

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

TELS. WO 2-4155 WO 3-6925

FOR RELEASE: WEDNESDAY A.M. September 14, 1966

RELEASE NO: 66-248

GENERAL RELEAS SURVEYOR BACKG SURVEYOR B SPA Frame, Mech Power Subsy Telecommuni Propulsion-

PROJECT: SURVEYOR B

(To be launched no earlier than Sept. 20, 1966)

CONTENTS

GENERAL RELEASE	1-4
SURVEYOR BACKGROUND	5
SURVEYOR BACKGROUNDSURVEYOR B SPACECRAFT	<u>-</u> 6
Frame, Mechanisms and Thermal Control	6 - 8
Power Subsystem	 8-9
Telecommunications	10-11
Propulsion	
Flight Control Subsystem	
Television	14
Engineering Instrumentation	
ATLAS-CENTAUR (AC-7) LAUNCH VEHTCLE	16_17
LAUNCH VEHICLE FACT SHEET	17
ATLAS-CENTAUR FLIGHT SEQUENCE	18
TRACKING AND COMMUNICATION	19-20
TRAJECTORY	21_23
SURVEYOR B/ATLAS-CENTAUR FLIGHT PLAN	24
SURVEYOR B/ATLAS-CENTAUR FLIGHT PLANAtlas Phase	24
Centaur Phase	25
Initial Surveyor Phase	25-26
Canopus Acquisition	
Midcourse Maneuver	27 <i>-</i> 28
Terminal Sequence	28-29
Post-Landing Events	29-30
ATLAS-CENTAUR AND SURVEYOR TEAMS	31-33
MAJOR SUBCONTRACTORS	34-38

T

	N66	35665	
FACILITY FORM 608		(PAGES)	(THRU)

9/9/66

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

TELS. WO 2-4155 WO 3-6925

FOR RELEASE:

WEDNESDAY A.M.

September 14, 1966

RELEASE NO: 66-248

2ND SURVEYOR

LAUNCH SET

SEPTEMBER 20

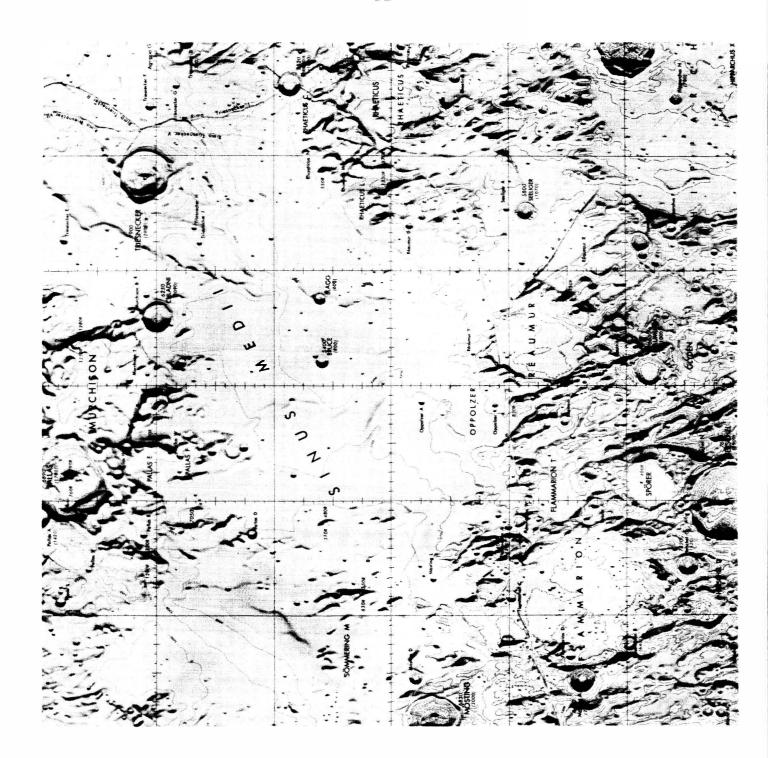
The United States will continue its program of scouting potential astronaut landing sites on the Moon with the launch of a sister spacecraft to the highly successful Surveyor I during a four-day period beginning Sept. 20.

This will be the second of seven Surveyor missions intended to develop the technology of soft-landing on the Moon and to provide scientific and engineering data to support the Apollo manned landing program.

Two National Aeronautics and Space Administration spacecraft have begun the manned landing site survey of the Moon:

- -- Surveyor I soft-landed on June 1 and returned more than 11,000 high resolution television pictures of its landing area centered at 2.5 degrees South latitude and 43 degrees West longitude.
- -- Lunar Orbiter I photographed nine potential manned landing sites across the equator from Aug. 18 to Aug. 29. These photographs are currently being analyzed.

This second Surveyor (designated Surveyor B) will be aimed to land in Sinus Medii, a maria at the center of the visible face of the Moon. This area was the fifth selected site photographed by Lunar Orbiter I.


Surveyor B will be launched by an Atlas-Centaur rocket from Complex 36 at Cape Kennedy, Fla. The spacecraft will be injected directly into a lunar trajectory for a 63-hour trip to the Moon.

At the Moon, Surveyor must accomplish the critical terminal descent and soft landing. For this purpose it is equipped with a solid propellant retrorocket and three throttleable liquid fuel vernier engines; a flight programmer, autopilot and anolog computer; and radars to determine altitude and rate of descent.

The main braking force is provided by the retrorocket. After it is jettisoned, data from the radars are processed by the onboard computer to throttle the verniers automatically so that Surveyor touches down softly on the lunar surface.

Surveyor B will face an additional factor not experienced by Surveyor I in its terminal descent and landing. The Surveyor I landing site was chosen for a nearly vertical descent -- approaching at an angle only six degrees off the perpendicular.

However, Surveyor B will approach the Moon an an angle of 23 degrees from the vertical. Successful accomplishment of such a soft landing will demonstrate the ability of the spacecraft to soft-land in the eastern quadrant of the Moon.

-more-

Surveyor B will be equipped identically to Surveyor I, carrying a survey television camera and engineering instrumentation. It will also obtain data on the radar reflectivity, mechanical properties, and thermal conditions of the lunar surface.

At launch, Surveyor B will weigh 2,204 pounds. The retromotor, which will be jettisoned after burnout, weighs 1,395 pounds. After expenditure of liquid propellants and use of attitude control gas, the landed weight of Surveyor on the Moon will be about 620 pounds.

On the first possible launch date, Tuesday Sept. 20, the window will open as early as 6:51 a.m. EDT and close at 8:33 a.m. This would make its arrival at the Moon about 9:30 p.m. EDT, Thursday Sept. 22.

The Surveyor program is directed by NASA's Office of Space Science and Applications. Project management is assigned to NASA's Jet Propulsion Laboratory operated by the California Institute of Technology, Pasadena. Hughes Aircraft Co., under contract to JPL, designed and built the Surveyor spacecraft. NASA's Lewis Research Center, Cleveland, is responsible for the Atlas first stage booster and for the second stage Centaur, both developed by General Dynamics/Convair, San Diego, Cal. Launch operations are directed by Kennedy Space Center, Fla.

Tracking and communication with the Surveyor is the responsibility of the NASA/JPL Deep Space Network (DSN). The stations assigned to the Surveyor program are Pioneer, at Goldstone in California's Mojave Desert; Johannesburg, South Africa; Ascension Island in the South Atlantic; and Tidbinbilla near Canberra, Australia. Data from the stations will be transmitted to JPL's Space Flight Operations Facility in Pasadena, the command center for the mission.

(END OF GENERAL RELEASE; BACKGROUND INFORMATION FOLLOWS)

SURVEYOR BACKGROUND

Surveyor I accomplished the first fully-controlled soft landing on the Moon on June 1, 1966, after a 63-hour, 36-minute flight from Cape Kennedy.

In the six weeks that followed, the spacecraft's survey television camera took more than 11,000 high-resolution pictures of the lunar surface and transmitted them to Earth tracking stations. Resolution in some of the closeups was one-half millimeter, or about one-fiftieth of an inch.

From the pictures were derived representative colors of the Moon's surface, an accurate view of the terrain up to one and one-half miles surrounding the Surveyor, the effect of landing a spacecraft upon the lunar surface and pictorial evidence of the minor lunar environmental damage to the spacecraft itself.

America's first remote lunar observatory took a number of pictures of the solar corona (the Sun's upper atmosphere), the planet Jupiter and the stars Sirius and Canopus.

Surveyor I landed at a velocity of about 7.5 miles per hour at a position 2.411 degrees south of the lunar equator and 43.345 degrees West longitude in the southwest portion of the Ocean of Storms.

The television pictures showed that the spacecraft came to rest on a smooth, nearly level site on the floor of a ghost crater. The landing site was surrounded by a gently rolling surface studded with craters and littered with fragmental debris. The crestlines of low mountains were visible beyond the horizon.

By July 13, Surveyor I's 42nd day on the Moon, the space-craft had survived the intense heat of the lunar day (250 degrees F.), the cold of the two-week-long lunar night (minus 260 degrees F.), and a second full lunar day. Total picture count was: first lunar day -- June 1 - 14 -- 10,338; second day -- July 7 - 13 -- 812.

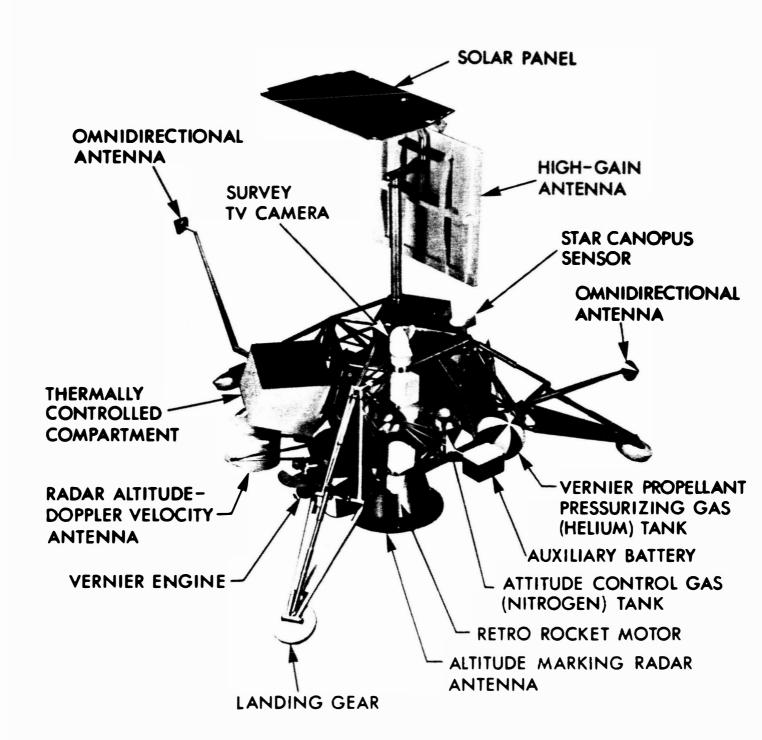
Despite a faltering battery not expected to endure the rigors of the lunar environment over an extended period, Surveyor continued to accept Earth commands and transmit TV pictures through the second lunar sunset. It acted upon more than 100,000 Earth commands during the mission.

SURVEYOR B SPACECRAFT

Frame, Mechanisms and Thermal Control

The triangular aluminum frame of the Surveyor provides mounting surfaces and attachments for the landing gear, main retrorocket, vernier engines and associated tanks, thermal compartments, antennas and other electronic and mechanical assemblies.

It is constructed of thin-wall aluminum tubing, with the members interconnected to form the triangle. A mast, which supports the planar array high-gain antenna, and single solar panel, is attached to the top of the frame. The basic frame weighs less than 60 pounds and installation hardware weighs 23 pounds.


The Surveyor stands about 10 feet high and, with its tripod landing gear extended, can be placed within a 14-foot circle. A landing leg is hinged to each of the three lower corners of the frame and an aluminum honeycomb footpad is attached to the outer end of each leg. An airplane-type shock absorber and telescoping strut are connected to the frame so that the legs can be folded into the nose shroud during launch. Touchdown shock also is absorbed by the footpads and by the hydraulic shock absorbers which compress with the landing load. Blocks of crushable aluminum honeycomb are attached to the bottom of the spaceframe at each of its three corners to absorb part of the landing shock.

Two omnidirectional, conical antennas are mounted on the ends of folding booms which are hinged to the frame. The booms remain folded against the frame during launch until released by squib-actuated pin pullers and deployed by torsion springs. The antenna booms are released only after the landing legs are extended and locked in position.

An antenna/solar panel positioner atop the mast supports and rotates the planar array antenna and solar panel in either direction along four axes. This freedom of movement enables the orientation of the antenna toward Earth and the solar panel toward the Sun.

Two thermal compartments house sensitive electronic apparatus for which active thermal control is needed throughout the mission.

SURVEYOR

The equipment in each compartment is mounted on a thermal tray that distributes heat throughout the compartment. An insulating blanket of 75 sheets of aluminized Mylar is sandwiched between each compartment's inner shell and the outer protective cover. The compartment tops are covered by mirrored glass to help radiate the heat.

On Surveyor I, one square of this glass was found cracked, --apparently by heat--after exposure to one lunar day and one lunar night.

Compartment A, which maintains an internal temperature between 40 degrees and 125 degrees F., houses the central command decoder, boost regulator, central signal processor, signal processing auxiliary, engineering signal processor, and low data rate auxiliary.

Both compartments contain sensors for reporting temperature measurements by telemetry to Earth, and heater assemblies to maintain the thermal trays above their allowable minimums. The compartments are kept below the 125-degree maximum with thermal switches which provide a conductive path to the radiating surfaces for automatic dissipation of electrically generated heat. Compartment A contains nine thermal switches and compartment B, six. The thermal shell weight of compartment A is 25 pounds, and compartment B, 18 pounds.

Passive temperature control is provided for all equipment not protected by the compartments through the use of paint patterns and polished surfaces.

Twenty-nine pyrotechnic devices mechanically release or lock the switches and valves associated with the antennas, landing leg locks, roll actuator, retrorocket separation attachments, helium and nitrogen tanks, shock absorbers and retromotor detonator. Some are actuated by command from the Centaur stage programmer prior to spacecraft separation from the Centaur, others by ground command.

A spherical solid propellant retrorocket fits within the center cavity of the frame and supplies the main thrust for slowing the spacecraft on approach to the Moon. The unit is attached at three points on the frame near the landing leg hinges, with explosive nut separation points for ejection after burnout. The motor case, made of high-strength steel and insulated with asbestos and rubber, is 36 inches in diameter. Including the molybdenum nozzle, the unfueled engine weighs 142 pounds. With propellant, the weight is about 1,395 pounds, more than 60 per cent of the total spacecraft weight.

Electrical harnesses and cables interconnect the space-craft subsystems to provide correct signal and power flow. The harness connecting the two thermal compartments is routed through a thermal tunnel to minimize heat loss from the compartments. Coaxial cable assemblies, attached to the frame by brackets and clips, are used for high frequency transmission.

Electrical connection with the Centaur stage is established through a 51-pin connector mounted on the bottom of the frame between two of the landing legs. The connector mates with the Centaur connector when the Surveyor is mounted on the launch vehicle. It carries pre-separation commands from the Centaur programmer and can handle emergency commands from the blockhouse console. Ground power and prelaunch monitor circuits also pass through the connector.

Power Subsystem

The power subsystem collects and stores solar energy, converts it to usable electric voltage, and distributes it to the other spacecraft subsystems. This equipment includes the solar panel, a main battery and an auxiliary battery, an auxiliary battery control, a battery charge regulator, main power switch, boost regulator, and an engineering mechanisms auxiliary.

The solar panel is the spacecraft's primary power source during flight and during operations in the lunar day. It consists of 3,960 solar cells arranged on a thin, flat surface of approximately nine square feet. The solar cells are grouped in 792 separate modules and are connected in series-parallel to guard against complete failure in the event of a single cell malfunction.

The solar panel is mounted at the top of the Surveyor spacecraft's mast. Winglike, it is folded away during launch and deployed after the spacecraft has been ejected into lunar trajectory.

When properly oriented during flight, the solar panel supplies about 89 watts which is most of the power required for the average operating load of all on-board equipment.

During operation on the lunar surface, the solar panel can be adjusted by Earth command to track the Sun within a few degrees, so that the solar cells always remain perpendicular to the solar radiation.

ANTENNA AND SOLAR PANNEL POSITIONER OMITTED FROM VIEW FOR CLARITY

On the Moon, the solar panel is designed to supply a minimum of 77 watts power at a temperature of 140 degrees F., and a minimum of 57 watts at a temperature of 239 degrees F.

A 14-cell rechargeable, silver-zinc main battery is the spacecraft's power reservoir. It is the sole source of power during launch; it stores electrical energy from the solar panel during transit and lunar-day operations, and it provides a back-up source to meet peak power requirements during both of those periods. Fully charged, the battery provides 3,800 watt-hours at a discharge rate of 1.0 amperes. Battery output is approximately 22 volts direct current for all operating and environmental conditions in temperatures from 40 degrees to 125 degrees F.

The auxiliary battery is a non-rechargeable, silver-zinc battery contained in a sealed magnesium cannister. It provides a power backup for both the main battery and the solar panel under peak power loading or emergency conditions. This battery has a capacity of from 800 to 1,000 watt-hours, depending upon power load and operating temperature.

The battery charge regulator and the booster regulator are the two power conditioning elements of the spacecraft's electrical power subsystem. The battery charge regulator couples the solar panel to the main battery for maximum conversion and transmission of the solar energy necessary to keep the main battery at full charge.

It receives power from the solar panel's varying output voltage and delivers this power to the main battery at a constant battery terminal voltage. The battery charge regulator includes sensing and logic circuitry for automatic battery charging whenever battery voltage drops below 27 volts.

The booster regulator unit receives unregulated power from 17 to 27.5 volts direct current from the solar panel, the main battery, or both, and delivers a regulated 29 volts direct current to the spacecraft's three main power transmission lines. These three lines supply all the spacecraft's power needs, except for a 22-volt unregulated line which serves heaters, switches, actuators, solenoids and electronic circuits which do not require regulated power or provide their own regulation.

Telecommunications

Communications equipment aboard Surveyor serves three functions: providing transmission and reception of radio signals; decoding commands sent to the spacecraft; and selecting and converting engineering and television data into a form suitable for transmission.

The first group includes the three antennas: one highgain, directional antenna and two low-gain, omnidirectional antennas; two transmitters; and two receivers with transponder interconnections. Dual transmitters and receivers are used for reliability.

The high-gain antenna transmits 600-line television data. The low-gain antennas receive ground commands and transmit other data including 200-line television data from the space-craft. Either low-gain antenna can be connected to either receiver. The transmitters can be switched to either low-gain antenna or to the high-gain antenna and can operate at low or high power levels. Thermal control of the three antennas is passive, dependent on surface coatings to keep temperatures within acceptable limits.

The command decoding group can handle up to 256 commands either direct (which control on-off operations) or quantitative commands (which control time interval operations). Each incoming command is checked in a central command decoder which will reject a command, and signal the rejection to Earth if the structure of the command is incorrect. Acceptance of a command is also radioed to Earth. The command is then sent to subsystem decoders that translate the binary information into an actuating signal for the function command such as squib firing or changing data modes.

Processing of most engineering data, (temperatures, voltages, currents, pressures, switch positions, etc.) is handled by the engineering signal processor or the auxiliary processor. There are more than 200 engineering measurements of the spacecraft. None are continuously reported. There are four commutators in the engineering signal processor to permit sequential sampling of selected signals. The use of a commutator depends on the type and amount of information required during various flight sequences. Each commutator can be commanded into operation at any time and at any of five bit rates: 17.2, 137.5, 550, 1,100 or 4,400 bits-per-second.

Commutated signals from the engineering processors are converted to 10-bit data words by an analog-to-digital converter in the central signal processor and relayed to the transmitter. The low-bit rates are normally used with transmissions over the low-gain antennas and the low-power levels of the transmitters.

Video data from the television camera are fed directly to the transmitters only during high-power operation and require the use of the high-gain antenna when in the 600-line mode.

Propulsion

The propulsion system consists of three liquid fuel vernier rocket engines and a solid fuel retrorocket. The verniers are used for the midcourse maneuver as well as in the terminal lunar landing sequence.

The vernier engines are supplied by three fuel tanks and three oxidizer tanks. There is one pair of tanks, fuel and oxidizer, for each engine. The fuel and oxidizer in each tank is contained in a bladder. Helium stored under pressure is used to deflate the bladders and force the fuel and oxidizer into the feed lines.

The oxidizer is nitrogen tetroxide with 10 per cent nitric oxide. The fuel is monomethylhydrazine monohydrate. An ignition system is not required for the verniers as the fuel and oxidizer are hypergolic, i.e., they burn on contact. The throttle range is 30 to 104 pounds of thrust.

The main retrorocket is used at the beginning of the terminal descent to the lunar surface and slows the space-craft from an approach velocity of about 6,000 mph to approximately 250 mph. On the Surveyor I mission, a 38-second burn of its retromotor slowed the spacecraft to 267 mph.

The retro burns an aluminum, ammonium-perchlorate and polyhydro carbon, case-bonded composite-type propellant. The nozzle has a graphite throat and a laminated plastic exit cone. The case is of high-strength steel insulated with asbestos and silicon dioxide-filled buna-N rubber to maintain the case at a low temperature level during firing.

Engine thrust varies from 8,000 to 10,000 pounds over a temperature range of 50 to 70 degrees F. Passive thermal control, insulating blankets and surface coatings, will maintain the grain above 50 degrees F. It is fired by a pyrogen igniter. The main retro weighs approximately 1,395 pounds and is spherical in shape, 36 inches in diameter.

Flight Control Subsystem

Flight control of Surveyor, control of its attitude and velocity from Centaur separation to touchdown on the Moon, is provided by: primary Sun sensor, automatic Sun acquisition sensor, Canopus sensor, inertial reference unit, altitude marking radar, inertia burnout switch, radar altimeter and Doppler velocity sensors, flight control electronics, and three pairs of cold gas jets. Flight control electronics includes a digital programmer, gating and switching, logic and a signal data converter for the radar altimeter and Doppler velocity sensors.

The information provided by the sensors is processed through logic circuitry in the flight control electronics to yield actuating signals to the gas jets and to the three liquid fuel vernier engines and the solid fuel main retromotor.

The Sun sensors provide information to the flight control electronics indicating whether or not they are illuminated by the Sun. This information is used to operate the gas jets to maneuver the spacecraft until the Sun sensors are on a direct line with the Sun. The primary Sun sensor consists of five cadmium sulphide photo-conductive cells. During flight, Surveyor may deviate slightly from pointing directly at the Sun. Such deviations are continuously corrected by signals from the primary sensor to the flight electronics activating the pitch and yaw gas jets to again center the sensors on the Sun.

Sun acquisition is required before locking on the star Canopus. Gas jets are used to center the star sensor on Canopus, so as to maintain roll axis attitude during cruise modes. If star or Sun lock is lost, control is automatically switched from optical sensors to gyros which sense changes in spacecraft attitude inertially.

The inertial reference unit is also used during events when the optical sensors cannot be used--midcourse maneuver and descent to the lunar surface. This device senses changes in attitude of the spacecraft and in velocity with three gyros and an accelerometer. Information from the gyros is processed by the control electronics to operate gas jets to change or maintain the desired attitude. During lunar descent thrust phases, the inertial reference unit controls vernier engine thrust levels by differential throttling for pitch and yaw control and swiveling one engine for roll control. The accelerometer controls the total thrust level.

The altitude marking radar will provide the signal for firing of the main retro. It is located in the nozzle of the retromotor and is ejected when the motor ignites. The radar will generate a signal at about 60 miles above the lunar surface. The signal starts the programmer automatic sequence after a pre-determined period (directed by ground command); the programmer then commands vernier and retro ignition and turns on the radar altimeter and Doppler velocity sensors.

The inertia burnout switch will close when the thrust level of the main retromotor drops below 3.5 g, generating a signal which is used by the programmer to command jettisoning of the retromotor and switching to control by the radar altimeter and Doppler velocity sensors.

Control of the spacecraft after main retro burnout is by the radar altimeter and Doppler velocity sensors. Two radar dishes are involved. An altimeter/velocity sensing antenna radiates two beams and a velocity sensing antenna radiates two beams. Beams 1, 2, and 3 give vertical or transverse velocity. Beam 4 provides altitude or slant range information. Beams 1, 2, and 3 provide velocity data by adding the Doppler shift (frequency shift due to velocity) of each beam in the signal data converter. The converted range and velocity data is fed to the gyros and gating logic which in turn control the thrust signals to the vernier engines.

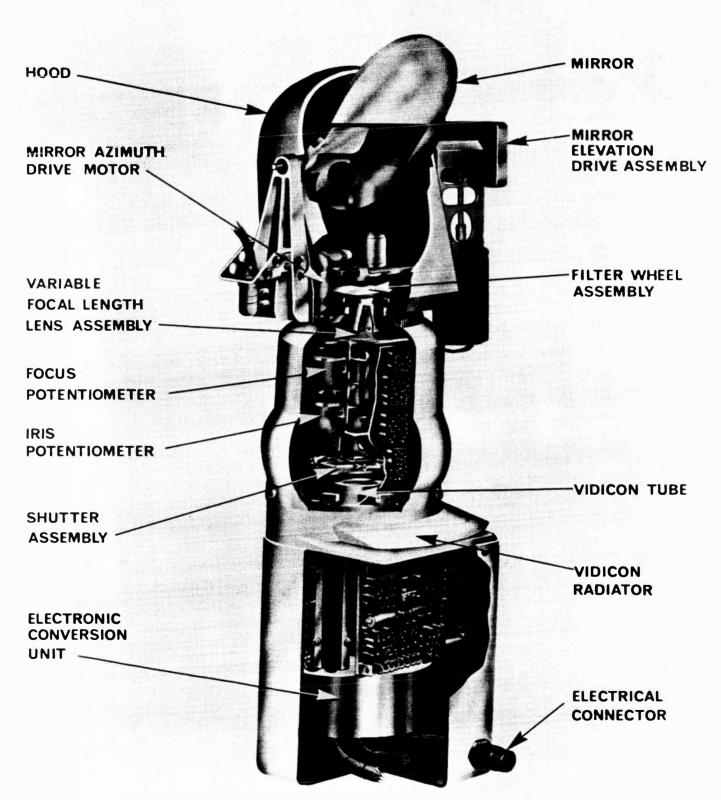
The flight control electronics provides for processing sensor information into telemetry and to actuate spacecraft mechanisms. It consists of control circuits, a command decoder and an AC/DC electronic conversion unit. The programmer controls timing of main retro phase and generates precision time delays for attitude maneuvers and midcourse velocity correction.

The attitude jets provide attitude control to the space-craft from Centaur separation to main retro burn. The gas jet system is fed from a spherical tank holding 4.5 pounds of nitrogen gas under high pressure, regulating and dumping valves and three pairs of opposed gas jets with solenoid operated valves for each jet. One pair of jets is located at the end of each of the three landing legs. The pair on one leg control motion in a horizontal plane, imparting roll motion to the spacecraft. The other two pairs control pitch and yaw.

Television

The Surveyor B spacecraft will carry one survey television camera. The camera is mounted nearly vertically, pointed at a movable mirror. The mirror can swivel 360 degrees and can tilt from a position where it reflects a portion of a landing leg to above the horizon.

The camera can be focused, by Earth command, from four feet to infinity. Its iris setting, which controls the amount of light entering the camera, can adjust automatically to the light level or can be commanded from Earth. The camera has a variable focal length lens which can be adjusted to either narrow angle, 6.4 X 6.4 field of view, or to wideangle, 25.4 x 25.4 field of view.


A focal plane shutter provides an exposure time of 150 milliseconds. The shutter can also be commanded open for an indefinite length of time. A sensing device coupled to the shutter will keep it from opening if the light level is too intense. A too-high light level could occur from changes in the area of coverage by the camera, a change in the angle of mirror, in the lens aperture, or by changes in Sun angle. The same sensor controls the automatic iris setting. The sensing device can be overridden by ground command.

The camera system can provide either 200- or 600-line pictures. The latter require that the high-gain directional antenna and the high power level of the transmitter are both working. The 600-line mode provides a picture each 3.6 seconds and the 200-line mode every 61.8 seconds.

A filter wheel can be commanded to one of four positions providing clear, colored or polarizing filters.

Surveyor B, like Surveyor I, will carry a downwardlooking television camera mounted on the lower frame of the spacecraft. However, this camera is not planned to be turned on during this mission.

SURVEYOR SURVEY TV CAMERA

Engineering Instrumentation

Engineering evaluation of the Surveyor test flights will be made by an engineering payload including an auxiliary battery, auxiliary processor for engineering information, and instrumentation consisting of extra temperature sensors, strain gauges for gross measurements of vernier engine response to flight control commands and shock absorber loading at touchdown, and extra accelerometers for measuring structural vibration during main retro burn.

The auxiliary battery will provide a backup for both emergency power and peak power demands to the main battery and the solar panel. It is not rechargeable.

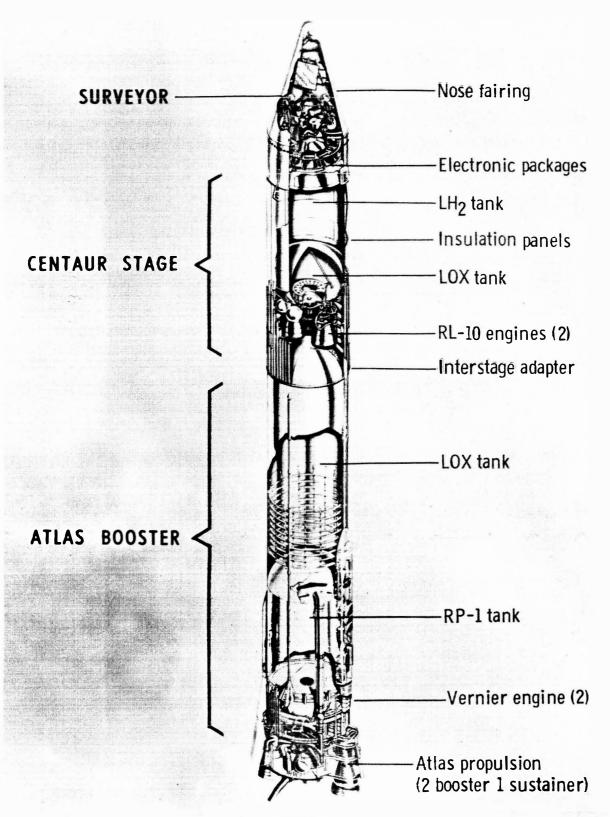
The auxiliary engineering signal processor provides two additional telemetry commutators for determing the performance of the spacecraft. It processes the information in the same manner as the engineering signal processor, providing additional signal capacity and redundancy.

ATLAS-CENTAUR (AC-7) LAUNCH VEHICLE

The Atlas-Centaur has been developed by NASA to launch medium-weight scientific spacecraft on lunar and interplanetary missions. The vehicle has a current payload capability of about 2,500 pounds for direct-ascent missions to the Moon and 1,300 pounds for missions to Venus and Mars.

Centaur was declared operational by NASA in 1965 for direct-ascent lunar missions. The vehicle scored a complete success on its first operational mission, Surveyor I, which was launched from Cape Kennedy by the AC-10 vehicle on May 30, 1966.

Surveyor I was injected on its lunar-transfer trajectory with such accuracy that the mid-course velocity correction required by the spacecraft to land within 10 miles of its preselected target was only about 8 mph. (Surveyor has a maximum "lunar miss" correction capability of lll.85 mph). Even without a mid-course correction, Surveyor I would have landed only 250 miles from its target.


Configuration of the AC-7 vehicle is the same as the Atlas-Centaur 10.

Yet to be completed in the Centaur vehicle development program is complete demonstration of a two-burn capability which will permit Centaur to fly into a circular Earth orbit, coast for a brief period, then restart its engines and inject a spacecraft on a lunar or planetary trajectory.

Although some payload capability is sacrificed using the Earth parking orbit method -- due to added equipment and the loss of liquid oxygen vented during the coast phase -- two distinct advantages are gained: (1) Surveyor launches can be conducted during winter months when lunar lighting conditions are unfavorable for direct-ascent missions, and (2) launch windows (periods during which the payload must be launched to intercept a target) are widened considerably.

It is expected this dual-burn capability will be demonstrated during the last planned Centaur vehicle development flight -- AC-9 -- scheduled later this year. Following that mission, several Surveyor spacecraft are scheduled to be launched to the Moon from an Earth parking orbit.

An improved Atlas (SLV-3C), will increase the Atlas-Centaur's payload capability to about 2,900 pounds for lunar missions and 1,800 pounds for Venus and Mars. The SLV-3C is scheduled to be used initially on the AC-13 mission.

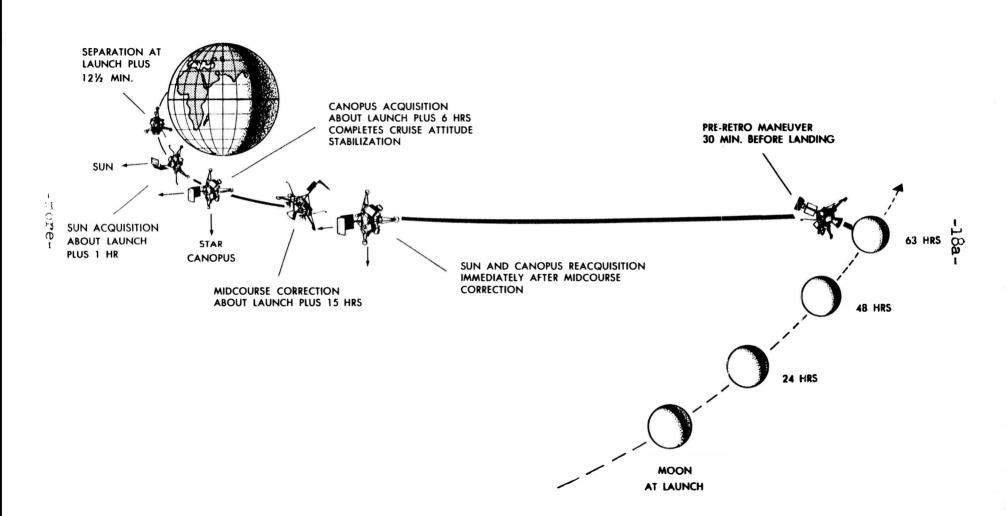
Major modifications to Atlas-Centaur to increase its payload capability include lengthening of the Atlas by four feet, which will increase total propellant capacity by some 20,000 pounds, and uprating of the Atlas booster and sustainer engines.

LAUNCH VEHICLE FACT SHEET

(All figures approximate)

Liftoff Weight: 303,000 lbs. Liftoff Height: 113 feet Launch Complex: 36-A

	Atlas Booster	Centaur Stage	
Weight (at liftoff)	263,000 lbs.	37.500 lbs. (less payload)	
Height	75 feet (including interstage adapter)	48 feet (with fairing)	
Thrust	389,000 lbs. (sea level)	30,000 lbs. (at altitude)	
Propellants	RP-l (fuel) and liquid oxygen (oxidizer)	Liquid hydrogen (fuel) and liquid oxygen (oxidizer)	
Propulsion	MA-5 system (2-165,000 lb. thrust booster engines, 1-57,000 lb. sustainer engine, and 2-1,000 lb. vernier engines)	Two RL-10 engines	
Velocity	5560 mph at BECO 7600 mph at SECO	23,700 mph at injection	
Guidance	Pre-programmed auto- pilot through BECO	Inertial	


ATLAS-CENTAUR FLIGHT SEQUENCE

*********	EVENT	NOMINAL TIME, SEC.	ALTITUDE STATUTE MI.	SURFACE RANGE STATUTE MI.	VEL/MPH
1.	Liftoff	0	0	0	0
2.	Booster engine cutoff	142	37	49	5,560
3.	Booster engine jettison	145	39	54	5,630
4.	Jettison insulation panels	s 176	58	100	6,200
5.	Jettison nose fairing	203	75	144	6,730
6.	Sustainer engine cutoff	237	97	205	7,600
7.	Atlas-Centaur separation	239	98	210	7,600
8.	Centaur engine start	248	104	228	7,600
9.	Centaur engine cutoff	6 88	147	1740	23,700
10.	Spacecraft separation	754	115	2160	23,700
11.	Centaur Reorientation	759	113	2190	23,700
12.	Centaur retrothrust	994	202	3680	23,700

(Launch vehicle mission completed at T plus 21 minutes)

Figures used are approximate but typical of potential trajectories for AC-7 depending on day of launch.

SURVEYOR FLIGHT PROFILE

TRACKING AND COMMUNICATION

The flight of the Surveyor spacecraft from injection to the end of the mission will be monitored and controlled by the Deep Space Network (DSN) and the Space Flight Operations Facility (SFOF) operated by the Jet Propulsion Laboratory.

Some 300 persons will be involved in Surveyor flight monitoring and control during peak times in the mission. On the Surveyor I flight more than 100,000 ground commands were received and acted on by the spacecraft during flight and after the soft landing.

The Deep Space Network consists of six permanent space communications stations in Australia, Spain, South Africa, and California; a spacecraft monitoring station at Cape Kennedy; and a spacecraft guidance and command station at Ascension Island in the South Atlantic.

The DSN facilities assigned to the Surveyor project are Pioneer at Goldstone, Cal.; Johannesburg, South Africa; Tidbin-billa in the Canberra Complex, Australia; and Ascension Island.

The Goldstone facility is operated by JPL with the assistance of the Bendix Field Engineering Corp. The Tidbinbilla facility is operated by the Australian Department of Supply. The Johannesburg facility is operated by the South African government through the Council for Scientific and Industrial Research and the National Institute for Telecommunications Research. The Ascension Island DSN facility is operated by JPL with Bendix support under a cooperative agreement between the United Kingdom and the U.S.

The DSN uses a ground communications system for operational control and data transmission between these stations. The ground communications system is a part of a larger net (NASCOM) which links all of the NASA stations around the world. This net is under the technical direction of NASA's Goddard Space Flight Center, Greenbelt, Md.

The DSN supports the Surveyor flight in tracking the space-craft, receiving telemetry from the spacecraft, and sending it commands. The DSN renders this support to all of NASA's unmanned lunar and planetary spacecraft from the time they are injected into planetary orbit until they complete their missions.

Stations of the DSN receive the spacecraft radio signals, amplify them, process them to separate the data from the carrier wave and transmit required portions of the data to the command center via high-speed data lines, radio links, and teletype. The stations are also linked with the center by voice lines. All incoming data are recorded on magnetic tape.

The information transmitted from the DSN stations to the SFOF is fed into large scale computer systems which translate the digital code into engineering units, separate information pertinent to a given subsystem on the spacecraft, and drive display equipment in the SFOF to present the information to the engineers on the project. All incoming data are again recorded in the computer memory system and are available on demand.

Equipment for monitoring television reception from a Surveyor spacecraft is located in the SFOF.

Some of the equipment is designed to provide quick-look information for decisions on commanding the camera to change iris settings, change the field of view from narrow angle to wide angle, change focus, or to move the camera either horizontally or vertically. Television monitors display the picture being received. The pictures are received line by line and each line is held on a long persistence television tube until the picture is complete. A special camera system produces prints of the pictures for quick-look analysis.

Other equipment will produce better quality pictures from negatives produced by a precision film recorder.

Commands to operate the camera will be prepared in advance on punched paper tape and forwarded to the stations of the DSN. They will be transmitted to the spacecraft from the DSN station on orders from the SFOF.

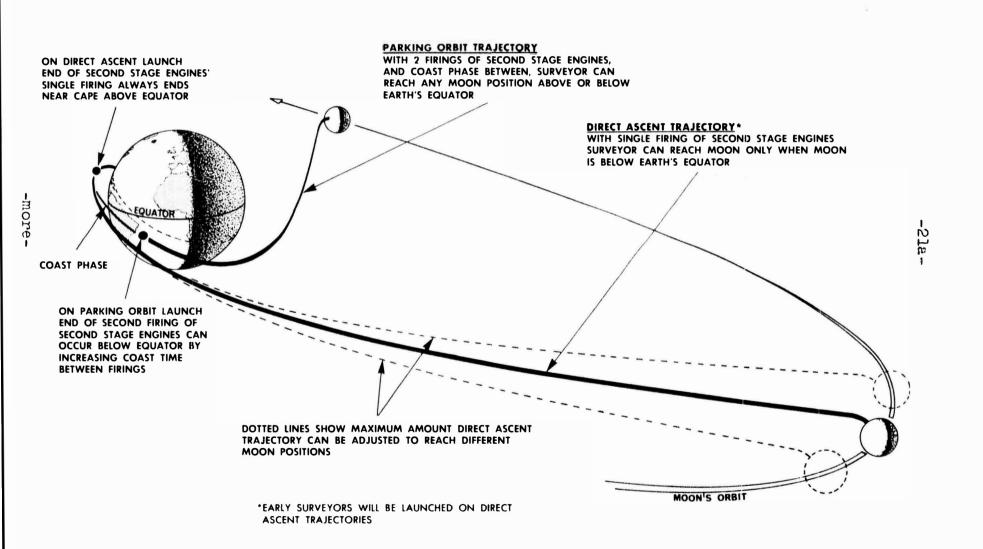
Three technical teams support the Surveyor television mission in the SFOF: one is responsible for determining the trajectory of the spacecraft including determination of launch periods and launch requirements, generation of commands for the midcourse and terminal maneuvers; the second is responsible for continuous evaluation of the condition of the spacecraft from engineering data radioed to Earth; the third is responsible for evaluation of data regarding the spacecraft and for generating commands controlling spacecraft operations.

TRAJECTORY

The determination of possible launch days, specific times during each day, and the Earth-Moon trajectories for the Surveyor spacecraft is based on a number of factors.

A primary consideration is the direct ascent launch as opposed to the parking orbit technique. A parking orbit is more complex in that it requires the Centaur second stage to fire its engines to achieve the initial circular orbit, coast in orbit about the Earth and then to fire its engines the second time to accelerate the spacecraft to the required lunar transit velocity.

In these first operational missions Centaur will not be required to perform the double burn. After separation from the Atlas booster, the Centaur will ignite its engines which will continue to burn until the lunar transit velocity has been reached. This velocity varies slightly with launch day and time but is approximately 24,500 mph.


Use of the direct ascent trajectory limits each monthly launch period to those days when the Moon is at negative declinations -- that is, in positions, relative to Earth, below the Earth's equator.

The days of the month available for launching are determinted by the attainable range in the flight path angle of the Centaur at injection -- that point in time when the Centaur engines cease firing and the required velocity for a lunar flight has been reached. The flight path angle is the angle at which Centaur is moving relative to a horizontal plane of the Earth below. Changes in this angle compensate for the daily change in the position of the Moon.

The attainable range in the angle is determined by the fuel available in the Atlas-Centaur combination, as both vehicles are involved in the angle of Centaur at injection. Any deviation from a horizontal flight path at injection requires more fuel to inject a given spacecraft weight at the required velocity.

The time span during each day that Surveyor can be launched -- the launch window -- is determined by the requirement that the launch site at launch time and the Moon at arrival time be contained in the Earth-Moon transfer orbit plane. With the launch site moving eastward as the Earth revolves, acceptable conditions occur only once each day for a given plane. However, by altering the plane as a result of changing the launch azimuth, or direction of launch from the launch site, between an allowable 85 to 115 degrees, East of North, the launch window can be extended as much as two hours.

SURVEYOR TRAJECTORIES TO THE MOON

The launch azimuth constraint of 85-115 degrees is imposed by the range safety consideration of allowing the initial phase only over the ocean, not over land masses.

The time of flight, or the time to landing, about 63 hours, is determined by the fact that Surveyor must reach the Moon during the viewing period of the prime Deep Space Net station at Goldstone.

The trajectory is also influenced by the landing site selection. This selection is based on several considerations, one that a limitation is imposed on the first Surveyor flights the spacecraft's angle of approach to the Moon must not exceed 25 degrees off vertical. There is essentially only one point on the Moon for each launch day that a spacecraft can land vertically.

The 25-degree consideration then, in effect, draws a constraining circle around this point. Surveyor must land within that circle.

The landing sites are further limited by the curvature of the Moon. The trajectory engineer cannot pick a site, even if it falls within his 25-degree circle, if the curvature of the Moon will interfere with a direct communication line between the spacecraft and the Earth.

Two other factors in landing site selection are smoothness of terrain and a requirement for Surveyor to land in the landing area selected for the Apollo manned lunar mission.

Lighting conditions on the Moon on arrival of the spacecraft at a given landing site are determined by the launch day which, in turn, is controlled by the use of direct ascent trajectories which limits the launch days available. In later missions using a parking orbit, the launch day can be picked to provide optimum light conditions.

Thus the trajectory engineer must tie together the direct ascent characteristics, the landing site location, the declination of the Moon and flight time, in determing when to launch, in which direction, and at what velocity.

His chosen trajectory also must not allow Surveyor to remain too long in the Earth's shadow. Too long a period could result in malfunction of components or subsystems. In addition, the Surveyor must not remain in the shadow of the Moon beyond given limits.

The velocity of the spacecraft when it arrives at the Moon must also fall within defined limits. These limits are defined by the retrorocket capability. The velocity relative to the Moon is primarily correlated with the flight time and the Earth-Moon distance for each launch day.

So, a further requirement on the trajectory engineer is the amount of fuel available to slow the Surveyor from its lunar approach speed of nearly 6000 miles per hour to nearly zero velocity 13 feet above the Moon's surface. The chosen trajectory must not yield velocities that are beyond the designed capabilities of the spacecraft propulsion system.

Also included in trajectory computation is the influence on the flight path and velocity of the spacecraft of the gravitational attraction of primarily the Earth and Moon and to a lesser degree the Sun, Mercury, Venus, Mars, and Jupiter.

It is not expected that the launch can be performed with sufficient accuracy to impact the Moon in exactly the desired area without a midcourse maneuver. The uncertainties involved in a launch usually yield a trajectory or an injection velocity that vary slightly from the desired values. These uncertainties are due to inherent limitations in the guidance system of the launch vehicle. To compensate, lunar and deep space spacecraft have the capability of performing a midcourse maneuver or trajectory correction. To alter the trajectory of a spacecraft it is necessary to apply thrust in a specific direction to change its velocity. The trajectory of a body at a point in space is basically determined by its velocity.

For example, a simple midcourse maneuver might resolve correcting a too high injection velocity. To correct for this the spacecraft would be commanded to turn in space until its midcourse engines are pointing in its direction of travel. Thrust from the engines would slow the craft. Generally, however, the midcourse is far more complex and will involve changes both in velocity and its direction of travel.

A certain amount of thrust applied in a specific direction can achieve both changes. Surveyor will use its three liquid fuel vernier engines to alter its flight path in the midcourse maneuver. It will be commanded to roll and then to pitch or yaw in order to point the three engines in the required direction. The engines then burn long enough to apply the change in velocity required to alter the trajectory.

The change in the trajectory is very slight at this point and a tracking period of about 20 hours is required to determine the new trajectory. This determination will also provide the data required to predict the spacecraft's angle of approach to the Moon, time of arrival, and its velocity as it approaches the Moon.

SURVEYOR B/ATLAS-CENTAUR FLIGHT PLAN

Surveyor B will be launched by Atlas-Centaur 7 into a direct-ascent lunar trajectory.

The primary task for Atlas-Centaur 7 on the Surveyor B flight is to inject the Surveyor spacecraft on a lunar-transfer trajectory with sufficient accuracy so that the midcourse maneuver correction required some 15 to 20 hours after liftoff does not exceed 165-feet-per-second or 111.85 miles-per-hour.

The Centaur stage also is required to perform a retromaneuver to avoid impacting the Moon and to prevent Surveyor's star seeker from mistaking the spent Centaur for its orienting star, Canopus.

Atlas Phase

All five of the Atlas engines -- three main engines and two vernier control engines -- are ignited prior to liftoff. For the first two seconds the Atlas-Centaur will rise vertically and then roll for 13 seconds to the desired flight plane azimuth of 83 to 115 degrees depending upon time of launch.

After 15 seconds of flight, the vehicle begins pitching over to the desired flight trajectory which continues throughout the Atlas-powered phase of the flight.

At T plus 142 seconds, booster engine cutoff (BECO) occurs when an acceleration level of 5.7 g is sensed. Three seconds later the booster engine package is jettisoned. The sustainer engine continues to propel the vehicle and Centaur inertial guidance begins its steering functions.

After 176 seconds of flight, the four insulation panels which surround the Centaur tank are jettisoned. These panels are used to minimize boiloff of the liquid hydrogen during flight through the atmosphere. Twenty-seven seconds later, the nose fairing which surrounds the Surveyor spacecraft is jettisoned.

Atlas sustainer engine cutoff (SECO) occurs after 237 seconds of flight at an altitude of about 97 miles. Two seconds later Atlas and Centaur are separated by a flexible shaped charge which severs the interstage adapter. Eight retrorockets on the Atlas are fired to increase the rate of separation.

Centaur Phase

At T plus 248 seconds, Centaur's two hydrogen-oxygen RL-10 engines are ignited for a planned burn of 440 seconds. Centaur ignition occurs about 104 miles altitude when the vehicle is 228 miles down range traveling at a velocity of 7,600 mph.

After 688 seconds of flight, Centaur's propulsion system is shut down when the guidance system senses that the vehicle has attained proper velocity. Injection velocity varies with time and day of launch, but is approximately 23,700 mph.

Shortly after Centaur engine shutdown, the programmer commands Surveyor's legs and two omnidirectional antennas to extend, and orders the spacecraft's transmitter to high power. At T plus 754 seconds and an altitude of 115 miles, the programmer commands separation of Surveyor from Centaur. Three spring-loaded cylinders force the spacecraft and vehicle apart.

Five seconds after spacecraft separation, Centaur is rotated 180 degrees by its attitude control system in order to perform a retromaneuver. Unused propellants are then blown through the rocket thrust chambers to increase separation of Centaur and Surveyor—the result is that some five hours later they are at least 200 miles apart. This eliminates the possibility that Surveyor's star tracker will mistakenly lock on Centaur. Centaur's trajectory is thereby altered to prevent it from impacting the Moon.

At liftoff plus 21 minutes, Atlas-Centaur will have completed its mission and the Centaur stage will continue in a highly elliptical Earth orbit, extending more than 276,000 miles into space and circling the Earth once each 12 days.

Initial Surveyor Phase

After separation from Centaur, Surveyor gives an automatic command to fire explosive bolts to unlock the solar panel. A stepping motor moves the panel to a prescribed position. Solar panel deployment can also be commanded from the ground if the automatic sequence fails.

Surveyor then performs an automatic Sun-seeking maneuver to stabilize the pitch and yaw axes and to align its solar panel with the Sun for conversion of sunlight to electricity to power the spacecraft. Prior to this event the spacecraft's main battery is providing power.

The Sun acquisition sequence begins immediately after separation from Centaur simultaneously with the solar panel deployment. The nitrogen gas jet system, which is activated at separation, will first eliminate pitch, roll and yaw motions resulting from separation from Centaur. Then a sequence of controlled roll and yaw turning maneuvers is commanded for Sun acquisition. Sun sensors aboard Surveyor provide signals to the attitude control gas jets to stop the spacecraft when it is pointed at the Sun. Once locked on the Sun, the gas jets pulse intermittently to control pitch and yaw attitude. Pairs of attitude control jets are located on each of the three landing legs of the spacecraft.

In the event the spacecraft does not perform the Sunseeking maneuver automatically, this sequence can be commanded from the ground.

The next critical step for Surveyor is acquisition of its radio signal by the Deep Space Net tracking stations at Ascension Island and Johannesburg, South Africa, the first DSN stations to see Surveyor after launch.

It is critical at this point to establish the communications link with the spacecraft to receive telemetry to quickly determine the condition of the spacecraft, for command capability to assure control, and for Doppler measurements from which velocity and trajectory are computed. Johannesburg acquired Surveyor I about 28 minutes after launch.

The transmitter can only operate at high power for approximately one hour without overheating. It is expected, however, that a ground station will lock on to the spacecraft's radio signal within 40 minutes after launch and if overheating is indicated, the transmitter can be commanded to low power.

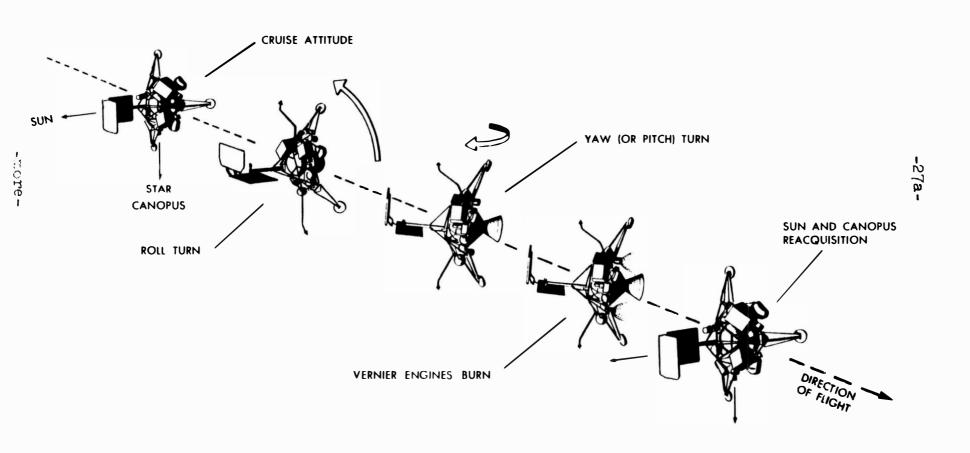
The next major spacecraft event after the Sun has been acquired is Canopus acquisition. Locking on the star Canopus provides a fixed inertial reference for the roll axis.

Canopus Acquisition

Canopus acquisition is commanded from the ground about six hours after launch. The gas jets roll the spacecraft at 0.5 degree-per-second. When the sensor sees the predicted brightness of Canopus (the brightest star in the Southern Memisphere) it orders the roll to stop and locks on the star.

The brightness of the light source it is seeing is telemetered to Earth to verify that it is locked on Canopus. Verification can also be provided by a ground command ordering a 360-degree roll and the plotting of each light source the sensor sees that is in the sensitivity range of the sensor. This star map can be compared with a map prepared before launch to verify that the spacecraft is locked on Canopus.

Now properly oriented on the Sun and Canopus, Surveyor is in the coast phase of the transit to the Moon. Surveyor transmits engineering data to Earth and receives commands via one of its omnidirectional antennas. Tracking information is obtained from the pointing direction of ground antenna and observed frequency change (Doppler). The solar panel provides electrical power, and additional power for peak demands is provided by one of two batteries aboard. The gas jets pulse intermittently to keep the craft aligned on the Sun and Canopus.


Engineering and tracking information is received from Surveyor at one of the stations of the Deep Space Network. The data are communicated to the Space Flight Operations Facility at JPL where the flight path of the spacecraft is calculated and the condition of the spacecraft is continuously monitored.

Midcourse Maneuver

Tracking information is used to determine how large a trajectory correction must be made to land Surveyor in a given target area. This trajectory correction, called the midcourse maneuver, is required because of uncertainties in the launch operation that prevent absolute precision in placing a spacecraft on a trajectory that will intercept the Moon.

The midcourse is timed to occur over the Goldstone station of the DSN, the tracking station nearest the SFOF at JPL.

SURVEYOR MIDCOURSE CORRECTION

The thrust for the midcourse is provided by the space-craft's three liquid fuel vernier engines. Total thrust level is controlled by an accelerometer at a constant acceleration equal to 0.1 Earth g. Pointing errors are sensed by gyros which cause the individual engines to change thrust level to correct pitch and yaw errors and swivel one engine to correct roll errors.

Flight controllers determine the required trajectory change to be accomplished by the midcourse maneuver. In order to align the engines in the proper direction to apply thrust to change its trajectory, Surveyor is commanded to roll, then pitch or yaw to achieve this alignment. Normally, two maneuvers are required, a roll-pitch or a roll-yaw.

The duration of the first maneuver is radioed to the spacecraft, stored aboard and re-transmitted to Earth for verification. Assured that Surveyor has received the proper information, ground controllers command it to perform the first maneuver. The second maneuver is handled in the same fashion. When the motors are properly aligned, the number of seconds of required thrust is transmitted to the spacecraft, stored, verified and then executed.

In the event of a failure of the automatic timer aboard the spacecraft which checks out the duration of each maneuver and firing period, each step in the sequence can be performed by carefully timed ground commands.

After the midcourse maneuver is completed, Surveyor reacquires the Sun and Canopus. Again Surveyor is in the cruise mode and the next critical event will be the terminal maneuver.

Terminal Sequence

The first step starts about 1000 miles above the Moon's surface. The exact descent maneuvers depend on the flight path and orientation of Surveyor with respect to the Moon and the target area. Normally there will be a roll followed by a yaw or a pitch turn. As in the midcourse maneuver, the duration times of the maneuvers are radioed to the spacecraft and the gas jets fire to execute the required roll and pitch and yaw. The object of the maneuvers is to align the main retro rocket with the approach velocity vector. To perform the maneuvers, the spacecraft breaks its lock on the Sun and Canopus. Attitude control is maintained by inertial sensors. Gyros sense changes in the attitude and order the gas jets to fire to maintain the correct attitude until the retrorocket is ignited.

PRE-RETRO MANEUVER 30 MIN, BEFORE TOUCHDOWN ALIGNS MAIN RETRO WITH FLIGHT PATH

SURVEYOR TERMINAL DESCENT TO LUNAR SURFACE

(Approximate Altitudes and Velocities Given)

MAIN RETRO START BY ALTITUDE MARKING RADAR WHICH EJECTS FROM NOZZLE, CRAFT STABILIZED BY VERNIER ENGINES AT 52 MI. ALTITUDE, 5,900 MPH

> MAIN RETRO BURNOUT AND EJECTION, VERNIER RETRO SYSTEM TAKEOVER AT 37,000 FT, 400 MPH

VERNIER ENGINES SHUTOFF AT 14 FT, 31/2 MPH

. TOUCHDOWN AT 8 MPH

-more-

With the main retro aligned, the altitude marking radar is activated by ground command about 200 miles above the Moon's surface. All later terminal events are controlled automatically by radar and the flight control programmer. The auxiliary battery is connected to help the main battery supply the heavy loads required during descent.

At approximately 60 miles slant range from the Moon's surface, the marking radar starts the flight control programmer which counts down a previously stored delay time and then commands ignition of the three liquid fueled, throttleable vernier engines and the solid propellant main retro. The vernier engines maintain a constant spacecraft attitude during the main retro thrusting period, in a manner similar to that employed during midcourse thrusting.

The spacecraft is traveling at approximately 6,000 miles per hour. The main retro burns out in 40 seconds at about 25 miles above the surface of the Moon after reducing the velocity to about 250 miles per hour. The casing of the main retro is separated from the spacecraft on command from the programmer 12 seconds after burnout by explosive bolts, and falls free.

After burnout the flight control programmer controls the thrust level of the vernier engines until the Radar Altimeter and Doppler Velocity Sensor (RADVS) locks onto its return signals from the Moon's surface.

Descent is then controlled by the RADVS and the vernier engines. Signals from RADVS are processed by the flight control electronics to throttle the three vernier engines, reducing velocity as the altitude decreases. At 14 feet above the surface, Surveyor is slowed to three miles per hour. At this point the engines are shut off and the spacecraft falls free to the surface.

The landing impact is cushioned by crushable foot pads and shock absorbers on each of the three legs and by crushable honeycomb aluminum blocks under the frame in case of an exceptionally hard landing.

Post-landing Events

Of prime interest to Surveyor engineers is the telemetry received during the descent and touchdown. Touchdown is followed by periods of engineering telemetry to determine the condition of the spacecraft.

If the spacecraft is in operational condition on the surface, flight control power is turned off to conserve battery power and a series of wide angle 200-lines TV pictures are taken.

The solar panel and high gain planar array antenna are aligned with the Sun and Earth. If the high gain antenna is successfully operated to lock on Earth, transmission of 600 line television pictures will begin. If it is necessary to operate through one of the low gain, omnidirectional antennas, additional 200 line pictures will be transmitted.

The lifetime of Surveyor on the surface will be determined by a number of factors such as the power remaining in the batteries in the even the Sun is not acquired by the solar panel, or spacecraft reaction to the intense heat of the lunar day.

ATLAS-CENTAUR AND SURVEYOR TEAMS

NASA HEADQUARTERS, WASHINGTON, D.C.

Dr. Homer E. Newell Associate Administrator for Space

Science and Applications

Robert F. Garbarini Deputy Associate Administrator for

Space Science and Applications

(Engineering)

Oran W. Nicks Director, Lunar and Planetary Programs

Benjamin Milwitzky Surveyor Program Manager

Vincent L. Johnson Director, Launch Vehicle and Pro-

pulsion Programs

R. Duff Ginter Centaur Program Manager

JET PROPULSION LABORATORY, PASADENA, CALIF.

Dr. William H. Pickering Director

Gen. A. R. Luedecke Deputy Director

Robert J. Parks Surveyor Project Manager

Howard H. Haglund Deputy Project Manager for Hughes

Aircraft Co. Operations

Walker E. Giberson Deputy Project Manager for Mission

Requirements, Plans and Operations

Dr. Leonard Jaffe Project Scientist

Dr. Eberhardt Rechtin Assistant Laboratory Director for

Tracking and Data Acquisition

Dr. Nicholas A. Renzetti Surveyor Tracking and Data Systems

Manager

W. E. Larkin JPL Engineer in Charge, Goldstone

J. Buckley Pioneer Station Manager, Goldstone

R. J. Fahnestock

JPL DSN Resident in Australia

R. A. Leslie

Tidbinbilla Station Manager

R. C. Terbeck

JPL DSN Resident in South Africa

D. Hogq

Johannesburg Station Manager

Avron Bryan

Ascension Station Manager

LEWIS RESEARCH CENTER, CLEVELAND

Dr. Abe Silverstein

Director

Bruce T. Lundin

Associate Director for Development

Edmund R. Jonash

Centaur Project Manager

KENNEDY SPACE CENTER, FLA.

Dr. Kurt R. Debus

Director

Robert H. Gray

Director of Unmanned Launch

Operations

John D. Gossett

Chief, Centaur Operations

HUGHES AIRCRAFT COMPANY, CULVER CITY, CAL.

Dr. Robert L. Roderick

Surveyor Program Manager, Assistant

Manager -- Lunar Programs

Robert E. Sears

Associate Program Manager

Dr. Frank G. Miller

Assistant Program Manager

Richard R. Gunter

Assistant Program Manager

GENERAL DYNAMICS/CONVAIR, SAN DIEGO, CAL.

Grant L. Hansen

Vice President, Launch Vehicle

Programs

G. Deane Davis

Centaur Program Manager

Dan Sarokon

Complex 36 Site Manager

PRATT AND WHITNEY AIRCRAFT DIVISION OF UNITED AIRCRAFT, CO., WEST PALM BEACH, FLA.

Richard Anchutze

RL-10 Engine Project Manager

HONEYWELL, INC., ST. PETERSBURG, FLA.

R. B. Foster

Centaur Guidance Program Manager

MAJOR SUBCONTRACTORS

Surveyor

AiResearch Division Garrett Corporation Torrance, Cal.

Ground support equipment

Airite

El Segundo, Cal.

Nitrogen tanks

Airtek Division

Fansteel Metallurgical Corp. Compton, Cal.

Propellant tanks

Ampex

Redwood City, Cal.

Tape recorder

Astrodata

Santa Ana, Cal.

Time clocks

Bell & Howell Company

Chicago, Ill.

Camera Lens

Bendix Corp.

Products Aerospace Division

South Bend, Ind.

Landing dynamics stability study

Borg-Warner

Santa Ana, Cal.

Tape recorder

Brunson

Kansas City, Kan.

Optical alignment equipment

Carleton Controls

Buffalo, N. Y.

Helium regulator

Eagle-Picher Company Auxiliary batteries

Joplin, Mo.

Electric Storage Battery Main batteries

Raleigh, N.C.

Electro-Development Corp. Strain gage electronics

Seattle

Electro-Mechanical Research

Sarasota, Fla.

Decommutators

Endevco Corporation Pasadena, Cal.

Accelerometers

General Electrodynamics Garland, Tex.

Vidicon tubes

General Precision, Inc.
Kearfott Division

Gyros

Kearfott Division Little Falls, N.J.

General Precision, Inc. Link Group Palo Alto, Cal. Spacecraft TV ground data handling
system

Heliotek
Sylmar, Cal.

Solar modules

Hi-Shear Corp. Torrance, Cal.

Separation device

C. G. Hokanson
Santa Monica, Cal.

Mob. temperature control unit

Holex Hollister, Cal.

Squibs

Honeywell Los Angeles

Tape recorder/reproducer

Kinetics Solana Beach, Cal. Main power switch

Lear Siegler Santa Monica, Cal. TV photo recorder

Menasco Los Angeles Gas tanks

Metcom Salem, Mass. Magnetron assembly

Motorola, Inc.
Military Electronics Division
Scottsdale, Ariz.

Subcarrier oscillators

National Water Lift Co. Kalamazoo, Mich.

Landing shock absorber

Northrop/Norair Hawthorne, Cal.

Landing gear

Ryan Aeronautical Co. San Diego, Cal.

Radar altitude Doppler velocity sensor

Sanborn Waltham, Mass.

L. F. oscillograph

Scientific-Atlanta Atlanta, Ga.

System test stand

Singer-Metrics Bridgeport, Mass. F. M. calibrator

Thiokol Chemical Corp. Elkton Division Elkton. Md.

Main retro engine

Thickol Chemical Corp. Reaction Motors Division Denville, N.J.

Vernier propulsion system

Telemetrics Santa Ana, Cal. Simulator

United Aircraft Corp.
Norden Division
Southampton, Pa.

Subcarrier oscillator

Vector Southampton, Pa. Subcarrier oscillator

Atlas

Rocketdyne Div. of North American Aviation Inc. Canoga Park, Cal.

MA-5 propulsion system

Thickol Chemical Corp. Reaction Motors Div. Denville, N.J.

LOX and fuel staging valves

Hadley Co. Inc.

Valves, regulators and disconnect coupling Fluidgenics Inc.

Regulators

General Precision Inc.

Displacement gyros

Kearfott Div. San Marcos, Cal.

Rate gyros

Honeywell Inc. Aeronautical Div.

Fifth Dimension Inc.

Commutators

Bendix Corp. Bendix Pacific Div. Telepaks and oscillators

Fairchild-Hiller Stratos Western Div. LOX fuel and drain valves

Bourns Inc.

Transducers and potentiometers

Washington Steel Co.

Stainless steel

Washington, Pa.

Centaur

General Dynamics/Ft. Worth Div., Ft. Worth, Tex.

Insulation panels and nose fairing

Pesco Products Div. of Borg-Warner Corp. Bedford, Ohio

Boost pumps for RL-10 engines

Bell Aerosystems Co. of Bell Aerospace Corp. Buffalo, N.Y.

Attitude control system

Liquidometer Aerospace Div. Propellant utilization system Simmonds Precision Products, Inc.

Long Island, N.Y.

General Precision Inc. Aerospace Gp., Kearfott Div., San Marcos, Cal.

Computer for inertial guidance system

Goodyear Aerospace Div. of Goodyear Tire and Rubber Co. Akron, Ohio

Handling trailer

Systems and Instruments Div. Destructors of Bulova Watch Co. Flushing, N.Y.

Consolidated Controls Corp. Safe and arm initiator El Segundo, Cal.

Borg-Warner Controls Div. of Borg-Warner Corp. Santa Ana. Cal. Inverter

Sippican Corp. Marion, Mass.

Modules for propellant utilization system

General Electric Co. Lynn, Mass. Turbine

Vickers Div. of Sperry Rand Corp.

Hydraulic pumps

Troy, Mich.

Edcliff Instruments, Inc. Monrovia, Cal.

Transducers and switches

Rosemount Engineering Co. Minneapolis

Transducers

Scientific Data Systems Santa Monica, Cal.

Computers

W. O. Leonard, Inc. Pasadena, Cal.

Hydrogen and oxygen vent valves