control Cable (70mm)

Intervalometer

x X

500mm Lens DC(60mm Lens) (2) DC Mount (RCU) Bracket

X

x

XX

XX

X X

X

x

El Camera (80mm lens) (2)

X

X X

X

x

x

x | x

CSM and LM Engineering

Distant Earth/Moon Lunar Surface Structure (Lumar Owist) Landing and Exploration Sites Lunar Surface Engineering Crew/Surface Compatibility Surface and Sub-surface Structure Crew/Spacecraft Compatibility

Nission Documentation

Bim Light Photography

Distant Earth/Hoom

)

.

250m Lens

...

4.0 Photo and TV Support for Control Center Operations

.

The following information indicates how the Photo and TV Operations Plan is supported in real time. It does not define the functions of any MCCH position.

4.1 Flight Director's SSR

a. Supporting FCSD elements:

<u>FP2</u> Experiment Section (MOB) (Prime participants) Lunar Surface Operations Office (EVA periods) Flight Equipment Section (Photographic equipment support)

FP1 Flight Plan Branch (Prime participants) Technical Assistance (CMS-LMS)

b. Mission Control Center Nominal Interfaces

FP2 Flight Activity Officer Computer Dymanics Weather S&AD Representatives Principal Investigators

FP1 Flight Activity Officer Electrical, Environmental, and Communications Officer (EE COM)

4.2 Flight Crew Mission Support (FP2)

Real time information concerning:

- a. Photographic, TV, and experiment procedures for orbital and lunar surface operations
- b. Operational mechanics of:
 - 1) Photographic Equipment: Cameras, lenses, films, brackets, filters, intervalometer, spotmeter, etc.
 - 2) Lunar surface equipment: Camera staff and pan bracket, gnomon, sampling tools, LEC, etc.
- c. Spacecraft Attitudes and Trajectory Data* *See Table 4.1

FP2 personnel will have the primary responsibility for the generation of the following information. Corrections or additions to these requirements should be received shortly after the start of Apollo 13 simulations.

ACTIVITY	RESPONSE TIME	UPDATED INFORMATION
Lunar Orbit Photography	20 MIN	S/C attitude T start (GET) T stop (GET)
P52 NAV Star	30 MIN	Provide NAV STARS in PTC attitude for the P52 option 3 realignments
P22	30 MIN	Provide T1 and T2 times, distance north or south of track
P23	• .	Check the NAV Stars in the flight plan and select other stars if the flight plan is altered. Gen- erate SFT, TRN, R, P, Y, and horizon illumination and identi- fication if required.
Sleep Attitude	1 HR	Provide a particular S/C attitude to satisfy thermal and communications constraints.
S/C Pointing With Minimum Middle Gimbal Angle	30 MIN	R,P,Y, to point windows or instruments with minimum gimbal angles.
To Point Window at the Moon, shortly prior to LOI and after TEI	10 MIN	R,P,Y, number of degrees window is pointing below horizon
Pointing Windows at Earth and Moon simultaneously (PTC Mode)	10 MIN	R,P,Y, to orient left hand window to Earth and right-hand window at Moon
Map Update	25 MIN	Provide prime meridian crossing, and AOS - LOS for MSFN prime active sites.
TV	30 MIN	Provide the proper S/C R,P,Y, and Hi- Gain antenna P,Y, for TV coverage as required during the mission.

and the state of the

Mission Phase (GET)	Activity	Camera Code	Mag
03:15	T & D	CM2/DAC/18/CEX-BRKT,MIR (f8,250,7)12fps, .7mag (5Min)	A
		CM_/EL/80/CEX-SPOT(f8,250,focus) 10	L
		CM4/TV-PEAK,BRKT(f22)	
03:59	LM Ejection	CM2/DAC/18/CEX-BRKT,MIR(f8,250,7) 6fps,.3 mag(5min.)	A
Crew Option	S/C Interior	CM/DAC/5/CIN-SPOT(f2.8,60,ff)6fps, 1 mag	J
07:10	Earth Weather	CM_/EL/250/CEX-RING (f11,250,∞)10	L
30:15	MCC-2	CM/TV-AVG (f5.6)	
Crew Option	Lunar Photography	CM_/EL/80or250/BW-RING(f5.6,250,∞)10	Ρ
		<pre>CM_/EL/80or250/CEX-RING(f5.6,250,∞)10</pre>	L
58:00	IVT	CM/TV-AVG(f5.6)	
84:24	Low Alt. Photos of Censorinus	CM3/LTC/BW-(fixed,50,fixed)	U
99:15	Undocking	CM2/DAC/18/CEX-BRKT,MIR (f8,250,7) 6fps, 1mag(16min)	В
-		CM2/EL/80/CEX-(f8,250,focus)10	L
		LM_/DC/60/HCEX-(fll,250,focus)10	II
		LM3/DAC/10/CEX-ULC(f8,250,7)6fps, .2mag (3min)	AA
100:35	CSM Circ. Burn	LM3/DAC/10/CEX-ULC(f8,250,∞)6fps, .03mag (30sec)	AA
		LM_/DC/60/HCEX-(f11,250,∞)2	II
103:40	LM Landing	CM3/LTC/BW-(fixed,50,fixed)	U

3

104:30	S/C Contamination	CM4/EL/80/VHBW-BRKT,LTWS CONT (f2.8,,∞)6	Т
L.0.	Orbital Sci. Photography	CM_/EL/80or250/CEX-(,250,∞)328	L,M, N
L.0.	Lmk Track SEXT Photos	CM/DAC/SEXT/CEX-(fixed,,fixed) lfps, lmag (93Min.)	С
107:35	LTC Photos of Landed LM	CM3/LTC/BW-(fixed,50,fixed)	U
107:48	Solar Corona	CM4/EL/80/VHBW-BRKT,CONT(f2.8,∞)15	т
108:08	Lunar Limb Brightening	CM4/DAC/18/VHBW-BRKT,MIR(f2.0,125,∞) 12fps,40 sec.	G
109 : 45	Earthshine Photography	CM4/DAC/18/VHBW-BRKT,MIR(f0.9,125,∞) lfps(5Min)	G
		CM4/EL/80/VHBW-BRKT,CONT(f2.8,125,∞) 18	T
L.0.	Vertical Stereo	CM4/DC/80/BW-BRKT,IVL(f,250,∞)360	R,S
	•	CM/DAC/SEXT/CEX-(fixed,, fixed)lfps,lmag	D
L.O.	LTC Photography	CM3/LTC/BW-(fixed,,fixed)	U ,V
L.0.	High Resolution Oblique Photography	CM4/EL/500/BW-BRKT,CONT(f8,125,∞) 170	Ρ
	· · ·	CM2/DAC/18/CEX-BRKT(f8,125,∞) 6fps,2mag (32min)	H,I
131:50	Zodiacal Light	CM4/DAC/18/VHBW-BRKT,MIR (f0.9,,∞)	G
133:45	Gegenschein	CM4/DAC/18/VHBW-BRKT,MIR (f0.9,20sec,)12fr.	G
137:10	APS Liftoff	LM3/DAC/10/CEX-BRKT(f2.8,500,∞) 12fps,1Mag	НH

140:30	Rendezvous & Docking	CM2/DAC/18/CEX-BRKT,MIR(f8,250,7) 6fps,1Mag	E
		CM2/EL/80/CEX(f8,250,focus)10	0
		LM3/DC/60/HCEX-(f11,250,focus)15	II
		CM4/TV-PEAK,BRKT(f22)	
143:04	LM Jettison	CM4/DAC/18/CEX-BRKT,MIR(f8,250,7) 12fps, (4Min)	F
144:32	LM Deorbit	CM/DAC/SEXT/CEX-(fixed,250,fixed) 12fps (4min)	F
145:00	LM Impact	CM3/LTC/BW-(fixed,,fixed)	V
168:01	Post TEI Lunar Photos	CM3/DC/80/CEX-(f5.6,250,∞)4	0
168:42	Post TEI Lunar Photos	CM3/DC/80/CEX-(f5.6,250,∞)2	0
168:38	Post TEI Lunar Photos	CM3/EL/250/CEX(f5.6,250,∞)3	0
168:50	Post TEI	CM_/TV-PEAK(f22)15min	
169:29	Post TEI Lunar Photos	CM3/LTC/BW-(fixed,100,fixed)5	v
182:01	Water Dump	CM1/DAC/18/VHBW-(f2.0,125,10) 6fps,30 sec. Change focus to ∞ & exposure time to 1/60, use remaining film.	G
182:50	Lunar Photos	CM3/LTC/BW-(fixed,100,fixed)	V
240:50	Reentry	CM4/DAC/18/CIN-(f16,250,7) 12fps,(4min)	К
	Chutes	Change to fll,(4min)	

APOLLO 13 MAGAZINE/FILM DISTR.

Command Module

NASA - MSC