12065 Pigeonite Basalt 2109 grams

Figure 1: Photo of 12065 showing numerous zap pits on rounded surface. Scale is in cm. NASA # *S69-60591.*

Introduction

Sample 12065 is a large rounded pigeonite basalt dated at 3.16 ± 0.09 b.y. The outer surface is covered with micrometeorite pits on all sides (figure 1).

Petrography

12065 is a variolitic basalt composed of pyroxene and olivine phenocrysts (figure 2) imbedded in a very fine matrix of feathery ilmenite, plagioclase and clinopyroxene (figure 3)(Reid 1971). Kushiro et al. (1971) find that the fibrous pyroxene in 12065 is similar to "quench pyroxenes" often found in quenching experiments. 12065 has a few percent void space.

Kushiro et al. (1971) used the bulk composition of 12065 to perform experiments leading to the conclusion

that near-surface olivine (Fo_{74}) and some pyroxene settling could explain the variation in composition of some Apollo 12 basalts.

Mineralogy

Olivine: Olivine composition in 12065 ranges from Fo_{72-32} (Kushiro et al. 1971).

Pyroxene: Hollister et al. (1971) and Kushiro et al. (1971) describe complex sector zoning of pyroxene phenocrysts in 12065 (figure 4). Pigeonite cores are overgrown by subcalcic augite (Gay et al. 1971). Kushiro et al. report extreme Fe-enrichment in matrix pyroxene. Gay et al. report pyroxferroite with low Ca.

Figure 2: Photomicrograph of thin section 12065 showing elongate pyroxene in variolitic groundmass. Scale is about 2 cm. NASA # S69-23378.

Plagioclase: Plagioclase is $An_{91} - An_{89}$ (Kushiro et al. 1971).

Spinel: The Ti content of the Cr-spinel increases with iron content from center to edge (Reid 1971). Kushiro et al. (1971) reported a large compositional gap between ulvöspinel and chromite.

Chemistry

The chemical composition of 12065 has been reported by LSPET (1970), Maxwell et al. 1971, Kushiro et al. (1971), Goles et al. (1971), Smales et al. (1971), Bouchet et al. (1971) and Wänke et al. (1971) (table 1, figures 5 and 6). Moore et al. (1971) determined 31

Figure 3: Photomicrographs of thin section 12065,7 (plane-polarized light; crossed-nicols) showing finely intergrown sheaths of plagioclase, pyroxene and ilmenite. Field of view 0.8 mm. NASA #S69-63438-439.

Minanala ainal Mada fan 19065

Figure 4: Pyroxene and olivine composition of 12065 (adapted from Kushiro et al. 1971, Brown et al. 1971 and Hollister et al. 1971).

ppm carbon in 12065. Lovering and Hughes (1971) determined Re and Os.

Radiogenic age dating

Turner (1971) determined 3.24 ± 0.05 b.y. by Ar/Ar (figure 8). Papanastassiou and Wasserburg (1971a) determined 3.16 ± 0.09 b.y. by Rb/Sr mineral isochron (figure 7). Alexander et al. (1972) determined 3.23 ± 0.03 b.y.

Cosmogenic isotopes and exposure ages

Rancitelli et al. (1971) determined the activity of ²²Na (32 dpm/kg), ²⁶Al (82 dpm/kg), ⁴⁶Sc (5.4dpm/kg), ⁴⁸V (7 dpm/kg), ⁵⁴Mn (31 dpm/kg) and ⁵⁶Co (22 dpm/kg). Hintenberger et al. (1971) determined exposure ages for 12065 using ³He (180 m.y.), ²¹Ne (200 m.y.) and ³⁸Ar (200 m.y.).

Other Studies

Fleischer et al. (1971) determined the nuclear track densities in pyroxene and estimated the surface residence time. Bogard et al. (1971) reported the content and isotopic composition of rare gases in

wineralogica	I Mode for L	2005			
	Neal et	Papike et	Brown et		
	al. 1994	al. 1976	al. 1971		
Olivine	0.3	0.8	2.8		
Pyroxene	68.6	70	68		
Plagioclase	24.9	18.8	17		
Opaques		10	11		
Ilmenite	1.6				
Chromite +Usp	1.6				
mesostasis	2.1	0.1			
"silica"	0.5	0.3			

12065. Gromme and Doell (1971) and Hargraves and Dorety (1971) reported magnetic properties. Seismic wave velocities were determined as a function of pressure by Kanamori et al. (1971).

Processing

In 1970, a slab (,16) was cut through the middle of 12065 and two columns (,19 and ,20) were cut from the slab (figures 9-11). For some reason, 12065,15 is on public display in Huntsville, Alabama (figure 13).

There are 16 thin sections.

Figure 8: Ar-Ar release pattern for 12065 (from Turner 1971).

Figure 5: Normalized rare-earth-element composition diagram for 12065.

Figure 6: Composition of 12065 compared with that of other lunar basalts.

Figure 7: Rb-Sr isochron for 12065 (from Papanastassiou and Wasserburg 1971a).

	Ar/Ar	Rb/Sr	Nd/Sm
Turner 1971	3.24 ± 0.05 b.y.		
Alexander et al. 1972	3.23 ± 0.03		
Papanastassiou and Wass	3.16 ± 0.09		

Lunar Sample Compendium C Meyer 2011

Table 1. Chemical composition of 12065.

reference weight	Maxwel	1171	Kushiro 25 g	o71 3.1 g		LSPET70	Goles	71	O'Kelly 2109 g	/71	Wanke7	'1	Ander	s71		Rancite 1209 g	lli71
SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O R2O5	46.87 3.34 10.05 19.76 0.256 7.82 10.73 0.27 0.073 0.12		46.61 3.15 10.58 19.36 0.26 8.04 11.13 0.34 0.08 0.21	46.14 3.34 10.73 19.86 0.26 8.05 10.96 0.25 0.07	(c) (c) (c) (c) (c) (c) (c) (c)) 39) 3.8) 12) 22) 0.41) 9) 12.6) 0.39) 0.072	44.9 3.1 9.2 19.7 0.26 11 0.25	(a) (a) (a) (a) (a)	0.061	(d)	46.85 3.5 10.33 19.8 0.29 8.49 10.8 0.24 0.08	 (a) (a) (a) (a) (a) (a) (a) (a) (a) 				0.065	(d)
S % sum	0.13		0.21														
Sc ppm V	50.6 150	(b) (b)				60 135	50 180	(a) (a)			56.5	(a)					
Cr Co	39	(b)	3284			3500 34	3090	(a)			3560 38.8	(a) (a)	43	42	(e)		
Ni Cu Zn Ga Ge ppb	20 15	(b) (b)				25					7.8	(a)	0.93	0.67	(e)		
As Se Rb Sr V	89 43	(b)				0.72 135 48							0.2 1.15	0.18 1.05	(e) (e)		
Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb	140	(b)				180							1.37	1.2	(e) (e)		
Sn ppb Sb ppb Te ppb Cs ppm													0.07	0.05	(e) (e)		
Ba La Ce Pr	7.5 21	(a) (a)				70	90 6.9 17	(a) (a) (a)			6.68 24	(a) (a)					
Nd Sm Eu	19 5.5 0.96 7.8	(a) (a) (a)					16 5.02 1.01	(a) (a) (a)			24 4.5 1.06	(a) (a) (a)					
Tb Dv	1.51 4.9	(a) (a)					1.3	(a)			1.58 7.64	(a) (a)					
Ho Er		(u)					1.8	(a)			1.11	(a) (a)					
Tm Yb Lu Hf Ta W ppb Re ppb	0.69 4.3 0.64 2.8 0.68	(a) (a) (a) (a) (a)					4.15 0.64 3.58 0.39	(a) (a) (a) (a)			3.78 0.59 3.9 0.51	(a) (a) (a) (a)					
Os ppb Ir ppb													0.08	0.05	(e)		
Au ppb Au ppb Th ppm U ppm technique:	(a) INA	A, (I	b) OES,	(c) conv	entio	nal wet, (d) r	adation	coui	1.06 0.27 nting, (e)	(d) (d)) <i>RN</i>	4 <i>A</i>		0.01	0.01	(e)	0.991 0.282	(d) (d)

Lunar Sample Compendium C Meyer 2011

Figure 9: Group photo of 12065 after sawing slab. NASA # S70-37260.

Figure 10: Group photo of columns cut from slab 12065,16. Thickness of slab is 1.6 cm. NASA # S70-37272.

Lunar Sample Compendium C Meyer 2011

Figure 11: Group photo of column (,20) cut from slab 12065,16. NASA # S70-37268.

Figure 13: 12065,15 on display. NASA # *S89-35328.*

List of Photo #s of 12065

TS	
9	TS color
6	
6	B & W mug
TS	
processin	g
processin	g
processin	g
TS best	
TS	
7	TS color
0	display
	TS 5 5 7 7 0

References for 12065

Anders E., Ganapathy R., Keays R.R., Laul J.C., and Morgan J.W. (1971) Volatile and siderophile elements in lunar rocks: Comparsion with terrestrial and meteoritic basalts. *Proc.* 2nd Lunar Sci. Conf. 1021-1036.

Anders E., Ganapathy R., Krahenbuhl U. and Morgan J.W. (1973) Meteoritic material on the Moon. *The Moon* **8**, 3-24.

Alexander E.C., Davis P.K. and Reynolds J.H. (1972) Raregas analysis on neutron irradiated Apollo 12 samples. *Proc. 3rd Lunar Sci. Conf.* 1787-1795.

Bogard D.D., Funkhouser J.G., Schaeffer O.A. and Zahringer J. (1971) Noble gas abundances in lunar material-cosmic ray spallation products and radiation ages from the Sea of Tranquillity and the Ocean of Storms. *J. Geophys. Res.* **76**, 2757-2779.

Bouchet M., Kaplan G., Voudon A., and Bertoletti M.-J. (1971) Spark source spectrometric analysis of major and minor elements in six lunar samples. *Proc.* 2nd *Lunar Sci. Conf.* 1247-1252.

Fleischer R.L., Hart H.R., Comstock G.M. and Evwarate A.O. (1971) The particle track record of the Ocean of Storms. *Proc.* 2nd *Lunar Sci.* Conf. 2559-2568.

Gay P., Brown M.G., Muir I.D., Bancroft G.M. and Williams PGL (1971) Mineralogical and petrographic investigations of some Apollo 12 samples. *Proc. Second Lunar Sci. Conf.* 377-392.

Goles G.G., Duncan A.R., Lindstrom D.J., Martin M.R., Beyer R.L., Osawa M., Randle K., Meek L.T., Steinborn T.L. and McKay S.M. (1971) Analyses of Apollo 12 specimens: Compositional variations, differentiation processes, and lunar soil mixing models. *Proc.* 2nd *Lunar Sci. Conf.* 1063-1081.

Gromme C.S. and Doell R.R. (1971) Magnetic properties of Apollo 12 lunar samples 12052 and 12065. *Proc. Second Lunar Sci. Conf.* 2491-2499.

Hintenberger H., Weber H.W. and Takaoka N. (1971) Concentrations and isotopic abundances of the rare gases in lunar matter. *Proc.* 2nd *Lunar Sci. Conf.* 1607-1625. Hollister L.S., Trzcienski W.E., Hargraves R.B. and Kulick C.G. (1971) Petrogenetic significance of pyroxenes in two Apollo 12 samples. *Proc. Second Lunar Sci. Conf.* 529-557.

James O.B. and Wright T.L. (1972) Apollo 11 and 12 mare basalts and gabbros: Classification, compositional variations and possible petrogenetic relations. *Geol. Soc. Am. Bull.* **83**, 2357-2382.

Kanamori H., Mitzutani H. and Hamano Y. (1971) Elastic wave velocities of Apollo 12 rocks at high pressure. *Proc. Second Lunar Sci. Conf.* 2323-2326.

Kushiro I. and Haramura H. (1971) Major element variation and possible source materials of Apollo 12 crystalline rocks. *Science* **171**, 1235-1237.

Kushiro I., Nakamura Y., Kitayama K. and Akimoto S-I. (1971) Petrology of some Apollo 12 crystalline rocks. *Proc.* 2nd Lunar Sci. Conf. 481-495.

Lovering J.F. and Hughes T.C. (1971) Re and Os determinations and meteoritic contamination levels in Apollo 11 and Apollo 12 lunar samples. *Proc. Second Lunar Sci. Conf.* 1331-1335.

LSPET (1970) Preliminary examination of lunar samples from Apollo 12. *Science* **167**, 1325-1339.

Maxwell J.A. and Wiik H.B. (1971) Chemical composition of Apollo 12 lunar samples 12004, 12033, 12051, 12052 and 12065. *Earth Planet. Sci. Lett.* **10**, 285-288.

Moore C.B., Lewis C.F., Larimer J.W., Delles F.M., Gooley R.C., Nichiporuk W. and Gibson E.K. (1971) Total carbon and nitrogen abundances in Apollo 12 lunar samples. *Proc.* 2nd Lunar Sci. Conf. 1343-1350.

O'Kelley G.D., Eldridge J.S., Schonfeld E. and Bell P.R. (1971a) Abundances of the primordial radionuclides K, Th, and U in Apollo 12 luanr samples by nondestructive gammaray spectroscopy: implications for the origin of lunar soils. *Proc. Second Lunar Sci. Conf.* 1159-1168.

O'Kelley G.D., Eldridge J.S., Schonfeld E. and Bell P.R. (1971b) Cosmogenic radionuclide concentrations and exposure ages of lunar samples from Apollo 12. *Proc. Second Lunar Sci. Conf.* 1747-1755.

Papanastassiou D.A. and Wasserburg G.J. (1971a) Lunar chronology and evolution from Rb-Sr studies of Apollo 11 and 12 samples. *Earth Planet. Sci. Lett.* **11**, 37-62.

Papike J.J., Hodges F.N., Bence A.E., Cameron M. and Rhodes J.M. (1976) Mare basalts: Crystal chemistry, mineralogy and petrology. *Rev. Geophys. Space Phys.* **14**, 475-540.

Rancitelli L.A., Perkins R.W., Felix W.D. and Wogman N.A. (1971) Erosion and mixing of the lunar surface from cosmogenic and primordial radionuclide measurement in Apollo 12 lunar samples. *Proc.* 2nd *Lunar Sci. Conf.* 1757-1772.

Reid J.B. (1971) Apollo 12 spinels as petrogenetic indicators. *Earth Planet. Sci. Lett.* **10**, 351-356.

Smales A.A., Mapper D., Webb M.S.W., Webster R.K., Wilson J.D., and Hislop J.S. (1971) Elemental composition of lunar surface material (part 2). *Proc. Second Lunar Sci. Conf.* 1253-1258.

Sutton R.L. and Schaber G.G. (1971) Lunar locations and orientations of rock samples from Apollo missions 11 and 12. *Proc.* 2nd Lunar Sci. Conf. 17-26.

Turner G. (1971) ⁴⁰Ar-³⁹Ar ages from the lunar maria. *Earth Planet. Sci. Lett.* **11**, 169-191.

Wänke H., Wlotzka F., M. and Rieder R. (1971) Apollo 12 samples: Chemical composition and its relation to sample locations and exposure ages, the two component origin of the various soil samples and studies on lunar metallic particles. *Proc.* 2nd *Lunar Sci. Conf.* 1187-1208

Warner J. (1970) Apollo 12 Lunar Sample Information. NASA TR R-353. JSC (catalog)