

APOLLO 12 LUNAR-SAMPLE INFORMATION

by Jeffrey Warner, Compiler
Manned Spacecraft Center
Houston, Texas 77058

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. • DECEMBER 197

Sample Information Center
NASA/JSC Building 31N

Section Page
SUMMARY 1
INTRODUCTION 2
THE APOLLO 12 MISSION 4
Extravehicular Activity 7
Sample-Collecting Tools and Techniques 8
Lunar Samples 10
LUNAR RECEIVING LABORATORY OPERATIONS 19
FIELD GEOLOGY 20
Geological Setting 20
Lunar-Soil Mechanics 21
SAMPLE LOCATIONS 22
SAMPLE IDENTIFICATION AND ORIENTATION 23
Contingency Sample 23
Selected Samples 25
Documented Samples 30
Tote-Bag Samples 43
SAMPLE INFORMATION 43
Mineralogy/Petrology 43
Chemical Analyses 49
Gamma-Ray Spectrometry Analyses 54
Noble Gas Results 56
Total Carbon Analyses 58
Organic Mass-Spectrometry Analyses 60
Organic-Monitor Analyses 61
Section Page
CONCLUSIONS 62
REFERENCE 64
APPENDIX A - MINERALOGICAL/PETROLOGICAL DESCRIPTIONS 65
APPENDIX B - TOTAL CARBON AND ORGANIC ANALYSES DATA SHEETS 211
APPENDIX C - ORGANIC-MONITOR DATA SHEETS 245
APPENDIX D - PHOTOGRAPHIC INDICES 257
APPENDIX E - MAJOR UPDATES AS OF JULY 31, 1970 359

TABLES

Table Page
I LUNAR-SAMPLE RETURN 7
II LUNAR-SAMPLE INVENTORY 11
III LUNAR-SAMPLE MASS DISTRIBUTION 16
IV EARLY AND REGULAR BIOLOGICAL TEST-SAMPLE COMPOSITIONS 19
V AREAL DISTRIBUTION OF SELECTED SAMPLES 26
VI AREAL DISTRIBUTION OF DOCUMENTED SAMPLES 30
VII X-RAY DATA 44
VIII EMISSION SPECTROGRAPHIC DATA FOR FINES MATERIALS
(a) Elements 50
(b) Oxides 50
IX EMISSION SPECTROGRAPHIC DATA FOR SELECTED SAMPLES
(a) Elements 51
(b) Oxides 51
X EMISSION SPECTROGRAPHIC DATA FOR DOCUMENTED SAMPLES
(a) Elements 51
(b) Oxides 51
XI EMISSION SPECTROGRAPHIC DATA FOR TOTE-BAG AND CONTINGENCY SAMPLES
(a) Elements 52
(b) Oxides 52
XII ATOMIC ABSORPTION DATA 52
XIII GAMMA-RAY DATA 55
XIV RARE-GAS DATA 57
XV TOTAL CARBON DATA 59
Table Page
A-I FIRST DIVISION OF CORE-TUBE SAMPLES 104
A-II DESCRIPTION OF THIN-SECTION PHOTOMICROGRAPHS 194
D-I CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER PHOTOGRAPHS 262
D-II SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM EACH CAMERA MAGAZINE 278
D-III LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY SAMPLE NUMBER 295
D-IV LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER 306
D-V CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS, AND GROUND-ELAPSED TIMES 328
E-I ORIENTATION WORK PERFORMED ON THE APOLLO 12 LUNAR SAMPLES 365
E-II CURRENT STATUS OF THE IDENTIFICATION AND LOCATION OF THE APOLLO 12 SAMPLES 368

FIGURES

Figure Page
1 Apollo 12 lunar-landing site
(a) Broad view (NASA-S-69-39524) 5
(b) General 5
(c) Regional 6
(d) Local 6
2 Sample-collecting equipment
(a) Contingency-sample container 8
(b) Apollo lunar-sample-return container 8
(c) Hammer 9
(d) Tongs 9
(e) Large scoop 9
(f) Small scoop 9
(g) Core tubes 10
(h) Extension handle 10
3 Extravehicular traverse map showing sample localities 18
4 Extravehicular activity photograph and orientation diagrams of Apollo 12 contingency samples
(a) Contingency-sample collection area showing the sequence and direction of the six scoops and the positions of the samples before collection (AS12-48-7031) 24
(b) Suggested selenographic orientation of sample 12073 (NASA-S-69-61060) 24
(c) Suggested selenographic orientation of sample 12075 (NASA-S-69-61490) 25
5 Extravehicular activity photographs and orientation diagrams of Apollo 12 selected samples
(a) Sample 12004 before collection (AS12-47-6936) 26
(b) Suggested selenographic orientation of sample 12004 (NASA-S-69-62023) 27
(c) Sample 12021 before collection (AS12-47-6932) 28
(d) Photograph of model of sample 12021 under simulated lunar conditions 28
(e) Suggested selenographic orientation of sample 12021 (NASA-S-69-61985) 28
(f) Sample 12022 before collection (AS12-47-6933) 29
(g) Suggested selenographic orientation of sample 12022 (NASA-S-69-61999) 29
6 Extravehicular activity photographs and orientation diagrams of Apollo 12 documented samples
(a) Sample 12031 before collection (AS12-48-7048) 31
(b) Suggested selenographic orientation of sample 12031 32
(c) Samples 12043 and 12044 before collection (AS12-48-7083) 35
(d) Sample 12051 before collection (AS12-49-7318) 36
(e) Suggested selenographic orientation of sample 12051 37
(f) Sample 12052 before collection (AS12-49-7218) 39
(g) Reconstructed selenographic orientation of sample 12052 (NASA-S-70-22673) 39
(h) Sample 12054 before collection (AS12-49-7315) 40
(i) Reconstructed selenographic orientation of sample 12054 (NASA-S-70-22696) 41
(j) Sample 12055 (rock A) in undisturbed position before collection (letters A to E are for location reference in fig. 6(k) (AS12-49-7197) 42
(k) Disturbed rock not sampled at site of sample 12055 (letters B to E are for location reference in fig. 6(j) (AS12-49-7200) 42
7 Apollo 11 and 12 lunar-sample modal analyses 46
A-1 Sample 12002 67
A-2 Sample 12004 69
A-3 Sample 12005 71
A-4 Sample 12006 73
A-5 Sample 12007 74
A-6 Sample 12008 75
A-7 Sample 12009 77
A-8 Sample 12010 78
A-9 Sample 12011 79
A-10 Sample 12012 81
A-11 Sample 12013 83
A-12 Sample 12014 85
A-13 Sample 12015 87
Figure Page
A-14 Sample 12016 88
A-15 Sample 12017 89
A-16 Sample 12018 91
A-17 Sample 12019 92
A-18 Sample 12020 93
A-19 Sample 12021 95
A-20 Sample 12022 99
A-21 Mechanical analyses of first core tube and of coarse layer of double core tube 103
A-22 Core-tube samples 12028 and 12026 105
A-23 Core-tube samples 12025 and 12028 106
A-24 X-ray radiograph of sample 12027 illustrating some of the internal structure 107
A-25 Sample 12030 109
A-26 Sample 12031 111
A-27 Sample 12034 115
A-28 Sample 12035 117
A-29 Sample 12036 119
A-30 Sample 12038 121
A-31 Sample 12039 123
A-32 Sample 12040 125
A-33 Sample 12043 129
A-34 Sample 12044 131
A-35 Sample 12046 133
A-36 Sample 12047 135
Figure Page
A-37 Sample 12051 137
A-38 Closeup of sample 12052 (NASA-S-70-21312) 139
A-39 Sample 12052 140
A-40 Sample 12053 143
A-41 Sample 12054 145
A-42 Sample 12055 147
A-43 Sample 12056 149
A-44 Sample 12057; chips less than 1 centimeter but more than 1 millimeter in diameter (NASA-S-69-60961) 151
A-45 Sample 12057; chips more than 1 centimeter in diameter (NASA-S-69-60962) 153
A-46 Sample 12057-4 (NASA-S-69-61393) 154
A-47 Sample 12057-5 (NASA-S-69-61395) 155
A-48 Sample 12057-6 (NASA-S-69-61406) 156
A-49 Sample 12057-7 (NASA-S-69-61390) 159
A-50 Sample 12057-8 (NASA-S-69-61388) 160
A-51 Sample 12057-9 (NASA-S-69-61403) 161
A-52 Sample 12057-11 (NASA-S-69-61405) 164
A-53 Sample 12061 (NASA-S-69-61659) 169
A-54 Sample 12062 171
A-55 Sample 12063 173
A-56 Sample 12064 177
A-57 Sample 12065 179
A-58 Sample 12071 185
A-59 Sample 12072 186
Figure Page
A-60 Sample 12073 187
A-61 Sample 12075 189
A-62 Sample 12076 191
A-63 Sample 12077 193
A-64 Sample 12002-7 (NASA-S-70-31576) 195
A-65 Sample 12004-10 (NASA-S-70-31582) 195
A-66 Sample 12008-15 (NASA-S-70-44572) 196
A-67 Sample 12009-17 (NASA-S-70-25428) 196
A-68 Sample 12010-29 (NASA-S-70-44542) 197
A-69 Sample 12012-5 (NASA-S-69-24220) 197
A-70 Sample 12013-4 (NASA-S-69-24223) 198
A-71 Sample 12014-5 (NASA-S-69-24210) 198
A-72 Sample 12018-79 (NASA-S-70-44547) 199
A-73 Sample 12020-9 (NASA-S-70-30253) 199
A-74 Sample 12021-5 (NASA-S-69-24219) 200
A-75 Sample 12021-4 (NASA-S.-69-24205) 200
A-76 Sample 12022-10 (NASA-S-70-24742) 201
A-77 Sample 12034-3 (NASA-S.-70-28217) 201
A-78 Sample 12035-21 (NASA-S-70-45637) 202
A-79 Sample 12038-2 (NASA-S.-69-24203) 202
A-80 Sample 12040-3 (NASA-S-.69-24211) 203
A-81 Sample 12044-2 (NASA-S-.69-24207) 203
A-82 Sample 12051-55 (NASA-S-70-40811) 204
A-83 Sample 12052-6 (NASA-S-70-25417) 204

Figure

 PageA-84 Sample 12053-76 (NASA-S-70-36474) 205
A-85 Sample 12057-14 (NASA-S-69-64831) 205
A-86 Sample 12057-37 (NASA-S-69-23374) 206
A-87 Sample 12057-18 (NASA-S-69-63411) 206
A-88 Sample 12057-36 (NASA-S-69-23371) 207
A-89 Sample 12057-22 (NASA-S-69-63404) 207
A-90 Sample 12062-18 (NASA-S-70-30256) 208
A-91 Sample 12063-17 (NASA-S-70-30270) 208
A-92 Sample 12064-9 (NASA-S-70-30264) 209
A-93 Sample 12065-6 (NASA-S-69-23378) 209
A-94 Sample 12073-5 (NASA-S-70-20744) 210
A-95 Sample 12075-23 (NASA-S-70-44546) 210
B-1 Mass spectrometer scans for control sample 1201 213
B-2 Mass spectrometer scans for sample 12003-1 217
B-3 Mass spectrometer scans for sample 12024-7, run 1 219
B-4 Mass spectrometer scans for sample 12024-7, run 2 220
B-5 Mass spectrometer scans for sample 12026-1 222
B-6 Mass spectrometer scans for sample 12026-2, run 1 224
B-7 Mass spectrometer scans for sample 12026-2, run 2 225
B-8 Mass spectrometer scans for sample 12028-1 227
B-9 Mass spectrometer scans for sample 12034-2 231
B-10 Mass spectrometer scans for sample 12040-2 233
B-11 Mass spectrometer scans for sample 12052-4 237
B-12 Mass spectrometer scans for sample 12057-1 239
B-13 Mass spectrometer scans for sample 12059-1 241
Figure Page
C-1 Mass spectrometer scans for Ottawa-sand organic monitors 246
C-2 Mass spectrometer scans for organic monitor 1007-2 247
C-3 Mass spectrometer scans for organic monitor 1007-4 248
C-4 Mass spectrometer scans for organic monitor 1008 249
C-5 Mass spectrometer scans for organic monitor 1009 251
C-6 High-resolution mass-spectral data for methanol 252
C-7 High-resolution mass-spectral data for benzene 253
C-8 Data plot of ALSRC 1008 lid wash 254
C-9 Mass spectrometer scans for ALSRC 1008 lid 255
E-1 Photograph showing tentative identification of sample 12008 on the southeast side of the large mound (AS12-46-6832) 369
E-2 Approximate lunar orientation of sample 12008 in the LRL 369
E-3 Enlargement of a portion of Hasselblad photograph AS12-46-6835 showing the tentative identification of sample 12010 370
E-4 Approximate lunar orientation of sample 12010 in the LRL as correlated with Hasselblad photograph AS12-46-6835 370
E-5 Enlargement of a portion of Hasselblad photograph AS12-46-6833 showing the tentative identification of samples 12013 and 12019 near the rim of Middle Crescent Crater 371
E-6 Approximate lunar orientation of sample 12013 in the LRL. (Note that a slice has been removed for thin sections.) 371
E-7 Photograph showing tentative identification of sample 12014 before it was picked up (AS12-47-6940) 372
E-8 Approximate lunar orientation of sample 12014 in the LRL without reconstructed lunar lighting (NASA-S-69-63353) 372
E-9 Enlargement of a portion of Hasselblad photograph AS12-47-6939 showing the tentative identification of sample 12016 embedded in the rim of a 2 -meter-diameter crater 373
E-10 Photograph of an LRL model of sample 12016 showing the
approximate lunar orientation and lighting. The fine de-
tails of the surface of the rock are lost on the model. The
holes are bubbles formed when the model was made 374

E-11 Approximate lunar orientation of sample 12019 in the LRL as correlated with Hasselblad photograph AS12-46-6833375
E-12 Photograph of sample 12006 at an angle in which the vugs suggest a face, possibly the "grinning"' rocked sampled at 04:22:25 g.e.t. (NASA-S-69-61012) 376
E-13 Photograph of sample 12020 held in an orientation such that the vugs and fractures suggest a face, possibly the "grinning"' rock 376
E-14 Enlargement of a portion of Hasselblad photograph AS12-48-7149 showing samples 12046 and 12047 before they were picked up and put into bag 15-D. Sample 12045, also included in bag 15-D, has not been identified in the lunar-surface photograph 377
E-15 Approximate lunar orientation of sample 12046 in the LRL 377

APOLLO 12 LUNAR-SAMPLE INFORMATION

By Jeffrey Warner, Compiler
Manned Spacecraft Center

SUMMARY

The second manned lunar landing occurred on November 19, 1969, when the Apollo 12 lunar module touched down on the Ocean of Storms. The scientific data obtained between November 25, 1969, and January 30, 1970, during the preliminary examination of the lunar samples returned from the Apollo 12 mission are presented in this report. Descriptions of the sample-collecting tools and techniques and of the contingency, selected, documented, and tote-bag samples are given. A preliminary search was conducted to determine the localities and orientations of the samples on the lunar surface; however, much work remains to be done to complete this task. Mineralogical/petrological, chemical, gamma-ray spectrometry, noble gas, total carbon, organic mass-spectrometry, and organic-monitor analyses were performed on the lunar samples, and the results are given and discussed.

Photographs and detailed descriptions of the samples, plots and descriptions of the samples and controls that were subjected to organic analysis, and details of the organic-contamination monitors and controls are presented. Photographic documentation is presented in (1) a log of all photographs taken both on the lunar surface and in the Lunar Receiving Laboratory, (2) an index of photographs by sample number and an index of samples by photograph number, and (3) a cross-reference of samples with the lunar-surface collection locations, photographs, and chronological sequence.

The major findings of the preliminary examination of the Apollo 12 lunar samples can be contrasted with the major findings of the samples from the first manned lunar landing (the Apollo 11 mission which landed on the Sea of Tranquility on July 20, 1969) as follows.

1. Although still old by terrestrial standards, the Apollo 12 rocks are approximately 1 billion years younger than the Apollo 11 rocks.
2. Whereas microbreccias comprised approximately one-half of the Apollo 11 samples, the Apollo 12 suite contained only two breccias in the 45 rocks returned.
3. The regolith at the Apollo 12 site was approximately one-half as thick as that at the Apollo 11 site.
4. Considerably less solax-wind material was found in the Apollo 12 fines than in the Apollo 11 fines.
5. The crystalline rocks in the Apollo 12 collection, in contrast to those from the Apollo 11 mission, displayed a wide range in both modal mineralogy and primary texture.
6. Chemically, the "nonearthy" character (high refractory and low volatileelement concentrations) of the Apollo 11 samples was evident in the Apollo 12 samples but to a lesser degree.
7. The chemical composition of the Apollo 12 fines equaled that of the breccias but did not equal that of the crystalline rocks; this was not observed in the Apollo 11 samples.

Much of the sample information given in this document was collected under less than optimum conditions and in a short time; therefore, all data should be considered preliminary.

INTRODUCTION

This document is a rapid compilation of the scientific data about the lunar samples returned by the Apollo 12 crew. The purpose of this report is to provide the lunar-sample Principal Investigators and other scientists with general information concerning the total lunar samples returned and with specific information about individual samples that were distributed for detailed analyses. It is hoped that this document will aid the Principal Investigators in putting the samples they receive into the larger context of lunar science. This report is a companion document to the NASA Apollo 12 Preliminary Science Report.

The following information is contained in the appendixes: (1) Mineralogical/ petrological descriptions of the samples (appendix A); (2) results of the total carbon and organic analyses (appendix B); (3) the organic monitors (appendix C); (4) a comprehensive photographic index (appendix D); and (5) major updates to July 31, 1970 (appendix E).

The data contained in this report were collected in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC) by the linnar sample Preliminary Examination Team (PET) and the Lunar Field Geology Experiment Team during and immediately after the Apollo 12 mission. Team members are as follows.

CHEMICAL ANALYSIS AND X-RAY GROUP:

J. H. Allen, Brown and RootNorthrop (BRN)
A. D. Bennett, BRN
J. B. Dorsey, BRN
P. H. Johnson, BRN
J. R. Martin, BRN
W. B. Nance, BRN
S. R. Taylor, Australian National University

GAMMA-RAY COUNTING GROUP:
P. R. Bell, MSC
R. S. Clark, MSC
J. S. Eldrige, Oak Ridge National Laboratory (ORNL)
J. E. Keith, MSC
G. D. O' Kelley, ORNL
W. R. Portenier, BRN
M. K. Robbins, BRN
R. T. Roseberry, ORNL
E. Schonfeld, MSC

FIELD GEOLOGY GROUP:
D. H. Dahlem, United States Geological Survey (USGS)
E. N. Goddard, University of Michigan
M. H. Hait, USGS
G. G. Schauer, USGS
D. L. Schleicher, USGS

INORGANIC GAS ANALYSIS GROUP:
J. Barber, State University of New York, Stony Brook (SUNY)
D. D. Bogard, MSC
C. M. Polo, BRN
O. A. Schaeffer, SUNY
L. A. Simms, BRN
J. Funkhouser, SUNY
R. Warasila, SUNY
W. R. Hart, BRN
W. C. Hirsch, BRN
D. R. Moore, BRN
R. B. Wilkin, BRN
J. Zähringer, Max-Planck-Institut, Heidelberg, Germany

LUNAR RECEIVING LABORATORY GROUP:

A. J. Calio, MSC
R. B. Erb, MSC
R. McKinney, MSC
W. A. Parkan, MSC
J. Prejean, MSC
T. M. McPherson, MSC
K. L. Suit, MSC
M. Novotny, MSC
D. R. White, MSC
R. Wright, MSC

LUNAR SURFACE PHOTOGRAPHIC LOG GROUP:
R. Batson, USGS
K. Larson, USGS

MINERALOGY/PETROLOGY GROUP:

T. J. Allen, BRN
D. H. Anderson, MSC
E. E. Anderson, BRN
P. R. Brett, MSC
P. Butler, Jr., MSC
E. C. T. Chao, USGS
L. E. Cornitius, BRN
T. H. Foss, MSC
C. Frondel, Harvard University
R. Fryxell, Washington State University
E. K. Gibson, MSC
L. E. Giddings, Jr., BRN
D. P. Gilmore, BRN
G. M. Greene, BRN
W. R. Greenwood, MSC
R. S. Harmon, MSC
G. H. Heiken, MSC
D. W. Hutchinson, BRN
R. W. Irvin, BRN
C. E. Lee, BRN
J. D. Light, BRN
J. F. Lindsay, MSC
E. A. Locke, BRN
G. E. Lofgren, MSC
D. A. Morrison, MSC
A. F. Noonan, BRN
D. S. Pettus, BRN
R. L. Smith, USGS
R. L. Sutton, USGS
J. Warner, MSC
R. E. Wilcox, USGS
D. R. Wones, Massachusetts Institute of Technology (MIT)

ORGANIC GAS ANALYSIS GROUP:
A. L. Burlingame, University of
N. Mancuso, MIT
California at Berkeley (UCB)
R. Murphy, MIT
D. A. Flory, MSC
M. A. Reynolds, MSC
J. Hauser, UCB
B. Simoneit, UCB
R. Hebert, MIT
D. H. Smith, UCB

SOIL MECHANICS GROUP:
W. D. Carrier, MSC
N. C. Costes, Marshall Space Flight Center
J. K. Mitchell, MIT
R. F. Scott, California Institute of Technology

TOTAL CARBON ANALYSIS GROUP:
E. K. Gibson, MSC
C. F. Lewis, Arizona State
University (ASU)

The author would like to ackrowledge the special help in editing this document given by Daniel Anderson, Robin Brett, and Donald Flory. Also, the author wishes to thank Beverly Atkinson without whose efforts this report would not have been possible.

$$
\text { THE APOLLO } 12 \text { MISSION }
$$

The primary purpose of the Apollo 12 mission was to demonstrate a pinpoint landing capability on the lunar surface. The crewmembers were Charles Conrad, Jr., Commander (CDR), Richard Gordon, Command Module Pilot (CMP), and Alan Bean, Lunar Module Pilot (LMP).

The space vehicle was launched from Kennedy Space Center, Florida, at 11: 22 a.m. e.s.t. on November 14, 1969. The lunar module (LM) landed in the Ocean of Storms (fig. 1) at 110: 32: 35 ground-elapsed time, approximately 200 meters from the Surveyor III spacecraft (fig. 1(d)). The landing coordinates were $2.45^{\circ} \mathrm{S}$ latitude and $23.34^{\circ} \mathrm{W}$ longitude.

(a) Broad view (NASA-S-69-39524).

(b) General.

Figure 1.- Apollo 12 lunar-landing site.

Figure 1.- Concluded.

Extravehicular Activity

The extravehicular activity (EVA) on the lunar surface was divided into two 4 -hour traverses separated by an 8 -hour eat/rest period. The length of each EVA was dictated by the capabilities; of the life-support system. Four types of samples (contingency, selected, documented, and tote bag) were collected from the lunar surface and returned to the LRL. The sample return is listed in table I.

TABLE I. - LUNAR-SAMPLE RETURN

Type of sample (a)	Weight, g
Contingency sample	
Fines Chips Rocks (4) Total	$\begin{array}{r} 1102 \\ 9 \\ 821 \\ 1932 \end{array}$
Selected sample	
Fines Chips Rocks (20) Core tube (19 cm) Total	$\begin{array}{r} 2716 \\ 50 \\ 11940 \\ 101 \\ 14807 \end{array}$
Documented sample	
Fines plus chips Rocks (6) Documented bags (13) Fines plus chips (7) Rocks (11) Core tube Double tube (40 cm) Unopened Lunar-environment sample container (LESC) Gas-analysis sample container (GASC) Total	$\begin{array}{r} 650 \\ 6124 \\ \\ 1353 \\ 2288 \\ \\ \\ 246 \\ 80 \\ \\ \\ 269 \\ \\ \\ 11067 \end{array}$
Tote-bag sample	
Fines Chips Rocks (4) Total	21 10 6488 6519
Summary	
Fines and chips Rocks (45) Special samples Total return	$\begin{array}{r} 5911 \\ 27661 \\ 753 \\ 34325 \end{array}$

${ }^{a}$ Fines are less than 1 centimeter, chips are between 1 and 4 centimeters, and rocks are larger than 4 centimeters.

In addition to collecting samples, the main scientific tasks to be accomplished during the extravehicular activities were (1) photographing rocks, the lunar surface, and the moonscape; (2) deploying the Apollo lunar-surface experiments package (ALSEP) during the first EVA; (3) collecting parts from the Surveyor III spacecraft during the second EVA; and (4) deploying and retrieving the solar-wind foil. The ALSEP contained a central-power communication station and five experiment units: the passive seismometer, the cold-cathode ion gage, the suprathermal ion detector, the solar-wind spectrometer, and the magnetometer.

Sample-Collecting Tools and Techniques

To obtain samples of the lunar surface, the Apollo 12 crew used the samplecollecting tools and techniques described in the following paragraphs. The tools were designed of material that was durable enough to accomplish the tasks yet light enough to conform to the weight and space limitations of the LM stowage area. The limitations imposed on the movements of a crewman while wearing a pressurized space suit also had to be considered; therefore, the tools were designed with quick-disconnect fittings to enable the crewman to attach or detach components with minimum difficulty. Knurled or roughened areas were provided on many tools to improve the crewman's grip, and an extension handle was provided to lengthen the crewman's reach. Prime consideration was given to the selection of the metals and lubricants used in the construction of the tools to avoid elements and isotopes (such as lead (Pb), strontium (Sr), et cetera) that might contribute to serious geochemical contamination of the lunar material.

The contingency-sample container (fig. 2(a)) consisted of a small Teflon bag and a jointed aluminum handle that was approximately 84.5 centimeters long in the fixed extended position. The Teflon bag measured 5.2 by 12.7 by 17.8 centimeters. The contingency-sample container was used to obtain a lunar sample during the early stages of the first EVA.

The two Apollo lunar-sample-return containers (ALSRC) (fig. 2(b)) were portable, sealable aluminum containers. Each ALSRC weighed approximately 6.8 kilograms, measured 20.3 by 26.7 by 44.5 centimeters, and had a capacity of 0.023 cubic meter. Before the lunar landing, the containers housed the core tubes and other related equipment. On the lunar surface, the astronauts opened, filled, and closed the containers. The three seals on the hinged lids (one of indium (In) and two of Viton) preserved the samples in a vacuum environment during transportation back to the LRL.

Figure 2.- Sample-collecting equipment.

The hammer (fig. 2(c)) was made of tool steel suitable for impact use. The head was coated with vacuum-deposited aluminum to minimize solar heating. The handle was offset.slightly so that the crewman could strike a direct blow despite the encumbrance of the pressurized space suit. One end of the hammerhead was shaped for use as a pick or chisel; with the extension handle attached, it could have been used as a hoe for trenching or digging. The hammer also could have been used for driving the core tubes into the subsurface by striking the end of the extension handle.

The tongs (fig. 2(d)) were constructed of anodized aluminum and were used to retrieve samples of pebble size and larger. This tool consisted of a set of opposed spring-loaded fingers attached to a 66 -centimeter-long handle. The tongs were operated by squeezing the handles to actuate the cable that opened the fingers.

Figure 2. - Continued.
The large scoop (fig. 2(e)) was constructed of anodized aluminum. The length of the scoop and handle was 39.4 centimeters and could have been extended an additional 58.4 centimeters by use of the extension handle. The large scoop was used during the lunar EVA to collect the selected sample.

The small scoop (fig. 2(f)) was 29.8 centimeters in length. The pan of the scoop had a flat bottom that was flanged on both sides and a partial cover on the top to prevent loss of contents. It was used to retrieve sand, dust, or other lunar material too small for the tongs. The small scoop was made of anodized aluminum with a steelalloy inset on the front edge that was suitable for cutting cohesive material. The handle had a quick-disconnect mount for attaching the extension handle.

Figure 2. - Continued.

The core tubes (fig. 2(g)) were constructed of anodized aluminum and were used to obtain samples from the lunar surface in such a manner that the near-surface stratigraphy was preserved. The core tubes were 41.3 centimeters long and could be attached to the extension handle. Four tubes were used on the Apollo 12 mission.

The extension handle (fig. 2(h)) increased the crewman's reach by adding 58.4 centimeters of handle length to various tools. The lower end of the extension handle had a quick-disconnect mount and lock for tool aitachment. The upper end was fitted with a sliding T -handle to facilitate torquing operations.

Figure 2. - Concluded.

The gnomon was a stadia rod mounted on a tripod and was constructed so that the rod would right itself and point vertically when the legs were put down on the lunar surface. The gnomon was an indicator of the gravitational vector and provided accurate vertical reference and calibrated length for determining the size and position of objects in near-field photographs. The shadow cast by the staff indicated the solar position. The gnomon had a finish painted in shades of gray ranging in reflectivity from 5 to 35 percent in 5 -percent increments and a color scale of blue, orange, and green. The scales were provided as a means of accurately determining colors in color photographs. The rod was 45.7 centimeters long, and the tripod base folded for compact stowage in the modularized equipment-stowage assembly.

The individual sample bags also were known as the documented sample bags or as the 'Dixie cups." The bags were made of Teflon and had an aluminum crimping ring. Each bag could hold approximately one-third liter.

Lunar Samples

The Apollo 12 sample return and inventory are listed in tables I and II. The mass distribution of the samples is shown in table III.

TABLE II. - LUNAR-SAMPLE INVENTORY

Sample number	Mass, g	Type code (a)	Remarks
Selected samples ${ }^{\text {b }}$			
12001	2216.0	D	Less than $1-\mathrm{cm}$ vacuum fines
12002	1529.5	B	Olivine dolerite ${ }^{\text {c }}$ - vacuum ${ }^{\text {d }}$
12003	300.0	D	Fines and chips
12004	585.0	A	Olivine basalt - vacuum
12005	482.0	A	Olivine basalt - vacuum
12006	206.4	AB	Olivine basalt with radiating feldspar laths
12007	65.2	A	Basalt
12008	58.4	AB	Cumulate (ilmenite)
12009	468.2	A	Porphyritic olivine (feldspar) basalt, large depression - vacuum
12010	360.0	A	Basalt - vacuum
12011	193.0	A	Olivine basalt - vacuum
12012	176.2	AB	Olivine basalt - vacuum
12013	82.3	A	Igneous breccia - vacuum
12014	159.4	B	Olivine dolerite - vacuum

${ }^{\mathrm{a}}$ Type A, fine-grained vesicular crystalline igneous rocks; type B, mediumgrained vuggy crystalline igneous rocks; type C, breccias; type D, fines; and type E, chips.
$\mathrm{b}_{\text {The }}$ S-ALSRC contained 40 to 60 microns of pressure when returned to the LRL.
${ }^{c}$ Dolerite is a rock of basaltic composition with an intermediate crystal size.
d Samples 12002 to 12022 labeled "vacuum" were exposed to 1 atmosphere of nitrogen (N) for at least 2 hours.

TABLE II. - LUNAR-SAMPLE INVENTORY - Continued

Sample number	Mass, g	Type code (a)	Remarks
Selected samples ${ }^{\text {b }}$ - Concluded			
12015	191.2	A	Porphyritic olivine basalt, large depression - vacuum
12016	2028.3	AB	Basalt - vacuum
12017	53.0	AB	Glass-coated basalt - vacuum
12018	787.0	B	Olivine dolerite - vacuum
12019	462.4	A	Basalt - vacuum
12020	312.0	A	Olivine basalt - vacuum
12021	1876.6	B	Pigeonite dolerite, pegmatite vacuum
12022	1864.3	B	Olivine dolerite - vacuum
Special samples			
12023	269.3	D	LESC
12024	56.5	D	GASC
12025	56.1	D	Core 2010 (second EVA - top of double tube)
12026	101.4	D	Core 2013 (first EVA)
12027	80.0	D	Core 2011 (second EVA - unopened as of Jan. 1, 1970)

${ }^{\mathrm{a}}$ Type A, fine-grained vesicular crystalline igneous rocks; type B, mediumgrained vuggy crystalline igneous rocks; type C, breccias; type D, fines; and type E, chips.
${ }^{\mathrm{b}}$ The S-ALSRC contained 40 to 60 microns of pressure when returned to the LRL.

TABLE II. - LUNAR-SAMPLE INVENTORY - Continued

Sample number	Mass, g	Type code (a)	Remarks
Special samples - Concluded			
12028	189.6	D	Core 2012 (second EVA - bottom of double tube)
12029	6.5	D	Fines with Surveyor scoop
Documented samples ${ }^{\text {e }}$			
12030	75.0	D	Bag 1-D - fines
12031	185.0	B	Bag 3-D - olivine dolerite
12032	310.5	D	Bag 4-D - fines
12033	450.0	D	Bag 5-D - fines
12034	155.0	C	Bag 6-D - crystal breccia with glass
12035	71.0	B	Bag 7-D - olivine dolerite
12036	75.0	B	Bag 8-D - olivine dolerite
12037	145.0	D	Bag 8-D - fines
12038	746.0	A	Bag 9-D - basalt
12039	255.0	B	Bag 10-D - olivine dolerite
12040	319.0	B	Bag 10-D - olivine dolerite
12041	24.8	15	Bag 11-D - fines
12042	255.0	D	Bag 12-D - fines

${ }^{\mathrm{a}}$ Type A, fine-grained vesicular crystalline igneous rocks; type B , mediumgrained vuggy crystalline igneous rocks; type C, breccias; type D, fines; and type E, chips.
${ }^{e}$ The D-ALSRC contained approximately 0.5 atmosphere when returned to the LRL. All of the documented samples were processed in nitrogen cabinets in room 1-126 of the LRL.

TABLE II. - LUNAR-SAMPLE INVENTORY - Continued

Sample number	Mass, g	Type code (a)	Remarks
Documented samples ${ }^{\text {e }}$ - Concluded			
12043	60.0	A	Bag 14-D - basalt
12044	92.0	D	Bag 14-D - fines
12045	63.0	A	Bag 15-D - basalt
12046	166.0	A	Bag 15-D - basalt
12047	193.0	A	Bag 15-D - basalt
12048	2.0	D	Bag 7-D - fines
12050	1.0	E	Chip for organic analysis
12051	1660.0	AB	Olivine basalt
12052	1866.0	A	Olivine basalt
12053	879.0	A	Olivine basalt
12054	687.0	B	Dolerite with glass splash and shatter structure
12055	912.0	B	Basalt
12056	121.0	AB	Basalt
12057	650.0	DE	Fines and chips from bottom of D-ALSRC

${ }^{\mathrm{a}}$ Type A, fine-grained vesicular crystalline igneous rocks; type B, mediumgrained vuggy crystalline igneous rocks; type C, breccias; type D, fines; and type E, chips.
${ }^{e}$ The D-ALSRC contained approximately 0.5 atmosphere when returned to the LRL. All of the documented samples were processed in nitrogen cabinets in room 1-126 of the LRL.

TABLE II. - LUNAR-SAMPLE INVENTORY - Concluded

Sample number	Mass, g	Type code (a)	Remarks
Tote-bag samples ${ }^{\text {f }}$			
12060	20.7	D	Fines
12061	9.5	E	10 chips from tote bag
12062	738.7	AB	Basalt; has depression with raised cone with radial cracks
12063	2426.0	A	Olivine basalt
12064	1214.3	B	Dolerite with cristobalite
12065	2109.0	AB	Pigeonite porphyry consisting of plagioclase, pigeonite, and ilmenite
Contingency samples ${ }^{\text {g }}$			
12070	1102.0	D	Fines
120\%1	9.16	E	Chips
12072	103.6	A	Basalt
12073	407.65	C	$\begin{aligned} & \text { Breccia - originally samples } 12073 \\ & \text { and } 12074(361.0+46.65 \mathrm{~g}) \end{aligned}$
12075	232.5	A	Olivine basalt
12076	54.55	A	Basalt
12077	22.63	A	Basalt

${ }^{\mathrm{a}}$ Type A, fine-grained vesicular crystalline igneous rocks; type B, mediumgrained vuggy crystalline igneous rocks; type C, breccias; type D, fines; and type E, chips.
${ }^{\mathrm{f}}$ Studied in nitrogen cabinets; handled by personnel in Crew Reception Area (CRA) for 20 minutes.
$\mathrm{g}_{\text {Studied in nitrogen cabinets. }}$

TABLE III. - LUNAR-SAMPLE MASS DISTRIBUTION

Mass, g	Sample number	Mass, g	Sample number
1.0	12050	206.4	12006
9.16	a_{12071}	232.5	12075
9.5	${ }^{\text {a }} 12061$	255.0	12039
20.7	a_{12060}	255.0	${ }^{1} 12042$
22.63	12077	269.3	${ }^{1} 12023$
24.8	a_{12041}	300.0	${ }^{1} 12003$
46.65	12074	310.5	${ }^{1} 12032$
53.0	12017	312.0	12020
54.55	12076	319.0	12040
56.1	a_{12025}	360.0	12010
56.5	${ }^{\text {a }} 12024$	407.65	12073
58.4	12008	450.0	${ }^{\text {a }} 12033$
60.0	12043	462.4	12019
63.0	12045	468.2	12009
65.2	12007	482.0	12005
71.0	12035	585.0	12004
75.0	a_{12030}	650.0	a_{12057}
75.0	12036	687.0	12054
80.0	${ }^{\text {a }} 12027$	738.7	12062
82.3	12013	746.0	12038
92.0	${ }^{\text {a }} 12044$	787.0	12018
101.4	a_{12026}	879.0	12053
103.6	12072	912.0	12055
121.0	12056	1102.0	${ }^{\text {a }} 12070$
136.0	a_{12048}	1214. 3	12064
145.0	${ }^{\text {a }} 12037$	1529.5	12002
155.0	12034	1660.0	12051
159.4	12014	1864.3	12022
166.0	12046	1866.0	12052
176.2	12012	1876.6	12021
185.0	12031	2028.3	12016
189.6	a_{12028}	2109.0	12065
191.2	12015	2216.0	a_{12001}
193.0	12011	2426.0	12063
193.0	12047		

${ }^{\mathrm{a}}$ Lunar fines or fines and chips.

Contingency sample. - The contingency sample (table I) was collected early during the first EVA to assure that some lunar material would be returned in the event that the extravehicular activities were aborted. The CDR collected the contingency sample 10 meters southwest of the LM. Approximately five scoops were made to collect the 2 kilograms (including four rock s) of material.

Selected samples. - The selected samples (table I) replaced the ''bulk'" samples of Apollo 11 and were collected northwest of the LM (up to 300 meters away) during the last part of the first EVA. Seventeen rocks were collected with the tongs and placed in a large Teflon bag. Three large rocks (about 2 kilograms each) were collected with the tongs and placed in a second large Teflon bag, which then was filled with lunar fines using the scoop. One core tube was driven. The two Teflon bags and the core tube were sealed on the lunar surface in the ALSRC containing the selected samples (S-ALSRC).

The pressure in the S-ALSRC at the time of probing was 40 to 60 microns. Nitrogen (N) and oxygen (O) were the major gases present, with small amounts of helium (He), argon (Ar), and carbon dioxide (CO_{2}). The N/Ar ratio was essentially that of air. The O / N ratio appeared to be greater than air and possibly signified S-ALSRC leakage within the Apollo spacecraft. Water was quite low and may have been partially absorbed by the lunar material. No organic components above the background level were observed.

Documented samples. - The documented samples (table I) were collected during the second EVA while the astronauts were on their 1.5 -kilometer geological traverse (fig. 3). The samples were documented by photography. During the traverse, the astronauts filled 13 individual sample bags with 11 rocks and seven lunar-fines samples. These samples were collected with a scoop and the tongs. Ten additional rocks were collected with the tongs. Two core tubes were driven, one of which was a double tube. The two special samples for the gas-analysis sample container (GASC) and the lunar-environment sample container (LESC), which were designed to be sealed individually, were collected. All of these samples except the four largest were sealed on the lunar surface in the ALSRC containing the documented samples (D-ALSRC).

The pressure in the D-ALSRC at the time of probing was not measured; however, all indications are that the sample box was at a significant fraction of atmospheric pressure. The N, O, and Ar gases were in essentially atmospheric proportions. Compared to N, O was lower and water was higher in the D-ALSRC than in the S-ALSRC. Some amount of excess He was evident. No organics or Freon compounds were observed.

Legend			
........ $-\ldots$	First EVA traverse Second EVA traverse Both astronauts	$\bigcirc 12054$	Sample locality: number refers to sample number assigned in LRL
	$\begin{aligned} & \text { CDR } \\ & \text { LMP } \end{aligned}$	\cdots	Sample locality: precise locality not accurately determined; dot
-	Photographic control station		shows preferred location
()	Number of samples collected at that site	$\odot 12064(7)$	Sample locality: identification of sample uncertain; based on
A	Fine-grained vesicular		description only
B	crystalline igneous rock Medium-grained vuggy crystalline igneous rock	$\bigcirc 12021 T$	Sample locality: identification and orientation tentative: based on photographic correlation of
C	Breccia		sample with lunar-surface
D	Fines		

Unlocated large rocks are samples 12056. 12062, 12063, and 12065
Figure 3.- Extravehicular traverse map showing sample localities.

Tote-bag samples. - A tote-bag sample was not collected on Apollo 11. The Apollo 12 tote-bag samples (table I) were the four rocks that were not sealed in the D-ALSRC. The rocks were placed in a large Teflon bag.

All four sample containers were taken into the LM, bagged, and, after rendezvous, transferred to the command module (CM). The S-ALSRC and the D-ALSRC were returned by air to the LRL on November 25, 1969. The contingency and tote-bag sample containers were returned to the LRL in the Mobile Quarantine Facility on November 30, 1969.

LUNAR RECEIVING LABORATORY OPERATIONS

The configuration and operations of the biological barriers in the LRL remained essentially the same as for Apoll.o 11 (ref. 1). The selected samples were opened and studied in vacuum (generally about 10^{-6} torr). The documented, contingency, and tote-bag samples and the core tubes were opened and studied in dry -nitrogen glove cabinets. Approximately 50 grams of core-tube material and 450 grams of fines and rock chips from the documented and selected samples were designated for biological testing. The compositions of the early and regular biological test samples are shown in table IV.

TABLE IV. - EARLY AND FLEGULAR BIOLOGICAL TEST-SAMPLE COMPOSITIONS

Sample number	Weight, g	Remarks
Early biological sample		
$\begin{aligned} & 12028 \\ & 12026 \end{aligned}$	10.00 47.23 Total $\quad 57.23$	Bottom of core tube Longitudinal split of core tube
Regular biological sample		
$\begin{aligned} & 12057 \\ & 12052-2 \\ & 12032 \\ & 12033 \\ & 12003 \\ & 12001-3 \\ & 12006 \\ & 12007 \end{aligned}$	50.72 61.03 20.00 30.00 18.40 260.00 24.90 5.10 Total 470.15	Documented-sample fines and chips Chip from rock Fines; documented bag 4-D Fines; documented bag 5-D Selected-sample chips Selected-sample fines Chip from rock Chip from rock

Geological Setting

The Apollo 12 LM landed on the northwest rim of the 200 -meter-diameter Surveyor Crater (the crater in which Surveyor III landed on April 20, 1967) at $2.45^{\circ} \mathrm{S}$ latitude and $23.34^{\circ} \mathrm{W}$ longitude, about 120 kilometers southeast of the crater Lansberg. The site is on a broad ray of the crater Copernicus.

The landing site is characterized by a distinctive cluster of craters ranging in diameter from 50 to 400 meters (fig. 3). The informal names given to these craters for use during the mission also are used in this report. The EVA traverses generally were made on or near the rims of these named craters and on deposits of ejecta from them.

The lunar surface at the Apollo 12 landing site is underlain by fragmental material (the lunar regolith) which ranges from particles too small to be seen with the naked eye to blocks several meters across. Along many parts of the traverse made during the second EVA, the astronauts found fine-grained material of relatively high albedo which, at some places, was at the surface. This light-gray material possibly may be part of a discontinuous deposit observed through the telescope as a ray of the crater Copernicus.

The darker regolith material that generally overlies the light-gray material is only a few centimeters thick in some places; however, it is probably much thicker on the rims of some craters. The darker material varies from place to place in the size, shape, and abundance of the constituent particles and in the presence or absence of patterned ground. Most of the local differences are probably the result of local cratering events.

Beads and small irregularly shaped fragments of glass are abundant both on and within the regolith; glass also is spattered on some of the rocks at the surface and is found in many shallow craters.

The larger craters at the landing site probably differ widely in age. The age sequence from oldest to youngest is interpreted as follows.

1. ''Middle Crescent' (''1000 foot' $)$ Crater
2. ''Surveyor' ${ }^{\prime}$ and ' 'Head'' Craters
3. ''Bench' Crater
4. 'Sharp, " "Halo, " and ''Block'" Craters

When looking down into Middle Crescent Crater, the astronauts noticed huge blocks on the wall which probably originated from the local bedrock. The large rock fragments in this crater probably have been exposed the longest and represent the deepest layers excavated at the Apollo 12 landing site.

Both rounded and angular blocks litter the surface of the rims of Head and Bench Craters. Some rocks appeared to be coarse grained to the astronauts; the crystals were clearly visible. Many rocks on the rim of Bench Crater were reported to be spattered with glass.

Samples were collected from three small, very fresh, blocky-rimmed craters that apparently penetrate through the regolith into the underlying materials. The three craters are Sharp Crater (approximately 14 meters across and 3 meters deep), Block Crater (approximately 13 meters across and 3 meters deep), and an unnamed crater (2 meters across and 0.5 meter deep) that lies on the south rim of the Surveyor Crater just north of Halo Crater.

Sharp Crater has a 66.7-centimeter-high rim that is composed of material with a high albedo. The material has been splashed radially around the crater and is softer than the normal regolith. A core tube driven into the rim of the crater penetrated the ejecta without difficulty. Samples collected at this location may show the youngest exposure ages. Sharp Crater appears to have just penetrated the regolith; a terrace on the floor probably is controlled by the subregolith bedrock.

At Block Crater, located high on the north wall of Surveyor Crater, almost all the ejected blocks are sharply angular, which indicates that the crater is very young. Many blocks clearly show lines of vesicles that are similar in appearance to vesicular lavas on earth. The blocks probably are derived from an older coarse blocky ejecta deposit underlying the rim of the Surveyor Crater.

The 4 -meter blocky crater on the crest of the southern rim of the Surveyor Crater may have been excavated in an old rim deposit at a depth of less than 0.5 meter. The regolith at this location may be very thin.

One notable difference between the rocks from the Apollo 12 site and those from the Apollo 11 site is that the Apollo 12 rocks are predominantly crystalline, whereas approximately half of the Apollo 11 rocks were crystalline and half were microbreccia. The difference probably is due to the fact that the Apollo 12 rocks were collected primarily on or near crater rims. The regolith on the crater rims is thin or only weakly developed, and many of the rocks are probably from craters that have been excavated in bedrock well below the regolith. The Apollo 11 site, in contrast, was located on a thick mature regolith where many of the observed rock fragments were produced by induration of regolith material and ejected from craters too shallow to excavate bedrock.

Lunar-Soil Mechanics

The properties of the Apollo 12 regolith may be presented best by a comparison with the properties of the Apollo 11 soil. The two sites were similar in the following respects.

1. Lunar module touchdown: Similar penetrations were observed under similar landing conditions, indicating that the soil-bearing capacities at the two sites are of the same order of magnitude.
2. Astronaut boot prints: The depth of the boot prints of the Apollo 12 astronauts was of the same order observed for the Apollo 11 astronauts; that is, less than 1 centimeter in the immediate vicinity of the LM and in the harder soil areas and up to several centimeters in the soft-soil areas, especially in the rims of small and relatively young craters.
3. Color, grain size, adhesion, and cohesion: Most of the Apollo 12 soil samples are visually identical to the Apollo 11 soil samples. The similarities of these properties are discussed further in the section on fines.

The two sites were significantly different in the following respects.

1. Lunar-surface rocket-exhaust erosion: The Apollo 12 astronauts experienced greater loss of visibility because of soil erosion during the LM landing than did the Apollo 11 astronauts. Further analysis is necessary to determine whether the loss of visibility was caused by different soil conditions, by a different descent profile, or by both.
2. Core-tube penetration and trenching: The Apollo 12 astronauts were able to drive the core tubes to the full depth (approximately 70 centimeters for the double core tube); whereas the Apollo 11 astronauts were able to drive the tubes only about 15 centimeters. A different bit design was used on the Apollo 12 core tubes which probably helped in driving them. The Apollo 12 trenches were dug to a depth of 20 centimeters, and the astronauts reported that the trenches could have been extended to a considerably greater depth without difficulty. The Apollo 11 astronauts could dig only about 10 centimeters.
3. Color and grain size: The differences in the color and grain size of the lunar soil are discussed in more detail in the section on fines.

A preliminary comparison of the photographs taken by the Apollo 12 astronauts at the Surveyor III site with the photographs relayed to earth by Surveyor III in April 1967 suggests that the lunar surface has undergone little change in the past $2-1 / 2$ years. The trenches excavated by the Surveyor III soil-mechanics surface sampler and the waffle pattern of the Surveyor III footpad imprint appear much the same in the Apollo 12 photographs as when they were formed. The astronauts reported that Surveyor III was coated with a thin layer of dust.

SAMPLE LOCATIONS

A preliminary search was made to determine the localities of the contingency sample, the selected samples collected during the first EVA, and the documented and tote-bag samples collected during the second EVA. The contingency sample was well documented with Hasselblad photographs taken by the CDR and with 16-millimeter time-sequence photographs taken from the right-hand window of the LM. The scoop marks can be seen clearly in these photographs. Two rock fragments collected as part of the contingency sample have been tentatively identified in the photographs.

Each selected-sample collection site generally was photographed once. A very preliminary search has been undertaken to identify the selected samples in these photographs; however, much work remains to be done to complete this task. Three of approximately 20 sample sites have been tentatively identified.

The collection of samples during the second EVA was planned to be documented by a series of four photographs: three (including a stereopair) to be taken before collection and one to be taken after collection to record the site from which the sample had been removed. This photographic plan was followed in only a few cases, and the documentary record of the samples returned from the second EVA is not sufficient for identification of all the samples. Thus far, eight individual rocks have been identified in the Hasselblad photographs taken during the second EVA. Four samples have been tentatively identified, and the locality of another four samples is fairly well known. The locality of approximately 10 samples is not known.

SAMPLE IDENTIFICATION AND ORIENTATION

The identification and orientation of the samples were based on the comparison of the photographs taken in the LRL with the photographs taken on the lunar surface before and after the samples were collected. Two sample identifications (samples 12052 and 12054) were verified in the LRL by reorienting the samples under a photographic lamp to duplicate the characteristic shadows shown in the EVA photographs. More samples will be verified this way.

Contingency Sample

The contingency sample was collected in full view of the sequence camera on and near the southeast rim of a 6-meter-diameter crater approximately 15 meters northwest of the LM (figs. 3 and 4 (a)). The sample was collected in six distinct scoop motions and consisted of a total of 1.9 kilograms of selected rock fragments (three of which were more than 5 centimeters in the longest dimension), fine-grained material, and at least one glass bead. The locations of the areas that were scooped (fig. 4(a)) were identified in the sequence.-camera photographs taken from the LM windows before the first EVA. All six sample scoop marks are documented on surface photographs AS12-46-6719 to AS12-46-6723.

The first and sixth scoops included rock fragments that were visible from the LM windows before sampling; these fragments may be samples 12075 and 12073, respectively. These samples, which are shown in Hasselblad photograph AS12-48-7031 (fig. 4(a)), were collected from a group of small rocks alined roughly northeast/ southwest between two small craters located 15 meters northwest of the LM. Most of the rocks appear to have fillets banked against them. The surface near the line of rocks has numerous small craters that may have contributed to the fillets; however, it has not been determined whether any of the rocks were the projectiles that caused the craters. The suggested selenographic orientations of samples 12073 and 12075 are shown in figures 4 (b) and 4 (c).

(a) Contingency-sample collection area showing the sequence and direction of the six scoops and the positions of the samples before collection (AS12-48-7031).

(b) Suggested selenographic orientation of sample 12073 (NASA-S-69-61060).

Figure 4.- Extravehicular activity photograph and orientation diagrams of Apollo 12 contingency samples.

(c) Suggested selenographic orientation of sample 12075 (NASA-S-69-61490).

Figure 4. - Concluded.

Selected Samples

The identification and orientation of the presampling position of three selected sample rocks (samples 12004, 12021, and 12022) have been tentatively determined. Three other rocks (samples 12006, 12008, and 12014) have been tentatively identified, but the orientation in the surface photographs has not yet been determined. The areal distribution of the selected samples (table V) was determined from the study of surface photographs and from the verbal transcript of the EVA communications. Specific sample numbers are given for several other rocks where identification was aided by the astronaut's description.

TABLE V. - AREAL DISTRIBUTION OF SELECTED SAMPLES

Location	Type of sample	Sample number
Small mound north of ALSEP	Rocks (2)	$12017(?)$
Large mound south of ALSEP	Rocks (5)	$12008(?)$
		$12021(?)$
On or near rim of Middle Crescent	Rocks (7)	$12022(?)$
Crater		$12004(?)$
		$12006(?)$
		$12014(?)$
Intercrater area near ALSEP and		$12016(?)$
northwest of LM	Rocks (6)	Fines with

Sample 12004. - Sample 12004 has been tentatively identified in Hasselblad photograph $\overline{\text { ASS12-47-6936 (fig. 5(a)), which was taken at the photographic panoramic site }}$

(a) Sample 12004 before collection (AS12-47-6936).

Figure 5. - Extravehicular activity photographs and orientation diagrams of Apollo 12 selected samples.
near the rim of Middle Crescent Crater. The rock appears in the photograph as an isolated rock fragment that is standing on end approximately half embedded in the lunar regolith. The specimen was correlated with NASA photograph S-69-62023. The suggested selenographic orientation of sample 12004 is shown in figure 5(b).

(b) Suggested selenographic orientation of sample 12004 (NASA-S-69-62023).

Figure 5.- Continued.

Sample 12021. - Sample 12021 has been tentatively identified in Hasselblad photograph AS12-47-6932 (fig. 5(c)), which was taken from the area near the eastern base of the large mound located between Head Crater and the ALSEP site. The rock specimen was correlated with NASA photograph S-69-61986. A model of sample 12021 under simulated lunar conditions is shown in figure 5(d). The suggested selenographic orientation is shown in figure 5(e).

(c) Sample 12021 before collection (AS12-47-6932).

(d) P hotograph of model of sample 12021 under simulated lunar conditions.

(e) Suggested selenographic orientation of sample 12021
(NASA-S-69-61985).
Figure 5. - Continued.

Sample 12022. - Sample 12022 has been tentatively identified as the rock shown just beneath the tongs in Hasselblad photograph AS12-47-6933 (fig. 5(f)). If correctly identified, the sample is a piece of embedded crystalline rock that was collected approximately 66.7 centimeters from the top of the large mound north of Head Crater. The rock may not be representative of the bulk of the mound material, which appears to be composed predominantly of aggregates of fine particles. The mound may be a large clot of regolith material that was ejected from a nearby crater. The specimen was correlated with NASA photograph S-69-61999 on the basis of the diagnostic triangular shape and the chipped depression at the small end of the rock. The suggested selenographic orientation of sample 12022 is shown in figure $5(\mathrm{~g})$.

(f) Sample 12022 before collection
(AS12-47-6933).

(g) Suggested selenographic orientation of sample 12022 (NASA-S-69-61999).

Figure 5. - Concluded.

Documented Samples

The areal distribution of all samples collected during the documented sample traverse of the second EVA is shown in table VI.

TABLE VI.- AREAL DISTRIBUTION OF DOCUMENTED SAMPLES

Location	Type of sample	Sample number	Container
On or near the rim of Head Crater	Rocks (4)	$\begin{aligned} & 12031 \\ & 12034 \\ & 12052 \\ & 12055 \end{aligned}$	Bag 3-D Bag 6-D D-ALSRC D-ALSRC
	Fines (2)	$\begin{aligned} & 12030 \\ & 12033 \end{aligned}$	$\begin{aligned} & \text { Bag 1-D } \\ & \text { Bag 5-D } \end{aligned}$
On or near the rim of Bench Crater	Rocks (6) Fines (3)	$\begin{aligned} & 12035 \\ & 12036 \\ & 12038 \\ & 12039 \\ & 12040 \\ & 12053 \\ & 12032 \\ & 12037 \\ & 12041 \end{aligned}$	Bag 7-D Bag 8-D Bag 9-D Bag 10-D Bag 10-D D-ALSRC Bag 4-D Bag 8-D Bag 11-D
On or near the rim of Sharp Crater	Core tube Lunar environment Gas analysis	$\begin{aligned} & 12027 \\ & 12023 \\ & 12024 \end{aligned}$	$\begin{aligned} & \text { Core } \\ & \text { LESC } \\ & \text { GASC } \end{aligned}$
On the rim of $10-\mathrm{m}$ crater south of Halo Crater	Core tube Core tube	$\begin{aligned} & 12025 \\ & 12028 \end{aligned}$	Double core 1 Double core 2
On or near the rim of Surveyor Crater	Rocks (11) Fines (2)	$\begin{aligned} & 12043 \\ & 12045 \\ & 12046 \\ & 12047 \\ & 12051 \\ & 12054 \\ & 12056(?) \\ & 12062(?) \\ & 12063(?) \\ & 12064(?) \\ & 12065(?) \\ & 12042 \\ & 12044 \end{aligned}$	Bag 14-D Bag 15-D Bag 15-D Bag 15-D D-ALSRC D-ALSRC D-ALSRC Tote bag Tote bag Tote bag Tote bag Bag 12-D Bag 14-D

Sample 12030. - Sample 12030 consists of the group of fragments that are shown in Hasselblad photographs AS12-48-7043 and AS12-48-7044. The sample was collected by the LMP from a crater (approximately 1 meter in diameter) located on the outer northeast flank of the rim of Head Crater. The LMP passed this small crater as he traversed from the LM to join the CDR on the north rim of Head Crater; the precise position has not been determined accurately. The sample includes part of the fragmental lining of the 1 -meter crater. Most of the lining appears to consist of weakly coherent aggregates of regolith material and resembles the lining observed in experimentally produced secondary craters. The LMP reported the collection from the crater of several small fragments that were partly glass covered. Other fragments that he attempted to pick up with the tongs were soft and crumbled. The fragments with the glass coatings may have been embedded in the regolith at this site or may have been part of the projectile that formed the 1 -meter crater.

Sample 12031. - Sample 12031 has been identified in Hasselblad photograph AS12-49-7189, AS12-49-7190, and AS12-48-7048 (fig. 6(a)), taken before collection, and in Hasselblad photograph AS12-48-7050, taken after collection. The identification of this sample is precise because photographs were taken both before and after collection and because the sample was put into a prenumbered bag (3-D) and identified when it was picked up. The sample was collected from a small cluster of rocks about 2 meters southeast of the trench that was dug in the northwest rim of Head Crater and was almost half buried in the fine-grained regolith. There is the suggestion of a small fillet banked on the north and northeast sides of the rock. Other

(a) Sample 12031 before collection (AS12-48-7048).

Figure 6. - Fixtravehicular activity photographs and orientation diagrams of Apollo 12 documented samples.
nearby rocks have fillets with predominantly similar orientations, indicating a possible source of material to the north or northeast. The selenographic orientation of sample 12031 is shown in figure 6(b).

(b) Suggested selenographic orientation of sample 12031.

Figure 6. - Continued.

Sample 12032. - Sample 12032 includes soil and small rock fragments. The sample has not been identified in Hasselblad photographs, but the astronauts indicated that the sample was taken from the north rim of Bench Crater. The astronauts noted lightgray material just below the surface at this locality that was similar to the material which they had observed at the Head Crater trench site.

Sample 12033. - Sample 12033 is a soil sample that was collected approximately 15 centimeters below the surface in a trench dug on the northwest rim of Head Crater near the site of sample 12031. The material that was sampled from the trench was noticeably lighter gray than the surface of the regolith at this site or than the material noticed by the astronauts in the vicinity of the LM and the ALSEP deployment area. The trench, at several stages of excavation, is portrayed clearly in Hasselblad photographs AS12-49-7191 to AS12-49-7196 (taken by the CDR), and AS12-48-7049, AS12-48-7051, and AS12-48-7052 (taken by the LMP).

Sample 12034. - Sample 12034 is a specimen of microbreccia that was dug from the bottom of the trench on the northwest side of Head Crater where soil sample 12033 was taken. After excavation, the specimen was placed on the surface near the trench and photographed by the CDR (Hasselblad photographs AS12-49-7195 and AS12-49-7196). The site where the specimen was placed and later removed is shown in Hasselblad photographs AS12-48-7051 and AS12-48-7052 (taken by the LMP). When unpacked in the laboratory, the specimen was coated with the light-gray fine-grained regolith material in which it was buried in the trench.

Sample 12035. - Sample 12035 consists of six principal fragments that were broken from a fractured almost-buried rock on the northwest rim of Bench Crater. The fractured rock is shown clearly in Hasselblad photographs AS12-49-7336 and AS12-49-7337 (taken by the CDR) and AS12-48-7034 (taken by the LMP). The rock appears to have impacted the surface at this site relatively recently and to have broken on impact. The impact of the rock produced a small crater that is much more freshly formed than other craters on the rim of Bench Crater and is not, therefore, related directly to Bench Crater. Small pieces broken from the rock in the LRL were found to be weak and friable; the original rock was apparently very weak and may have been partly crushed by shock during ejection from some moderately distant crater. It does not appear possible to determine the field orientation of any of the individual fragments returned or to relate them to the individual parts of the original rock in the lunar-surface photograph.

Sample 12036. - Sample 12036 is an individual rock specimen that was collected near the site of sample 12035 on the northwest rim of Bench Crater. On the basis of their field observations, the astronauts believe this rock fragment at some time may have been broken from the fractured rock from which the pieces of sample 12035 were collected. Sample 12036 has not yet been identified in the photographs but may be recognized after further study.

Sample 12037. - Sample 12037 is a soil sample that was collected and placed in the bag with the rock fragment of sample 12036.

Sample 12038. - Sample 12038 is a rock fragment that was collected from the west rim of Bench Crater. The specimen may be shown in Hasselblad photographs AS12-49-7240 and AS12-49-7241 (taken by the CDR) but has not yet been
identified. At this locality, abundant coarse rock fragments occur that probably were excavated from beneath the regolith and ejected from Bench Crater.

Samples 12039 and 12040. - Samples 12039 and 12040 are rock specimens collected from the west rim of Bench Crater near the site of sample 12038. These rocks may be shown in Hasselblad photographs AS12-49-7240 and AS12-49-7241 (taken by the CDR before sample collection) but have not yet been identified. The specimens were picked up from the surface and then laid down near the tool carrier and photographed by the CDR (Hasselblad photographs AS12-49-7242 and AS12-49-7243) before they were placed in the sample bag. The astronauts tried to be selective in choosing rocks that they thought most likely represented material ejected from the bottom of Bench Crater. Samples 12038, 12039, and 12040 represent the rocks brought back from this selection.

Sample 12041. - Sample 12041 is a soil sample collected a short distance east of Bench Crater on the traverse between Sharp Crater and Halo Crater. The material consists mostly of fine particles but includes a 6.4-millimeter-diameter glass sphere. The locality was not documented by photographs.

Sample 12042. - Sample 12042 is a soil sample taken on the outer flank of the Surveyor Crater rim, about 50 meters northwest of Halo Crater. The general site from which the sample was taken is shown in Hasselblad photographs AS12-49-7282 to AS12-49-7284 (taken by the CDR) and AS12-48-7072 to AS12-48-7076 (taken by the LMP). This area was noted by the astronauts as being different in texture from the other parts of the lunar surface over which they had walked. The surface was strewn with abundant cohesive clots or aggregates of fine-grained regolith material ranging in diameter from 1 to 2 millimeters to a few centimeters. Many of the clots occupied small pits that probably were formed by the impact of the clots on the surface. The area is evidently a small patch or ray of secondary particles, but the probable source of the particles has not been determined. The precise spot from which the sample was taken apparently was not photographed after sample collection.

Samples 12043 and 12044. - Sample 12043 is a rock specimen collected on the south rim of the Surveyor Crater during the traverse between Halo Crater and the Surveyor III spacecraft. The rock appears to be resting mostly on the surface and has no clear-cut genetic relation to any of the surrounding surface features. Sample 12043 is the largest of three specimens collected at a spot where the astronauts observed a prominent double glass bead on the surface.

Sample 12044 is a soil sample that includes a double bead of glass. The glass has been identified in Hasselblad photographs AS12-48-7082 and AS12-48-7083 (fig. 6(c)) (taken by the LMP). The bead is 3 centimeters long and initially was included with the sample that was assigned the number 12044 after removal from sample bag 14-D in the LRL.

(c) Samples 12043 and 12044 before collection (AS12-48-7083).

Figure 6. - Continued.

Samples 12045, 12046, and 12047. - The sample locality for these three rock specimens was the northeast rim of Block Crater. The three samples probably are shown in Hasselblad photographs AS12-48-7148 to AS12-48-7150 (taken by the LMP) but have not been recognized so far. The locality is on the ejecta rim of a very fresh crater (Block Crater) that has been formed on the north wall of the Surveyor Crater and is characterized by abundant angular fragments. Most of the fragments probably
were derived from Block Crater, which was excavated, in turn, in the ejecta rim of the Surveyor Crater. Thus, these samples probably were derived ultimately from the Surveyor Crater and may have come from depths as great as several tens of meters at this locality on the Ocean of Storms.

Sample 12051. - Sample 12051 is one of the distinctive large fragments collected during the second EVA. The fragment is part of the blocky ejecta from a fresh 4 -meter-diameter crater on the south rim of the Surveyor Crater and is shown clearly in Hasselblad photographs AS12-49-7318 (fig. 6(d)) and AS12-49-7319 (taken by the LMP). The sample was picked up by hand by the CDR while the LMP steadied him with a strap from the tote bag. The site from which the sample was removed is shown in Hasselblad photograph AS12-49-7320. This specimen is characterized by a sheared surface on one side that was described by the astronauts. Part of both the sheared surface and the opposite convex surface of the specimen was buried in the regolith. The suggested selenographic orientation of sample 12051 is shown in figure 6(e).

(d) Sample 12051 before collection (AS12-49-7318).

Figure 6. - Continued.

(e) Suggested selenographic orientation of sample 12051.

Figure 6. - Continued.

The surface of sample 12051 exhibits three faces that have distinctly different shapes and weathering characteristics, indicating different exposure ages. Surface A (fig. 6(e)) is rounded and covered by many small glass-lined pits; surface B is apparently a fracture surface and displays only a few small pits; surface C is flat and appears to be a freshly broken surface without pits. At the time of collection, the rock was standing on the small end approximately half embedded in the regolith.

Surface B on sample 12051 appears to be an older fracture face that probably resulted from another blow by impact at an earlier time. The minor pitting and weathering of surface B indicates postfracture exposure on the lunar surface before the event that formed surface C and buried surface B.

The rounded heavily pitted appearance of surface A indicates a long period of exposure on the lunar surface for sample 12051. The two broken surfaces of different ages (surfaces B and C) attest to multiple bombardment and tumbling of the rock at or near the surface of the regolith.

The occurrence of this rock and other rounded and angular rocks in the rim of the rocky young crater indicates high probability that sample 12051 represents ejecta from the small crater - either from a fragmented impacting body or from displaced regolith or subregolith material at the impact site. In either case, the unpitted shear face probably resulted from the impact that formed the small crater. The angle of the specimen when found suggests that the rock fell into place together with enough surrounding fine material to hold it in position. Determining the exposure age of the portion of the flat side which was above the lunar surface might date the small crater.

Sample 12052. - Sample 12052, a large rock rounded on one side, was collected from the west rim of Head Crater and is shown clearly in Hasselblad photographs AS12-49-7217 and AS12-49-7218 (taken by the CDR) and AS12-48-7059 (taken by the LMP). The rock apparently was moved from the original site before the photographs were taken. Therefore, although the specimen can be oriented precisely with respect to the position in the photographs, the orientation shown in the photographs probably does not represent the orientation of the rock before it was disturbed. The lower angular part of the rock apparently was partially buried in the regolith, but the rock rested on the surface in the position shown in the photographs. A drag mark near the sample indicates the place from which the rock was removed. At least two pieces on one side of the specimen were broken off after the rock was photographed on the lunar surface and before it was photographed in the LRL. Sample 12052 is shown in figure 6(f) as it was photographed on the lunar surface and in figure 6(g) as it was photographed in the LRL with nearly identical orientation and shadow characteristics.

(f) Sample 12052 before collection (AS12-49-7218).

(g) Reconstructed selenographic orientation of sample 12052 (NASA-S-70-22673).

Figure 6. - Continued.

Sample 12053. - Sample 12053 is an angular fragment collected from the northwest rim of Bench Crater. The fragment appears to be part of a field of coarse fragments on the rim that probably were ejected from the crater. The specimen is identified readily in Hasselblad photographs AS12-49-7234 and AS12-49-7235 (taken by the CDR) and AS12-48-7063 (taken by the LMP). The rock was rotated out of the original position before the first photographs were taken; therefore, the original orientation is uncertain even though the site is well documented.

Sample 12054. - Sample 12054 is an unusual glass-coated rock collected a short distance south of the fresh 4-meter crater with which sample 12051 is associated. The astronauts believed that the rock may have been ejected from this small fresh blocky crater. The specimen is shown clearly in Hasselblad photographs AS12-49-7313 to AS12-49-7315 (fig. 6(h)) (taken by the LMP). In these photographs, the specimen can be seen to be resting on the surface. Three sides of the rock are coated with glass and two sides are free of glass. When photographed, the specimen was resting on one glass-free side; the other glass-free side was oriented toward the southeast. The field relations suggest that the rock was sprayed with glass in the position in which it was found on the surface and that the spray came from the west. Because the rock was found to exhibit shock damage in the LRL, an alternate possibility is that the glass was

(h) Sample 12054 before collection (AS12-49-7315).

Figure 6.- Continued.
sprayed onto the rock as it was ejected from an impact crater and, by coincidence, the rock landed on a side not coated with glass. The LRL reconstruction of the orientation and lighting as seen in the lunar-surface photograph of sample 12054 is shown in figure 6(i).

(i) Reconstructed selenographic orientation of sample 12054 (NASA-S-70-22696).

Figure 6. - Continued.

Sample 12055. - Sample 12055 is a tabular rock that is shown undisturbed before collection in Hasselblad photographs AS12-49-7197 (fig. 6(j)) and AS12-49-7198. The sample was moved slightly from the original position, as shown in photographs AS12-49-7199 and AS12-49-7200 (fig. 6(k)) (taken by the CDR) and AS12-48-7053 to AS12-48-7055 (taken by the LMP). After it was moved, the sample was described by the LMP as having a distinctly gray tone on the lower half (shown clearly in photograph AS12-48-7055). The color change apparently represented the line of burial; however, it is interesting to note in the undisturbed photograph (fig. 6(j)) that a fillet almost covers the northeast side of the rock to a point well above the reported line of color demarcation. This implies that the fillet may be relatively young in the exposure history of sample 12055 in the orientation in which it was collected, because no obvious color difference was related to the line of fillet burial.

(j) Sample 12055 (rock A) in undisturbed position before collection (letters A to E are for location reference in fig. 6(k)) (AS12-49-7197).

(k) Disturbed rock not sampled at site of sample 12055 (letters B to E are for location reference in fig. 6(j)) (AS12-49-7200).

Figure 6. - Concluded.

Sample 12056. - Sample 12056 is a tabular angular rock that has not been recognized in the surface photographs; however, the sampling locality has been tentatively placed near the Surveyor spacecraft. The rock is believed to be one of the four selected loose rock fragments described by the astronauts.

Tote-Bag Samples

Sample 12062. - Sample 1.2062 is tentatively identified in Hasselblad photograph AS12-48-7139, which was taken near the Surveyor spacecraft. The rock is viewed from the southeast in the surface photographs, displaying the most rounded and densely pitted side of the rock. The rock appears to be about one-third buried, and a fillet is well developed on the east side.

Sample 12063. - Sample 12063 was the largest rock returned in the tote bag and, thus far, has not been recognized in any of the surface photographs.

Sample 12064. - Sample 12064 is a large rock that has a distinctively angular shape. This rock may be the one described by the astronauts as a square rock collected near the Surveyor spacecraft.

Sample 12065. - Sample 12065 has not been identified in the Hasselblad photographs but may be the "grapefruit" rock described by the CDR on the traverse between the ALSEP site and Head Crater early during the second EVA.

SAMPLE INFORMATION

Mineralogy/Petrology

Most of the large rock samples returned from the Apollo 12 mission are holocrystalline and have ranges of textures and mineralogical compositions that are characteristic of igneous origin. Two breccias also were returned. The crystalline rocks are similar to the Apollo 11 microgabbros and basaltic rocks in that they consist essentially of clinopyroxene, calcic plagioclase, olivine, and ilmenite. However, they contrast with the Apollo 11 suite in that they exhibit wide ranges in modal mineralogy, grain size, and texture.

Mineralogical composition. - The mineral species identified in the Apollo 12 samples are similar to those observed in the Apollo 11 materials. Glass, plagioclase, pyroxene, olivine, low cristobalite, ilmenite, sanidine, spinel, troilite, and iron (Fe) metal have been identified positively. Tridymite, metallic copper (Cu), and the Fe analog of pyroxmangite have been tentatively identified. X-ray data are presented in table VII.

Plagioclase is present in every rock sample and ranges from approximately 5 to 10 percent (sample 12075) to 70 percent (sample 12013). The estimates of composition were based on extinction-angle measurements and indices of refraction and range from An_{50} to An_{90}, with the median value falling near $\mathrm{An}_{80^{\circ}}$. Although some plagioclase is
zoned, most is twinned. Lath-shaped crystals prevail, and pyroxene/plagioclase intergrowths are very common.

TABLE VI. - X-RAY DATA

Sample number	Pigeonite	Diopside	Plagioclase anorthite	Olivine (fayalite percent) (a)	Ilmenite	Troilite	Magnetite	Pyroxene (unidentified)	Monticellite	Quartz
X-ray data 1										
12060	Very strong		Very strong	Weak (40)	Moderately weak		Possible			
12062	Very strong		Very strong		Weak	Weak		Strong		
12063	Very strong		Very strong	Moderately weak (40)	Moderate			Strong		
12070	Strong		Very strong	Moderately weak (50)	Moderately weak	Weak	Possible	Very strong		
12071	Very strong		Very strong	Moderately weak (50)	Moderately weak	Weak		Strong		
X-ray data 2										
${ }^{\text {b }} 12077$				(50)						
12077	Very strong		Very strong					Strong	Weak	
${ }^{\text {b }} 12076$				(44)						
12009				(44)					Weak	
12012	Very strong		Very strong	(32)	Moderate					
X-ray data 3										
12013	Strong		Very strong							Strong
12014	Very strong		Very strong	Strong (36)	Moderate					
12015	Strong	Very strong	Strong	Strong (44)	Moderate					
12018	Very strong		Very strong	Strong (32)	Moderately weak					
12004	Very strong		Very strong	Very strong (32)	Moderately weak					
X-ray data 4										
12020	Very strong		Very strong	Very strong (32)	Moderately weak					
12065	Very strong		Very strong							

${ }^{2}$ Numbers in parentheses indicate percent.
${ }^{b}$ Olivine sample.

Pyroxenes were identified by X-ray diffraction and by optical properties. Pigeonite and subcalcic augites are the most common, as determined optically. Refractive indices indicate that the ratio of Fe to Mg (magnesium) is about 0.5. Zoned pigeonite phenocrysts occur in porphyritic and coarse-grained rocks. Pigeonite occupies the core of some crystals, and subcalcic augite forms the rim. The subcalcic augite is a deeper brown than the pigeonite. The groundmass pyroxenes are fine grained, are darker than the phenocrysts, and are not zoned. Pyroxene/plagioclase
intergrowths are common and range in size from 1-centimeter-long crystals to aggregates in which the particles are only several microns across. Pyroxenes are the dominant minerals in all but three samples.

Olivine was identified by X--ray diffraction and by optical properties. The estimates of composition that were based on optics disagree with those that were based on X-ray data. The discrepancy was shown by spectrographic measurements to be caused by a fairly high calcium (Ca) content. The samples for which X-ray, optical, and spectrographic data are available indicate a composition of about $\mathrm{Ca} .05^{\mathrm{Mg}} .60^{\mathrm{Fe}} .35^{\circ}$. Oiivine commonly contains inclusions which are filled with devitrified glass or aggregates of plagioclase, pyroxene, and ilmenite. Some grains contain spherical-glass inclusions. Fayalite grains were tentatively identified by their optical properties. In contrast to the Apollo 11 rocks, olivine occurs in almost all of the Apollo 12 samples.

Low cristobalite occurs as interstitial aggregates and as euhedral to subhedral crystals.

Ilmenite was identified by XX-ray diffraction, by morphology, and by optical properties. The abundance ranges from less than 1 percent to 25 percent. In reflected light, some grains show intergrowths with an unidentified oxide phase.

The presence of spinel is suggested by the octahedral forms of opaque minerals of unknown composition that occur in olivine grains and in vugs. At least three other unidentified opaque phases also are present.

Troilite is a ubiquitous phase in all polished thin sections.
Metallic Fe occurs as interstitial blobs not commonly associated with troilite grains rather than as blobs in troilite as noted in the Apollo 11 rocks. It is more commonly associated with ilmenite than with any other phase.

Metallic Cu , tridymite, and the Fe analog of pyroxmangite were tentatively identified by optical methods.

Glass occurs as minute interstitial material in some crystalline rocks, as beads and groundmass in clastic rocks, and as a thin coating on several rocks.

Igneous rocks. - Approximately one-half of the igneous rocks have vesicles present, and all have vugs. The vesicles range in diameter from 0.1 to 40 millimeters and commonly are lined by tangentially or subparallel-oriented crystals of plagioclase, pyroxene, or olivine. The vugs contain euhedral crystals of pyroxene and olivine and less well-formed crystals of plagioclase, ilmenite, and spinel. The volume occupied by vugs and vesicles in any rock is generally less than that in the Apollo 11 rocks. The vugs are irregular and occur in the coarser rocks at the termination of the sheaflike aggregates of pyroxene and plagioclase. In one sample, pyroxene crystals appear in raised relief along a joint surface. Crystals in vugs and along joints are considerably coarser in grain size than the crystals in the groundmass minerals. Variations in cooling rates could be an explanation of the variety of grain sizes observed.

The grain size of the igneous rocks ranges from 0.05 to 35 millimeters. The textures show remarkable variations, many of which are common to volcanic and plutonic rocks on earth. Many of the rocks are equigranular gabbros, some are ophitic to subophitic diabases, and others are variolitic basalts. Feathering sheaves of pyroxene/plagioclase intergrowths are found in the groundmass of porphyritic rocks containing phenocrysts of pigeonite. The olivine crystals in more rocks are equant euhedral grains that are somewhat coarser than the groundmass.

The mineralogical composition of the igneous rocks reflects the high FeO content. The lower TiO_{2} contents (compared to the Apollo 11 rocks) are reflected in the smaller amounts of ilmenite. The textural and mineralogical variations can be explained readily by fractional crystallization and mineral accumulation during the cooling of basaltic magmas.

The modal mineralogy shows a wide variation (fig. 7), especially when contrasted with the Apollo 11 modes. The modes range from peridotites (sample 12075: 50 percent pyroxene, 40 percent olivine, and 10 percent plagioclase), olivine gabbros

Figure 7. - Apollo 11 and 12 lunar-sample modal analyses.
(sample 12036: 25 percent pyroxene, 40 percent olivine, and 25 percent plagioclase), and gabbros (sample 12052: 40 percent pyroxene, 30 percent plagioclase, 15 percent olivine, and 15 percent opaque minerals) to troctolites (sample 12035: 15 percent pyroxene, 40 percent olivine, and 45 percent plagioclase) to picritic basalts (sample 12045).

Sample 12013, which consists largely of plagioclase and sanidine, appears to be a late-stage differentiate on the basis of the modal mineralogy and trace-element content.

Some rocks show evidence of planar features (such as fractures and lines of vugs) but the rocks are generally without marked foliation or lineation. All of the rocks are fresh and show no evidence of the hydration or oxidation reactions common during latestage terrestrial magmatic processes.

Breccias. - One rock is a fragmental breccia that is similar to the Apollo 11 breccias (ref. 1). Two breccia chips also were collected. The dominant constituents of the breccias appear to be pyroxene and plagioclase with accessory olivine and glass. Lithic fragments also are present. The average mineralogical composition appears to be less olivine-rich than the majority of rock types collected. The fragmental breccia appears to have a foliation in which both lithic and mineral fragments are subparallel. The lithic fragments are as large as 20 by 10 millimeters and are both igneous and fragmental rocks, indicating several periods of fragmentation and consolidation.

Fines. - The Apollo 12 lunar fines contrast with the Apollo 11 fines in that they consist of different proportions of phases and, consequently, are lighter in color. The major constituents (in decreasing order of abundance) are pyroxene, plagioclase, glass, and olivine. The minor constituents, which total only a few percent, are ilmenite, tridymite, cristobalite, nickel (Ni) Fe , and several unidentified phases. The Fe analog of pyroxmangite was tentatively identified.

Glass totals roughly 20 percent of the Apollo 12 fines and includes spheroidal and dumbbell-shaped objects and angular fragments. The color of the glass ranges from colorless through pale yellow brown and brown to dark brown; the index of refraction generally ranges from 1.55 to 1.75 . Bubbles and solid inclusions are common in the colored glasses. In contrast to the Apollo 11 fines, feldspar glass, dark to nearly opaque spheroidal glass, and dark scoriaceous glass fragments are relatively rare.

The pyroxenes, mostly pale yellow to tan and brown, range widely in composition and include augite, subcalcic augite, and pigeonite. They constitute about 40 percent of the fines. The range of the indices of refraction is somewhat greater than that of the pyroxenes of the Apollo 11 fines. Plagioclase has indices of refraction mostly in the bytownite/anorthite range. A small amount of more sodic plagioclase also is present. The olivine totals approximately 5 to 10 percent and is more abundant than in the Apollo 11 fines. The few carefully measured grains fell in the compositional range $\mathrm{Fo}_{60-70^{\circ}}$ Many lithic fragments are present. Low tridymite is in the form of anhedral grains, and the low cristobalite occurs as microgranular aggregates.

There are two fines samples of notably different character: (1) the light-colored layers in the double core tube and (2) sample 12033, a documented fines sample
collected from a trench dug near the northwest rim of Head Crater. The color of both samples is light gray. Sample 12033 consists of clear, angular grains of feldspar with some olivine and pyroxene and abundant basaltic glass. The coarser 1 -millimeterdiameter glass fragments are pumiceous, exhibiting well-developed flow structure and stretched vesicles, and the finer fragments are angular and somewhat vesicular. The finer shards also show a flow structure consisting of oriented microlites. Sample 12033 is tentatively considered a crystal-vitric ash.

A significant feature of the fines is the presence of numerous very well-rounded grains that have minutely chipped surfaces and that resemble grains in terrestrial detrital sands. Many of the grains are slightly elongate oblate bodies with a beanlike shape and occur in size to well below 0.1 millimeter. Presumably the result of mechanical abrasion, the grains are chiefly glass; however, some are composed of pyroxene, plagioclase, or intergrowths of these minerals.

Rock-surface features. - Most of the larger Apollo 12 crystalline rocks are similar to the Apollo 11 rocks in that they are rounded on one surface and have glass-lined pits. Angular fractured surfaces occur on some of the rocks.

Small pits (similar to those described in ref. 1) occur on the rock surfaces; the density ranges from 1 to $30 \mathrm{pits} / \mathrm{cm}^{2}$. The angular bottom surfaces have few or no pits. The pits that are visible under a binocular microscope range from 0.1 to 10 millimeters in diameter and the depth-to-width ratios are approximately 1: 5. Most of the pits are circular; exceptions are the oval-shaped pits in the coarse crystalline rocks that have the long axis parallel to elongated feldspar or pyroxene crystals. The glass linings of the pits vary greatly in thickness and vesicularity. Pulverized minerals form 0.5 - to 1.0 -crater-width white halos around the pits on the crystalline rock surfaces. Where pit density is high, a 1 - to 2 -millimeter-thick crust of pulverized minerals is formed on the rock surface. Impact pits in glass coatings are surrounded by radiating fractures. On many of the medium- to coarse-grained crystalline rocks, the glass linings of the pits are raised slightly above the rock surface. These glass-topped pedestals appear to be more resistant to erosion than the rock.

Irregular patches of glass are spattered on the rock surfaces. Two types (which grade into one another) can be distinguished: thin films and thick, highly vesicular coatings. The thin (less than 0.1 millimeter thick) films are brownish black in reflected light and brown in transmitted light, cover a 1 - to 16 -square-centimeter area, are usually slightly vesicular, and adhere tightly to the rock surface. The thick (0.1 to 1 centimeter) coatings, which were found on samples from the bottom of a 1-meter crater, are light to dark brown, have vesicle sizes increasing from 0.1 to several millimeters from the base to the outer surface, and have smooth botryoidal surfaces. Several highly fractured breccias and fine-grained crystalline rocks are covered with the thick coating. The fractures in these rocks are filled to a depth of several centimeters. The contacts between the glass and the rock are sharp. The glass coatings locally contain a large number of angular, highly shocked rock chips. Some of the vesicular glass has been partly devitrified. A light-gray glass fragment of uncertain origin with pronounced flow structure also was collected.

Impact metamorphism. - Irnpact metamorphism in the Apollo 12 samples is similar to and as common as in the A.pollo 11 samples. Impact-fused glass spherules and beads and shock-vitrified mineral fragments are present both in the fines and in the microbreccias.

Most of the large crystalline rocks apparently are unshocked or only weakly shocked; several of the smaller crystalline rocks show evidence of moderate to strong shock. A thin section of one of the smaller rocks shows extensive fracturing of the plagioclase and partial vitrification and development of lamellar microstructures. The coexisting clinopyroxenes have one or two sets of closely spaced lamellar twinning that are absent in the clinopyroxene of similar unshocked crystalline rocks. Another rock shows extensive shock vitrification.

Shocked microbreccia also is present in the Apollo 12 samples. Many small fractured microbreccia fragments are held together by glass spatters. Breccia within breccia, indicating a multiple-shock history, also was found.

Small pebbles were collected that are either glassy or aphanitic. The pebbles are highly vesicular and some are vuggy. The pebbles are presumably the result of melting and fragmentation caused by impact metamorphism. Some of the vesicles are as large as 10 millimeters in diameter and occupy up to 50 percent of the preserved fragment.

Chemical Analyses

Chemical analyses of the samples were conducted inside the biological barrier of the LRL, mainly by optical spectrographic techniques, using an instrument with a dispersion of $5.2 \AA / \mathrm{mm}$. Three separate techniques were conducted as follows.

1. Determination of silicon (Si), titanium (Ti), aluminum (Al), Fe, Mg, cobalt (Co), manganese (Mn), chromium (Cr), sodium (Na), and potassium (K) with Sr used as the internal standard
2. Determination of Mn, Cr, zirconium (Zr), Ni, Co, scandium (Sc), vanadium (V), barium (Ba), Sr, yttrium (Y), and ytterbium (Yb) and other involatile elements, using palladium (Pd) as the internal standard
3. Determination of lithium (Li), rubidium (Rb), Pb , boron (B), and other volatile elements, using Na as the internal standard

The procedures were generally similar to those used to analyze the Apollo 11 samples; however, as a result of the experience with the Apollo 11 material, modifications were made to cope more effectively with the high concentration of the refractory elements. For example, the ratio of admixed carbon (C) to the sample was increased from 1:1 to 4: 1 for the method using Pd as the internal standard, and the range of possible intensity measurements was increased by a factor of 3 , enabling a wider range of concentrations to be covered effectively (for example, Ba and Zr). The reduction of a sample to a powder was done in Spex agate vials in a mixer mill, in contrast to handgrinding in agate mortars for the Apollo 11 samples.

Computer programs were used to provide intensity data from the photoplate densitometer data, in contrast to the hand processing of the Apollo 11 data. The overall precision of the determinations is ± 5 to 10 percent of the amount present. Accuracy of the results was controlled by use of the international rock standard samples (G-1, W-1, SY-1, BCR-1, AGV-1, GSP-1, G-2, PCC-1, and DTS-1) for calibration. In addition, the results were compared with the analyses of the Apollo 11 samples.

The spectrographic plates were examined to establish the presence or absence of all elements that have spectral lines in the wavelength regions covered (2450 to $4950 \AA$ and 6100 to $8600 \AA$). Line interferences were checked for all lines (in particular by elements such as $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Y}$, and Zr) present in high concentrations compared to most terrestrial rocks. Wavelengths of the several principal lines were checked for those elements that were not detected because line interferences caused by common elements were occasionally visible. Several samples were brought from behind the biological barrier and analyzed by atomic absorption procedures for $\mathrm{Al}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Ti}, \mathrm{Na}$, and K , and by a chemical colorimetric procedure for Si . The data reported for these elements in sample 12013 were obtained by these methods. The spectrographic data are presented in tables VIII to XI and the atomic absorption data in table XII. The sample weights provided for analysis were larger than for the Apollo 11 suites and were typically 100 to 150 milligrams.

The samples appear to be free from inorganic contamination, either from the rock box or from the LM. Niobium (Nb), which constitutes 88 percent of the LM descent-engine skirt, was detected in only two samples, sample 12013 with 170 ppm and sample 12033 with 44 ppm . This amount is almost certainly indigenous to the rocks and is geochemically consistent with the high abundance of the geochemically associated elements Zr and Y . Indium, present in the seal of the rock boxes, was not detected (the detection limit was 1 ppm). Values for Cu are not reported for the Apollo 12 rocks. Sporadic contamination of the samples (up to several hundred ppm) was found because of abrasion of the copper parts of the door mechanisms in the class III biological cabinets where the sample preparation work was done.
tABLE VII. - EMISGON SPECTROGRAPhIC DATA FOR FINES MATERIALS
(2) Elements

Sample number	Rb, ppm	Ba. ppm	$\begin{gathered} K \\ \mathrm{ppm} \\ \hline \end{gathered}$	Sr. ppm	Ca, percen	Na. percent	$\begin{aligned} & \mathrm{Yb} \\ & \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathrm{Y} . \\ \mathrm{pop} \end{gathered}$	$2 r$. ppm	$\underset{\substack{\mathrm{Cr} \\ \mathrm{ppm} \\ \hline}}{ }$	V. ppra	Sc. ppm	T1. percent	Ni. ppar	Co, ppm	Fe. percent	$\mathrm{Mn} .$ ppm	Mg. percent	L1. ppm	Ga. ppm	A1. percent	Si. percent
${ }^{2} 12060$	2. $3=0.2$	$180=20$	1000	210 - 20	7.85	0.30	..	$100 \cdot 10$	300 : 30	2800 - 100	78 - 5	$54: 5$	2.25	110: 10	38:4	16.3	2100: 200	6.0	$8: 2$	11-1	6.9	18
${ }^{\text {b }} 12070$	$3.2=0.2$	420: 20	1500	170:20	7.1	30		$130=10 \mid$	670 : 50	2800:100	64 : 5	47:5	1.85	200:20	42:5	13.2	1900 $~ 200$	7.2	11-21	\cdots	7.4	19.6

(b) Oxides

Sample number	SiO_{2}. percent	THO_{2} percent	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3} . \\ & \text { percent } \end{aligned}$	$\begin{aligned} & \text { Fen, } \\ & \text { pereent } \end{aligned}$	M8O. percent	$\underset{\text { percent }}{\mathrm{CaO}}$	$\mathrm{N}_{2} \mathbf{2}_{2} \mathrm{O} .$ percent	$\mathrm{K}_{2} \mathrm{O} .$ percent	MnO. percent	$\mathrm{Cr}_{2} \mathrm{O}_{3}$. percent	$\mathrm{Zr} \mathrm{O}_{2}$ percent	$\begin{aligned} & \text { nıo. } \\ & \text { percent } \end{aligned}$	Total percent
${ }^{2} 12060$	39 : 2	3.8-0.5	13 - 1	21: 1	10: 1	11 : 1	$0.40 \cdot 0.05$	$0.12=0.01$	0.27: 0.01	0.41 : 0.02	0.04:0.005	0. $014: 0.001$	99.05
${ }^{\text {b }} 12070$	42: 2	$3.1=0.5$	14: 1	:7: 1	$12 \cdot 1$	10:1	. $40 \div 0.05$. 18 : 0.01	25	. 41	09:0.005	$025=0.001$	99.5

${ }^{2}$ Tote-bar sample
${ }^{b}$ Contingency saraple
(a) Elements

Sample number	$\begin{aligned} & \mathrm{Rb}, \\ & \mathrm{ppm} \end{aligned}$	$\mathrm{Ba},$ ppm	\mathbf{K} ppm	Sr, ppm	Ca , percent	$\begin{gathered} \text { Na, } \\ \text { percent } \end{gathered}$	Y, pprs	$\begin{gathered} \mathbf{Y} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & 2_{\mathrm{r}}, \\ & \mathrm{pp} \end{aligned}$	Cr_{r} ppm	$\left\|\begin{array}{c} \mathrm{v} \\ \mathrm{ppm} \end{array}\right\|$	Sc, ppm	$\begin{gathered} \text { T1, } \\ \text { percent } \end{gathered}$	N1, ppm	Co, ppm	$\begin{gathered} \text { Fe, } \\ \text { percent } \end{gathered}$	$\begin{aligned} & \mathrm{Mn}, \\ & \mathrm{ppm} \end{aligned}$	Mg, percent	山, ppm	$\begin{gathered} \mathrm{Ca}, \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Al, } \\ \text { percent } \end{gathered}$	$\begin{array}{c\|} \text { Si, } \\ \text { percent } \end{array}$
12004	0.47	60	480	145	7.1	0.35		52	170	5800	85	45	2.0	90	50	17.9	1750	9.0	4.2		5.6	17.3
12009	. 57	65	520	110	7.1	. 38		48	150	5200	77	42	2.0	67	46	15.5	1450	7.5	5.5		5.7	19.2
12010	2.0	180	1300	145	7.0	. 39		87	380	3050	90	50	2.2	80	39	15.2	1400	6.6	7		6.1	20
12011	(a)	60	570	120	7.6	. 41		52	165	4000	85	56	2.0	85	30	16.3	1650	5.9	6.2		5.8	19.6
12012	. 64	38	460	110	6.6	. 39		40	120	3900	65	38	1.85	135	48	17.9	1300	10.6	3.9		5.7	16.4
12013	33	2150	1.66	150	4.5	. 51	20	240	2200	1050	13	21	. 72	105	13	7.8	950	3.6	100		6.3	28.5
12014	. 60	55	560	100	6.8	. 34		40	125	4000	80	40	1.74	105	52	17.9	1350	10.6	4.4		5.3	16.4
12015	1.0	44	510	115	7.0	. 27		46	160	3900	95	44	1.92	70	47	17.1	--	8.4	10		5.8	17.8
12018	. 58	70	520	110	6.2	. 29		48	155	3500	82	50	2.0	65	50	15.9	1500	10.3	7		5.3	18.2
12020	. 37	58	650	120	6.6	. 37		42	150	3800	50	49	1.68	80	51	16.3	1450	9.6	6.0		5.1	18.2
12022	. 17	38	560	160	7.0	. 27		62	160	2650	65	52	3.36	40	36	17.1	1350	7.8	3.1		5.8	16.8

${ }^{2}$ Not detected.
(b) Oxides

Sample number	SiO_{2} percent	THO_{2} percent	$\mathrm{Al}_{2} \mathrm{O}_{3}$ percent	FeO, percent	MgO, percent	$\begin{gathered} \mathrm{CaO}, \\ \text { percent } \end{gathered}$	$\begin{gathered} \mathrm{Na}_{2} \mathrm{O}, \\ \text { percent } \end{gathered}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{O}, \\ \text { percent } \end{gathered}$	MnO, percent	$\begin{gathered} \mathrm{Cr}_{2} \mathrm{O}_{3}, \\ \text { percent } \end{gathered}$	ZrO_{2} percent	NiO, percent	Total percent
12004	37	3.4	10.6	23	15	10	0.48	0.058	0.23	0.85	0.023	0.011	100.7
12009	41	3.3	10.8	20	12.5	10	. 51	. 063	. 19	. 76	. 020	--	99.1
12010	43	3.7	11.5	19.5	11	9.8	. 53	. 16	. 18	. 45	. 051	--	99.9
12011	42	3.4	11	21	9.7	10.7	. 55	. 069	. 21	. 58	. 022	. 011	99.2
12012	35	3.1	10.8	23	17.5	9.3	. 53	. 055	. 17	. 57	. 016	. 017	100.0
12013	61	1.2	11.9	10	6.0	6.3	. 69	1.5	. 12	. 15	. 30	. 013	99.7
12014	35	2.9	10	23	17.5	9.5	. 46	. 068	. 17	. 58	. 017	. 013	99.2
12015	38	3.2	11	22	14	9.8	. 37	. 062	. 33	. 57	. 022	--	99.4
12018	39	3.3	10	20.5	17	8.7	. 39	. 063	. 19	. 51	. 021	--	99.7
12020	39	2.8	9.7	21	16	9.3	. 50	. 078	. 19	. 55	. 020	. 010	99.1
12022	36	5.6	11	22	13	11	. 36	. 068	. 17	. 39	. 022	--	99.6

table X. - EmISSION SPECTROGRAPHIC DATA FOR DOCUMENTED SAMPLES
(a) Elements

Sample number	Rb. ppm	Ba. ppm	$\underset{\text { ppm }}{\mathbf{K},}$	Sr . ppm	Ca, percent	Na , percent	Yo. ppm	$\begin{gathered} \mathrm{Y} \\ \mathrm{ppm} \end{gathered}$	$\mathrm{Zr} .$ ppm	Cr. ppm	$\begin{gathered} \mathrm{V}_{1} \\ \mathrm{ppm} \end{gathered}$	Sc. ppm	Ti , percent	Ni , ppm	Co, ppm	Fe. percent	Mn , ppm	Mg. percent	Li. ppm	Ga. ppm	Al. percent	Si . percent
12033	7.5	720	3240	260	8.2	0.40	12	260	950	2100	37	33	1.56	140	34	12.4		6. 5	15		8. 5	19. 2
12034	--	460	3500	--	7.4	48	--	270	2100	2400	--	--	1.50	140	--	10.3	1400	5. 1	--	--	8.0	22
12038	. 70	230	470	230	7.9	45		68	260	2200	70	55	192	14	23	13.2		3.9	5.5		6. 4	22.9
10240	--	54	440	--	5.4	13	--	63	180	4800	--	--	1.50	170	--	16.7	2200	10.3	--	\cdots	3. 3	19
12051	37	48	470	165	8.6	22		53	175	2200	75	58	2.96	16	25	15. 5		5.7	4.5		6.4	18.7
12052	80	50	570	135	7.9	. 33		42	170	3700	105	52	2. 16	32	42	16.3		6.0	4. 5		5.8	19.6

(b) Oxides

Sample number	SiO_{2} percent	TiO_{2} percent	$\mathrm{Al}_{2} \mathrm{O}_{3}$ percent	FeO. percenx	MgO. percent	CaO , percent	$\mathrm{Na}_{2} \mathrm{O}$ percent	$\mathrm{K}_{2} \mathrm{O}$ percent	MnO. percent	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{3} \\ & \text { percent } \end{aligned}$	ZrO_{2} percent	NiO. percent	Total percent
12033	41	2.6	16	16	10.7	11.5	0.54	0.39	0. 23	0.31	0.13	0.018	99.4
12034	47	2.5	15.1	13.3	8.4	10.4	. 65	. 42	. 19	. 35	28	018	98.6
12038	49	3.2	12	17	6.5	11	. 60	. 057	. 26	. 32	035	--	100.0
12040	41	2.5	6. 3	21.5	17.0	7.6	18	. 053	. 28	. 70	. 024	022	97.3
12051	40	4.9	12	20	9.5	12	30	. 057	. 30	. 32	. 024	--	99.4
12052	42	3.6	11	21	10	11	. 45	. 069	. 31	. 54	023	--	100.0

Sample number	Rb , ppm	Ba, ppm	$\underset{\text { ppm }}{\mathbf{K},}$	Sr, ppm	Ca, percent	Na , percent	\mathbf{Y} ppm	$\underset{\text { ppm }}{\mathbf{Y},}$	$\mathbf{Z r}_{\mathbf{r}}$ ppm	$\mathbf{C r}$ ppm	$\begin{gathered} \mathrm{V}, \\ \mathrm{ppm} \end{gathered}$	Sc, ppm	TY, percent	Ni, ppm	Co, ppm	Fe, percent	3n, ppm	Mg, percent	$\begin{gathered} \mathrm{L}, \\ \mathrm{ppm} \end{gathered}$	Ca, ppm	Al, percent	Si, percent
12082	>1	100	650	225	8.3	0. 34	--	65	180	2600	105	78	2.8	29	34	15.5	2000	5.1	7.0	--	6.3	19.2
12063		100	650	225	7.9	. 32	--	65	190	3100	95	75	3.1	30	36	16.7	2000	5.4	7.5	--	5.8	19. 2
12064	. 76	55	700	165	8.6	. 31	--	55	170	3000	100	60	2.9	15	40	17.0	2500	4.8	6.7	--	6.3	18.7
12085	. 72	70	600	135	8.0	. 29	--	48	180	3500	135	60	2.3	25	34	17.1	3200	8.6	6.0	--	B. 4	18.7
${ }^{2} 12001$	4.5	550	1800	250	8.2	. 31	--	160	1300	2400	42	41	1.85	140	28	12.8	1400	6.6	25	--	7.9	19. 6
${ }^{2} 12073$	4.9	510	2100	230	8.2	. 29	--	180	1200	2800	50	42	1.85	350	30	13.0	1500	6.6	25		7.9	19.1
12087	. 66	60	460	120	7.1	. 23	--	40	130	6200	100	46	1.91	105	54	18.7	3200	10.5	6.5		5.8	15.4

(b) Oxides

Sample number	SO_{2} percent	THO_{2} percent	$\mathrm{Al}_{2} \mathrm{O}_{3}$ percent	FeO, percent	$\begin{gathered} \text { MgO, } \\ \text { percent } \end{gathered}$	CaO. percent	$\mathrm{Na}_{2} \mathrm{O}$ percent	$\begin{gathered} \mathrm{K}_{2} \mathrm{O} \\ \text { percent } \end{gathered}$	MnO, percent	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{3} \\ & \text { percent } \end{aligned}$	$2 \mathrm{rO}_{2}$ percent	NiO, percent	Total percent
12062	41	4.6	12	20	8.5	11.6	0.46	0.078	0.26	0. 38	0.024	-	98.9
12083	41	5.2	11	21.5	8	11	. 43	. 078	. 26	. 45	. 026	--	99.9
12064	40	4.9	12	22	8	12	. 42	. 084	. 32	. 44	. 023	--	100.2
12065	39	3.8	12	22	9	12.6	. 38	. 082	. 41	. 51	. 024	--	99.8
${ }^{2} 12071$	42	3.1	15	16.5	11	11.5	. 42	. 22	. 18	. 35	. 18	. 018	100.5
${ }^{2} 12073$	41	3.1	15	16.7	11	11.5	. 50	. 25	. 18	. 41	. 16	. 044	99.9
12087	33	3.2	11	24	17.5	10	. 31	. 056	. 41	. 91	. 018	. 013	100.4

${ }^{2}$ Brececta.

TABLE XII.- ATOMIC ABSORPTION DATA

Sample number	$\mathrm{K}_{2} \mathrm{O}$, percent	$\mathrm{Na}_{2} \mathrm{O}$, percent	CaO, percent	MgO, percent	$\mathrm{Al}_{2} \mathrm{O}_{3}$, percent	FeO, percent	TiO_{2}, percent	MnO, percent	Cr, percent	$\mathrm{a}_{\mathrm{SiO}_{2},}$ percent
12013	1.96	1.20	6.30	8.00	12.0	12.6	1.17	0.19	0.245	61.2
12024										
Breccia	.405	.61	10.0	9.53	14.3	15.3	2.5	.193	.24	46.0
Glass	.285	.49	10.0	9.80	12.7	15.3	2.5	.203	.24	45.5
12024	.075	.32	9.0	11.95	8.7	22.5	4.0	.277	.40	43.0
12033	.33	.65	10.2	9.1	14.0	14.4	2.3	.185	.245	47.2
12034	.42	.65	10.4	8.35	15.1	13.3	2.5	.193	.24	47.2
12038	.057	.66	10.70	6.75	13.2	17.8	3.5	.245	.245	48.0
12040	.053	.18	7.6	17.10	6.3	21.5	2.5	.277	.48	43.5
12051	.057	.30	10.70	7.30	10.5	19.8	4.67	.274	.245	46.5
12055	.060	.285	10.60	7.45	10.5	18.7	3.5	.30	.360	46.5
12057	.12	.91	9.70	8.61	11.3	21.6	5.84	.30	.283	41.4
12072	.060	.215	8.20	14.1	9.8	20.6	3.5	.274	.475	45.5
12075	.051	.19	7.53	15.5	7.7	20.0	2.3	.245	.515	45.0
Biological	.19	.46	9.9	10.3	13.2	17.0	2.3	.21	.320	45.0
test sample										

${ }^{\mathrm{a}}$ The data for SiO_{2} were obtained by spectrophotometric analysis.

The major constituents of the samples are (in order of decreasing abundance) Si , $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Al}$, and Ti . The major silicate and oxide mineral phases present in the samples indicate that O comprises the major anion. The elements $\mathrm{Cr}, \mathrm{Na}, \mathrm{Mn}$, and K are the minor constituents and have concentrations ranging from 0.05 to 0.6 percent; occasionally, Ba and Zr reach these concentration levels. The other constituents are present mostly at less than 200 ppm (0.02 percent). The volatile elements (Pb, B, bismuth (Bi), thallium (Tl), and so forth) are generally below the limits of detection of the spectrographic methods used, although Pb (approximately 30 ppm) and B (approximately 20 ppm) were detected in sample 12013. Gold, silver, and the platinum-group elements were not detected in any samples.

The chemistry of the crystalline rocks is distinct from that of the fines material and the breccias. The rocks are lower in $\mathrm{Rb}, \mathrm{K}, \mathrm{Ba}, \mathrm{Y}, \mathrm{Zr}, \mathrm{Ni}$, and Li and higher in Fe and Cr. Several critical element ratios are also distinct. The K/Rb ratio averages 850 in the rocks compared to 450 in the fines. The average $\mathrm{Fe} / \mathrm{Ni}$ ratio of 3000 in the rocks (range from 2000 to 11000) is much higher than the fines material ratio of approximately 600 . The $\mathrm{Rb} / \mathrm{Sr}$ ratio is very low in the rocks (0.005) but is higher in the fines (0.02).

The fines material and the breccias are generally very similar in composition and could not have been formed directly from the large crystalline-rock samples. The Ni content of the breccias and fines material places an upper limit on the amount of meteoritic material contributed to the lunar-surface regolith. Using an average meteoritic Ni content of 1.5 percent, the Ni content of the fines material represents a meteoritic contribution of the order of 1 percent if all the Ni were extralunar.

The crystalline rocks show minor but significant internal variations in chemistry. Nickel shows a striking decrease in concentration, by an order of magnitude. Chromium displays a smaller relative decrease in the same direction, and Co shows a slight decrease. Silicon increases as Mg decreases. Similar trends are shown by V, Sc, Zr, $\mathrm{Y}, \mathrm{K}, \mathrm{Ba}$, and Ca , although the variations are small. Critical element ratios ($\mathrm{Fe} / \mathrm{Ni}$, $\mathrm{Ni} / \mathrm{Co}$, and Cr / V) decrease, and the V / Ni ratio increases with a decrease in Mg. No significant trends are shown by $\mathrm{K} / \mathrm{Rb}, \mathrm{Rb} / \mathrm{Sr}$, or K / Ba ratios.

Sample 12013 is chemically unique. It is not analogous chemically to a terrestrial anorthosite. The sample contains the highest concentration of silicon oxide (SiO_{2}) (61 percent) yet observed in a lunar rock. The amounts of $\mathrm{K}, \mathrm{Rb}, \mathrm{Ba}, \mathrm{Zr}, \mathrm{Y}, \mathrm{Yb}$, and Li are enriched by 10 to 50 times compared to the other rocks. These high concentrations are suggestive of the terrestrial enrichment of elements in residual melts during the operation of fractional-crystallization processes, and the sample may have crystallized from a small volume of residual melt late in the cooling of a pool of silicate melt. The ferromagnesian elements ($\mathrm{Mg}, \mathrm{Fe}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Ti}, \mathrm{Sc}$, and Co), although low in sample 12013 in comparison with the other rocks, are not strikingly depleted. Nickel, in particular, is not depleted as it would be in terrestrial analogs. Sample 12033 from the light-gray fines material shows some analogs in composition that contain high concentrations of Yb, Nb, and Rb .

A comparison of the Apollo 12 samples from the Ocean of Storms with the Apollo 11 samples from the Sea of Tranquility shows that the chemical characteristics of the samples at the two maria sites are clearly related. Both suites show the distinctive features that most clearly distinguish lunar from other material - high concentrations of 'refractory' elements and low concentrations of volatile elements. In
detail, numerous and interesting chemical differences exist between the Apollo 12 and the Apollo 11 rocks. The main differences are as follows.

1. The Apollo 12 rocks and fines material have a lower concentration of Ti . The range is 0.72 to 3.4 percent Ti (1.2 to 5.1 percent TiO_{2}) compared with the range in the Apollo 11 rocks of 4.7 to 7.5 percent Ti (7 to 12 percent TiO_{2}).
2. The Apollo 12 samples have lower concentrations of $\mathrm{K}, \mathrm{Rb}, \mathrm{Zr}, \mathrm{Y}, \mathrm{Li}$, and Ba.
3. The Apollo 12 crystalline rocks have higher concentrations of $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ni}$, Co, V, and Sc. These concentrations are consistent with the more mafic character of the Apollo 12 rocks.
4. The significant variation in the Apollo 12 rocks is among the ferromagnesian elements, entering the principal mineral phases. In the Apollo 11 suite, a much wider variation existed in the concentration of elements such as K and Rb , indicating a wider range of crystallization. However, sample 12013 represents a much more extreme composition (and probable later crystal fraction) than that of any of the Apollo 11 rocks.
5. The fines material collected at the Apollo 12 site differs from that collected at the Apollo 11 site in that it contains approximately half the Ti content; more Mg ; and possibly higher amounts of $\mathrm{Ba}, \mathrm{K}, \mathrm{Rb}, \mathrm{Zr}$, and Li . The light-gray fines material of sample 12033 is strongly enriched in $\mathrm{Rb}, \mathrm{Zr}, \mathrm{Yb}$, and Nb relative to the other fines material.

The chemistry of the Apollo 12 samples does not resemble that of chondrites. Nickel, in particular, is strikingly depleted. The samples are closest in composition to the eucrite class of the basaltic achondrites; sample 12038 shows some similarities to this class (table X). The possible 'lunar acid" rock (sample 12013) does not resemble terrestrial granites or rhyolites or even tektites in the abundances of most elements. The Apollo 12 material is enriched in many elements by one to two orders of magnitude in comparison with estimates of cosmic abundances.

Gamma-Ray Spectrometry Analyses

Operation of the radiation-counting laboratory (RCL) followed the general procedures developed for the Apollo 11 studies (ref. 1). The first RCL sample was received for measurement on November 30, 1969, and probably would have been received approximately 1 day earlier if a glove failure had not delayed operations in the vacuum laboratory. Because of the experience gained during the Apollo 11 analyses, the preparation of samples for the RCL generally was completed more rapidly and at more regular intervals.

For the RCL analyses, 11 samples were chosen from the contingency sample, the selected samples, the documented sample box, the documented sample bags, and the tote-bag samples. Analysis was performed by use of the NaI(Tl) low-background spectrometer and the on-line computer data-acquisition system described in reference 1. The samples were mounted in stainless steel cans that had 16.2-centimeter diameters,
0.8 -millimeter wall thicknesses, and bolt-type indium seals. Standard containers with overall heights of 5.6 or 7.6 centimeters were used for all rock samples. The fines were packaged in a cylindrical container, which was used in searches for magnetic monopoles.

For this preliminary study, calibrations were obtained with a series of radioactive standards prepared by dispersing known amounts of radioactive material in quantities of Fe powder. Time did not permit recording a library of standard spectra with the standard sources placed inside the actual steel containers. Therefore, empirical corrections for the effects of the containers were made; these corrections were least important for the ${ }^{40} \mathrm{~K}$ data and most serious for the ${ }^{26} \mathrm{Al}$ and ${ }^{22} \mathrm{Na}$ data.

The results of the analyses are summarized in table XIII. Because of the preliminary nature of the investigation, rather large errors were assigned. In addition to the statistical errors of counting, these errors include estimates of possible systematic errors caused by uncertainties in the detector-efficiency calibration.

Although many qualitative similarities exist between the RCL data on the Apollo 11 and the Apollo 12 samples, some notable differences also exist. The K concentration of the Apollo 12 crystalline rocks is remarkably constant at about 0.05 percent, and the ratio of K to uranium (U) is about 2200. These properties appear to be significantly lower than for the typical crystalline rocks from Apollo 11; however, the composition

TABLE XIII. - GAMMA-RAY DATA

Sample number	$\underset{\mathrm{g}}{\text { Weight, }^{\mathrm{a}}}$	K, percent	Th, pprrı	U, ppm	${ }^{26} \mathrm{Al} \text {, }$ $\mathrm{dpm} / \mathrm{kg}$	$\begin{gathered} 22 \mathrm{Na}, \\ \mathrm{dpm} / \mathrm{kg} \end{gathered}$	Other radionuclides detected	Remarks
Crystalline rocks								
12002	1530	0.044 - 0.04	0.96 ± 0.1	0.24 ± 0.033	72 ± 14	53+10	${ }^{54} \mathrm{Mn},{ }^{52} \mathrm{Mn},{ }^{56} \mathrm{Co},{ }^{46} \mathrm{Sc},{ }^{48} \mathrm{~V}$	
12004	502	. 048 ± 0.004	$.88 \pm 0.09$. 25 ± 0.033	112 ± 22	65 ± 13	${ }^{54} \mathrm{Mn},{ }^{56} \mathrm{Co},{ }^{46} \mathrm{Sc},{ }^{48} \mathrm{v}$	
12039	255	. 060 ± 0.005	1. 20 ± 0.12	$.31 \pm 0.040$	80 ± 16	$45 \div 9$	${ }^{56} \mathrm{Co},{ }^{54} \mathrm{Mn}$	
12053	879	. 051 ± 0.004	. 89 ± 0.09	. 25 ± 0.033	85 ± 17	42-9	${ }^{56} \mathrm{Co},{ }^{48} \mathrm{~V},{ }^{46} \mathrm{Sc},{ }^{54} \mathrm{Mn}$	
12054	687	. 052 ± 0.004	. 77 ± 0.08	. 21 ± 0.030	$43+9$	42 ± 9	${ }^{48} \mathrm{v},{ }^{56} \mathrm{Co},{ }^{54} \mathrm{Mn},{ }^{46} \mathrm{Sc}$	
12062	730	. 052 ± 0.004	$.81 \pm 0.08$. 21 ± 0.030	65 ± 13	34 ± 7	${ }^{48} \mathrm{v},{ }^{56} \mathrm{Co},{ }^{54} \mathrm{Mn},{ }^{46} \mathrm{Sc}$	
12064	1205	. 053 ± 0.004	. 88 ± 0.09	. 24 ± 0.035	58 ± 12	44 ± 9	${ }^{56} \mathrm{Co},{ }^{46} \mathrm{Sc},{ }^{48} \mathrm{v},{ }^{54} \mathrm{Mn}$	
Miscellaneous samples								
12034	154	0.44 ± 0.035	13.2 ± 1.3	$3.4+0.4$	58 ± 12	27 ± 6	${ }^{54} \mathrm{Mn}$	Breccia
12073	405	. 278 ± 0.022	8.2 ± 0.8	2. 0 ± 0.3	$125+25$	60 ± 12	${ }^{56} \mathrm{Co},{ }^{54} \mathrm{Mn},{ }^{46} \mathrm{Sc}$	Breccia
12070	354	$.206 \pm 0.016$	8.6 ± 0.6	1.5 ± 0.2	140 ± 25	65 ± 13	${ }^{56} \mathrm{Co},{ }^{48} \mathrm{~V},{ }^{46} \mathrm{Sc},{ }^{54} \mathrm{Mn}$	Fines material
12013	80	2.02 ± 0.016	34. 3 ± 3.4	10.7 ± 1.6				Feldspathic differentiate

[^0]of one of the coarsely crystalline Apollo 11 rocks (sample 10003) very closely resembled the chemical composition of the crystalline rocks shown in table XIII. The ratio of thorium (Th) to U is approximately 4 for all typical materials in table XIII, the same as for the materials from the Sea of Tranquility. The concentrations of the radioactive elements K, Th, and U in the crystalline rocks of table XIII are all remarkably constant and, on the average, much lower than for the comparable Apollo 11 rocks. Because so few samples from the two sites can be compared, the factor of biased sampling of the lunar-surface material cannot be discounted.

The breccias and fines are very different from the crystalline rocks in several respects. The K / U ratio for the breccias and fines is only 1400 to 1500 , compared with an average of approximately 2800 for the Apollo 11 materials. Thus, the Apollo 12 samples show even greater differences from terrestrial rocks and meteorites than did the surface material from the Sea of Tranquility. Although the Th/U ratio remains at approximately 4, the concentrations of all radioactive elements are much higher in the breccias than in the crystalline rocks.

In general, the amount of cosmogenic ${ }^{26} \mathrm{Al}$ and ${ }^{22} \mathrm{Na}$ appears to be saturated but shows variations that may be related to chemical composition or to cosmic-ray exposure. For example, sample 12034 was collected from a trench dug during the second EVA and was buried approximately 10 to 20 centimeters. The saturation activities of ${ }^{26} \mathrm{Al}$ and ${ }^{22} \mathrm{Na}$ are reduced by the amount expected because of attenuation of the irradiation flux in the lunar soil.

Noble Gas Results

Several samples each of the fines material, breccias, and crystalline rocks returned by the Apollo 12 astronauts have been analyzed for noble gas isotopes. The analyses were performed by mass spectrometry, and the general procedures were the same as for the preliminary examination of the Apollo 11 samples (ref. 1). Similar to the Apollo 11 materials, the Apollo 12 fines and breccias are characterized by large abundances of noble gases of solar-wind origin, as exemplified by the large relative abundances of He and by the characteristic ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$ and ${ }^{20} \mathrm{He} /{ }^{22} \mathrm{He}$ ratios. Conversely, the crystalline rocks contain much smaller amounts of the noble gases that arise mainly from spallation reactions within the samples or from radiogenic decay. The noble-gas isotopic contents for typical samples of all three types of the Apollo 12 lunar material are listed in table XIV. The ratios are believed to be accurate to within ± 2 percent (except ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$, which has a larger uncertainty) and the abundances to within ± 20 percent (except ${ }^{84} \mathrm{Kr}$ (krypton), which is considerably greater).

Despite the general similarity in the noble gas content of the Apollo 12 and Apollo 11 material, several real and significant differences exist. The noble gas contents (in cc/g at STP) of the Apollo 12 fines and breccias are lower; the fines by a factor of 2 to 5 and the breccias by an order of magnitude. Using a model of formation of the fines material by (1) degradation of surface rock, (2) surface irradiation by constant solar wind, and (3) subsequent burial by additional fines material, the lower gas content of the fines implies a higher accumulation rate of material. The gas content of the

Sample number	Type of sample	Total weight, g	Rare-gas contents in $10^{-8}, \mathrm{cc} / \mathrm{g}$ for -									
			${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$	${ }^{20} \mathrm{Ne}$	${ }^{21} \mathrm{Ne}$	${ }^{22} \mathrm{Ne}$	${ }^{36} \mathrm{Ar}$	${ }^{38} \mathrm{Ar}$	${ }^{40} \mathrm{Ar}$	${ }^{84} \mathrm{Kr}$	${ }^{132} \mathrm{Xe}$
12060	Fines	--	2000	4000000	70000	200	5000	10000	2000	10000	4	1
12070	Fines	1099	3000	7000000	100000	400	10000	20000	4000	10000	10	3
12034	Breccia	160	100	100000	8000	50	700	2000	300	3000	1	1
12071	Breccia	--	800	2000000	30000	100	3000	5000	1000	5000	5	1
12010												
Light phase		--	90	20000	100	10	20	20	10	1000	. 01	. 02
Dark phase		--	1000	3000000	100000	300	7000	10000	2000	40000	3	1
12004	Rock	585	100	10000	50	10	10	10	5	1000	. 02	. 01
12009	Rock	460	100	30000	200	20	40	40	20	1000	. 02	. 01
12013	Rock	--	40	400000	100	5	10	10	6	800000	. 2	. 1
12022	Rock	1858	200	30000	400	30	60	40	20	800	. 005	. 01
12040	Rock	319	200	10000	80	40	50	20	20	1000	. 06	. 02
12052	Rock	1866	100	30000	200	40	60	60	30	1000	. 06	. 03
12054	Rock	687	200	20000	70	20	30	30	30	1000	. 04	. 02
12062	Rock	727	100	10000	60	20	30	20	30	1000	. 07	. 02
12063	Rock	2420	60	10000	70	10	20	20	10	1000	--	. 05
12064	Rock	1210	200	10000	60	30	40	30	30	1000	. 03	. 01
12065	Rock	2100	200	20000	100	30	40	50	40	1000	. 04	. 01

Apollo 12 breccias is lower than that of the Apollo 12 fines by approximately a factor of 2, which constitutes a reversal of the trend observed with the Apollo 11 material and implies that the Apollo 12 breccias were formed from fines material of lower solarwind gas content. The breccias apparently were formed at some distance or depth from the location at which they were collected.

For sample 12034 (a breccia), the total noble gas content is low enough for a spallation component to be quite evident. Sample 12010 is an unusual breccialike rock that was identified on the basis of the noble gas content. The rock is characterized by a large relative abundance of the lithic phase, with the darker fine-grained material occurring as veins. The dark phase of sample 12010 contains approximately 70 percent of this fine-grained material, while the light phase is essentially pure lithic material. The typical breccialike nature of sample 12010, in terms of the noble gas content, is obvious.

The ${ }^{40} \mathrm{Ar} /{ }^{36} \mathrm{Ar}$ ratio in the Apollo 12 fines and breccias (with the exception of sample 12010) is lower than that for Apollo 11, although the ratio still shows larger values for breccias than for fines. Theoretical considerations prohibit ${ }^{40} \mathrm{Ar} /{ }^{36} \mathrm{Ar}$ ratios
even as large as 0.6 for the sun, making a solar-wind origin of the ${ }^{40} \mathrm{Ar}$ unlikely. The amount of ${ }^{40} \mathrm{Ar}$ in the fines is too large to be generated by in situ decay of K ; however, for the breccias, this mode of origin may be possible. The fines material thus appears to have acquired excess ${ }^{40} \mathrm{Ar}$ of lunar origin. The amount of ${ }^{40} \mathrm{Ar}$ and the ${ }^{40} \mathrm{Ar} /{ }^{36} \mathrm{Ar}$ ratio in sample 12010 demonstrate this phenomenon well. Although the lithic phase resembles the other crystalline rocks in Ar content, the fine-grained material shows not only large amounts of solar-wind Ar but also large excesses of ${ }^{40} \mathrm{Ar}$.

The crystalline-rock samples discussed in this section are completely interior chips and contain noble gas several orders of magnitude less than the fines material. The exceptions are ${ }^{3} \mathrm{He},{ }^{21} \mathrm{Ne}$ (neon), ${ }^{40} \mathrm{Ar}$, and some of the lighter isotopes of Kr and xenon (Xe), isotopes the abundances of which have been greatly increased by spallation reactions and radioactive decay. By use of the K concentrations obtained for the rocks by the chemical analysis group of the PET, the K-Ar ages were calculated. Several crystalline rocks show ages between 1.7 and 2.7 billion years, with an average age of 2.3 billion years. Sample 12013 has a unique chemical composition, characterized in part by much higher abundances of K and U and, consequently, of radiogenic ${ }^{4} \mathrm{He}$ and ${ }^{40} \mathrm{Ar}$. The sample also contained excess radiogenic ${ }^{40} \mathrm{Ar}$, rendering the $\mathrm{K}-\mathrm{Ar}$ age meaningless. However, the $\mathrm{U}-{ }^{4} \mathrm{He}$ and $\mathrm{Th}-{ }^{4} \mathrm{He}$ ages are consistent with a value of approximately 2.3 billion years, as is the case for many of these crystalline rocks. This age is considerably less than that found for the Apollo 11 crystalline rocks, although the range of ages for the two sites overlaps. At least this portion of the Ocean of Storms apparently has a more recent crystallization age than the rocks from the Sea of Tranquility, which implies that lunar maria have a formation history of at least 1 billion years.

Cosmic-ray exposure ages (that is, integrated exposure time at the lunar surface) were calculated for several rocks on the basis of 2π geometry and of a ${ }^{3}$ He production rate of $1 \times 10^{-8} \mathrm{ccSTP} / \mathrm{g} / 10^{6}$ years. These ages show the much wider range of 1 to 200 million years, with some apparent grouping of ages, and resemble the ages found for the Apollo 11 rocks. The breccias also show radiation ages in this range. Spallation-produced isotopes other than ${ }^{3} \mathrm{He}$ are consistent with the ${ }^{3} \mathrm{He}$ ages and with the special chemistry of the lunar material. Because of the abundances of high-alkaline earth, Y , and Zr , spallation-produced Kr and Xe are very obvious in the rocks. The amounts of these gases are also roughly consistent with the chemical composition.

Total Carbon Analyses

The total C content of the lunar samples was determined using O combustion followed by gas-chromatographic detection of the CO_{2} produced. Samples weighing from 50 to 600 milligrams were placed with Fe chips and a copper-tin accelerator in a preburned refractory crucible. The crucible was then heated to more than $1600^{\circ} \mathrm{C}$ in an O atmosphere with an induction heater. The combustion products were carried by the O through a dust filter to remove metal oxides and through a manganese oxide trap to
remove sulfur (S) gases. Any carbon monoxide (CO) that was formed was converted to CO_{2} in a heated catalyst tube. Moisture was removed by an anhydrone trap before the CO_{2} was passed into a LECO No. 589-600 Analyser. The CO_{2} was carried by the O stream into a collection trap. After a fixed collection time, the trap was heated and the released CO_{2} was carried by He through a silica-gel column into a thermal-conductivity measuring cell. The detection method used the difference in thermal conductivity between He and CO_{2}. The imbalance in the bridge circuit containing the thermalconductivity cell was integrated and read directly on a digital voltmeter.

The system was calibrated using the National Bureau of Standards Steel Standard 101 e . Samples of this standard containing 5 to 50 micrograms of C were run under the same conditions as the lunar samples. To reduce the background, the crucible was burned in air at $1000^{\circ} \mathrm{C}$ for at least 1 hour. Only crucibles from a single burn batch were used in a sequence of standards and samples. The precision of the method was evaluated by making replicate runs on sample blanks. A typical standard deviation on a series of 10 runs was 2 micrograms of total C. At all times, the samples were handled as little as possible to reduce laboratory contamination. The results for the standard samples were plotted on linear graph paper, and the C content in the lunar samples was read directly from the standard linear curve.

The results of the total C analyses are given in table XV. The highest C abundances, as for the Apollo 11 samples, usually are found in the fines. The exceptions to this generalization are samples 12032 and 12033, which are fines from the bottoms of trenches. The breccias have more C than the igneous rocks, which (including the heavily shocked sample 12052) are consistently low in C. A total C abundance of approximately 40 ppm appears to be indigenous to lunar rocks. Additional C apparently was added to the fines and subsequent breccias by meteoritic impact, the solar wind, and possible contamination. The low abundances even in the fines material indicate that C has not accumulated to any great degree. The total C results alone give no indication of the specific chemical species present.

TABLE XV. - TOTAL CARBON DATA

Sample number	Weight, g	$\mathrm{C}, \mu \mathrm{g}$	C, ppm	
a_{1200}	1.0082	7	7 ± 2	Remarks
$12003-1$.1480	20	120 ± 10	Fuartz sand
	.1605	32.5	200 ± 10	
	.1571	29	185 ± 20	Fines
	.1128	22	195 ± 25	
$12024-7$.1395	16	115 ± 20	GASC
$12032-1$.1519	4	20 ± 10	Fines from documented
$12032-1$.3813	9.5	25 ± 4	sample bag 4-D

${ }^{\mathrm{a}}$ Control sample.

TABLE XV. - TOTAL CARBON DATA - Concluded

Sample number	Weight, g	C, $\mu \mathrm{g}$	C, ppm	Remarks
12033	0. 1254	10	80 ± 10	Fines from documented sample bag 5-D; contaminated
12033-1	. 1997	4	20 ± 5	Fines from documented sample bag 5-D
	. 6014	13. 5	22.5 ± 2	
12034-2	. 2446	16	65 ± 12	Light-colored breccia
12038	. 1528	7	46 ± 10	Rock; contaminated
12040-2	. 2245	10	45 ± 15	Coarse crystalline rock
12042-1	. 2452	31	125 ± 5	Fines from documented sample bag 12-D
	. 3409	45	132 ± 5	
12044-2, -1	. 3071	13.5	44 ± 5	Fine-grained crystalline rock
12051	. 1207	31	260 ± 20	Olivine basalt; contaminated
12052-4	. 4487	11	24.5 ± 4	Coarse-grained, shocked
-	. 3326	11.5	34 ± 10	
	. 1261	8.5	65 ± 15	
12057	. 2194	27	120 ± 10	Medium-dark breccia
12059-1	. 1533	35	230 ± 15	Fines
	. 1270	31	240 ± 25	
	. 1336	16	120 ± 15	Fines including rock chip
12063	. 2755	9.5	35 ± 10	
12065	. 4920	14	28.5 ± 4	
	. 1438	5.5	38 ± 10	Pigeonite porphyry

Organic Mass-Spectrometry Analyses

A complete description of the system used for acquiring and presenting the mass spectral data from the organic analyses of the Apollo 11 samples is given in reference 1. The same procedures were used for the Apollo 12 mission with the following modifications.

1. Because of the problems encountered in the Apollo 11 analyses with the sterilization procedures necessary for sample transfer from the various sample-handling facilities to the mass spectrometer, a different approach was used. All samples were placed in previously cleaned stainless steel containers that were sealed (gastight) with aluminum caps. The containers were dry-heat sterilized at $130^{\circ} \mathrm{C}$ for 30 hours and
then transferred to the gas-analysis laboratory (GAL). This method eliminated the previous problems with the peracetic acid and ethylene oxide sterilization agents. The sample-transfer containers were opened and samples were handled in a clean nitrogen glove box in the GAL. All samples were put into a single Ni capsule. The same capsule was used for all the analyses, thus eliminating the contamination caused by improperly cleaned Ni capsules. To shorten the sample run time, the Ni capsule was cooled in Freon between runs; this procedure introduced the very slight amount of $\mathrm{m} / \mathrm{e} 84$ and 86 that is apparent in the mass spectra of some samples.
2. New programs were added to the system to allow plotting of a specific mass intensity as a function of the scan number. Some of these plots are included in appendix B in the data associated with each sample and are labeled with the particular mass chosen (for example, m/e 44).
3. The summarization plots presented in appendix B give the ion current as a function of the scan number. The following masses have been deleted from the Apollo 12 summary: m/e 14, 16 to $20,23,26$ to $28,32,35$ to 37,40 , and 44 .

Both shallow and deep core-tube samples, coarse- and fine-grained rocks, a breccia, and other fines material and random chips have been analyzed. The following statements can be made with respect to all analyses. In general, the samples are very clean (much cleaner than the Apollo 11 samples), with only one sample (sample 12059-1) contaminated severely. The most striking feature of all of the organic analyses is the liberation of relatively large amounts of CO and CO_{2} during the sample runs. The characteristics of the evolution of these gases indicate that they are the result of a pyrolysis process. This feature may have been true of the Apollo 11 samples also; however, no effort was made to monitor CO and CO_{2} during the Apollo 11 analyses.

Organic-Monitor Analyses

The analytical results of the various Apollo 12 organic monitors (OM), both from the ALSRC and from the Ottawa sand used to monitor the LRL processing, are presented in appendix C. The data in appendix C comprise the most significant information available on the Apollo 12 contamination history. All tools used for the Apollo 12 sample processing were cleaned at the NASA White Sands Testing Facility and are assumed to have the same amount and type of contaminants as the Apollo 11 tools.

The principal organic monitors used for the S-ALSRC and the D-ALSRC were the York-mesh samples. The results given in appendix C include only the data for the coupons removed during the outbound processing. The coupon that remained in each ALSRC for the entire flight will be analyzed. The organic-contamination potential was reduced notably during the Apollo 12 lunar-sample processing, as evidenced by the use of the processing cabinets and by the very low levels (less than 1 ppm) of organic material added to the monitors by exposure to the processing cabinets.

CONCLUSIONS

The major findings of the preliminary examination of the Apollo 12 lunar samples are the same as the conclusions reached from the examination of the Apollo 11 samples. The major findings are as follows.

1. The fabric and mineralogy of the rocks divide them into two genetic groups: fine- and medium-grained crystalline rocks of igneous origin (probably originally deposited as lava flows, then dismembered and redeposited as impact debris) and breccias of complex history.
2. The modal mineralogy and bulk chemistry of the crystalline rocks show that they are different from any terrestrial rock and from meteorites.
3. Erosion has occurred on the lunar surface because most rocks are rounded. Some rocks have been exposed to a process that gives them a surface appearance similar to that of sandblasted rocks. There is no evidence of erosion by surface water.
4. The probable presence of the iron-troilite-ilmenite assemblage and the absence of any hydrated phase suggest that the crystalline rocks were formed under extremely low partial pressures of oxygen, water, and sulfur (in the range of those in equilibrium with most meteorites).
5. The absence of secondary hydrated minerals suggests that there has been no surface water at the Sea of Tranquility or the Ocean of Storms at any time since the rocks were exposed.
6. Evidence of shock or impact metamorphism is common in the rocks and fines.
7. All the rocks display glass-lined surface pits that may have been caused by the impact of small particles.
8. The level of indigenous organic material capable of volatilization or pyrolysis (or both) appears to be extremely low (that is, no more than 10 to 200 ppb).
9. Elements that are enriched in iron meteorites (that is, nickel, cobalt, and the platinum group) either were not observed or were very low in abundance.
10. Of the 12 radioactive species identified, two were cosmogenic radionuclides of short half-life; namely, ${ }^{52} \mathrm{Mn}$ (5.7 days) and ${ }^{48} \mathrm{~V}$ (16.1 days).
11. The uranium and thorium concentrations are near the typical values for terrestrial basalts; however, the ratio of potassium to uranium determined for lunarsurface material is much lower than those ratios determined for either terrestrial rocks or meteorites.
12. The fines material and breccias contain large amounts of all the noble gases that have elemental and isotopic abundances that are almost certainly indicative of
solar-wind origin. The fact that interior samples of the breccias contain these gases implies that the samples were formed at the lunar surface from material previously exposed to the solar wind.
13. The high ${ }^{26} \mathrm{Al}$ concentration observed is consistent with the long exposure age to cosmic rays inferred from the rare-gas analyses.
14. No evidence of biological material has been found in the samples to date.
15. The lunar soil at the landing site is predominantly fine-grained, granular, slightly cohesive, and incompressible. The soil is similar in appearance and behavior to the soil at the Surveyor landing sites.

The following differences were observed in the examinations of the Apollo 12 and Apollo 11 lunar samples.

1. The Apollo 12 crystalline rocks show a wide range in both texture and mode, whereas the Apollo 11 crystalline rocks had essentially one texture (lath-shaped ilmenite and plagioclase with interstitial pyroxene) and similar modes (50 percent pyroxene, 30 percent plagioclase, 20 percent opaque minerals, and 0 to 5 percent olivine).
2. Most of the igneous rocks fit a fractional-crystallization sequence, indicating that they represent either parts of a single intrusive sequence or samples of a number of similar sequences.
3. Breccias are of lower abundance at the Ocean of Storms than at the Sea of Tranquility, presumably because the regolith at the Ocean of Storms is less mature and thinner than that at the Sea of Tranquility.
4. A complex stratification exists in the lunar regolith that is presumed to be caused primarily by the superposition of ejecta blankets; at present, the possibility of a layer of volcanic ash cannot be discounted (for example, sample 12033).
5. The greater carbon content of the breccias and fines compared with that of the crystalline rocks is presumed to be caused largely by contributions of meteoritic material and solar wind.
6. The amount of noble gas of solar-wind origin is less in the Apollo 12 fines and breccias than in the Apollo 11 fines and breccias. The breccias contain less noble gas of solar-wind origin than the fines, indicating that the breccias were formed from fines that had less solar-wind noble gases than the fines presently at the surface.
7. The ${ }^{40} \mathrm{~K}-{ }^{40} \mathrm{Ar}$ measurements on the igneous rocks show that they crystallized 1.7 to 2.7 billion years ago. The presence of nuclides produced by cosmic rays show that the rocks have been within 1 meter of the lunar surface for 1 to 200 million years.
8. The Apollo 12 breccias and fines are similar chemically and contain only half the titanium content of the Apollo 11 fines. The composition of the crystalline rocks is distinct from that of the fines in that the rocks contain less nickel, potassium, rubidium, zirconium, uranium, and thorium.
9. The Apollo 12 samples contain less titanium, zirconium, potassium, and rubidium and more iron, magnesium, and nickel than the Apollo 11 samples. Systematic variations occur in the magnesium, nickel, and chromium content of the crystalline rocks; however, only small differences exist in the potassium and rubidium content.
10. Sample 12013 has a distinctive composition that is similar to that of a latestage basaltic differentiate. The sample contains larger amounts of silicon, potassium, rubidium, lead, zirconium, yttrium, ytterbium, uranium, thorium, and niobium than were found in any of the other Apollo 12 samples or in any of the Apollo 11 samples.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, June 11, 1970
914-50-16-08-72

REFERENCE

1. The Lunar Sample Preliminary Examination Team: Preliminary Examination of Lunar Samples from Apollo 11. Science, vol. 165, no. 3899, Sept. 19, 1969, pp. 1211-1227.

APPENDIXA

MINERALOGICAL/PETROLOGICAL DESCRIPTIONS

The descriptions presented in this appendix were compiled during the preliminary examination of the Apollo 12 lunar samples by members of the Preliminary Examination Team (PET) and the Lunar Field Geology Experiment Team. The name of the team member who compiled the information is given on the first line of each description. Selected photographs of most samples are included.

SAMPLE NO. 12001.0 WEIGHT 2216 GRAMS
FINE MATERIAL FROM SELECTED SAMPLE BOX HISTORY

THE SELECTED SAMPLE BOX WAS OPENED IN THE F201 VACUUM SYSTEM ON NOV. 26.1969. YITHIN an hour after epening the contents of the larger of the two teflon sample bags was opened. three large rocris vere removed. and the remaining fine MATERIAL WAS SCOOPED INTO A 1 CM. MESH SIEVE. LESS THAN 20 GRAMS OF CHIPS remained on the sieve. the rest. which passed through the sieve. was sealed IN A STAINLESS STEEL CAN AND COMPRISES SAMPLE 12001.

WHILE THIS MATERIAL WAS BEING SIEVED AND CANNED. THE F 201 CHAMBER PRESSURE YAS DECREASING FROM $5.3 \times 10-6$ TORR TO $4.2 \times 10-6$ TORR.
tHE CAN WAS RE-OPENED AT 0800 DEC 5 AND RE-CANNED IN FOUR SEPARATE CANS. THE PRESSURE DURING THIS OPERATION CHANGED AS SHOWN BELOW.

0800	$3.4 \times 10-6$
0830	$3.9 \times 10-5$
0900	$5.0 \times 10-6$

the residual gas analyzer scans made at times nearest to these times ARE LISTED BELOY.

DATE	HOUR	H1	H2	C12	N14	HOH	CN2.CO2)	O2	AR	CO2
$11 / 26$	2030	.09	.22	.012 .028	.33	.11	.21	.026	.051	
11127	0400	.15	.19	.017	.051	.31	.20	.032	.027	.019
1215	0500	.11	$.1 C$.014	.072	.39	.27	.021 .026	.004	

NOTES ON FINES IN SIEVING (BY R FRYXELL) APPARENT TEXTURE SILTY FINE SAND TO FINE SANDY LOAM. VERY YEAKLY COHERENT. RETAINS IMPRESSION OF SCOOP DURING PERIOD BETVEEN INDIVUDUAL DELIVERIES OF MATERIAL TO SCREEN. YEAK VERY FRAGILE TEMPORARY AGGREGATES TO 1 MM DIAMETER AS MATERIAL IS MOVED. 1.5 CM MAX DIAMETER). COLOR EST. MED. GRAY. SLIGHT BROWNISH HUE. (LOW VALUE. LOY CHROMA OCCASIONAL SAND SIZE GRAINS APPEAR PRESENT. ONE CHIP ON SIEVE APPEARS VERY GLASSY. FINES ADHERE TO ROCKS AND RETAIN TOOL MARKS WHEN TOUCHED YHEN CAN IS TIPPED TO 45 DEGREE ANGLE. FINES REMAIN COHERENT WITHOUT SLUMPING (PROCEDURE FOLLOWED TAPPING CAN ON CHAMBER FLOOR). NO ACTUAL AGGREGATES OF CLEARLY LUNAR ORIGIN OBSERVED.
analyses of fine material is listed in separate tableg

ANALYSIS	SAMPLE NUMBER	COMMENT
X-RAY DIFF.	12070	CONTINGENCY FINES
EMISSION SPEC.	12033	OOCUMENTEDFINES
EMISSION SFEC.	12060	TOTE BAG FINES
EMISSION SPEC.	12070	CONTINGENCYFINES
TOTAL CARBON	12003	SELECTED SAMPLE FINES
TOTAL CARBON	12032	DOCUMENTED FINES
TOTAL CARBON	12033	DOCUMENTED FINES
TOTAL CAFBON	12042	DOCUMENTED FINES
RARE GAS ANAL.	12060	TOTE BAGFINES
RARE GAS ANAL.	12070	

```
SAMPLE NO. 12002 MORRISON, WARNER AND ANDERSON
F201 DESCRIPTION OF THE FIRST RCL ROCK 1529.5 GRAMS. 11 < 9 X 6 CM.
THIS IS A SPECKLED MEDIUM BROWN GREY ROCK WITH SOME DUST ADHERING TO THE SURFACE
THE ROCK IS A FINE TO MEDIUM GRAINED HOLOCRYSTALLINE BASALT.
MODE
\begin{tabular}{lccc} 
PYROXENE & \(500 / 0\) & 0.08 MM & DARK GRAY \\
PLAGIOCLASE & \(300 / 0\) & & \\
OLIVINE & \(150 / 0\) & 0.15 MM & LIGHT GREEN
\end{tabular}
    ILMENITE 3-40/0
    0.08 MM
    OPAOUE
TEXTURE - HOLOCRYSTALLINE GRANULAR
VUGS ARE PRESENT. RARE IN ABUNDANCE. SCATTERED OVER ROCK. THE ROCK IS ROUNDED
TO SUBROUNDED. IT HAS A PROMINENT FRACTURE. NUMEROUS 3 TO 4 MM GLASS LINED
PITS IN EXCESS OF I PER SOUARE. CM. THIS ROCK IS A BASALT OR A FINE GRAINED
DOLERITE.
```

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE

```
RCL ANALYSIS
```


F'igure A-1. - Sample 12002.

```
SAMPLE NO. 12003.0 ESTIMATED WEIGHT 300 GRAMS ANDERSON
ThIS SAmple CONSISTS OF FINE MATERIALS AND THE +1 CM PIECES OBTAINED FROM
SIEVING SN 1200'. ALL FROM THE SELECTED SAMPLE BOX OPENED IN THE VACUUM CHAMBER.
THE FINES WERE OBTAINED FROM THE BOTTOM OF THE SAMPLE RETURN CONTAINER AS WELL
as the fine material from the smaller of the two teflon sample bags from the
SELECTED SAMPLE BOX CSEE SN l2OC&J. THERE MAY BE SMALL PIECES OF ALUMINUM
WIRE FROM THE mESH LINING OF THE ALSRC IN THIS SAmple.
THE SAmple was SEALED IN A STAINLESS STEEL CAN IN THE VACUUM SYSTEM aND TRANS-
FERRED TO A STERILE NITROGEN ATMOSPHERE CABINET LINE. SAMPLES OF THE FINES
WERE TAKEN THERE FOR ANALYSIS AND THE CHIPS WERE REMOVED FOR BIO aNALYSIS. THE
CAN wAS RESEALED bEFORE THE CABINET LINE WAS OPENED TO APPRECIABLE TERRESTRIAL
CONTAMINATION.
see total carbon analysis tables.
the following experiment was conducted on this sample
TOTAL CARBON ANALYSIS
```

```
SAMPLE NO. 12004 F201 DESCRIPTION UARNER
WEIGHT 585 GRAMS DIMENSIONS 9 x 8 X & CM
SAMPLE BROKE IN THO IN CAN
    1. 501.8 GRAM FRAGMENTS (TO RCL)
    2. 87.4 GRAMS VACUUM STORAGE
    3. 1 GRAM CANNED IN 1-0024 FOR PCTL.
the rocks shape is partly rounded. it has a flat bottom. vertical sides. and a
dOme Like tOp. the surface is Smooth with about l glass lined pit per cm 2.
FRACTURES PARALLEL TO THE SURFACES (BOTH TOP AND BOTTOM) ARE PRESENT.
TEXTURE. THE ROCK IS GENERAI.LY DENSE. IRREGULAR SHAPED VUGS ARE FOUND ABOUT
three PER CM3.
FABRIC. THE SAMPLE IS HOLOC{?YSTALLINE MITH MORE OR LESS EOUANT CRYSTALS.
MODE.
    PYROXENE. HONEY BROWN
    60 PERCENT
    FELDSPAR. LATHS OR WHITE GRANULAR
        18 PERCENT . 1 X . 5 MM
    OLIVINE. LIGHTGREEN 15 PERCENT
    15 PERCENT
        . 7 MM
NAME. OLIVINE BASALT
the following experiment was conducted on this sample
E-SPEC ANALYSIS
RARE GAS ANALYSIS
X-RAY ANALYSIS
```


F'igure A-2. - Sample 12004.

SAMPLE NO． 12005 WEIGHT 482 GRAMS DIMENSIONS $10 \times 5 \times 5$ CM BUTLER CHARCOAL GRAY SURFACE WITH WHITE PATCHES AND STREAKS．SURFACE WAS DUST COVERED UHEN PHOTOGRAPHED AND UAS BRUSHED CFF FOR OBSERVATION．ROCK IS ROUNDED ON A GROSS SCALE．BUT IS IRREGULAR IN AFIELD OF 1 TO 2 CM．GLASS LINED PITS RANGING TO \＆MM DIAMETER．MUCH OF THE SURFACE CONSISTS OF PULVERIZED OR CRUSHED MINERALS a GIRCULAR 4 MM PATCH IS COMPOSED OF WHITE POWDER AND FINE GRAINS．
GLASS LINED PITS ON THE SURFACE．RECOGNI ZABLE PITS HAVE LINING OF BLACK GLASS． ARE A CIRCULAR SECTOR OF A SPHERE．ARE MOST COMMONLY 0．5 MM IN DIAMETER AND RANGE UP TO 1 MM．DENSITY ON THE OBSERVABLE SURFACE IS GREATER THAN OR EOUAL TO 10 PER CM2．THE FULLY PRESERVED PITS ARE RAISED FROM THE SURFACE OF THE ROCK ON A CIRCULAR MOUND OF 甘HITE POWDER AND SMALL GRAINS．THESE MOUNDS SEEM QUITE DELICATE AND EASILY DESTROYED WITH HANDLING．
VUGS HAVE AN IRREGULAR DISTRIBUTION BUT THEIR AVERAGE DENSITY IS ABOUT I PER CM2．THEIR SHAPES ARE IRREGULAR BUT ARE ROUGHLY EOUIDIMENSIONAL．THE AVERAGE SIZE IS 1 TO 2 MM． hOLOCRYSTALLINE WITH MOST GRAINS OF THE MAJOR CONSTITUENTS IN THE SIZE RANGE 0.2 TO $0.5 \mathrm{MH}$. ．THERE ARE A FEW PATCHES OF COARSER OLIVINE AND PYROXENE 甘HOSE GRAINS ARE ABOUT 1 MM IN DIAMETER．SOME OF THESE OCCUR ON OR NEAR THE FRACTURE．COARSER OLIVINE（0．5 TO 1 MM）ALSO OCCUR IN THE 甘ALLS OF VUGS． MODE（SURFACE EXAMINATION ONLY）

OLIVINE（PALE GREEN）35．PERCENT AVERAGE SIZE 0．5 MM
PYROXENE（PALE TO MEDIUM BROWN） 30 PERCENT AVERAGE SIZE 0．5 MM
PLAGIOCLASE（WHITEJ 30 PERCENT AVERAGE SIZE 0.5 MM
ILMENITE（BLACK OPAQUE．PLATY） 3 PERCENT
SEGREGATIONS OF MINERALS 3 TO 4 MM ACROSS
NOTE．ROCK WAS PHOTOGRAPHED BEFORE EXAMINATION．WE DECIDED THAT THIS ROCK WOULD BE VERY SUITABLE FOR THE STUDY OF WEATHERING PROCESSES．AND AS SUCH RECONTAINERIZED IT AFTER OUR EXAMINATION YITHOUT CHIPPING OR FURTHER HANDLING． the surface has been brushed with a stainless steel brush however． TERRESTRIAL ANALOGUE OF SPECIMEN．OLIVINE BASALT．

SAMPLENO． 12005 F201 ADDITIONAL COMMENTS UARNER
1．VUGS CONTAIN a VARIETY OF CRYSTALS．SOME CONTAIN OLIVINE．OTHERS
ILMENITE．ONE VUG HAS CRYSTALS GROWING NORMAL TO VUG WALL．
2．MODE

OLIVINE	25 PERCENT
ILMENITE	5 PERCENT
PYROXENE	40 PERCENT
FELDSPAR	30 PERCENT

3．TEXTURE HOLOCRYSTALLINE GRANULAR．THERE APPEARS TO BE A GROSS segregation of phases．these segregations are about I cmi in volume．they are

A．FELOSPAR／OLIVINE
B．PYROXENE／VERY LITTLE OLIVINE

NASA-S-69-62297

NASA-S-69-62298

NASA-S-69-62294

NASA-S-69-62295

Figure A-3. - Sample 12005.

SAMPLE NO. 12006 WEIGHT 181 GRAMS DIMENSIONS $6 \times 6 \times 4$ CM GREENWOOD (DESCRIPTION AFTER CHIPPING FOR BIOPOOL). VUGGY (UP TO 10 MH DIAMETER) OLIVINE BASALT FINE GRAINED (ABOUT 1 MM) MATRIX WITH FELDSPAR LATHS UP TO 3 MM. plagioclase laths radiate in three dimension. texture is trachytic. the rock IS HOLOCRYSTALLINE. CRYSTALS ARE COARSER NEAR VUGS AND GROW OUT INTO THE FREE SPACE. OLIVINE (ABOUT \& MM GRAIN SIZE) IS EQUANT YELLOW GREEN ABOUT 15 PERCENT OF THE ROCK. A RED BROWN PYROXENE IS FINER GRAINED (ABOUT $1 / 2$ MM) THAN OLIVINE AND ABOUT 25 PERCENT OF THE ROCK. A BLACK LUSTEROUS OPAOUE IS ABOUT 5 PERCENT OF THE ROCK. PLAGIOCLASE IS ABOUT 55 PERCENT OF THE ROCK. the rock is flat bottomed with angular edges. the top and sides are well ROUNDED AND HAVE NUMEROUS PITS. THE BOTTOM SHOWS FEWER OBVIOUS PITS. THE BOTTOM IS DARK GRAY COATED. THE ERODED TOP IS MEDIUM DARK GRAY WITH WHITE areas near pits. the fresh broken surface is an even medium gray. no lineaTION OR LAYERING WAS OBSERVED. VUGS ARE IRREGULAR SHAPED. CRYSTAL BOUNDED. and arranged along planes in the rock. the rock is not friable or fragile and SHOWS NO OBVIOUS SHOCK HISTORY. AFTER CHIPPING THE ROCK HAS A SMALL AREA OF NEW SURFACE.
SAMPLE NO. 12006 PIT COUNTS
SIDE I - SUBROUNDED - SOME DUST ADHERING TO THE SURFACE. ARE SEVERAL
INTERESTING PIT LININGS WHICH ARE RAISED ABOVE THE SURFACE AND HAVE A DULL
WEATHERED APPEARANCE.
AREA-CIRCLE. I CM DIAMETER.
NUMBER
1
much of the glass linings are raised or eroded away. leaving only a white halo AS EVIDENCE OF IMPACT.

SIDE 2 - ONE HALF IS FRESH FRACTURE, WITH NO PITS AND ONE HALF IS OLDWITH PITS (BELOW). PIT LININGS ARE RAISED ABOVE ROCK SURFACE AND VERY DULL. SOME PROCESS OF EROSION AT WORK. WITH GLASSY LINGINS MORE RESISTANT THAN THE ROCK.

NUMBER	NUMBER OF PITS
8	8
2	7
3	9
SIDE 3	- VUGGY. SUBROUNDED.

NUMBER	NUMBER OF PITS
1	2
2	7
3	9
4	8
5	10

NASA-S-69-61912

NASA-S-69-62333

NASA-S-69-61918

NASA-S-69-62339

Figure A-4.- Sample 12006.

SAMPLE NO. 12007 DIMENSIONS $5.5 \times 3.2 \times 4.0$ CM WEIGHT 65.2 GRAMS HEIKEN tABULAR. ANGULAR REDDISH BROWN ROCK. LONG AXIS IS PARALLEL TO PLANAR FRACTURE RUNNING THE LENGTH OF THE ROCK.
MEDIUM GRAINED. HOLOCRYSTALLINE ROCK. PORPHYRITIC. WITH 3.0 TO 3.5 CM LONG PYROXENE CRYSTALS IN A GROUNDMASS OF 1 TO 2 MM CRYSTALS. PYROXENE AND FELDSPAR CRYSTALS FORM IN VARIOLITIC CLUMPS IN SEVERAL PLACES.
IRREGULAR AND PLANAR FRACTURES ARE SUBPARALLEL OR PARALLEL TO THE LONG aXIS OF THE ROCK. NO CHANGE IN MINERALOGY NEAR THE FRACTURES. A FLAT SIDE (PROBABLY a FRACTURE SURFACEJ IS COATED WITH DUST WHICH ADHERES TIGHTLY TO THE SURFACE。 ARE SOME VUGS CDIAMETER GREATER THAN 0.2 MMJ BETWEEN FELDSPAR CRYSTALS. NO SURFACE PITS OR SPLASHES.
MINERALOGY.
COLORLESS TO CREAMY WHITE FELDSPAR. SUBHEDRAL LATH SHAPED CRYSTALS. 1 MM TO 2 CM LONG. EXHIBITS GOOD ALBITE TWINNING. 40 PERCEHT.

REDDISH BROWN TO DARK BROWN PYROXENE. ELONGATE. SUBHEDRAL CRYSTALS. 0.5 MM TO 3 CM LCNG. THE PHENOCRYSTS HAVE CORES OF OLIVINE. SMALLER PYROXENE CRYSTALS (MUCH LIGHTER IN SHADE) HAVE NO SUCH CORES. 45 PERCENT.

OLIVINE - PALE GREEN. ANHEDRAL. EQUANT CRYSTALS. INDIVIDUAL CRYSTALS RANGE FROM 0.5 TO 2 MM IN DIAMETER. THE OLIVINE CORES IN THE PYROXENE PHENOCRYSTS ARE UP TO \& MM SIDE. 5 PERCENT

ILMENITE - BLADES OF THIS MINERAL UP TO 2 MM WIDE. METALLIC LUSTER-BLACK 10 PERCENT.
TERRESTRIAL ANALOGUE。 OLIVINE DIABASE.

Figure A-5. - Sample 12007.

SAMPLE NO 12008 WEIGHT S§ GRAMS DIMENSIONS $2 \times 3.5 \times 5$ CM GREENWOOD SMALL BRIOUET SHAPED ROCK WITH FLAT TO SLIGHTLY CURVED BOTTOM AND ERODED ROUNDED SUBPYRAMIDAL TOP. GIVING THE ROCK A LENS SHAPE. THE ERODED SURFACE IS DARK GRAY TO BLACK and shows bright adamantine cleavage planes. the bottom and top surfaces are pocked and pitted. at least one glase lined pit (2 mm is PRESENT. NO VESICLES OR VIJGS WERE SEEN. THE ROCK IS COMPOSED PREDOMINRNTLY OF a BLACK mEDIUM GRAINED MINERAL 92 PERCENT. WITH ABOUT 7 PERCENT major phase may be ilmenite. equant plagioclase and about 3 percent olivine (terminated crystals). NO LINEATION OR LAYERING HAS OBSERVED. THE ROCK IS NOT FRIABLE OR FRAGILE.

```
SAMPLE NO. 12008
                                    HEIKEN
            SIDE 1 - SUBANGULAR - MOST PITS ARE ABOLiT 0.1 TO 0.4 MM IN DIAMETER.
LINED WITH BROKEN GLASS - BOTH SMOOTH AND BUBBLY GLASS.
LOCATION NUMBER OF PITS
    l
    SIDE 2 - SUBANGULAR - ONE SMALL O.5 CM SPLASH-VERY THIN.
LOCATION NUMBER OF PITS
    l
    3 2
    3
```


NASA-S-70-44089

NASA-S-70-44092

Figure A-6. - Sample 12008.

SAMPLENO. 12009 WEIGHT 468 GRAMS DIMENSIONS $10 \times 7 \times 5$ CM BUTLER/WARNER after brushing about half of the surface area still has a layer of medium brown DUST. THIS DUST TENDS TO BE IN DEPRESSIONS. BUT NOT EXCLUSIVELY. THEREFORE THE DUST IS PROBABLY OUITE ADHERENT. THE ROCK BENEATH THE DUST IS DARK GRAY. the SURFACE CRAGGY AND UNEVEN. APPARENTLY BECAUSE PARTS HAVE FLAKED AND SPALLED OFF. PARALLEL AND SUBPARALLEL FRACTURES FORM A STRONGLY DEVELOPED SET IN PLANES ABOUT 30 DEGREES TO THE HORIZONTAL SPECIMEN SUPPORT. THE FRACTURE PLANES ARE SPACED $1 / 2$ TO 1 CM APART.
a few small areas of yhite powdered material are distributed on the surface. UPPER SURFACE IS AT LEAST 70 PERCENT COVERED WITH BLACK GLASS. ALTHOUGH these are scattered onto 1 mm patches of Clear black glass. most of the glass IS MIXED WITH FINE GRAINED BROWN (TURBID) GRANULAR MATERIAL (CALLED DUST ABOVE). the granules of sroun material are spheroidal and range in size up to o 05 mm they re probably aggregates of fine material to judge from their rough surfaces. three of the so called eggshaped cavities are prominent on this rock. these Cavities have smooth valls on a megascop ic scale. their shapes are that of a SEGMENT OF A TRIAXIAL ELLIPSOID WITH ROUGHLY THE SAME PROPORTIONS AS AN EGG. THE DIMENSIONS OF THE INTERMEDIATE SIZED CAVITY IS 1.5×3 CM RIM TO RIM. MAJOR SEMI AXIS IS ABOUT 1.5 CM. INTERMEDIATE AND MINOR SEMI AXES ARE ABOUT 1 CM. the largest cavity is markedly elongated compared with an egg. from rim to rim It IS 5×3 CM. THE MAJOR SEMI AXIS IS ABOUT 7 CM. THE SMALLEST CAVITY (Which IS the only one probably clearly visible on the side photographs takens IS ABOUT 2×2 CM RIM TO RIM.
there are a few vugs in the rock. two are spheroidal and about 1 mm diameter. NO LARGE CRYSTALS ARE ASSOCIATED WITH THEM. IRREGULARLY SHAPED CAVITIES ARE ASSOCIATED WITH SOME OF THE OLIVINE PHENOCRYSTS.
-PORPHYRITIC O.S TO 2 MM PHENOCRYSTS OF OLIVINE ARE THE ONLY PROMINENT MINERAL GRAINS. THESE PHENOCRYSTS FORM ABOUT 20 PERCENT OF THE ROCK. THE MATRIX IS DARK GRAY.
*FELOSPAR LATHS ARE RANDOMLY ORIENTED.
-OLIVINE O.S TO 2 MM. EQUANT AND STUBBY COLUMNAR.
*PLAGIOCLASE IS EVIDENCED ONLY BY THE REFLECTION OF LIGHT FROM CLEAVAGES. SHAPE. COLLECTION OF CHIPS FROM F201. SIZE. $1 \times 1.5 \times 2.1 \times 1 \times 1$. IT IS LATH SHAPED AND 1 MM X . 02 MM. SMALLER LATHS ARE ALSO DISCERNABLE IN matrix. plagioclase is so thin that it shows cinly the oark gray color of the MATRIX MATERIAL.
*OBSERVATIONS ON FRESHLY CHIPPED SURFACE * MODES. OLIVINE 20 PERCENT plagioclase 5 PERCENT APHANITIC MATRIX 75 PERCENT
TEXTURE. VUGGY. VESICULAR. PORPHYRITIC. FINE GRAINED. OLIVINE GRAINS IN A PORPHYRITIC BASALT WITH OLIVINE AND PLAGIOCLASE PHENOCRYSTS. THE WALL OF largest egg shaped cavity is formed of a matte of plagioclase laths. size of the lath averages 0.5 mm $X 0.1$ MM. the long axes of the lath are parallel to the cavity surface. but they are otherwi se randomly oriented. aeout half the CAVITY SURFACE HAS ADHERING SPHEROIDAL BROWN CLUMPS AS DESCRIBED ABOVE. THE Smaller of the bottom egg shaped cavities is also walled by plagioclase laths. WHICH ARE IN POORLY DEVELOPED RADIATING AGGREGATES.

SAMPLE NO. 12009.1 WONES
SHAPE. COLLECTION OF CHIPS FROM F201. SIZE. $1 \times 1.5 \times 2.1 \times 1 \times 1$.
$1 \times 0.5 \times 0.3 .0 .3 \times 0.5 \times 0.1 \mathrm{CM}$. SMALLER PIECES TO GO GAL. OES.
COLOR. NEUTRAL NG TO N7.
TEXTURE. VUGGY. VESICLLAR. PORPHYRITIC. FINE GRAINED. OLIVINE GRAINS IN A RANDOM AND IRREGULAR MATRIX OF PYROXENE. PLAGIOCLASE AND PROBABLY OPAOUES. OLIVINE PHENOCRYST O.S MM PYROXENE AND PLAGIOCLASE ACICULAR. LARGEST GRAINS 0.1×0.5 VESICLES ABOUT 1 PERCENT VOLUME.
FABRIC. APPARENT PARTING TO SPECIMEN. VESICLES AND VUGS TEND TO BE SUB

PARALLEL TO IT. VESICLES AND VUGS HAVE IRREGULAR SHAPES.
FRACTURES. MANY PARTING SUBPARALLEL. ORTHOGONAL FRACTURE. SUBPARALLEL TO FACES.
SURFACE features. only one original surface preserved. others are all fresh. the one original surface is a unioue feature and is being packaged separately IT IS A PERFECTLY FLAT SURFACE. PARALLEL TO THE PARTING IN THE MATERIAL. IT has the appearance of being etched and is a log jam of pyroxenes with euhedral FORMS. THERE ARE SEVERAL POSSIBILITIES. MOST LIKELY IS THAT A PARTING SURFACE aCTED AS a VUG. HOWEVER IT IS POSSIBLE THAT GAS ETCHING TOOK PLACE. THIS IS UNLIKELY AS PYROXENES ARE: LARGER THAN. THOSE IN GROUNDMASS. ($0.1 \times 0.5 \mathrm{Mm}$. there are no Glass Splashes igr pitting on this surface. MINERALOGY.

OLIVINE. OCCURS AS EUHEDRAL GREEN YELLOW VITREOUS CRYSTALS 0.5 MM DIAMETER.
PYROXENE. OCCURS AS ACICULAR CRYSTALS O.1 MM X 0.5 MM MAXIMUM SIZE. SIZE RANGES DOWN TO LESS THAN 10 MICRONS. LARGE CRYSTALS ON PECULIAR TEXTURE (SEE ABOVE).

PLAGIOCLASE. OCCURS IN GROUNDMASS. SUBORDINATE TO PYROXENE.
OPAOUES. PRESENT AS 0.05 MM INCLUSIONS IN OLIVINE. NOT RESOLVED IN
GROUNDMASS.
MODE. OLIVINE 10 PERCENT GROUNDMASS 90 PERCENT
NO INCREASE OF MINERALS NEAR VESICLES OR VUGS. vesicular olivine basalt.

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
RAñe GAS analysis
X-RAY ANALYSIS

NASA-S-69-62301

NASA-S-69-62307

Figure A-7. - Sample 12009.

SAMPLE NO. 12010.1 DECEMBER 11. 1969
VONES
SHAFE. SUBSPHERICAL LUMP. DIAMETER 1 CM.
COLOR. NEUTRAL N7 TO N8. L!GHT GRAY.
TEXTURE. FINE GRAINED. SUBOPHITIC. BADLY SHOCKED. ALL GRAINS BADLY
FRACTURED FELDSPAR IS ALL YHITE. TURBID. IMPOSSIBLE TO DISTINGUISH VUGS. BUT
1 MM PHENOCRYSTS OF OLIV\&NE (NOW BADLY SHATTEREDJ ARE PRESENT. MAXIMUM SIZE
OF PLAGIOCLASE AND PYROXENE IS 0.5 MM.
FABRIC. NOT POSSIBLE TO DETECT LINEATIONS ETC. BECAUSE OF SHATTERING.
FRACTURES. THROUGH GOING. ENTIRE SAMPLE IS FRACTURED. EXTREMELY FRIABLE.
NO PREFERRED ORIENTATION.
SURFACE FEATURES. 50 PERCENT OF THIS LUMP IS COVERED WITH PITS APPROXIMATELY
6 PER CM2. THERE ARE GLAZES PRESENT AND FRAGMENTS OF OTHER ROCK TYPES
adhering to glaze. pits are glass lined. some have haloes. largest pit is
0.5 MM IN DIAMETER.

MINERALOGY.
MODE.
PYROXENE 60 PERCENT
plagioclane 30 PERCENT
OLIVINE 5 PERCENT
OPAOUES 5 PERCENT
PYROXENE. GROUNDMASS. HARD TO TELL MUCH ABOUT PRESHOCK MORPHOLOGY.
PLAGIOCLASE. YHITE TURBID LATHS IN A SUBOPHITIC TEXTURE. $0.1 \times 0.5 \mathrm{Mm}$.
OLIVINE. SHATTERED OVOIDAL GRAINS 1 MM LONG.
OPAQUES. BLADED CRYSTALS INTERGROWN YITH PYROXENE.
the folloying experiment yas conducted on this sample
A-A CHEMICAL ANALYSIS
E-SPEC ANALYSIS
RARE GAS ANALYSIS

Figure A-8.- Sample 12010.

SAMPLE NO. 12011 WEIGHT 193 G DIMENSIONS $5 \times 5 \times 4$ CM WARNER/GIBSON general shape is a roundish blob. COLOR IS BROWNI SH. Charcoal grey. SURFACE IS SMOOTH WITH GLASS LINED PITS. NO FRESH BROKEN SURFACES. VERY FEW (ABOUT 5 ON TOP OF ROCK). SMOOTH LINED VUGS. NO FRACTURES. GLASS LINED PITS (2 TO 3 MM ACROSS) OCCUR ABOUT 1 TO 2 PER CM2. FINE DUST ADHERING TO SURFACE AFTER GCO BRUSHING LIKE SAMPLE 12009. LOTS OF GLASS ON SURFACE. MOSTLY UNDER THE DUST.
VESICLES. 3 MM ACROSS. ABOUT 1 PER CM2 OF INTERIOR SURFACE. SMOOTH WALLED AS CONTRASTED WITH ROCKS SUCH AS 12020.
COLOR OF INTERIOR. MEDIUM TO I.IGHT CHARCOAL GREY. VERY LITTLE BROWN. MODE.

OLIVINE - LIGHT GREEN 20 PERCENT . 3 MM
PYROXENE. PALE HONEY BROWN 45 PERCENT . 1×2 MM
ILMENITE . BLACK OPAOUE 20 PERCENT . 3 MM
FELDSPAR. COLORLESS 15 PERCENT . 1 MM
texture holocrystalline. the pyroxene and to some extent the felospar OCCURS IN LATHS. THE LATHS FIJRM RADIATING STARS. LOOKS LIKE CHICKEN TRACKS. VESICLES ARE GLASS LINED. GLASS IS CLEAR SO YOU CAN SEE THE CRYSTALS UNDER the glass. vesicles are spherical. rock name. pyroxenite. ADDITIONAL F2O1 COMMENTS BY GIBSON
BROKEN FACE APPEARANCE. LIGHT TO MEDIUM CHARCOAL COLOR. FINE GRA!.VED TYPE A ROCK. HOLOCRYSTALLINE ROCK. VESICLES. LINED WITH BLACK GLASS. RAYS OF HONEY BROWN PYROXENE CRYSTALS 0.2×1.2 MM IN VESICLE. MODE.

OLIVINE, PALE BOTTLE GREEN 10 PERCENT 0.2 TO 0.4 MM PYROXENE. HONEY BROHN 30 PERCENT . 2 TO 1.4 MM PLAGIOCLASE/FELDSPAR. CLEAR TO TURBID WHITE 40 TO 50 PERCENT ILMENITE. BLACK 15 TO 20 PERCENT.

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE E-SPEC ANALYSIS

Figure A-9. - Sample 12011.

```
SAMPLE NO. 12012.0 WEIGHT 176.2 G DIMENSIONS 6 < 6 < 4 CM ANDERSON/GIBSON
MEDIUM GRAY BLOCKY ANGULAR ROCK WITH NUMEROUS VUGS IN WHICH ARE VISIBLE MANY
ELONGATED CRYSTALS. NO OBVIOUS IMPACT PITS CAN BE SEEN WITH UNAIDED EYE.
ROCK IS COARSE GRAINED WITH ABUNDANT OLIVINE VISIBLE ON SURFACE.
TYPE AB ROCK.
MINERALOGY MORE OBVIOUS THAN USUAL.
MODE.
\begin{tabular}{llcc} 
MINERAL & COLOR & GRAIN SIZE & ABUNDANCE \\
OLIVINE & PALE BOTTLE GREEN & 0.5 MM & 25 PERCENT \\
PLAGIOCLASE/FELOSPAR & 0.5 MM & 20 PERCENT \\
ILMENITE & BLACK & 0.5 MM & 1 PERCENT \\
PYROXENE & HONEY BROUN & 0.5 TO 5 MM & \(5 S\) PERCENT
\end{tabular}
FELDSPAR IS NOT AS OBVIOUS AS OLIVNE AND PYROXENE.
VUGS OF ALL SIZES S MM TO SUBHICROSCGPIC GIVING ROCK VERY POROUS APPEARANCE.
UNDER MICROSCOPE COLOR APPEARS GREENISH BROWN. THE DUST COVERED PORTION OF
ROCK APPEARS LIGHTER IN COLOR. PERHAPS TOP. TOP IS SMOOTHER THAN OTHER
ANGULAR PORTIONS OF PARENT ROCK.
THIS ROCK WAS CHIPPED ( CHIP FROM BLOCKY BOTTOM) AND MOTHER ROCK AND CHIPS
PHOTOGPAPIIED. FINAL WEIGHT OF MOTHER ROCK. IS 169.8 GRAMS.
TEXTIIPE. HOLGこRYSTALLINE.
NO LINEATIONS OBVIOUS. MANY IRREGULAR FRACTURES. NO PARTICULAR ORIENTATION.
NOTE. the pyroxene and OLIVINE CRYSTALS ARE VERY PRONOUNCED AND THE GENERAL
STRUCTURE IS OPEN WHICH WOULD MAKE THE CRYSTALS VERY EASY TO PICK OUT.
TERRESTRIAL ANALOGUE. OLIVINE PYROXENITE.
\begin{tabular}{lcc} 
SAMPLE NO. 12012.5 AND \(\$ 2012.6\) & THIN SECTION \\
MODE & 12012.5 & 12012.6 \\
PLAGIOCLASE & 15 & 15010 \\
PYROXENE & 50 & \(550 / 0\) \\
OLIVINE & 30 & \(200 / 0\) \\
OPAOUE & 5 & \(100 / 0\)
\end{tabular}
THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
X-RAY ANALYSIS
```


Figure A-10. - Sample 12012.

SAMPLE NO. 12013.0 F201 DESCRIPT!ON ANDERSON
WEIGHT 82 GRAMS DIMENSIONS $4 \times 3 \times 2$ CM.
LIGHT GRAY ANGULAR ROCK. LARGELY COMPOSED OF TURBID WHITE CRYSTALS WHICH are probably felospar. these are nearly eouldimensional with no apparent LINEATIONS OR OTHER PREFERRED FABRIC. THE ROCK IS RATHER VUGGY. BUT NO IMPACT PITS CAN BE SEEN. SOME DARKER MINERALS ARE PRESENT IN SEGREGATED PATCHES. MODE.
plagioclase 80 percent
PYROXENE 10 PERCENT TO 15 PERCENT
ILMENITE 5 PERCENT
OLIVINE POSSIBLE TRACE
A 2 MM PHENOCRYST WHICH IS PROBABLY FELDSPAR IS PRESENT AND SEVERAL HIGHLY REflective opadue crystals which may prove to be ilmenite. TERRESTRIAL ANALOGUE. ANORTHOSITE.

SAMPLE NO. 12013.4 OVAL THINSECTION DIMENSIONS 11×6 MM UARNER
THE SECTION DISPLAYS THREE DISTINCT LITHOLOGIES. LITHOLOGY 1. - VARIOLITIC TEXTURE
MODE
PLAGIOCLASE 70 PERCENT 0.1 X \&.S MM (AN-JM)

GLASS
INTERSTISTIAL PHASE
PYROXENE
OPAOUE

10 PERCENT
10 PERCENT
5 PERCENT
5 PERCENT
0.1×1.5 MM (AN-JM)
0.4 MM 0.1 MM (OUARTZ OR K-FELDSPARJ
0.3 MM
0.1 MM

THE FELDSPAR LathS Exhibit the excellent radiating cvarioliticl texture。 the LOW AN VALUE OF THE FELDSPAR WAS DETERMINED BY ALBITE EXTINCTION ANGLES.
IN PLANE LIGHT THIS LITHOLOGY.LOOKS WHITE WITH A FEW BLACK SPOTS.
ROCK NAME - DACITE
LITHOLOGY 2. - ANHEDRAL-HOLOCRYSTALLINE TEXTURE WITH SUBANGULAR BLOCKS OF LITHOLOGY 1.
MODE

PYROXENE
plagioclase
SANIDINE AND/OR QUARTZ
OPAOUE

25 PERCENT
35 PERCENT 25 PERCENT
15 PERCENT
0.2 MM
0.2 MM 0.2 MM
0.01 MM
the contact betyeen the blocks of lithology 1. and the matrix are sharp. IN PLANE LIGHT THIS LITHOLOGY LOOKS GREY - CONSISTING OF

1. LIGHT SPOTS OF LITHOLOGY 1.
2. LIGHT MATRIX WITH LOTS OF SMALL BLACK SPOTS (SALT AND PEPPER).

ROCK NAME - BASALT.
LITHOLOGY 3. - ANHEDRAL-HOLOCRYSTALLINE TEXTURE WITH INCLUSIONS OF ANGULAR TO ROUNDED CRYSTALS.
MODE OF MATRIX

PYROXENE	55 PERCENT	0.2 MM
PLAGIOCLASE	25 PERCENT	0.2 MM
OPAQUE	20 PERCENT	0.05 MM

the blocks of crystals are in sharp contact with the matrix. there is some INDICATION OF SOME ABSORPTION OF THE ELOCKS. THE BLOCKS ARE 1 TO 2 MM ACROSS. THEY CONSIST OF -
plagioclase (an-85 by albite extinction)
OPAQUES
PYROXENE (CONTAINS LOTS OF INCLUSIONS)
GLASS
IN PLANE LIGHT THIS LITHOLOGY LOOKS VERY DARK GREY WITH LARGE WHITE SPOTS OF the plagioclase blocks.
ROCK NAME - ANDESITE BRECCIA
RELATION AMONG THE LITHOLOGIES.

LITHOLOGY 1. FORMS A 5×5 MM CORE OF THE THIN SECTION.
LITHOLOGY 2. ALWAYS OCCURS BETWEEN LITHOLOGIES 1. AND 3. GLOCKS OF LITHOLOGY 1. ARE FOUND IN LITHOLOGY 2.

LITHOLOGY 3. INTRUDES L§THOLOGY 2.
SAMPLE TERRESTRIAL ANALOGUE - IGNEOUS OR VOLCANIC BRECCIA.

THE FOLLOWING EXPERIMENT WA§ CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
RARE GAS ANALYSIS
X-RAY ANALYSIS

NASA-S-70-43634

NASA-S-70-43633

NASA-S-70-43636

NASA-S-70-43635

Figure A-11. - Sample 12013.

```
SAMPLENO. 12014.0 F201 DESCRIPTION PRESPLIT GIBSON
WEIGHT 159 GRAMS SIZE. 2 < 2 < 1/12 INCHES
ROCK TYPE. PORPHYRITIC OLIVINE MICROGA8RRO.
CCHIPPED OFF APPROXIMATELY 8 GRAMS FOR PCTLJ.
THE ROCK IS RECTANGULAR AND ANGULAR. EDGES AND CORNERS ARE SUBROUNDED.
TEXTURE IS HOLOCRYSTALLINE INEQUIGRANULAR. GRAIN SIZES AVERAGES O.7 MM WITH
EUHEDRAL PYROXENE LATHS UP TO I CM IN VUGS. ESSENTIAL MINERALS ARE OLIVINE.
PYROXENE (POSSIBLY 2 TYPES). AND FELDSPAR. ESTIMATED MODE IS.
    OLIVINE 15 TO 20 PERCENT
    PYROXENE 25 TO 35 PERCENT
    FELDSPAR 40 TO 50 PERCENT.
GrAQUES ARE MINOR (S PERCENT}. ACCESSORY MINERALS OCCUR BUT ARE NOT IDENTIFIED.
THE ROCK IS FRACTURED BUT INOT SEV\ddot{RRELY. VUGS (MIAROLITIC CAVITIES) FORM}
S PERCENT OF OLIVINE. THESE ARE LINED AND FILLED WITH COARSE CRYSTALS.
INCLUDING PYROXENE LATHS 1 CM IN LONG AXIS AND 1 MM IN CROSS SECTION.
SOME OLIVINE FORMS PHENOCRYSTS FROM 1 TO 1.S MM. FELOSPAR IS INTERSTITIAL AND
ANHEDRAL. FELDSPAR APPEARS MILKY AND MAY BE SHATTERED.
NO GLASS SPLASHES WERE SEEN. ONLY ONE GLASS LINED PIT WAS SEEN.
```

```
SAMPLE NO. 12014.5 THIN SECTION
```

SAMPLE NO. 12014.5 THIN SECTION
MODE
MODE
PLAGIOCLASE 20 PERCENT
PLAGIOCLASE 20 PERCENT
PYROXENE 5S PERCENT
PYROXENE 5S PERCENT
OLIVINE 21 PERCENT
OLIVINE 21 PERCENT
OPAOUE
OPAOUE
CRISTOBALITE
CRISTOBALITE
3 PERCENT
3 PERCENT
1 PERCENT
1 PERCENT
the following experiment was conducted on this sample

```
```

E-SPEC ANALYSIS

```
E-SPEC ANALYSIS
X-RAY ANALYSIS
```

X-RAY ANALYSIS

```


Figure A-12. - Sample 12014.
```

SAmpLE NO. 12015.0 HANDLE SPECImEN with CARE hARMON/GIBSON
WEIGHT. 191 GRAMS 4 CM X 4 CM X 2 CM.
POSSIBLE SPECIMEN FROM MOUND.
angular. highly fractured specimen. concavely lens shaped (spalled black).
an edGE CONTAINS a SPhERICAL CAVITY that IS approximately ONE inCh in DIAMETER.
the walls of cavity are very smooth. appearance of a former object removed. no
LARGE (GREATER THAN 0.5MMJ CRYSTALS SEEN ON WALLS OF CAVITY AS IN OThER PREvIOUS
ROCKS. ULTRA FINE GRAINED GROUNDmASS wITh LARGER OLIVINE aND PYROXENE CRYSTALS
groundmass appears to be a compacted soil. there are small cavities in
gOUNGMASS.
COLOR. SOIL GRAY OR CHARCOAL BROWN. SPECIMEN IS HIGHLY FRACTURED. VERY
fragile appearance. Groundmass contains a large percentage of fine grained feld
SPAR WITH PYROXENE AND OLIVINE PHENOCRYSTS. the CAVITY IS LINED WITH CRYSTALS
oriented tangential to the cavity.
shocked basalt scoria. texture of Crystal tuff. no lithic fragments.

```

SAMPLE NO. 12015 ROBIN BRETT
size. see photograph. has since broken into 3 fragments of about equal size. sample fractured on both macro and microscale suggestive of shock.
SURFACE ROUNDING. ONE SOMEWHAT ROUNDED SIDE HAS EXTREMELY LOW DIStribution glass lined pits per unit area. rest of rock shows none. lack of rounding AND PITS SUGGESTS LOW EXPOSURE AGE.
most remarkable surface feature is portion of an extremely large vesicle. OVOID. ABOUT \(4 \times 2.5 \mathrm{CM}\). SURFACE OF VESICLES EXTREMELY SMOOTH. FINE GRAINED mass of dark irresolvadle minerals. Containing a mat of felospar laths whose ab or ac place is parallel to surface of vesicle.
REMAINDER OF ROCK IS OUITE RICH IN SMALL IRREGULAR VUGS FROM O. 2 TO 2 MM. grain size of rock increases to about 0.3 mm in vicinity of vugs.
minerals too fine grained for identification under binocular except for widespread somewhat fractured olivine phenocrysts to 0.5 mm. a mean grain SIZE OF ROCK ABOUT 0.1 MH. GRAIN MOUNT INDICATES THAT ROCK IS ABOUT 70 PERCENT thetomorphic (impact produced) glass. Crystalline material characteristically Shows lower than normal birefringence.
minerals. plagioclase
PYROXENE (VERY LIGHT BUFF COLOR)
OLIVINE
opaQues (about 10 percent).
no further details on mineralogy due to extreme shock. nor on moie. olivine least shocked of all minerals.
dust which tenaciously coats sample was examined. this contains about \(700 / 0\) thetmorphic Glass and about 10 PERCENT GLASS SPherules. CRystalline minerals SImilar to rock in mode and degree of shock.
SIMILARITY OF DUST TO ROCK. DIFFERENCE OF DUST TO BULK APOLLO 12 DUST, AND extreme shock of rock compared to any of apollo 11 or 12 SUGGEStS that rock may not be from a local source. speculation must still be admitted that rock 12015 may be from the mound.
the following experiment was conducted on this sample
e-spec analysis
X-RAY ANALYSIS


NASA-S-69-63342


NASA-S-69-63345


NASA-S-69-63350


NASA-S-69-62873

Figure A-13. - Sample 12015.

SAMPLE NO. 12016.0
SMITH
F201 DESCRIPTION SUB NAPOLEONS HAT SHAPE CONCAVE ON BOTTOM. SUBANGULAR TO SUBROUNDED ON TOP VESICULAR MEDIUM GREY WITH WHITE PATCHY AREAS (PRESUMABLY THE MILKY FELDSPAR CRUSTY SURFACE SEEN ON APOLLO 11 CRYSTALLINE ROCKS
DUST COVERED BUT a FEW SMALL 2 TO 3 MM GLASSY PITS ARE VISIBLE AND ONE SMALL AREA SUGGESTS SPLASH. TEXTURE NOT VISIBLE. FRACTURES VISIBLE ON ONE END NO APPARENT RELATION TO ROCK SHAPE. THIS END SHATTERED AND FRIABLE. SOME vesicles are coalesced and appear vuggy. one at least. has reflecting crystal FACES. MOST VESICLES ARE IN THE RANGE OF 1 TO 4 MM. THE DUST IS STRONGLY ADHERENT TO ROCK AND RETAINS IMPRINTS OF TOOLS AND GLOVE ABRASIONS. FINE PINPOINT GLITTERS SUGGEST SOME
CRyStalline minerals are present in the dust. both the general appearance and all details that can be noted recall SPECIFICALLY THE COARSER GRAINED FACIES OF APOLLO 11 type A. we SEEM TO be DEALING WITH THE SAME OR VERY SIMILAR RECKS.

SAMPLENO. 12016.0 WEIGHT 2028.0 G DIMENSIONS \(7 \times 5 \times 4\) IN. HARMON F 20.1 DESCRIPTIOH
SHAPE IS SUBANGULAR WITH ROUNDED IRREGULAR SURFACES. COLOR IS A BROWNISH GREY WHERE DUST COVERED. A LIGHTER GREY ON FRESHER SURFACES (WHERE BRUSHED). THE rock has a rather salt and pepper texture and is definitely crystalline. the the rock is vesicular. but the density of vesicles on the surface appears low the rock also appears to have a thin surface crust typlcal of the apollo 11 CRYSTALLINE ROCKS ( a SHATTER CRUST ). THE DENSITY OF SURFACE PITS APPEARS LOW. BUT ARE VERY NICE IMPACT CRATERS (PITJ ABOUT 1.5 CM IN DIAMETER CAN BE SEEN ON ONE SIDE OF THE ROCK. THE THIN END OF THE ROCK alSO has a fRACTURE RUNNING DIAGONALLY ACROSS IT. THE BOTTOM (CONCAVE) SURFACE OF THE ROCK APPEARS TO BE more shattered than other surfaces. the Crystal grains are visible to the alded EYE. BUT NO MINERALOGY CAN BE DETERMINED. SOME GRAINS ARE LARGE ENOUGH TO make reflections visible by moving ones head back and forth. a medium grain CRYSTALLINE ROCK SLIGHT GLASS SPHERULES MAY ALSO BE PRESENT ON THE SURFACE.


Figure A-14. - Sample 12016.

SAMPLE NO. 12017.0 F201 DESCRIPTION D. ANDERSON/E. GIBSON
WEIGHT 53 GRAMS DIMENSIONS \(5 \times 3 \times 2.5 \mathrm{CM}\)
a COARSLY CRYSTALLINE MICROGABBRO TYPE ROCK WITH ABOUT 80 PERCENT OF ONE SIDE COVERED WITH A DARK SHINY GI.ASS LAYER. THE ROCK IS ROUGHLY PYRAMIDAL WITH VERY SHARE CORNERS AND FLAT SIDES. IT APPEARS HOLOCRYSTALLINE WITH THE FOLLOW ING MINERALOGY.

PLAGIOCLASE FELDSPAR (CLEAR TO TURBID WHITE) APPROXIMATELY 50 PERCENT PYROXENE. HONEY BROWN APPROXIMATELY 35 PERCENT (ONE CRYSTAL ABOUT 3MM LONG)
ILMENITE APPROXIMATEL.Y 10 PERCENT
OLIVINE LESS THAN 5 PERCENT.
there are no apparent lineations. vugs. vesicles or pits on rock. the dust COVER OBSCURES BASE ROCK BUT DOES NOT STICK TO GLASS EXCEPT FOR VERY THIN LAYER IN PLACES.
the outstanding feature is ihe large glassy patch. the glass has lustre of POLISHED MOLYBDENUM. IT APPEARS THINNEST AT POINTED END AND THICKEST R.T OPPOSITE END OF SIDE WITH GL_ASSY SURFACE. THE FCLLOWING FEATURES WERE OBSERVED ON THE GLASS.
1. NO IMPACT PITS ON SURFACE OF GLASS.
2. GLASS IS SOMEWHAT FRACTURED (ONLY A FEW LARGE FRACTURES).
3. BASE ROCK IS NO MORE ROUNDED UNDER GLASS THAN ELSEWHERE.
4. GLASS HAS NOT COMPLETELY UETTED ROCK BUT THERE ARE REGIONS WHERE BASE ROCK SHOYS THROUGH DIMPLES.
5. There are darker greenish brown elongate glass patches on surface of blacker glass. these are subparallel and appear to be eifidence of a later SPLASH. SOME OF THESE ARE 2 : MM LONG BUT MOST ARE LESS THAN 1 MM.
6. THERE ARE SHALLOW DEPRESSIONS IN GLASS SURFACE WHICH ARE LIGHTER COLORED. THESE ARE OVAL AND ARE ABOUT 2 TO 3 mm diameter.
7. at one end of the patch there are two places where the glass appears TO BE ALMOST 1 MM THICK \(\forall I T H\) A SHARP STRAIGHT EDGE AS IF FRACTURED OFF. ON one of these vertical surfaces several vesicles may be seen in the glass.
8. ALONG ONE EDGE OF THE GLASS SURFACE. THE GLASS AND PART OF BASE ROCK SEEM TO BE BROKEN a甘AY EXPOSING a BLEACHED SURFACE INDICATING THAT THE ORIGI NAL SURFACE OF THE ROCK HAS BEEN COVERED UP WITH GLASS.
9. a thick (I MMJ KNOB IN GLASS IN ONE PLACE MAY be a PIECE OF SOLID MATERIAL IN GLASS WHICH IS NOW COVERED UP.


Figure A-15. - Sample 12017.

SAMPLE 12018.0 WEIGHT 786.98 G DIMENSIONS \(8 \times 6 \times 6 \mathrm{CM}\) ANDERSON F 201 DESCRIPTION MEDIUM GRAINED CRYSTALLINE ROCK. SIMILAR TO TYPE B ROCK OF APOLLO LL. OLIVINE GRAINS \(1 / 2\) MM. WHITENED FELDSPARS. BLACK MINERAL/VHITE MINERAL ABOUT 50/SO. OVERALL BLOCKY WITH ONLY SLIGHT ROUNDING OF CORNERS. SEVERAL LARGE GLASS LINED PITS. FEW SMALL ONES. PIT DENSITY LESS THAN I/CM2. PITS ABOUT \& MM DIAMETER.
NO VUGS ARE EASILY SEEN. NO IINEATION OR FRACTURES. NO GLASS SPLASHES AND ONLY a fey Glass lined pits which are deep and have ralsed rims.
WHEN ROCK WAS TURNED OVER. A FEV OF SAME PITS ON OTHER SIDE. SOME PYROXENES APPEAR TO BE UP TO \(1 / 1 / 2\) MM. TEXTURE SEEMS EQUIGRANULAR. ILMENITE NOT OBSERVED. PROBABLY MINOR. ROCK WAS BRUSHED LIGHTLY VITH S.S. BRUSH TO REMOVE DUST. NO SCRATCHES SEEN. UHITE MINERAL NOT EUHEDRAL.

SAMPLE 12018.0 F201 DESCRIPTION P. BUTLER
examination of chipped surfaces. only the tyo upper surfaces are accessible TO THE BINOCULARS.
MINERALOGY.
PYROXENE. MEDIUM TO DEEP BROWN CDEPENDING ON SIZE OF THE GRAIN . MOST GRAINS ARE ABOUT 0.2 MM IN SIZE. ANHEDRAL AND EOUIDIMENSIONAL. ON THE TYO CHIPPED SURFACES ACCESSIBLE TO EXAMINATION. HOWEVER. THERE ARE SEVERAL POLY CRYSTALLINE AGGREGATES OF PYROXENE .5 TO 2 MM ACROSS COMPOSED OF O.5 MM INDIVIDUALS. SOME OF THESE LARGER GRAINS EXHIBIT APPROXIMATELY 90 DEGREE CLEAVAGES. ONE 2 MM PYROXENE IS BY ITSELF IN THE FINER GRAINED MATRIX.

OLIVINE. PALE GREEN. FINE GRAINED (ABOUT O.! MM) GENERALLY SOMEUHAT Smaller than pyroxene grains. anhedral and equant in shape. as with the PYROXENE. THERE ARE A FEW AGGREGATES OF COARSER GRAINED OLIVINE VISIBLE.

PLAGIOCLASE. UHITE TURBID PATCHES (ABOUT 0.1 TO 0.2. MM). VERY IRREGULAR In Shape. no cleavages observed. Interstitial to the other minerals.

ILMENITE. BLACK SHINY GRAINS. GENERALLY \(1 / 2\) TO A FULL ORDER OF MAGNITUDE Smaller than the average olivine and pyroxene grains. vell dissiminated ACROSS THE CHIPPED FACES.
MODE.
PYROXENE (BROWN) 50 PERCENT
OLIVINE (PALE GREEN) 20 PERCENT
PLAGIOCLASE (TURBID WHITE) 25 FERCENT
ILMENITE (OPAOUE BLACK) 5 PERCENT
SURFACE ZONE. SECTION PROVIDED BY THE CHIPPER SURFACE FROM THE SURFACE OF THE ROCK IN甘ARD SHOWS AN OUTER ZONE (APPROXIMATELY 2 MM THICK) IN WHICH MOST OF THE MINERALS ARE WHITE AND POWDERY AS THOUGH PARTIALLY CRUSHED. THIS zONE may not be on all surfaces and could be helpful in the orientation of THIS ROCK.
VUGS. CLOSE EXAMINATION REVEALS THE PRESENCE OF SEVERAL VUGGY AREAS (ROUGHLY 2.3 MM BROADJ THAT ARE AT LEAST HALF FILLED \(W\) ITH A JUMBLE OF RANDOMLY ORIENTED COLUMNAR PLAGIOCLASE AND PYROXENE CRYSTALS. MOST CRYSTALS have a LENGTH TO BREADTH RATIO OF AT LEAST 10. DENSITY OF VUGS LESS THAN I/CM2. Changes in minerals near vugs. no marked increase in size. great change in SHAPE OF PYROXENE FROM EQUANT TO ELONGTATED COLUMNAR. PLAGIOCLASE OCCURS ONLY IN THE VUGS AS DISTINCT INDIVIDUAL CRYSTALS. alteration. none other than plagioclase and surface zone crushing noted above. terrestrial analogue. medium grained gabbro.

SAMPLE 12018 ChIPS. SMALLEST TOLARGEST (A TO DJ.
CHIPA \(0.7 \times 0.8 \times 0.5 \mathrm{CM} 1\) GRAM
CHIP B \(1.5 \times 1 \times 0.8 \quad 2\) GRAMS
CHIPC \(1.5 \times 1.5 \times 1\) 2 GRAM WEDGE SHAPED
CHIPD \(2 \times 2.5 \times 1\) CM 5 GRAMS
ONE OF THE THREE SMALLER CHIPS (A. B. OR C) FELL OFF THE ROCK DURING MANIPULA
tion. the largest (oj and the other two were all split off by the same hammer BLOY ON THE SPLITTER.

SAMPLE NO. 12018.3 VONES
SHAPE. WEDGE SHAPED. SIMXLAR TO STONE AGE IMPLEMENTS. \(0.6 \times 1.2 \times 2.0 \mathrm{CM}\). COLOR, NEUTRAL GRAY N7 TO NG
TEXTURE. VUGGY EQUIGRANULAR. EQUANT OLIVINE AND PYROXENE WITH OCCASIONAL Laths of plagioclase. average grain size . 4 mm. OLIVINES TEND TO BE 0.6 MM. FABRIC. NONE DETECTED. VUGS ARE WIDESPREAD AND IRREGULAR.
FRACTURES. NONE DETECTED.
SURFACE FEATURES. CONCAVE SIDE OF FRAGMENT APPEARS TO BE AN ORIGINAL SURFACE. TYO PIT/CM2. SOIME GLASS LININGS PRESERVED. SOME GLASS IS ALSO PRESENT.
MINERALOGY.
MODE.
PYROXENE 75 PERCENT
OLIVINE 8 PERCENT
plagicclase 15 percent
OPAQUES 2 PERCENT
PYROXENE. EQUANT GRAINS. HONEY TO DARK BROWN IN COLOR. 0.4 MM AVERAGE DIAMETER TEND TO BECOME ACICULAR AT VUGS.

OLIVINE. EQUANT GRAINS, YELLOW GREEN APPEAR TO BE TANGENTIAL TO ONE VESICLE. AVERAGE DIAMETER IS 0.6 MM.

PLAGIOCLASE. TABULAR CI.EAR CRYSTALS \(0.05 \times 0.4\) CONCENTRATED TOWARD VUGS. OPAQUES. DISPERSED AS BLADED CRYSTALS THROUGHOUT ROCK.
TRIDYMITE. CLEAR LATH L.IKE CRYSTALS IN VUGS.
THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
```

A-A CHEMICAL ANALYSIS
E-SPEC ANALYSIS
X-RAY ANALYSIS

```


NASA-S-69-61967


NASA -S-69-61973

Figure A-16. - Sample 12018.

SAMPLE NO. 12019.0 UEIGHT 462.39 G DIMENSIONS \(9 \times 7 \times 6\) CM GIBSON LAST ROCK DESCRIPTION FROM F201. specimen color. light to medium charcoal gray. SURFACE FEATURES. SMOOTh GENERALLY WITY NUMEROUS GLASS Lined pits. frequency of pits is 3 to 4 per square cm. one side of specimen has 2 fractures. one is PERPENDICULAR TO THE OTHER.
one small area of surface of specimen appears nobby. perhaps bottom. top is
Smooth with glass pits more abundant than fractured region ihich has few pits. probably fractured region was bottom of rock and smooth surface with glass lined pits the top. there is no apparent bath tub ring on this specime:: as OBSERVED FROM THE SO PORT OF F201.
THE SURFACE OF SPECIMEN IS DUSTY AND THE DUST IS FOUND IN NUMEROUS GLASS PITS and vugs prohibiting further examination of bottom and sides of vugs and pits. no way to tell if vugs are lined with crystals.
THE GLASS LINED PITS RANGE IN SIZE FROM 0.5 MM TO 2 MM. PITS ARE LINED WITH a black glass yhich ranges in thickness from 0.02 TO 0.2 m depending upon the size of the pit. the depth of the pits range from 0.2 mm to 0.5 mm. the rock is a fine grained rock. no lineagions are apparent. regions of surface which are not dust covered appear holocrystalline.
there are no apparent glass splashes on the specimen as vieved from the so port.
mineralogy. mode.
pLAGIOCLASE FELDSPAR CLEAR TO TURBID Yhite LT 0.1 TO 0.260 to 70 PERCENT OLIVINE PALE BOTTLE GREEN 0.1 TO 0.2 LESS THAN 5 PERCENT PYROXENE HONEY BROHN 0.1 TO \(0.2 \quad 20\) PERCENT ILMENITE BLACK OPAQUE 0.2 TO 0.410 PERCENT
terrestrial analogue. microgabbro.
SPECIMEN WAS NOT CHIPPED. IT VAS CANNED IN CAN 3-32 IN F201. probably EASIER tO Chip this specimen in pcti than in f201. TYPE A ROCK.


Figure A-17. - Sample 12019.

SAMPLE NO. 12020 WEIFHT 312 GM DIMENSIONS \(8 \times 6 \times 6\) CM WARNER GENERAL SHAPE IS TRIGIONAL DIPYRAMID. SPECKLED BROWNISH CHARCOAL GREY. SURFACE IS ROUGH. VUGGY. ONE PREDOMINATE PLANAR FRACTURE. GLASS LINED PITS. VERY FEW. MOSTLY FRESH BROKEN SURFACES. MANY FRACTURES LOOKS LIKE A FRAGILE ROCK.
many vugs. 4 CM across. about 2 per cm 2 of surface area. vugs contain fantastic CRYSTALS.
1. LARGER ONES
2. PRISMS (STRICTED) OF FELDSPAR AND PYROXENE . 5 MM X 2 MMP
3. ALSO OLIVINE, BUT NO ILMENITE.

TEXTURE HOLOCRYSTALLINE. GRANULAR.
PCTL CHIP FROM E CORNER ON CAMERA 1 PRESPLIT PHOTO CHIPS IS \(2 \times 3 \times 11 / 2\) CM ESTIMATED MASS = 13 GRAMS. NEW MODE ESTIMATE. MINERALOGY.

FELDSPAR. COLORLESS
PYROXENE. HONEY BROUN
\begin{tabular}{lc}
45 PERCENT & .1 MM \\
30 PERCENT & .2 MM \\
20 PERCENT & .5 MM \\
5 PERCENT & .2 MM
\end{tabular}

OLIVINE. DEEP YELLOW GREEN ILMENITE. BLACK OPAQUE
IN VUGS.
A) FELDSPAR LATHS. . 1 MM X 2 MM

BJ PYROXENE LATHS. 6 SIDED. . 1 MM X 1 MM
terrestrial analogue of specimen. olivine basalt
```

SAMPLE NO. 12020.5 THIN SECTION
MODE
PLAGIOCLASE 20 feRCENT
PYROXENE 48 PERCENT
OLIVINE 30 PE:RCENT
OPAQUE . 2 PERCENT

```

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
X-RAY ANALYSIS


Figure A-18. - Sample 12020.

SAMPLE NO. 12021.0 DIMENSIONS \(14 \times 12 \times 8\) CM CAN 40016 WONES SMALL CHIPS. CAN ITR4
DEFORMED TRIANGULAR PRISM WITH A CONC. \(\because \subset\) BASE. APPEARS TO BE A SPALLED BLOCK. NEUTRAL GRAY WITH GREENISH CAST. COARSE. PEGMATITIC PYROXENE. IN RADIATING SHEAVES. OPHITIC TEXTURE. GRAINS OF PYROXENE UP TO 3 CM LONG X 4 MM WIDE. PINKISH APPEARANCE UNDER BINOCULAR. BROWN PYROXENE GRAINS I MM X 1 MM IN INTERSTICES ON BLADED PLAGIOCLASE. DEEPER BROWN MINERAL. GREEN MINERAL AND opaQues scattered through pyroxene and plagioclase. some bladed ilmenite. MESH OF COARSE PYROXENE WITH INTERSTITIAL PYROXENE AND PLAGIOCLASE. ILMENITE AND BROWN MINERAL (SPHENEJ SCATTERED THROUGH SAMPLE. VUGS PRESENT. NO VESICLES. FABRIC / 1. NO OBSERVATION OF LINEATIONS. CANNOT TELL IF PLAGIOCLASE IS TRULY RANDOM. 2. VUGS APPEAR AT INTERSECTION OF PLAGIOCLASE GRAINS. FRACTURES/ 1. OCCUR NEAR EDGES. APPEAR TO BE CONTROLLED BY PYROXENE SHEAVES. 2. ORIENTATION CONTROLLED BY SURFACE AND PYROXENE. 3. CON CENTRATED ON ONE SIDE WITH SHATTER ZONE. SURFACE FEATURES / CONVEX SURFaCE SHOWS TEXTURES VERY WELL. NO APPARENT EROSION OF SURFACE. FRESH LARGE CRYSTALS EASILY OBSERVED EVEN THOUGH SOME DUST STILL ADHERES. CONCAVE SIDF PITTED. SMALL PITS WITH HALOES. THIS IS SO COARSEI Y CRYSTALLINE that studies of pitting on specific minerals would be possible. shatter zone ON SURFACE GEEMS FAIRLY THICK ON ONE SIDE. GOOD DEAL OF DUST ADHERING TO SAMPLE. SHATTERED MATERIAL PROMINANT ON SURFACE OF CHIP.
CHIP OFF OF MOST PRO-
TRUDING CORNER APPEARS FINED GRAINED AND MORE OLIVINE RICH THAN REST OF SAMPLE. SIDE THAT IS A SHATTER ZONE hAS MANY FRACTURES.
MODE, 12021.0
\begin{tabular}{ll} 
PLAGIOCLASE & \multicolumn{1}{c}{55 PERCENT } \\
PYROXENE & 40 PERCENT \\
OLIVINE & 2 PERCENT \\
BROWN MINERAL & 2 PERCENT \\
OPAQUES & 1 PERCENT \\
E. 12021.1 & \\
PLAGIOCLASE & 60 PERCENT \\
PYROXENE & 30 PERCENT \\
OLIVINE & 7 PERCENT \\
BROWNMINERAL & 2 PERCENT \\
OPAQUES & 1 PE?SENT
\end{tabular}

SIZE AND SHAPE. PLAGIOCLASE. 30 MM \(\times 4\) MM TO \(5 M M X 1\) MM. LATHS OCCURRING IN SHEAVES. PYROXENE. 1 MM \(X 1\) MM TO SMALLER. BLOCKY CRYSTALS IN INTERSTICES. OLIVINE, 2 MM X 2 MM. ROUNDED TEXTURE. ILMENITE THIN BLADED. 1 MM \(X\) LESS THAN 0.1 MM. ROUND EOUANT GRAINS LESS THAN 1 MM \(X\)-ESS THAN 1 MM. CONCENTRATION OF ILMENITE AT VUGS. PERHAPS SAMPLE IS TRUE FOR OLIVINE. NO ALTERATION OBSERVED. ROCK NAME = GABBRO

SAMPLE 12021.0 WEIGHT 1876.58 WONES
ONE SIDE OF ROCK has relatively dust free area showing. radiating bladed crystal UP TO \(21 / 2\) CM LONG. THESE BLADES SEEM LIGHTLY COLORED IN PLACES. Khaki TO GREY WITH A DARK BACKGROUND. THEY ARE SOMEWHAT TRANSLUCENT. THE BLADES HAVE SOME STRUCTURE OFTEN WITH LIGHT COLORED CORE AND DARKER OUTER PART. THESE BLADES HAVE ONE CLAVAGE PLANE PARALLEL TO LONG aXIS OF CRYSTAL. OLIVINE IS ABUNDANT LIGHT GREEN. BROWN (GARNET COLOREDJ GRAINS MAY BE SPhene. LIGHTER BROWN (HONEY BROWNJ MAY BE PYROXENE. A FEW ROUND BLEBS OF OPAQUE mineral possibly ilmenite. PHOTOS WERE TAKEN WITH THE ROCK IN TWO POSITIONS. POSITION 1. RECORDS ONLY. POSITION 2. RECORDS AND STEREO。

SAMPLE NO 12021 WEIGHT 7.19 GRAMS SMITH
ANGULAR FRAGMENT \(20 \times 15.8 \times 15.8\) MM WITH COAREST GRAIN SIZE YET SEEN IN LUNAR

ROCKS. BLADED STRUCTURE CAUSED BY INTERGROWTH OF LONG PRISMATIC CRYSTALS OF plagioclase and Clinopyroxene. some of these blades are at least 16 mm long and represent incomplete crystals that were broken off at both end d during CHIPPING. ONE END OF FRAGMENT REPRESENTS THE OUTER EXPOSED SURFACE OF ROCK before chipping as evidenced by chalky feldspar. adhering dust and rare glass PITS.
the Large pyroxene Crystals are characterized by honey yellow cores and dark cin NAMON BROUN RIMS. THE HONEY YELLOW CORES STRONGLY RESEMBLE YELLOWISH OLIVINE but are probably pigeonite. there is a tendency for the aggregates of BLADES TO ASSUME OPHITIC ARRANGEMENT SURROUNDING YUGGY CAVITIES.
APPROXIMATE MODE. CLINOPYROXENE (2 TYPESJ 55. PLAGIOCLASE 40. OPAOUES (ILMENITEJ 5.
PLAGIOCLASE N GREATER THAN 1. 570 (ABOUT AN 85 TO 90).
the Cinnamon brown pyroxene has larger \(2 V\) and ng about 1.736 cvariable due to ZONINGJ.

SAMPLE NO. 12021 CHIP VILCOX CRUMBS FROM CHIP. MANY APPARENTLY FRAGMENTS FROM THE LONG PALE BROWNISH GREEN CRYSTAL IN CHIP. THESE FRAGMENTS ARE GLASSY CLEAR. POLYGONAL FRACTURE PIECES. three fragments on spindle stage shoy homogeneous crystals optics. although some fine lamellae structure parallel to parting. UNCALIBRATED LIQUIDS BUT NEWLY OPENED.
NX 1.695. 1.695. 1.694. PLUS OR MINUS . 001
NY 1.696. 1.696. 1.695 PLUX OR MINUS . 001
NZ 1.717.1.716. 1.716 PLUS OR MINUS . 002
NZ MINUS NX . 002. . 021. . 022 PLUS OR MINUS . 003
ONE MOUNT GAVE A BXA FIGURE. FROM WHICH \(2 V Z=15\) DEGREES PLUS/MINUS 5 DEGREES.


Figure A-19. - Sample 12021.

R LESS THAN V STRGNG.
THESE CHARACTERISTICS WOULD FIT PIGEONITIC CLINOPYROXENE ALTHOUGH BIREFRIGENCE IS ON THE LOY SIDE.
```

SAMPLE NO. 12021 CHIP CHAO
WEIGHT 7.1 GRAMS DIMENSIONS ABOUT 2 x 1.5 X 1.5 CM TRAPEZOIDAL-SHAPED
FRAGMENT.
GENERAL APPEARANCE - LAVENDER BROWN COARSELY HOLOCRYSTALLINE ROCK WITH LONG
PRISMATIC PHENOCRYSTS GREATER THAN I CM LONG AND 2-3 MM WIDE. ROCK IS SLIGHTLY
VUGGY.
TEXTURE AND GRAIN SIZE - PORPHYRITIC. COARSE GRAINED. GROUNDMASS GRAIN
SIZE 0.3 - 0.6 MM.
SURFACE FEATURE - A CHIP. SEE DESCRIPTION OF WHOLE SPECIMEN.
MINERALS -
1. PIGEONITE PHENOCRYSTS - CISTINCTLY ZONED. SOME HAS A ELONGATED CORE
OF PLAGIOCLASE. THE INNER ZONE CONSISTS OF GREENISH YELLOW PIGEONITE WITh
BASAL PARTING. RIMMED BY NARROW WINE BROWN SUBCALCIC AUGITIC PYROXENE. SEE
GRAIN MOUNT DESCRIPTION.
2. CLEAR PLATY LUSTROUS CALCIC PLAGIOCLASE. SEE GRAIN MOUNT FOR ESTIMATE
OF COMPOSITION.
3. blaCK metallic plates - Ilmenite.
4. YELLOW UNRIMMED GRAINS PROBABLY OLIVINE.
SHOCK - NO EVIDENCE.
SPINDLE NOUNT -
1. GREENISH YELLOW PIGEONITE. 2V ABOUT S DEGREES BIAX. POSITIVE
NA = 1.691 PLUS/MINUS 0.001 GRADATIONAL FILTER
NG = 1.712 PLUS/MINUS 0.001
BIREFRINGENT = 0.021
2. CalCIC plagioclase biax. (-). LARGE 2v.
NB = 1.582 PLUS/MINUS 0.001 EST. AN ABOUT 90-95 PERCENT.
REMARKS - THIS IS A VERY COARSE GRAINED VARIETY OF 12065. DISTINCTLY
PCRPHYRITIC WITH VARIOLITIC-LIKE GROUNDMASS. THE INTERMEDIATE GRAIN SIZE WOULD
BE 12039.

```
SAMPLE NO. 12021 THIN SECTION CHAO
THIN SECTION. CONSISTING OF ONE LARGE ZONED PRISMATIC CLINOPYROXENE AND
SURROUNDING GROUNDMASS.
    texture and grain size - the large crystal is greater than 2 Cm long
(BROKEN). AND ABOUT 1.5 MM WIDE. GROUNDMSSS PLAGIOCLASE ARE 0.3 TO 0.6 MM IN
LENGTH.
    MINERALS -
        1. ZONED PIGEONITE
        2. CALCIC PLAGICCLASE
        3. ILMENITE
NO OLIVINE IN THIS SECTION OR CRISTOBALITE. THIS THIN SECTION IS NOT SUITED
FOR ESTIMATING MODAL COMPOSITION.
    REMARKS - COARSE-GRAINED PORPHYRITIC GABBRO. THIS VARIETY IS PROBABLY A
COARSE PHASE OF THE FINE-GRAINED FLOW UNIT OF 12065. EXCELLENT MATERIAL FOR
THE STUDY OF NEARLY PURE PIGEONITE. FOR MINERAL SEPARATION OF SUCH.
```

SAMPLE NO. 12021.2
MODE
PLAGIOCLASE
PYROXENE
OPAQUES
CRISTOBALITE
THIN SECTION
40 PERCENT
55 PERCENT
S PERCENT
T

```

SAMPLE NO. 12022 WEIGHT 1864.3 GR D. H. ANDERSON/VSA
F201 DESCRIPTION
MEDIUM GRAINED CRYSTALLINE ROCK (GRAIN SIZE APPROXIMATELY 0.1 MM) WITH NUMEROUS VISIBLE SURFACE PITS. PITS RANGE IN SIZE FROM 2 MM TO O.1 MM WITH A PIT DENSITY OF TVO PITS PER SQUARE MILLIMETER. THE PITS ARE ALL GLASS LINED. THE OUTER MOST MILLIMETER Or THE ROCK APPEARS TO BE UNIFORMLY MORE WHITE THAN THE INTERIOR OF THE. ROCK. THE INTERIOR IS APPARENTLY OF A DARK GRANULAR TEXTURE. the small portion visible appears sugary. one corner near the apex of the rock appears to have been broken off. but a very few glassy pits on this supface indiEate it may have happened some time ago. the overall surface of the rock IS FAIRIY SMOOTH WITH FEW PLACES CLEAN ENOUGH TO SHOW The true SURFace. the ROCK IS APPARENTLY RATHER hard because the tool in the vacuum chamber have left metal scrappings on the sharp corners of the rock. there is no indication of LAYERING OR PREFERRED FRACTURE. PLANS FPOM THE POSITION OBSERVED.
THE COLOR IS DARK GREY OVERALL WITH LIGHT PATCHES SHOWING THROUGH THE DUST. no mode can be determined yet. but the dark minerals appear to be more abundant than the light. a few greenish grains colivine appear on the surface. this VIEW IS with the rock in the same position as in the photos. COLOR. SPECKLED LIGHT GRAY WITH A BROWNISH GREENISH CAST. TEXTURE, VERY VUGGY. COALESCED VUGS AS MUCH AS 1 CM IN DIAMETER. THUS MAKING THIS SPECIMEN EXCELLENT FOR CFYSTALLINE STUDY. HOLOCRYSTALLINE GRANULAR. abundance of fractures is mincir.

SAMPLE NO. 12022.0 VEIGHT 1864.3 GR DIMENSIONS 14 CM X 9.5 CM X 7 CM HARMON THIS ROCK HAS a blocky shape (that of an IRREGULAR pyramid. the COLOR IS a MEDIUM GREY WHERE THE SURFACE IS COVERED WITH DUST. BUT AREAS OF A LIGHTER GREY and yhite are scattered over the surface of the rock where the dust is not pRESENT AND DARKER Where fresh SURfaces are exposed belot the surface of the ROCK. THE ROCK IS CRYSTALLINE AND OF A MEDIUM FINE GRAIN SIZE. THE ROCK SHOWS NO FRACTURING TO THE UNAIDED EYE OR THROUGH THE STEREO MICROSCOPE EXCEPT THAT ONE CORNER OF THE ROCK HAS BEEN GROKEN OFF. NUMEROUS MICROMETEORITE IMPACT PITS are present on all surfaces of the rock. the fractured surface having feber than OTher surfaces. these pits are almost alyays glass lined. but some glass was observed on the surface of the rock. no mineralogy is readily identifiable by binocular microscope examination of the sample other than perhaps a felospar (WHITE LATH SHAPED MINERAL). SOME OLIVINE (LIGHT GREEN. EQUANT GRAINS). AND and a mineral with a grey metal.lic luster. In one spot on the SURFACE AN EQUANT BROWN GRAIN ( \(1 / 4\) MM) IS PRESENT ALL ALONE ON THE SURFACE OF the rock. IT appears to be glass. but may be the honey brown mineral seen in SOME APOLLO 11 ROCKS. THE SURFACE OF THE ROCK TO DEPTH OF ABOUT 1 MILLIMETER appears to be a shatter crust as the areas where white and light appear c areas OF NO DUSTJ. THESE GRAINS ARE HIGHLY BROKEN UP. THE INTERIOR OF THE ROCK GENERALLY APPEARS TO BE QUITE DARK BELOW THIS SHATTER CRUST / A DARK GREY/GREEN.
```

SAMPLE NO. 12022.1 POST SPL\T F201 DESCRIPTION WARNER
VEIGHT. ABOUT S GRAMS DIMENSIONS. 1 < 3 < 2 PCTL CHIP
OLIVINE (PHENOCRYSTS) 15 PERCENT }3\mathrm{ MM
ILMENITE (PLATES) }3\mathrm{ PERCENT 1 X . }2\mathrm{ MM
PYROXENE 35 PERCENT . 2 MM
PLAGIOCLASE 45 PERCENT .1 MM
SAMPLE NO. 12022 CHIP CHAO
VEIGHT 3.9 GRAMS DIMENSIONS ABOUT 2 X 1.5 X C.4 - . 8) CM
GENERAL APPEARANCE - A CHIP OF MEDIUM GRAY FINE-GRAINED HOLOCRYSTALLINE
ROCK YITH A BROWNISH PURPLISH TINGE. SLIGHTLY VUGGY. TRUE VESICLES NOT PRESENT
ON CHIP.

```

TEXTURE AND GRA:N SIZE - SLIGHTLY PORPHYRITIC. PROBABLY SIMILAR TO 12065. CHECK NEEDED FROM THIN SECTION. EXCEPT OLIVINE THE GRAIN SIZE IS average ABOUT 0.3 MM.

MINERALS - MEGASCOPIC
1. PINKISH BROWN. PURPLISH BROWN CLINOPYROXENE. ABUNDANT. 50 + PIGEONITIC NOT AS WELL ZONED AS OTHER PORPHYRITIC TYPE (SEE THIS SECTION).
2. GLASSY CRYSTAL. reCTANGULAR OR LATH-SHAPED. PLAGIOCLASE。
3. GREENISH YELLOW. VITREOUS LUSTER OLIVINE. ABOUT 20 PERCENT. SLIGHTLY BIGGER IN GRAIN SIZE THAN OTHERS.
4. PLATY ILMEN?TE - EQUAL TO OR LESS THAN 10 PERCENT. NOT EASILY SEEN.
S. CUBIC HAPiT OPAOUES ALSO PRESENT.

GRAIN MOUNT -
OLIVINE - BIAX. (-3. LARGE 2V. N GREATER THAN 1.696 OK.
PLAGIOCLASE OK.
CLINOPYROXENE FINELY INTERGROWN WITH ILMENITE AND SOME PLAGIOCLASE.
TYPICAL COLOR. GRAINS TOO FINE FOR GOOD FIGURES.
OLIVINE RICH. PORPHYRITIC. (VARIOLITIC TEXTURE) BASALT. (FAIR AMOUNT OF ILmenitej looks like an olivine basalt or a picrite basalt.

SAMPLENO. 12022 COVERED THIN SECTION IN 64-7998 CHAO
PORPHYRITIC CGROUNDMASS VARIOLITIC. BLADED. FAN PATTERNEDI.
GRAIN SIZE - WINE INTENSE BROWN CLINCPYROXENE \(0.3 \times .8\) MM.
OLIVINE (CLEAR) - UP TO \(1.2 \times 2.0\) MM. MOSTLY \(0.2 \times 0.35\) MM.
PLAGIOCLASE - ONLY IN GROUNDMASS - LATHS. SOME SMALLER
AVERAGE \(15 \times 50\) MICRO UNITS.
MINERALOGY -
1. WINE BROWN CLINOPYROXENE - \(2 V\) ABOUT 35 DEGREES TO 40 DEGREES BIAX. ( + ) SUBCALCIC AUGITE (OUESTION). PHENOCRYSTS CHECKED ONLY. SIMPLE THIN. NOT OBVIOUSLY ZONED ABOUT 25 PERCENT.
2. OLIVINE - PHENOCRYSTS BIAX. (-). \(2 V\) ABOUT 85 DEGREES TO 90 DEGREES VITH ROUND DROPLETS OF GLASSY INCLUSIONS (FINELY CRYSTALLIZED) - LIOUID TRAPPED BY THE CRYSTALLING OLIVINE. ABOUT 25 PERCENT.
3. ILMENITE THIN PLATES CROSS CUTS BLADED GROUNDMASS (Thus they are PROBABLY NEEDLESJ. SKELETAL HABIT COMMON.
4. GROUNDMASS -BOOKS OR PACKS OF ALTERNATING PRISMATIC CLINOPYROXENE and plagioclase feldspar. more prismatic than platy. about 50-50. total GROUNDMASS 50 PERCENT.

SHOCK - NO EVIDENCE OF SHOCK.
REMARKS - MODAL COMPOSITION YET TO BE MEASURED. THE CRUDE ESTIMATES GIVEN SUGGEST THAT THE ROCK MAY BE CLASSIFIED AS A PICRITE BASALT WITH A PORPHYRITIC. VARIOLITIC (OUESTION) TEXTURE.
```

MODAL ANALYSIS OF ROCK }1202
ON THE POLISHED THIN SECTION 12022.6.
OLIVINE 29.3
CLINO-PYROXENE 26.8
plagioclase 22.7
OPAOUE MINERALS 28.2

```
REFLECTED AND TRANSMITTED ILLUMINATION WERE USED TO COMPLETE A MODAL ANALYSIS
USING TRANSMITTED LIGHT. A TOTAL OF 1.723 POINTS WERE COUNTED ON A GRID OF
O. 3 MILLIMETER. WITH A TOTAL MAGNIFICATION OF 2OOX. THE FOLLOWING IS a
SUMMATION OF THE MINERALS AND THEIR VOLUME PERCENTAGES.

USING REFLECTED LIGHT. A TOTAL OF 1.298 POINTS WERE COUNTED ON A GRID 0.3 MILLIMETER. A TOTAL MAGNIFICATION OF 250X vAS USED FOR OBSERVATION. THE USE OF REFLECTED LIGHT allows the DIfFERENTIATION OF THE OPAOUE MINERALS aND THEIR PERCENTAGES AS FOLLOWS.

ILMENITE 9.1
SPINEL
2.0

NATIVE IRON .5
TROILITE . 2
TRANSPARENTS 88.2

It IS QUIte noticeable that the opaque minerals observed by transmitted light ARE ABOUT THICE THE PERCENTAGE OBSERVED USING REFLECTED LIGHT. SINCE boundaries of opaoue minerals in the plane of the analysis cannot be accurately determined by the use of transimitted light. the transmitted value must be CORRECTED. THEREFORE. THE YAIUE FOR THE IDENTIFIED OPAOUE MINERALS BY reflected light must be substituted for the transmitted opaoue value. THE CORRECTED MODAL ANALYSIS FOR ROCK l2022 IS AS FOLLOWS.

TRANSPARENTS
OLIVINE
PYROXENE
plagioclase
OPAQUES
ILMENITE
SPINEL
NATIVE IRON
TROILITE

PERCENT
32.8
29.9
25.5
9.1
2.0
. 5
. 2

THE FOLLOWING Eب̣巳巳!!MENT YAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
RARE GAS ANALYSIS


NASA-S-69-61999


NASA-S-69-62001

Figure A-20. - Sample 12022.

\section*{SAMPLE 12023}

\section*{SAMPLE NO. 12023 UEIGHT 269.3 GRAMS LUNAR ENVIRONMENT SAMPLE - STORED IN VACUUM IN F201.}

SAMPLE NO. 12024
ME:IGHT 101.4 GRAMS
HARMON
GAS ANALYSIS SAMPLE CONTAINER. FILLED ON THE LUNAR SURFACE AND OPENED IN THE GAS ANALYSIS LABORATORY. NOY STORED IN AIR-CONTENTS WERE FINES AND SMALL ROCKS /MAINLY GLASS COATED BRECCIASJ.
the folloying experiment vas conducted on this sample
total carbon analysis

Four drive-tube core samples were collected from three localities and returned by the Apollo 12 crew. The location of the core-tube samples is shown in figure 3. The second and third core tubes were screwed together in a successful attempt to penetrate a light-colored layer underneath a dark layer. The first three core tubes were opened, described, and dissected to provide samples for biological and physical analyses. The fourth core tube remains in storage.

The Apollo 12 core samples differ from those collected at the Sea of Tranquility in that they have easily recognizable stratigraphy and two coherent crustlike layers; otherwise, they resemble the Apollo 11 cores in their dominantly fine-grained textures and loose consistency; in their restricted range of medium-gray colors and fresh unoxidized appearance; and in their abundance of glass, including some spherules. As in the case of sediment from the Apollo 11 cores, dissection of the Apollo 12 cores produced weakly coherent ephemeral structures ranging from fine subrounded crumblike units 1 to 2 millimeters in diameter to subangular blocky or occasional angular units with maximum dimensions of 5 millimeters. The coherence throughout most of the sediment was sufficiently adequate to permit careful dissection of small 1-centimeterhigh vertical faces before slumping occurred.

All cores opened were broken by fine fracture planes, usually transverse to the core tube. Where such fractures coincide with changes in the character of the sediment, they are interpreted as bedding planes. Other more complex fracture zones not coinciding with morphological changes may be shear fractures produced when the drive tubes were rotated as the samples were collected.

The core collected on the first EVA is 19.3 centimeters long and is uniformly medium to dark gray. The stratification is shown clearly in the abrupt change in the abundance of rock fragments and glass particles larger than 1 millimeter below a transverse fracture at a depth of 5.9 centimeters. This stratification also is reflected by changes in the mean grain size with depth (fig. A-21). Because of the coherence of the fine particles, reliable mechanical analyses below 0.062 to 0.031 millimeter could not be obtained. Coarse material larger than 2.00 millimeters could not be analyzed because of the limited sample size.

The three mechanical analyses (fig. A-21) of the first core are similar to those of the Apollo 11 cores. The slope of the cumulative curves, and thus the sorting, is very similar for all three samples; however, successively deeper samples are progressively coarser. The median grain size changes from 0.062 millimeter for the surface sample to 0.074 millimeter for the middle sample and 0.11 millimeter for the deepest sample.

Stratification and morphological changes are most evident in the double-tube core sample collected at Halo Crater. The entire lower tube ( 32 centimeters) and 9.3 centimeters of the upper tube were filled with sediment. At least 10 layers or horizons have been recognized. The most distinctive of these units is a coarse layer of angular rock fragments, minerals, and glass that is comprised mostly of olivine grains and olivine-rich gabbros. The fourth mechanical analysis (fig. A-21) is of this coarse layer. The slope of the cumulative grain-size curve, and thus the sorting, is similar
to the fines material but displaces markedly towards the coarse end of the graph. Extrapolating to the 50 percentile, the median grain size is approximately 4. 9 millimeters.


Figure A-21. - Mechanical analyses of first core tube and of coarse layer of double core tube.

The sharp contact with the fines material above and below the coarse layer and the lack of fines and the log-normal distribution of the coarse layer suggest that the layer is of primary-impact origin. The gradual increase in grain size with depth shown by the three analyses from the first core also suggests that the grain size of the debris has decreased because of reworking, probably by successive impacts.

Other units found in the deep core include a fine-textured zone of lighter mediumgray material, a żone of mixed incoherent light- and medium-gray sediments, and, at the base of the core, a layer of much lighter gray material. This lowermost layer is similar in appearance to sample 12033.

Both the coarse layer and a medium-gray 2-centimeter-thick layer (collected just below the surface at the Halo Crater site) have a friable consistency unlike any Apollo 11 core materials. Coarse particles larger than 1 millimeter in both layers may be strongly bonded aggregates that are indigenous to the layers rather than admixed fragments.

The first division of the Apollo 12 core tubes is shown in table A-I. Core-tube samples 12028 and 12026 are shown in figure A-22; core-tube samples 12025 and 12028 are shown in figure A-23. An X-ray radiograph of core-tube sample 12027 is shown in figure A-24.

TABLE A -I. - FIRST DIVISION OF CORE-TUBE SAMPLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sample number & \[
\begin{gathered}
\text { Weight, } \\
\mathrm{g}
\end{gathered}
\] & Depth below surface, cm & Sample number & \[
\begin{aligned}
& \text { Weight, } \\
& \mathrm{g}
\end{aligned}
\] & Depth below surface, cm \\
\hline 12025-14 & 1.19 & 0 to 0.4 & 12028-29 & 2.25 & 25.4 to 26.1 \\
\hline 12025-13 & 1.83 & . 4 to 1. 2 & 12028-30 & 2. 50 & 26.1 to 26.9 \\
\hline 12025-12 & 1.33 & 1.2 to 1.7 & 12028-31 & 2.56 & 26.9 to 27.8 \\
\hline 12025-11 & 2.28 & 1.7 to 2.5 & 12028-32 & 3.22 & 27.8 to 28.8 \\
\hline 12025-10 & 2.16 & 2.5 to 3.3 & 12028-33 & 3.00 & 28.8 to 30.0 \\
\hline 12025-9 & 2.72 & 3.3 to 4.0 & 12028-34 & 1. 87 & 30.0 to 30.6 \\
\hline 12025-8 & 2.62 & 4 to 5 & 12028-35 & 1. 16 & 30.6 to 31.2 \\
\hline 12025-7 & 2.66 & 5 to 6 & 12028-36 & 2.95 & 31.2 to 32.2 \\
\hline 12025-6 & 3.02 & 6 to 7 & 12028-37 & 2. 86 & 32.2 to 33.2 \\
\hline 12025-5 & 2.49 & 7 to 8 & 12028-38 & 2.45 & 33.2 to 34.2 \\
\hline 12025-4 & 2.54 & 8 to 9 & 12028-39 & 2. 82 & 34.2 to 35.2 \\
\hline 12025-3 & . 70 & 9.0 to 9.4 & 12028-40 & 2.21 & 35.2 to 36.2 \\
\hline 12028-11 & 1.37 & 9.4 to 11.0 & 12028-41 & 1.51 & 36.2 to 36.7 \\
\hline 12028-12 & 1. 53 & 11 to 12.0 & 12028-42 & 1.0 & 36.7 to 37.2 \\
\hline 12028-13 & 2.29 & 12.0 to 12.8 & 12028-43 & 2.44 & 37.2 to 38.2 \\
\hline 12028-14 & 1.20 & 12.8 to 13.2 & 12028-44 & 2. 84 & 38.2 to 39.2 \\
\hline 12028-16 & 3.27 & 13.2 to 14.4 & 12028-45 & 1.0 & 39.2 to 39.8 \\
\hline 12028-17 & 3.09 & 14.4 to 15.4 & 12028-46 & 1. 82 & 39.8 to 40.0 \\
\hline 12028-18 & 2.42 & 15.4 to 16.4 & 12028-6 & . 009 & 16.2 \\
\hline 12028-19 & 2.74 & 16.4 to 17.4 & 12028-7 & . 019 & 18.2 \\
\hline 12028-20 & 2.49 & 17.4 to 18.4 & 12028-8 & . 049 & 14.4 \\
\hline 12028-21 & 2.41 & 18.4 to 18.9 & 12028-10 & . 029 & 13.4 \\
\hline 12028-22 & 1. 68 & 18.9 to 19.7 & 12028-2 & . 170 & 11.0 \\
\hline 12028-23 & 3.04 & 19.7 to 20.8 & 12028-3 & . 149 & 16. 8 \\
\hline 12028-24 & 2.86 & 20.8 to 21.8 & 12028-4 & . 119 & 22.0 \\
\hline 12028-25 & 2.19 & 21.8 to 22.5 & 12028-5 & . 170 & 33. 6 \\
\hline 12028-26 & 2.87 & 22.5 to 23.5 & 12028-15 & . 13 & 13.3 \\
\hline 12028-27 & 2.63 & 23.5 to 24.5 & 12025-1 & . 12 & 8.0 \\
\hline 12028-28 & 2.38 & 24.5 to 25.4 & 12025-2 & . 11 & 1.9 \\
\hline
\end{tabular}


Figure A-22.-- Core-tube samples 12028 and 12026.


Figure A-23.- Core-tube samples 12025 and 12028.


Figure A-24. - X-ray radiograph of sample 12027 illustrating some of the internal structure.


NASA-S-69-23385

NASA -S-69-23384

Figure A-25. - Sample 12030.

SAMPLENO. 12031 VEIGHT 185 G DIMENSIONS \(5.5 \times 5 \times 5\) CM HEIKEN BLOCKY. EQUANT SUBANGULAR ROCK. BROWNISH GRAY. COARSE GRAINED HOLOCRYSTALLINE TEXTURE. DISTINCT ORIENTATION OF FELDSPAR LATHS. POSSIBLY FLOW STRUCTURE SMALL IRREGULAR FRACTURE WHERE PIECES ARE ABOUT TO SPALL OFF ON BOTTOM SIDE. THERE IS a SMall SYSTEM OF axIALITIC STRUCTURE CONSISTING OF abundant feld PYROXENE QUITE DIFFERENT FROM ORIENTATION ON TOP. NO VESICLES OR VUGS. A FEW TINY SURFACE PITS. LINED WITH BLACK GLASS LESS THAN 1/2 MM IN DIAMETER. ANY SURFACE features that may have been present have probably crumbled off in TRANSIT. ONE VUG APPROXIMATELY 1 MM VIDE SLIGHTLY OFF CENTERED ACROSS THE ROCK LINED WITH GOOD FELDSPAR AND PYROXENE CRYSTALS GROWING PARALLEL TO THE WALL. THE ORIENTED FELDSPAR CRYSTALS INTERSECT THIS VUG AT APPROXIMATELY 30 DEGREES. FELDSPAR. MILKY WHITE LATHS UP TO 12 MM LONG. THEY ARE PRETTY BADLY SHATTERED. many inclusions of the dark mineral into the felospar approximately 65 percent OF ROCK.
PYFOXENE. REDDISH BROWN. AN TO SUBHEDRAL CRYSTALS. ELONGATE AND ENCLOSE OLIVINE CORES UP TO B MM LONG AND 12 MM WIDE. APPROXIMATELY 15 PERCENT OF ROCK. APPROXIMATELY 1 MM DIAMETER OCCUR IN CLUSTERS ALWAYS ASSOCIATED WITH PYROXENE. OLIVINE 10 PERCENT. ANHEDRAL CRYSTALS MOSTLY EOUANT. SOME ELGNGATE. EQUANT ILMENITE 10 PERCENT. BLADE LIKE CRYSTALS UP TO 3 MM LONG. SOME CONCAVE OF ILMENITE CLOSE TO VUGS. also some held as inclusions in feldspar. COARSE GRAINED DIABASE.

SAMPLE NO. 12031 WEIGHT 185.0 DIMENSIONS \(5 \times 5 \times 4.5\) BAG 30 CHAO HOLOCRYSTALLINE. SPECIILED GRAY. COARSE GRAINED CRYSTALLINE ROCK. ROUGHLY CUBIC SHAPED. GLASS LINED PIT SURROUNDED BY MILKY WHITE HALO. PROBABLY CRUSHED FELDSPAR OCCUR ON SURFACE VITH PATCHES OF DUST. (PITS ARE APPROXIMATELY. 7 MM). TEXTURE. SLIGHTIY VUGGY. VUGS APPROXIMATELY. 7 MM DIAMETER. HIDELY SCATTERED. TEXTURE IS CHARACTERIZED BY LONG RADIATING CRYSTALS PRINCIPALLY PYROXENE WITH MIXTURES OF FELDSPAR AND PYROXENE FILLING THE INTERSTICES BETWEEN LONG BLADED CRYSTALS OPHYTIC.
APPROXIMATELY 35 PERCENT MINERAL PIGEONITIC CLINOPYROXENE. OCCURS AS ZONED LONG PRISMATIC CRYSTALS AS MUCH AS 2.5 CM LONG AND 1.5 MM VIDE. PRISMS. THESE PRISMS CONSIST OF A CORE OF UHITE PLAGI OCLASE FELDSPAR WITH RIM OF GREEN YELLOW PIGEONITE WHICH IS BORDERED BY DARK CINNAMON AUGITIC CLINOPYROXENE. THESE PRISMS SHOH DISTINCT PARTING AT STEEP ANGLES TO THE ELONGATION.
THE INTERSTICIAL MINS CONSIST OF CLEAR TO WHITE PLAGIOCLASE (3O PERCENT) WITH VITREOUS LUSTER. INTERGROHN WITH CINNAMON BROWN ALGITE CLINOPYROXENE APPROXIMATELY 20 PERCENT.
ILMENITE OCCURS AS BLACK GRAINS APPROXIMATELY. 7 MM ACROSS WITH VERY METALLIC LUSTER. ASSOCIATED WITH INTERSTICIAL FELDSPAR AND CLINOPYROXENE USUAILY IN PLATY HABITS APPROXIMATELY 10 PERCENT.
MODAL COMPOSITION SHOULD BE ESTIMATED AND CHECKED BY T.S.
LIGHT BUFF COLORED FINE GRAIN MINERAL WHICH COULD BE TRIDYMITE.
SOME EQUIGRANULAR YELLOW GRAINS SHOULD BE CHECKED FOR OLIVINE WITH AT.S. FRACTURE. SEVERAL IRREGULAR COARSE FRACTURES CUT THRU THE ROCK GIVING IT A FRIABLE APPEARANCE.
ShOCK. EXCEPT LOCALLY ON THE SURFACE WHERE MILKY WHITE PATCHES OF CRUSHED feldspar occur there is weak megascopic evidence of shock present by the fine FRACTURING OF MOST OF THE MINS PRESENT.
CAN BE REFERRED TO AS A GABBRO WITH CHARACTERISTIC BLADED AND FEATHERY COARSE PIGEONITIC CLINOPYROXENE.
COLOR. SPECKLED LIGHT GRAY WITH A BROWNISH GREENISH CAST.
TEXTURE - VERY VUGGY HOLOCRYSTALLINE GRANULAR ROCK
COALESCED VUGS AS MUCH AS I CM IN DIAMETER.


NASA-S-69-63651.

NASA-S-69-63646



NASA-S-69-63652


NASA-S-69-63637

Figure A-26. - Sample 12031.

SAMPLE NO. 12032 VEIGHT 310.59 G (+ BAG). FINES. \& D. HEIKEN MEDIUM DARK GRAY. POORLY SORTED. MOSTLY SANDY SILT SIZE MATERIAL. SOME ANGULAR FRAGMENTS UP TO 4 MM. LARGER FRAGMENTS INCLUDE FLAT PIECES OF GLASS (VESICULAR). POSSIBLY SPATTER. FINE GRAINED MATERIAL INCLUDES GRAINS OF OLIVINE. FELDSPAR. PYROXENE AND GLASS AND BRECCIA.

\section*{THE FOLLCWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE}

TOTAL CARBON ANALYSIS

SAMPLE NO. 12033 FINES SD HEIKEN
FINE GRAINED MATERIAL. MEDIUM GRAY (NS). MUCH LIGHTER THAN FINE GRAINED SOIL
FROM ELSEWHERE AT THE SURVEYOR SITE. GRAIN SIZE. PEBBLE BEARING. SAND SILT. there are a number of 1 mm to 10 mm LONG angular and subangular rock fragments IN THE SOIL SAMPLE (IDENTIFICATION NOT MADE DUE TO DUST COVERINGJ. MOST FRAGMENTS APPEAR TO BE LESS THAN O. 05 IMM IN DIAMETER. MODERATELY SORTED. APPEAR TO BE MOSTLY SMALL FELDSPAR AND PYROXENE CRYSTALS WITH MINOR AMOUNT OF GLASS. are some cless than 1 percent 1 mm diameter olivine crystals. SEVERAL OF THE LARGER FRAGMENTS PULLED OUT. ARE TWISTED. PUMICEOUS GLASS FRAGMENTS. DARK BROWN GLASS.

SAMPLE NO. 12033 HEIKEN
A PINCH STUDIED IN A DROP OF 1.515 R.I. IMMERSION OIL. IS A BIMODAL DISTRIBUTION AT THIS SCALE. ANIGULAR FRAGMENTS OF DIAMETER OF 0.17 MM. ( 20 PERCENT) AND FRAGMENTS LESS THAN 0.02 MM.
THE COARSER MODE CONSISTG OF SHARP. ANGULAR SHARD-LIKE PIECES OF DARK RED-BROWN GLASS. THE GLASS CONTAINS MICROPHENOCRYSTS OF OLIVINE (OUESTION) AND MICROLETES. EMPHASIZING SOME FLOW STRUCTURE.
THE FINER MODE CONSISTS OF ANGULAR. EUHEDRAL TO SUBHEDRAL CRYSTALS. 0. 025 TO 0.002 MM IN DIAMEIER. IT CONSISTS OF APPROXIMATELY.-
1. 75 PERCENT FELDSFAR
2. 15 PERCENT OLIVINE AND PYROXENE
3. 10 PERCENT DARK BIZOWN GLASS AND OPAOUES.

GLASS FRAGMENTS ARE SUBRCIUNDED TO ANGULAR (ROUNDED ONES REWORKED OR ERODED IN AN ERUPTION CLOUDJ. ONE GLASS SPHERE WAS SEEN.
IS SIMILAR IN MANY RESPECTS TO HYALOCLASTIC GLASSES.
COARSEST FRACTION STUDIED EARLIER IN BIO PREP. CONSISTS OF 1 MM DIAMETER
OLIVINE CRYSTALS AND MANY TWISTED. PUMICEOUS DARK BROWN GLASS FRAGMENTS. CONTAIN ELONGATE. PIPE-LIKE VESICLES AND SHOW ABUNDANT FLOW FEATURES. DUE TO LACK OF ROCK FRAGMENTS. SHOCKED CRYSTALS AND TO THE PRESENCE OF PUMICEOUS AND SHARD-LIKE FRAGMENTS OF BASALTIC GLASS. THE SAMPLE APPEARS TO BE A CRYSTALVITRIC ASH OF VOLCANIC Ofigin. this sample may be the same as the white layer in the bottom of the core: taken at halo crater.
the following experiment was conducted on this sample
E-SPEC ANALYSIS
TOTAL CARBON ANALYSIS

SAMPLE 12034.0 DOCUMENTED SAMPLE 6 D DECEMBER 4. 1969 W. R. GREENWOOD MEDIUM LIGHT GRAY MATRIX (A) OF FINE GRAINED MATERIAL INCLUDES CRYSTAL FRAG MENTS AND FRAGMENTS OF A NUMBER OF ROCK TYPES.
there is a faint preferred shape orientation defined by the elongation of two LARGE ROCK INCLUSIONS (UNIT B AND C).
MATRIX (A) INCLUDES CRYSTAL FRAGMENTS OF BLACK PYROXENE UP TO 7 MM WHICH ARE highly angular. the larger pyroxene crystal fragments appear to have a much PREFERRED SHAPE ORIENTATION PARALLEL TO THE ELONGATION OF UNITS (B) AND (C). PYROXENE CRYSTALS COMPRISE 70 PERCENT OF THE CRYSTAL FRAGMENTS LARGER THAN 。 2 MM IN MATRIX (A). MILKY WHITE FELDSPAR MAKES UP THE REMAINING 30 PERCENT. IN THE SMALLER SIZES LESS THAN . 2 mM FELDSPAR APPEARS TO MAKE UP a LARGER percentage of the crystal fragments. about 10 percent of the rock is made up OF ROCK FRAGMENTS. ABOUT 20 PERCENT OF THE ROCK IS CRYSTAL FRAGMENTS GREATER THAN . 2 MM.
UNIT (B) IS LIGHT GRAY WITH SHARP BUT SOMEWHAT SOFTENED BOUNDARIES WITH MATRIX (A). UNIT (B) HAS SOMEWHAT IRREGULAR PANCAKE SHApE. UNIT (B) APPEARS TO BE COMPOSED OF WHITE FELDSPAR CRYSTAL FRAGMENTS LESS THAN . 2 MM AND BLACK PYROXENE CRYSTAL FRAGMENTS UP TO 2.0 MM IN SIZE. THE PYROXENE CRYSTALS ARE ANGULAR. UNIT (B) APPEARS TO BE A WELDED FRAGMENTAL ROCK. THERE IS SUGGESTION OF elongation of plagioclase shards near and parallel to the elongate side cf UNIT (B). UNIT (B) IS LOCATED AT ONE EDGE OF THE FRESH FACE OF THE ROCK AND IS 30 MM X 8 MM IN SECTIONS. WITH A FLATTENED PYRAMID SHAPE WITH ROUNDED CORNERS AND SOMEWHAT !RREGILLAR BOUNDARIES . ¿HISPS OF THE SAME UNIT ARE FOUND NEAR AND PARALLEL TO UNIT (B) IN MATRIX (A). UN\}T (C) IS SLIGHTLY LiGHTER GRÁY THAN MATRIX (A) BUT CONSIDERABLY DARKER THAN UNIT (B). UNIT (C) IS COMPOSED OF CRYSTAL FRAGMENTS (ABOUT 40 PERCENT) AND A MEDIUM GRAY MATRIX. THERE IS A IRREGULAR SHARP BOUNDARY BETWEEN UNIT (CJ AND THE MATRIX (A). UNIT (C) IS LOCATED NEAR THE MIDDLE OF THE FRESH FACE. ONE FRAGMENT IS ABOUT 20 MM X 7 MM IN SECTIONS. A SMALLER FRAGMENT IS 10 MM X 5 MM on the same plane as fragment (i). these tho fragments are separated by a NARROW (G MM) SIDE OF MATR!X (A).
UNIT (C) CRYSTAL FRAGMENTS ARE WHITE PLAGIOCLASE UP TO 1 MM. 90 PERCENT OF TOTAL FRAGMENTS. 10 PERCENT OF THE FRAGMENTS ARE BLACK PYROXENE UP TO 1 MM. UNIT (C) MAY BE A SHOCKED AND PARTIALLY MELTED ROCK ON AN OLDER BRECCIA. adDitional smaller fragments of unit (C) are located near the layer fragments. THERE ARE TWO INTERSECTING FRACTURE SETS. ORIENTATION OF THE INCLUDED ROCK FRAGMENTS. THE FRACTURES ARE CLOSELY SPACED AND LOCALLY PRGDUCE A STRONG CLEAVAGE . THE FRACTURE SETS INTERSECT at about 40 DEGREES. ONE OF THE FRACTURE PLANES IS PARALLEL OR NEARLY SO TO THE PREFERRED ORIENTATION OF INCLUDED ROCK FRAGMENTS IN THE ROCK.
THE ROCK IS NOT FRIABLE OR FRAGILE. NO GLASS BALLS OR FRAGMENTS WERE SEEN megascopically. the rock is not megascopically vesicular. one of the broken faces has a dark lineated surface that may be a relic of a slickensided SURFACE.
SOME OLIVINE CRYSTALS LESS THAN 5 PERCENT OF TOTAL CRYSTAL FRAGMENTS IN MATRIX (A). ONE VERY SMALL FRAGMENT APPROXIMATELY 1 MM DIAMETER IS COMPOSED OF BLACK GLASS. SHATTERED OLIVINE. AND MILKY TO VITREOUS GLASS PLAGIOCLASE. THE FRAGMENT APPEARS TO BE PARTIALLY SHOCK MELTED.
UNIT (B) HAS A STREAMED OUT END BY FLOWING AND IN MATRIX IS a LINE PARALLEL TO THE BOUNDARY PRODUCED BY FLOWING. THERE IS PARTING PARALLEL TO THIS FLOW. IN UNIT (B). ONE OF THE SHATTERED FELDSPAR HAS a CORE OF TRANLUSCENT plagioclase NO VITREOUS MATRIX WAS SEEN IN MATRIX (A) AT HIGHEST MAG APPROXIMATELY ioox. THE ROUNDED SIDE OF THE ROCK APPEARS TO HAVE A SUBVITREOUS SKIN OF ABOUT 1 TO 3 MM THICK (MEDIUM DARK GRAY) VESICULAR PARTIALLY CRYSTALLINE GLASS. THE GLASSY MATERIAL HAS A COATING OF LIGHT GRAY SOIL WHICH APPEARS BONDED ON. WHEN This Sample was first returned the coating was about 1 to 3 mm thick. now ABOUT \(1 / 2\) TO 1 MM OF DUST COATS THIS SIDE. IT IS VERY DIFFICULT TO REMOVE.


Figure A-27. - Sample 12034.
```

DUST IS MORE EASILY REMOVED FROM THE FRESH BROKEN SIDES. THE GLASS COATING FOLLOWS THE ROUNDED TOPOGRAPHY OF THE ROCK EXTENDING DO甘N INTO FRACTURES. vesicles in the glass are elongated parallel to the surface of the rock. after FORMATION OF THIS ROCK BY WELDING OR SOME OTHER PROCESS IT WAS BLASTED TO THE surface (developing the cleavages). on the surface the rock was rounded. sub SEQUENTLY IT WAS PARTIALLY COATED WITH MOLTEN ROCK MATERIAL. THE ROCK WAS SUBSEQUENTLY BROKEN AND DEPOSITED AT THAT TIME OR LATER IN THE LIGHT GRAY DUST LAYER.
SAMPLE NO. 12034 CHIP $1.5 \times 0.75 \times 0.5 \mathrm{CM}$ ROBIN BRETT
BRECCIA. LIGHT GRAY IN COLOR COMPARED TO ALL APOLLO 11 bRECCIAS. GRAIN SIZE OF FINE MATRIX ABOUT 0.I MM. ROCK CONSISTS OF 25 PERCENT FRAGMENTS UP TO I MM. SHAPE OF ROCK NO CONSEQUENCE AS IT IS A CHIP WITH NO OUTSIDE SURFACE. A FEW SMALL FRACTURES PRESENT. CLASSED IN ORDER OF ABUNDANCE ARE.

1. DARK ANGULAR GLASS FRAGMENTS SHOWING RARE CLASTS TO 0.2 MM OF GLASS OF DIFFERENT COMPOSITION. SHOCKED FELDSPAR. PYROXENE. RARE VESICLES IN GLASS.
2. SHOCKED ANGULAR TO SUBROUNDED PLAGIOCLASE GRAINS FROM MILKY WHITE TO VITREOUS.
3. BUFF TO CINNAMON BROWN ANGULAR PYROXENE GRAINS.
4. GREEN ANGULAR OLIVINE GRAINS. NO SPHERULES EVIDENT. GRAIN MOUNT OF MATRIX SHOWS FOLLOWING ANGULAR GRAINS (IN ORDER OF ABUNDANCE)
5. PLAGIOCLASE. MOSTLY LIGHTLY SHOCKED UP TO THE THETAMORPHIC. SOME POLYSYNTHETIC TWINS.
6. PYROXENE . MAINLY SHOCKED.
7. ANGULAR OPAQUE GLASS FRAGMENTS.
8. ANGULAR ILMENITE.
high plagioclase content explains light gray color. ROCK NAME. MICROBRECCIA.
THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
A-A CHEMICAL ANALYSIS
E-SPEC ANALYSIS
RARE GAS ANALYSIS
TOTAL CARBON ANALYSIS
```

SAMPLE NO. 12035 DIMENSIONS \(5 \times 4 \times 1.5 \mathrm{CM}\) HONES
SHAPE. TRIAXIAL ELLIPSOID. NOW FRAGMENTED INTO 5 LARGE PIECES AND FINES. SIZE OF FRAGMENTS. \(1.5 \times 2 \times 4.2 \times 1.5 \times 3.1 .5 \times 1.5 \times 1.5 .2 \times 2 \times 1\). \(1 \times 1 \times 0.5\) CM.
COLOR. LIGHT OLIVE GRAY.
TEXTURE. COARSE. CUMULAR. HYPIDIOMORPHIC.
FABRIC. VUGGY. VUGS ARE IRREGULAR 4 MM OR MORE. NO ORIENTATION OR CLUSTERS. FRACTURES ARE THRU GOING AND ABUNDANT. THE ROCK IS FRIABLE. NO OBSERVED ORIENTATION OF FRACTURES. SURFACE TEXTURES ALL APPEAR TO BE FRESH FRACTURED SURFACES.

OLIVINE 40 PERCENT EUHEDRAL. EQUANT. APPROXIMATELY 1 MM MEAN DIAMETER. CLEAR. GREEN. CONTAIN OPAQUE INCLUSIONS.

PLAGIOCLASE 45 PERCENT GLASSY. THINNED. PRISMATIC. INTERSTITIAL WITH OLIVINE INTERGROWN VITH PYROXENE APPROXIMATELY 1 MM MEAN SIZE 2 TO I RATIO AVERAGE \(1 \times 1 / 2\) MM.

PYROXENE 15 PERCENT PRISMATIC MAXIMUM 2.0 MM MOST . 3 MM LONG. EQUANT EXCEPT IN VUGS ASICULAR IN RATIO OF 5 TO 1. HONEY BROWN COLOR.

OPAQUES LESS THAN 1 PERCENT. BLADED. LUSTROUS. TEND TO CONC. AROUND vUGS. BUT ARE PRESENT AS INCLUSIONS IN OLIVINE.
olivine is present in vugs. sequence of crystallization is opaques. olivine. pLAGIOCLASE. PYROXENE ALL FERSIST IN TERMINAL CRYSTALLIZATION. NO ALTERATION OBSERVED.
ROCK NAME TROCTOLITE


F'igure A-28. - Sample 12035.

SAMPLE NO. 12036 WEIGHT 75 G DIMENSIONS \(6 \times 3.5 \times 2.3\) CM CHAO FROM BAG 8 D.
MINERALOGY. THIS ROCK CONSISTS OF ABUNDANT GRAYISH YELLOW EUHEDRAL TO GRANULAR CRYSTALS OF OLIVINE IN A MATRIX OF INTERGROWN FELDSPAR AND BROWN PYROXENE AND some octahedral spinel.
1. OLIVINE. 40 PERCENT. FORMS EUHEDRAL CRYSTALS UP TO 2 TO 2 MM ACROSS WITH WELL DEVELOPED CRYSTALLINE FACES PARTICULARLY THOSE IN THE VUGS. THESE CRYSTALS USUALLY CONTAIN DARK BLACK REFLECTING CRYSTALS SOME OF WHICH SHOW OCTAHEDRAL HABIT. SPINEL. FROM CHROMITE OR MAGNETITE.
2. PLAGIOCLASE FELDSPAR. 40 PERCENT. OCCURS AS GRANULAR IRREGULAR PATCHES. CLOSELY INTERGROWN WITH OLIVINE AND BROWN PYROXENE UP TO 2.5 MM AVERAGING APPROXIMATELY 1.O MM.
3. CINNAMON BROWN CLINOPYROXENE. 15 PERCENT. PROBALBY PIGEONITIC. FORMS STUBBY PRISMATIC CRYSTALS NEAR VUGS OR LARGE CRYSTALS THAT ARE POIKILITIC. SUGGESTING LATE CRYSTALIZATION. ALSO OCCURS AS FINE GRAINS INTERGROWN WITH FELDSPARS.
4. OPAQUE MINERALS APPROXIMATELY 5 PERCENT. SOME DARK MINERALS WITH metallic luster, usually fine grained cless than i mm may be ilmenite cvery SMALL AMOUNTJ HIDE SPREAD ARE SMALL GRAINS OF EQUIGRANULAR OPAOUE. Which are probably same as octahedpal crystals as of spinel grained group. SHOCK. NO MEGASCOPIC CLEAR EVIDENCE OF SHOCK. ROCK NAME. A GABBRO OR A PIGEONITIC TROCTOLITE.

SAMPLENO. 12036 WEIGHT 75 G DIMENSIONS \(6 \times 3.5 \times 3.5\) HEIKEN ELONGATE. VERY IRREGULAR SHAPE. SUBANGULAR. MEDIUM GRAINED HOLOCRYSTALLINE ROCK. EXTREMELY VUGGY. VUGS MAKE UP APPROXIMATELY IS PERCENT OF VOLUME OF ROCK. VERY CRUDE ORIENTATION OF VUGS PARALLEL TO LONG AXIS OF ROCK. NEAR EDGES. VUGS ARE FROM 0.5 TO 4.0 MM IN DIAMETER . SOME FRACTURES EXTENDING OUT FROM VUGS. ON OTHER SIDE IS ONE GOOD FLAT SURFACE (FRACTUREDJ AND HAS DUST AOHERING TO IT. NO VISIBLE PITS OR SPLASHES.
CLEAR GREENISH YELLOW OLIVINE SUB TO EUHEDRAL CRYSTALS 1 TO 3 MM DIAMETER. APPROXIMATELY 40 PERCENT.
FELDSPAR SUB TO EUHEDRAL CRYSTALS FROM 0.5 TO 2.0 MM LONG. MOST ARE COLORLESS EXCELLENT TWINNING APPROXIMATELY 25 PERCENT.
PYROXENE. REDDISH BROWN TO DARK REDDISH BROWN APPROXIMATELY 25 PERCENT. FROM 2 TO 5 MM SUBHEDRAL CRYSTALS PRISMATIC CRYSTALS. BLADED ILMENITE CRYSTALS UP TO 3 MM LONG 10 PERCENT. IN VUGS CRYSTALS ARE EXCELLENT WITH GOOD CRYSTAL FACES.


NASA-S-69-61588

NASA-S-69-62325



NASA-S-69-61594

Figure A-29. - Sample 12036.

SAMPLE NO. 12037 WEIGHT 145.0 GRAMS 8 DFINES HEIKEN DARK GRAY. VERY POORLY SORTED. A GRANULE SANEY SILT SIZED MATERIAL. MOST GRANULES CONSI ST OF .
1. SUBANGULAR FRAGMENTS OF COMPRESSED MATERIAL. THESE BLASTA ARE UP YO 8 MM LONG。
2. SUBANGULAR FRAGMENTS OF MEDIUM GRAINED HOLOCRYSTALLINE GABBROS UP TO \& MM DIAMETER. SOME 1 MM GRAINS OF OLIVINE.
3. FINE GRAINED MATERIAL CONSISTS OF FELDSPAR. PYROXENE AND POSSIBLY GLASS.
the material clumps oulte easily and clings to s.s. SURFaces.
```

SAMPLE NO. 12038 DIMENSIONS 12.5 X 7.5 x 5.5 WEIGHT 746 GM LINDSAY
THE UPPER SURFACE WAS HORIZONTAL WHICH MEANS THE LONG AXIS WAS DIPPING APPROXI-
MATELY S DEGREES. SUBANGULAR. ROUGHLY TRIANGULAR. BURNED WITH APEX DOWNWARD
ROUGHLY ONLY 2 CM OF ROCK WAS ABOVE SURFACE. ROCK IS BELOW SURFACE NS
MEDIUM GRAY. ABOVE N4 MEDIUM DARK GREY. VUGS. MORE NUMEROUS ON LUNA BOTTOM.
FINE TO MEDIUM GRAINED ROCK. EQUIGRANULAR. NOTHING APPARENT CONCERNING LINEA-
TIONS. NO VESICLES BUT CRYSTAL LINED VUGS. MOST ARE LINED WITH ACICULAR
CRYSTALS OF PYROXENE. SLAB IIIKE FRACTURES. ONE FRACTURE PARALLEL TO TABULAR
SURFACE. THE TOP IS MORE ROUNDED AND WEATHERED WHILE THAT BELOW IS MORE ANGULAR
MEDIUM CRYSTALLINE ROCK - CRYSTALS ARE 0.4 TO 0.6 MM LONG.
APPROXIMATE MODES.
SO PERCENT FELDSPAR
40 PERCENT PYROXENE
10 PERCENT OLIVINE
ILMENITE IN VUGS ASICULAR. SOME TABULAR FELDSPAR IN VUGS.
FELDSPAR ELONGATED ACICULAR OR TABULAR. PYROXENE AND OLIVENE ARE EQUANT
EXCEPT IN VUGS GHERE PYROXENE IS ACICULAR

```
SAMPLE NO. 12033.2 THIN SECTION
MODE
\begin{tabular}{lc} 
PLAGIOCLASE & 40010 \\
PYROXENE & 50010 \\
OPAQUE & 5010 \\
CRISTOBALITE & 5010
\end{tabular}

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
TOTAL CAPBON ANALYSIS


Figure A-30. - Sample 12038.

SAMPLE NO. 12039 DIMENSIONS \(6.3 \times 4.5 \times 4\) CM LINDSAY
SUBANGULAR TO SUBROUNDED. GRAY WITH MOD. PROP. OF LT MINS. EOUIGRANULAR TEX-
TUPE. A FEW SMALL VUGS. UNFRACTURED. VERY FEW SURFACE PITS.
APPROXIMATE MODES. OLIVINE APPROXIMATELY 20 PERCENT
FELDSPAR APPROXIMATELY 60 PERCENT
PYROXENE 15 PERCENT
Ilmenite blades 5 percent.
OLIVINE EQUANT UP TO : MM. FELDSPAR TABULAR RATIO 5 TO \& UP TO 4 MM LENGTH. PYROXENE FORMS AGGREGATES UP TO 5 MM ACROSS.
FINE GRAINED GABBROIC ROCK.
SAMPLE NO 12039 DIMENSIONS \(6 \times 7 \times 4\) CM MORRISON
aNGULAR TO SUBROUNDED CRYSTALLINE ROCK. DUSTY GRAY IN COLOR. EQUIGRANULAR
texture. no vesicles but some vugs. vugs are few and scattered. gne welded fracture parallel to ene side. no glass splashes. some glass lined. SURFACE PITS. BUT THEY ARE FEW. NORMAL SHAPE LESS THAN 1 MM. FEGER THAN \(1 / 59\) CM APPROXIMATE MODES.
FELDSPAR 40 PERCENT
DARK BROWN PYROXENE AND LIGHT PYROXENE 50 PERCENT
OPAOUES 5 TO 10 PERCENT
NO OLIVINE.
terrestrial analogue. pyroxene gabbro.
SAMPLE NO. 12039 IN DOCUMENTED BAG 10-D CHAO
DIMENSIONS ABOUT \(6 \times 7 \times 4\) CM TRIANGULAR PYRAMIDAL SHAPE
GENERAL APPEARANCE - THIS IS A SPECKLED MEDIUM GRAY COARSE-GRAINED
PORPHYRITIC HOLOCRYSTALLINE ROCK. YITH A GREENISH. YELLOWISH BROWN TINGE. TEXTURE AND GRAIN SIZE - DISTINCTLY PORPHYRITIC. VARIOLITIC (OUESTION) GROUNDMASS. AND VUGGY. PHENOCRYSTS OF CLINOPYROXENE 2 MM X ABOUT 1 CM. GROUNDMASS AVERAGE ABOUT 0.5 MM. UP TO 0.8 MM.

MINERALOGY -
1. ZONED PHENOCRYSTS OF CLINOPYROXENE CONSISTING OF AN INNER GREENISH YELLOW CORE OF PIGEONITIC PYROXENE. RIMMED BY A THIN MARGINAL ZONE OF PURPLISH bROWN CALCIC AUGITE. ABOUT 10 PERCENT.
2. GROUNDMASS - ABOUT 90 PERCENT. plagioclase 40 PERCENT CLINOPYROXENE 30 PERCENT OLIVINE 20 PERCENT
granular clear to white plagioclase and purplish brown subcalcic augitic (OUESTION) CLINOPYROXENE.
3. OLIVINE - THESE ARE GREENISH YELLOW CLEAR CRYSTALS WITHOUT BASAL

PARTING. CHECK THIN SECTION. SINCE THIS IS DIFFICULT TO DETERMINE MEGASCOPICALLY these greenish yellow grains are hovever not zoned. side by side the olivine is MORE GRAYISH IN COLOR. (SEE GROUNDMASS) LESS THAN 5 PERCENT.
4. OPAQUES - LARGELY IN SMALL SPECKS 0.1 MM WIDELY SCATTERED AND AS

INCLUSIONS. ABOUT ILMENITE GREATER THAN 5 PERCENT.
SHOCK - NO MEGASCOPIC EVIDENCE OF SHOCK.
REMARKS - THIS ROCK IS SIMILAR IN TEXTURE AS 12065. AND IS MEDIUM OR INTERMEDIATE IN GRAIN SIZE BETVEEN 12065 AND 12021.



NASA-S-69-61486


NASA-S-69-61473

Figure A-31. - Sample 12039.
```

SAMPLE NO. 12040 DIMENSIONS 6.5 X 5.5 X 6.5 LINDSAY
EQUANT SHAPE. LIGHT GRAY WITH SLIGHT GREENISH TINGE DUE TO OLIVINE. EQUI-
GRANULAR TEXTURE. NO VESICLES. BUT A NUMBER OF VUGS UP TO S MM IN WIDTH AND
1 1/2 CM LONG. VEAKLY ORIENTED. VUGS ARE LINED WITH EUHEDRAL CRYSTALS MOSTLY
OLIVINE AND PYROXENE WITH A LITTLE FELDSPAR. APPROXIMATELY G FRACTURES RADIATE
FROM A POINT. POSSIBLY A SHATTER CONE EFFECT. NO APPARENT SURFACE PITS.
APPROXIMATE MODES. OLIVINE 2O PERCENT
FELDSPAR 50 PERCENT
PYROXENE 30 PERCENT.
PYROXENE RIMS ON SOME OLIVINE CRYSTALS UP TO 5 MM.
OLIVINE EQUANT 1 MM
PYROXENE EUUANT 1.5 MM
SOME TABULAR PYROXENE

```

SAMPLE NO． 12040 DIMENSIONS \(7 \times 6.2 \times 5.5 \mathrm{CM}\) SUTTON
NEARLY EOUANT．ROUGHLY PYRAMIDAL • SUBANGULAR TO SUBROUNDED WITH RELATIVELY FLAT SIDES．MEDIUM GRAY N4 1／2．UNDER DIRECT CONE LIGHT APPEARS ONE CONE OF OLIVINE．OF DUSTY YELLOWISH GREEN 5GY 5／2 MOTTLED IN WITH GRAY． ONE FLAT SIDE SHOWS COARSE CRYSTALS WITH CONE OF OLIVINE WITH VUGS COINCIDENT DEEPEST VUGS ARE APPROXIMATELY GREATER THAN 4 MM．OTHER SIDE IS MOST ROUNDED AND IS COVERED WITH MOST DUST．FEW VUGS ARE SEEN．ALL LESS THAN 2 MM． MOD．HIGH CONE OF VUGS．SEVERAL CREAMY SPLOTCHY AREAS。 POSSIBLY FELDSPAR ON ROADSIDE．ALL OCCUR IN ARE \(11 / 2 \times 2\) CM．CRYSTALLINE NATURE CAN BE SEEN THRU SPLOTCHES．SEVERAL DEEP FRACTURES APPROXIMATELY 1 MM ACROSS TO 3 CM LONG． FRACTURES AND VUGS ARE ALL LINED WITH CRYSTALS．DO NOT APPEAR TO BE EXFOLIATION FRACTURES．RELATE MORE TO INTERNAL VUG ARRANGEMENTS．TENDS TO BE SLIGHTLY FRIABLE WITH CRYSTAL FRAGMENTS． approximate modes．OLIVINE 35 PERCENT
PLAGIOCLASE 40 PERCENT
PYROXENE 25 PERCENT
OLIVINE YELLO甘ISH GREEN 1 TO 2 MM • VITREOUS LUSTER NEARLY EQUANT SUBHEDRFIL． SEVERAL AGGREATES UP TO 3 MM．
plagioclase stubby to lath shaped habit less than 1 mm to 4 mm long．general area ideally lath shaped．
PYROXENE REDDISH GRAYISH BROWN IN STUBBY AND SEMILATH CRYSTALS UP TO 4 MM LONG．
terrestrial analogue．olivine gabbro medium to coarse grained．
SAMPLENO． 12040 SMITH
CRYSTALLINE ROCK FRAGMENTS CONSISTING OF SMALL FRIABLE CHIPS AND CRYSTAL GRAINS．THE LARGEST FRAGMENT WAS TAKEN FOR THIN SECTION．COLOR IS BROYNISH GEEEN SPECKLED WITH 甘HITE．TEXTURE IS MICROGABBROIC WITH A TENDENCY TOWARDS VUGGINESS．
ESTIMATED MODE IS．
OLIVINE 40 PERCENT
CLINOPYROXENE 30 PERCENT
plagiorlase 25 PERCENT
OPAQUES 5 PERCENT．
OLIVINE CRYSTALS AND CRYSTAL AGGREGATES UP TO 2.5 m ARE POIKILITICALLY ENCLOSED BY LARGER CINNAMON BROWN CLINOPYROXENE CRYSTALS．
plagioclase contains abundant multiphase inclusions．
THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
A－A CHEMICAL ANALYSIS
E－SPEC ANALYSIS
TOTAL CARBON ANALYSIS
RARE GAS ANALYSIS


NASA-S-69-60991


NASA-S-69-61004


NASA-S-69-60995


NASA-S-69-61008

Figure A-32. - Sample 12040.

SAMPLE NO. 12042 WEIGHT 225.57 GRAMS (+BAG) HEIKEN
12 D FINES. DARK GRAY. MODERATELY SORTED. FINE SAND SIZED. A LOT OF FELDSPAR GRAINS AND SOME OLIVINE AND SOME GLASS. NO FRAGMENTS GREATER THAN 0.2 MM VISIBLE IN THIS PARTICULAR SPLIT. E.

EXTREMELY COHESIVE. WHEN COMPACTED A VERTICAL WALL CUT INTO IT STANDS VERY EASILY. WHEN TOSSED ABOUT LOOSELY IT TENDS TO CLUMP IN CLUMFS APPROXIMATELY 1.0 MM IN DIAMETER.
the following experiment was conducted on this sample
total carbon analysis

SAMPLE NO. 12043.0 HEIKEN
SUBROUNDED. OVOID ROCK. ONE END HAS ANGULAR FRESHLY FRACTURED SURFACE. BLUISH GRAY. MEDIUM GRAINED HOLOCRYSTALLINE, VARIOLYTIC VESICULAR WITH SPHERICAL VESICLES UP TO 2 MM IN DIAMETER. VESICLES ARE APPROXIMATELY 10 PERCENT OF VOLUME. NO ORIENTATION OF VESICLES. ON ANGULAR SIDE ARE a NUMBER OF SMALL FRACTURES parallel to surface. a half mm yide impact pit every 25 mm. 4 Pits less than 0.2 mM IN DIAMETER IN THE SAME AREA. THE PITS ARE LINED WITH VERY THIN. TRANSPARENT LAYER OF GLASS UITH A BUBBLY SURFACE. SOME CRYSTALS CAN BE SEEN THROUGH GLASS. MANY PIT LININGS ARE RAISED SLIGHTLY ABOVE THE ROCK. AS IF THE ROCK AROUND HAS BEEN ERODED AWAY. EACH HAS A 0.4 MM WIDE UHITE COROINA OF CRUSHED MINERALS. ONE CORNER APPROXIMATELY \(21 / 2 \times 2\) CM. IS COVERED WITH IRREGULAR SPLASHES OF BLACK GLASS LESS THAN O.1 MM THICK. CONTAINS SEVERAL blobs of glass which have been welded to surface. one blob is highly vesicular. VESICLES BEING APPROXIMATELY. 05 MM IN DIAMETER. MUCH OF THE THIN GLASSY SURFACE IS IRREGULAR DUE TO BROKEN COALESCING VESICLES. SOME OF THIS GLASS IS ALSO SLIGHTLY RaISED above the surface of the rock. one large vesicle is partly COATED WITH GLASS SPLASH.

MINERAL NO. 1 MILKY WHITE FELDSPAR. EXHIBITS ALBITE TWINNING. CRYSTALS VARY FROM 0.5 TO 2. 0 MM LONG MOSTLY THIN LATHS 45 PERCENT.

MINERAL NO. 2 GROWING PARALLEL TO FELDSPAR ARE REDDISH BROWN PYROXENE 0.5 TO 2.0 MM LONG. APPROXIMATELY 40 PERCENT.

MINERAL NO. 3 EQUANT 1 MM DIAMETER GRAINS OF PALE GREEN OLIVINE. APPROXIMATELY 5 PERCENT.
mineral no. 4 anhedral. equant crystals of ilmenite usually less than 1 MM LONG. 10 PERCENT.
SOME VESICLES HAVE EUHEDRAL CRYSTALS OF PYROXENE AND FELDSPAR GROWING SUBparallel to walls. variolytic diabase.

SAMPLE NO. 12043.0 DIMENSIONS 3.5 X 4.5 X 2.5 CM GREENWOOD MEDIUM GRAY WITH LIGHT GRAY AROUND PITS. WELL ROUNDED. SOMEWHAT OF A LEVER SHAPE THAT HAS BEEN BROKEN ON MOON. THE OLD SURFACE IS PARTIALLY COATED WITH BLACK GLASS SPLASHES. NEAR BLACK GLASS SPLASHES AND RELATED IS A DULL BLACK coating that chipped abay. the glass coating is on the oldest surface and follows the topography around the corner of the lense. the old surface is VERY DENSELY PITTED WITH IMPACT PITS HAVING GLASS LININGS AND BRIGHT HALOES. the broken surface also has pits with Glass linings but they are not so NUMEROUS. THE BROKEN SURFACE IS SUBANGULAR TO SUBROUNDED. THE CORNER THAT wAS FRESHLY CHIPPED IN LABORATORY IS DARK GRAY AND SHOWS BOTH VUGS AND SPHERICAL VESICLES. THE VUGS ARE CRYSTAL LINED. THE VESICLES ARE ALSO CRYSTAL LINED BUT have a smoother surface and may have some Glass in the lining. the fresh surface has a rough. hackly. fracture. the vugs are aligned along zones. the LINING OF IMPACT PITS IS CLEAR GLASS. CLEAR TO BROWN. HAS BOTRYOIDAL SURFACE. FELDSPAR AND PYROXENE LATHS RADIATE AWAY FROM OLIVINE CENTERS IN VARIOLITIC FORM. LATHS UP TO 3 MM LONG. OLIVINE ABOUT 1 MM DIAMETER. PYROXENE IS REDDISH BROUN. ABOUT 30 PERCENT OF ROCK. OLIVINE. YELLOW GREEN ( 10 PERCENT). ILMENITE. BLACK ADAMANTINE (15 PERCENT). FELDSPAR 45 PERCENT. HALVES PRCDUCE BRIGHTENING IN ALL MINERALS.
OLDER SURFACE OF ROCK BRIGHTENED AND SHATTERED BY IMPACT PITS. ROCK IS NOT FRAGILE. CRYSTALS APPEAR TO BE ALIGNED AROUND SPHERICAL VESICLES AND PARALLEL TO VUGS. NO OBVIOUS LAYERING OR LINEATION. ONE FRAGMENT INCLUSION OF BRECC\&A. IT WAS ANGULAR. CONTAINS A CLEAVAGE. IS OUITE FRIABLE. BUT IS a ROCK. VERY FINE GRAINED BUT PARTICULATE WELDED MATERIAL. MEDIUM BROWNISH GRAY. THE BOUNDARY BETWEEN BRECCIA AND ROCK IS VERY SHARP AND SMOOTH. IT IS POLYGONAL AND HAS SHARP CORNERS. THE MELT WAS ON THE SURFACE aND the breccia FELL INTO IT. SOME PYROXENE CRYSTALS ARE UP TO 5 mm LONG AND GIVE the texture a PORPHYRITIC TEXTURE. OLIVINE BASALT.


NASA-S-69-61562


NASA-S-69-61569


NASA-S-69-61566


NASA-S-69-61584

Figure A-33. - Sample 12043.

SAMPLE NO. 12044.1 HEIKEN
ANGULAR. ELONGATE FRAGMENT. HOLOCRYSTALLINE. MEDIUM GRAINED. REDDISH GRAY COLOR. HIGHLY FRACTURED. IRREGULAR FRACTURES. THERE IS NO APPARENT ORIENTATION OF CRYSTALS. NO VESICLES. SOME VUGS ALIGNED WITH FRACTURES. ONE SIDE IS ROUNDED. NO APPARENT PITS BUT SOME THIN BLACK GLASS SPLOTCHES BRIDGING OPEN FRACTURES.

MINERAL NO. 1 MILKY WHITE TO COLORLESS FELDSPAR. MOST LESS THAN 1.O MM LONG
APPROXIMATELY 45 PERCENT • EQUANT CRYSTALS.
MINERAL NO. 2 PYROXENE. REDDISH BROWN EQUANT APPROXIMATELY 30 PERCENT. MOST LESS THAN 1.0 MM LONG.

MINERAL NO. 3 VERY LIGHT GREEN. ANHEDRAL OLIVINE CRYSTALS APPROXIMATELY IS PERCENT
APPROXIMATELY . 5 MM DIAMETER EQUANT CRYSTALS.
MINERAL NO. 4 ILMENITE. SHINY. EQUANT TO BLADED CRYSTALS APPROXIMATELY 10 PERCENT.
IN VUGS. OLIVINE CRYSTALS UP TO 2 MM DIAMETER. ALSO 1 MM EUHEDRAL PYROXENE. DIABASE.

SAMPLE NO. 12044.1 WEIGHT 15.5 GRAMS DIMENSIONS \(3.5 \times 2 \times 1.5\) CM GREENWOOD SUBROUNDED. PITTED. COATED WITH DARK GRAY DUST HAS OVERALL MEDIUM DARK GRAY APPEARANCE EXCEPT AT IMPACT PIT WHERE IT IS BRIGHTER. ROCK IS FRIABLE AND fragile and the fragments have come from same rock. the fresh fragment is medium gray. highly angular. Rare olivine crystals are phenocrysts up to 1.5 TO 2.0 MM IN A MATRIX OF FINER GRAINED PYROXENE AND FELDSPAR. PYROXENE IS APPROXIMATELY 45 PERCENT OF ROCK. FELDSPAR IS APPROXIMATELY 45 PERCENT OF ROCK. A FE甘 LATHS OF PLAGIOCLASE UP TO 2 mM BUT MATRIX APPEARS TO BE EQUIGRANULAR. SMALL PATCHES OF GLASS STANDING IN RELIEF TO OLD SURFACE. THIN BLACK GLASS IMPACT PITS HAVE A CLEAR TO TRAASLUCENT BROHN COLOR. HAS VUGS LINED WITH CRYSTALS. ILMENITE APPROXIMATELY S PERCENT. PYROXENE IS REDDISH BROHN. ROCK HAS A TRACHYTIC TEXTURE HOLOCRYSTALLINE ROCK. BOTH 44.1 AND 44.2 HAVE BLACK GLASS COATING ON SURFACE. OLIVINE MICROGABERO.
the following experiment was conducted on this sample
TOTAL CARBON ANALYSIS


NASA-S-69-61235


NASA-S-69-61236


NASA-S-69-63261


NASA-S-69-63271
Fi.gure A-34. - Sample 12044.

Sample no. 12045 veight 63 grams dahlem
flat. tabular. one side is flat and the other is convex. the surface is SLIGhtly rounded but fine texture is hackly with some slight rounding. relief IS approximately \(1 / 2\) mm. SURFACE IS mottled dark gray. texture is granular average grain size is less than \(1 / 2\) mm. only a few fractures visible and are not thru going. some fractures have a discolored zone of dull gray and goes to light gray. no apparent stratification and no apparent major structure FEATURES.
SURFACE IS PItted with small glass lined pits ranging from less than o.5 up to 1.5 MM IN DIAMETER. GLASS LININGS OF PITS ARE VITREOUS. BLACK TO BRGWN. RANGE from even vitreous to fine grained even lusters. circular pits are commonly surrounded by scatter zone. transcending mineralogy. the outer contacts are ir Regular against shatter zone and is adophylitic intruding the matrix. windous in glass lining are rare. but do alloy a view of shattering in bottom of pits. internal reflection is visible in glass lining. the linings are LOCALLY SEVERELY fRACTURED. ON fLAt SURFACE RANGE IS FROM 7 TO 14 CMz felospar with lofcmz being average. the average pit size on convex side is approximately 1.0 ma. the pit lining occasionally includes grains of olivine. vugs RANGE FROM APPROXIMATELY 1.0 MM TO COELESCING GROUPS UP TO 5.0 MM. RANGE IN DEPTH FROM LESS THAN 1.0 MM UP TO 3.0 MM. WALLS INCLUDE ALL MATRIX MINERALS. most obvious being opaque mineral. which is euhedral. most of surface is COVERED WITH FINES.
1. the rock has 55 percent brohnish gray equant pyroxene less than 0.5 mm average grain size. prismatic with 2 wall level cleavages.
2. White. greenish white. tabular. plagioclase 20 percent maximum grain SIZE APPROXIMATELY . 8 MM LONG . 3 MM WIDE.
3. apple green. equant mineral 10 percent. occurs as 0.5 mm average SIZE. IN DISCRETE INDIVIDUAL AND MULTIGRANULAR SEGMENTS UP TO 1.0 MM IN DIAM.
4. opaoue. dark gray. metallic luster. tabular. wedge shaped habit.

COMmONLY EOUANT 7 TO 10 PERCENT.
5. Local areas of very fine grained granular material of all matrix minerals but very fine cless than 0.1 mm). local areas in these with extended trains of opaoue material transcending fine grained mass.
scattered in the matrix are whisps and individual of red brown material within feldospar and along grain boundaries between grains. occurrence of fine trains of opague material is fairly common in this sample. it is found in both fine grained material and in pyroxene grains. these are probably exsolution phenomena. the pyroxeneiopaouegolivine intergrowth is most obvious. called a basalt.

SAMPLE NO. 12045 WEIGHT 63 G DIMENSIONS \(5 \times 3.5 \times 2.0 \mathrm{CM}\) WONES neutral color. shape flattened ellipsoid. broken very fine grained. vuggy OLIVINE PHENOCRYSTS. NO ORIENTATION OF MINERNLS OR VESICLES OR VUGS. SOME tendency of vugs to cluster. may be thru going system of fractures perfendicular to short axis. minor fractures parallel to edges. many glass lined pits. 6 PITS/CMZ PITS GREATER THAN 0.5 mM. SMALL CLOUDY MILKY FELDSPAR PLAGIOCLASE EQUANT GRAINS 0.3 MM X 0.3 MM MAXIMUM SIZE APPROXIMATELY 20 PERCENT. OLIVINE PHENOCRYSTS 3.0 MM LONG. 1 MM VIDE. SOME \(4 \times 4\) MM APPROXIMATELY 5.0 percent of rock vesicles dominated by pyroxene. surface is shattered and IMPACTED.
terrestrial analogue. basalt

SAMPLE NO. 12046 VEIGHT 166 DIMENSIONS \(7 \times 4 \times 3\) CM VONES RECTANGULAR PRISM 甘ITH AN IRREGULAR BLOB AT ONE END. NEUTRAL VITH A TOUCH OF BROWN. VUGGY TEXTURE. OPHITIC. FINE GRAINED. FELDSPAR LATHS RANDOMLY ORIENTED. OPEN VUGS 2 MM MAXIMUM SIZE. NO ORIENTATION OR CLUSTERING OF VUGS. vUGS make up less than 1 percent of rock. fractures are conc at surface. appear to be spalling features. glass lined pits on all faces. yhite milky FELDSPAR ON ALL FACES. PIT COUNT FOR LONG FACES. PITS GREATER THAN O.S MM APPROXIMATELY . 5 PITS/CM2. 1.0/CM2 AND 1.5/CM2. 2.0/CM2. 2 SIDES ARE MORE ROUNDED THAN OTHER TWO SIDES* APPEAR SLIGHTLY LIGHTER. AND HAVE A SLIGHTLY HIGHER DENSITY OF PITS. AND NO APPARENT WATERMARK. PITS ARE ALL CIRCULAR. LARGEST PRESERVED IS APPROXIMATELY 2.0 MM. GLASS LINED. 0.5 MM DEEP. ROCK IS
FELSIC.
PLAGIOCLASE 40 PERCENT
PYROXENE 58 PERCENT
ILMENITE 2 PERCENT
PLAGIOCLASE TWINNED CLEAR LATH LIKE CRYSTALS. MAXIMUM LENGTH 2. 0 mm. 0. 4 mM vide AVERAGE LENGTH 0.6 MM. 0.1 MM VIDE \(6 \times 1\) AVERAGE ESTIMATE OF RATIO. PYROXENE LIGHT TO DARK BROWN. IN ALL SHADES OF BROWN. EOUANT WITH MAXIMUM GRAIN \(0.3 \times 0.3\). MEAN \(0.2 \times 0.2\) MM. OPAOUES BLADED. LUSTROUS MAXIMUM LENGTH 0.4 MM. RATIO OF \(10 / 1\). VUGS APPEAR TO BE FILLING VITH SAME TEXTURE AND COMPOSITION PERHAPS A CONC OF OPAOUES IN VUGS.
OLIVINE NOT APPARENT. LOOKEG FOR BUT NOT FOUND. NO ALTERATION OBSERVED EXCEFT IMPACT SHATTERING BRECCIATION. Called a DIABASE.


Figure A-35.- Sample 12046.

SAMPLE NO. 12047 WEIGHT 193 GRAMS DIMENSIONS \(9 \times 2.5 \times 6\) CM HEIKEN tabular. subrounded rock. medium gray. holocrystalline. medium grained. feLDSpar are grouped in small radial bunches. a few vesicles up to 8 mm in diameter. some are coelescing. all are spherical. none ovoid. other than feldospar there is no obvious lineations. or oriented crystals. in a 1 cm circle there is an average of 1 glass lined impact pit. some pits do not have haloes the glass is blackish brown. has a bubbly surface.
ONE CM DIAmeter circle on bottom Gives 8 SURFACE pits about 0.8 mm across. CRACK WHICH IS HELD TOGETHER BY AN IMPACT PIT. MEDIUM GRAINED BASALT. medium gray. under scope consists of brownish mineral. white mineral and metallic lusterous mineral. hypiediomorphic granular two systems of fractures one parallel to plane of sample and second is conc. with respect to rounded edges on one end . the first is more persistent. one system of coelescing vugs on one side through which a fracture parallel to long dimensicin CUTS the fracture does not cut one of the glass lined pits on the surface. tho parallel fractures repeating at approximately 2 mm intervals. dust still adheres to all sides even though it has been bloun considerably. Glassy patches and glass lined circular pits are common ranging in size up to approximately 2.0 mm with depth . 1 mm. Splotches are botriodal. specular. vitreous to very fine grained granular specular. at least one shous concentric. ribbed texture inside pit. the pits are more abundant on one side than the other. the side with vug and fracture system has mere pits. the flatter side has fewer large pits but they are 3 mm in diaheter. the glass lining of pits on flat side is brounish but on rounded side is black. some evidence of eroding of area around pits hil ch leaves a raised lip CN pits. the oust covering is heavier on flat side. the glass linings are someyhat fractured becruse of newton rings of fractufie seen. on rounded side the range in pitsocmz is from 4 TO 12 and average is approximately 7 In pits greater than 0.5 mm. on flat side the range of pits greater than 0.5 mm is 2 to 5 with 3 to 4 being average. the haloes extend irrespective of mineralogy up to one crater diameter. the minerals are felospar and milky pyroxene. some are chalky and fine grained enough to have lost luster. two other types of defressions. first is Spherical with euhedral crystals lining walls. second is a vug. lined with euhedral crystals characteristic of matrix. may be tendency of feldipar to concentrate in vugs. the flat large side may have been down. but tumbling is COMPLEX.
FOUR PHASES.
1. tan. cream. phase. pyroxene 40 percent of rock.
2. WHITE TO CLEAR PLAGIOCLASE 30 PERCENT
3. black metallic opaoue. probably ilmenite 20 percent
4. apple green probably olivine approxiamtely 5 percent
5. 5 PERCENT UNDECLARED
1. EQUANt to SLightly elongate. occurs principally (interstitially with) as Space filling between plagioclase grains. average . 3 to . 4 mm
2. tabular. ranges up to 1.5 mm long and 0.5 mm across. twinning is lamellae and perpendicular to lamellae. commonly in semi radial habit in clumps with no intergrown pyroxene and opaques. some carlsbad twinning. some CLUMPS ARE APPROXIMATELY 1.5 MM ACROSS.
3. scattered at random. planar habit. some pie shaped and commonly INTERGROWN WITH PYROXENE.
NO ALTERATION IS APPARENT IN ANY MINERALS. glass pit lining. in one case includes a fused lath of feldospar. the glass is dark even toned except for diameter oriented clear swath. called a microgabbro.


Fi.gure A-36. - Sample 12047.

SAMPLE NO. 12051 WEIGHT 1660 DIMENSIONS \(16 \times 11.5 \times 7\) CM HEIKEN LOAF SHAPED ROCK. BOTTOM IS A PLANAR FRACTLRE SURFACE. THE BOTTOM IS A DARK BROWNISH GRAY. A SERIES OF SPALLATION TYPE FRACTURES PARALLEL TO THE BOTTOM OF THE ROCK. THE EDGES OF FRACTURE ARE VERY ANGULAR. UPPER PART IS VERY ROUNDED. LIGHT BROWNISH GRAY. THERE IS A DISTINCT COLOR DIFFERENCE BETWEEN IOP AND BOTTOM. TEXTURE IS HOLOCRYSTALLINE. MEDIUM GRAINED. MOST CRYSTALS ARE randomly oriented. some have a variolitic texture. one deep fracture visible and Cuts thru the bhole rock. there are surface areas which do not NECESSARILY HAVE VESICLES BUT HAVE A DICTYTAXITIC TEXTURE. SOME VESICLES PRESENT UP TO 4 mM DIAMETER. THERE ARE SURFACE GLASS LINED PITS FROM 0. 1 TO 2 MM IN DIAMETER. THE GLASS LINING IS APPROXIMATELY. 2 MM THICK WITH A BUBBLY SURFACE. THE GLASS HAS MULTIPLE COLORS FROM COLORLESS TO BLACK CAUSED BY FUSION OF CRYSTALS IN PLACE. THE WHITE CORONA OF CRUSHED MINERALS IS APPROXIMATELY \(1 / 2\) CRATER WIDTH WIDE. RANDOM 1 CM WIDE AREAS GIVE 6 AND 2 AND 3 AND 3. SOME VERY THIN SPLASHES OF BLACK GLASS ON A SLIGHTLY WEATHERED SURFACE. THE SPLASHES ARE APPROXIMATELY 1 TO 2 MM ACROSS WITH IRREGULAR bOUNDARIES. THE FLAT bASE HAS NO SURFACE PITS OR GLASS SPLOTCHES AND has a much oarker color because there are no minerals fractured or shattered. there IS GRAY DUST ADHERING TIGHTLY TO THIS SURFACE.
FELDSPAR APPROXIMATELY 45 PERCENT. AVERAGE LENGTH OF LATHS IS APPROXIMATELY 1 MM. COLORLESS TO MILKY WHITE.
PYROXENE APPROXIMATELY 30 PERCENT. REDDISH BROWN PYROXENE SUBHEDRAL CRYSTALS . 5 TO 1 MM LONG.
OLIVINE OR PYROXENE APPROXIMATELY 15 PERCENT. VERY LIGHT GREENISH YELLOW APPROXIMATELY . 5 MM DIAMETER. EQUANT CRYSTALS.
ILMENITE APPROXIMATELY 10 PERCENT. VERY THIN BLADED CRYSTALS UP TO 3 MM LONG. and sime small more equant crystals.
NEAR VESICLES AND VUGS ARE EUHEDRAL ERySTALS OF ALL TYPES MENTIONED ABOVE. BUT SIZES ARE NOT ANY LARGER.
DIABASE。
SAMPLE NO. 12051 WEIGHT 1660 GRAMS DIMENSIONS \(16 \times 11 \times 6\) CM CHAO MINERALOGY.

OPHYTIC. WHITE TO MILKY WHITE. TO LUSTROUS. PLAGIOCLASE FELDSPAR ALSO
OCCURS AS PLATES IN VUGS. APPROXIMATELY 50 PERCENT.
INTERSTICIAL CINNAMON BROWN CLINOPYROXENE. PRISMATIC HABIT IN VUGS. APPROXIMATELY 45 PERCENT.

GREENISH YELLOW PHENOCRYSTIC OLIVINE. SPARSELY DISTRIBUTED UP TO 2.0 MM
ACROSS. LESS THAN 1 PERCENT.
opaque mineral 5 PERCENT. BLACK wITh VITREOUS LUSTER.
PROBABLY ILMENITE.
the ophytic texture is pronounced on inie rounded side. therefore. olivine bearing a diabase or basalt.
SHOCKED.
ShAPE. LIKE COW DUNG. FLAT ON ONE SIDE AND ROUNDED AND CONVEX ON OTHER SIDE. COLOR. BROYNISH SPECKLED GRAY.
TEXTURE. OPHYTIC.
SLIGHTLY VUGGY AND VESICULAR. NUMEROUS PITS ROUNDED CONVEX \#HICH ARE COATED WITH DUST 0.3 TO 2 MM IN DIAMETER ABUNDANT. GREATER THAN 2 PER CM2. NO PITS ON FLAT SIDE INDICATING IT IS THE BOTTOM SIDE. THE OTHER THE TOP SIDE. terrestrial analogue. DIABASE.

THE FULLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
total carbon analysis


Fiģure A-37. - Sample 12051.

SAMPLE NO. 12052 HEIKEN AND ANDERSON
MOD WELL ROUNDED DARK GRAY CRYSTALLINE ROCK WITH NUMEROUS GLASS LINED PITS MOST OF WHICH HAVE A WHITE SHOCK RING AROUND THEM. THE PIT DENSITY IS APPROXIMATELY 20 PER SQUARE CM. THE ROCK. IS VUGGY AND COARSE GRAINED. NO LINEATIONS OR OBVIOUS FRACTURES VISIBLE EXCEPT FOR A FEW SMALL EXFOLIATION CRACKS. TEXTURE AND MINERALOGY. TWO PHASES EASILY IDENTIFIABLE. HONEY BROWN PYROXENE CRYSTALS
 COMMON CENTERS WITH FELDSPAR CRYSTALS PRESENT INTERSTITIALLY BETVEEN RADIATING BLADES. COARSE PYROXENE CRYSTALS MAY BE OBSERVED IN SOME VUGS. A FEV GREENISH OLIVINE CRYSTALS may be seen on rock surface. in some places the radiating CRYSTAL STRUCTURE SEEMS TO BE FELDSPAR LATHS. THE ABUNDANT GLASS PITS FREOUENTLY HAVE RAISED RIMS. THE GLASS IN THE PITS SEEMS TO VARY FROM OLIVE GREEN TO DARK BROWN.
angular to subangular . one side of top is rounded by planar fractures. LINEATION ALONG FRACTURE PLANES. COLOR MEDIUM DARK GRAY. ON FRACTURED SIDE there are small areas with abundant 2 mm diameter vesicles. on rounded side there are abundant glass lined impact surface pits vith white haloes. vesicles SHOW NO PREFERRED ORIENTATION. TEXTURE IS HOLOCRYSTALLINE FINE GRAINED. NO IMPACT PITS ON FRESH SURFACE SIDE. ONE PATCH OF INTERCONNECTING VESICLES APPROXIMATELY 2 CM IN DIAMETER IS FILLED WITH A NETWORK OF GREENISH BROWN PYROXENE CRYSTALS UP TO 8 MM LONG 0.5 MM WIDE. THE ROUNDED SIDE IS COVERED WITH NUMEROUS SURFACE PITS RANGING FROM 0.1 MM TO 2 MM IN DIAMETER. ALL ARE LINED WITH DARK BROWN GLASS. WITH A HALO OF DAMAGED CRYSTALS AROUND EACH PIT. HALO'S WIDTH IS APPROXIMATELY DIAMETER OF PIT WHEREVER THE FRAGMENT IMPACTED ON ORIENTED CRYSTALS THE PIT IS ELONGATED IN RESPECT TO THE ORIENTATION OF THE CRYSTALS. MINERALOGY IS DIFFICULT TO DETERMINE BECAUSE AVERAGE CRYSTAL SIZE IS LESS THAN 0.5 MM.
APPROXIMATE MODE.
REDDISH BROWN PYROXENE 40 PERCENT
FELDSPAR 30 PERCENT
OLIVINE 15 PERCENT
ILMENITE 15 PERCENT
SOME FELDSPARS ARE UP TO 1 CM LONG IN VERY THIN LATHS. BOTTOM SIDE. ROUNDED TO SUBROUNDED. 5 PERCENT BY VOLUME VESICLES. VESICLES UP TO 3 MM IN DIAMETER COVERED WITH AEUNDANT SURFACE PITS IN A 1 CM DIAMETER CIRCLE APPROXIMATELY 21 PITS. SOME ORIENTATION OF FELDSPAR MOSTLY IN RADIAL PATCHES.

SAMPLE NO. 12052.2 LINDSAY
FIVE FRAGMENTS ALL OUITE ANGULAR. LARGEST PIECE 5 CM LONG. TRACHYTIC TEXTURE. SOME VESICLES 1 CM IN DIAMETER. LARGE VUG 2 CM LONG 5 MM WIDE. THREE SURFACE PITS PER SOUARE CM.
APPROXIMATE MODES. HOLOCRYSTALLINE WITH OLIVINE PHENOCRYSTS UP TO O.IMM FORMING ABOUT 5 PERCENT. SOME PYROXENE. VUGS LINED WITH ACICULAR ILMENITE 5 MM LONG . 5 MM VIDE.

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
RARE GAS ANALYSIS
total carbon analysis


Figure A-38. - Closeup of sample 12052 (NASA-S-70-21312).


NASA-S-70-44631


NASA-S-70-44632


NASA-S-70-44847


NASA-S-70-44848

Figure A-39. - Sample 12052.

SAMPLE NO. 12053 WEIGHT 879 G DIMENSIONS 12 CM X 8.5 CM X 5 CM GREENVOOD OLIVIne basalt. rock has a flat bottom with angular edges and a subrounded peaked top. the top surfaces are pitted with a smooth peppered rounded surface medium grey outside except for a lustrous black glass which lines some pits. these are also infrequent 2 to 3 mm vesicles. which are lined with crystals . the glass lined pits have a bright thalo of fractured rock around them. the bOTTOM SURFACE HAS A SMALL \(1 \times 1\) CM PATCH OR BLACK CRYSTAL. A FRESH SURFACE has same color as weathered (men!ju gpey and there is a subplanar fracture set parallel to the base.
There is also a Set of (intersecting) fractures which at 40 degrees and the base plane bisects the small angle between the fractures. the rock is fine grained. with needles of feldospar up to 3 mm long. trachytic texture. the vesicles are lined with fine minerals. rather than glass. the mafic minerals appear to be yellow green olivine ( 10 PERCENT). DARK GREY matrix ( approximately 25 percent). there is an opaoje mineral ilmenite or magnetite. 2 or 3 percent. feldispar 60 percent. the vesicles are lined with coarser crystals of the matrix. the vesicle crystals are pyroxene and olivine. the texture tends to dictytaxitic and the rock is holocrystalline granular. the black cofting on bottom is botryoidal glass. there is no apparent overall preferred crystal orientation. locally the feldospar crystals appear to have a rosette habit. the ROCK IS NOT FRIABLE OR FRAGILE. THE ROCK IS ABOUT 5 PERCENT VOIDS CCRYSTALLINE lined vesicles). there are numerous impact pits on the top of the rock. no impact pits were seen on the bottom. no alteration except for impact fracturing WAS SEEN.
one side is angular to subangular with thin exfoliation type fractures on one side. the other side is well rounded with considerable dust adhering tightly to rounded side. fine grained holocrystalline. moist crystals approximately 0.2 to 0.3 mm long. equigranular most crystals are lath shaped sometimes appearing in bunches growing radially out from a central point.

FELDSPAR 60 PERCENT
PYROXENE 20 PERCENT CInnamon brown elongate lath shaped
ILMENITE 15 PERCENT BLADED
OLIVINE 5 PERCENT VERY LIGHT GREEN
the surface is covered with
Shallov pits from \(1 / 20\) TO 1 MM. NUMBER OF PITS IN A CIRCLE 1 CM IN DIAMETER. 32 PITS IN FIRST COUNT. 15 PITS IN SECOND COUNT.
on top is a very thin glass spatter approximate 6 mm in diameter with irregular edges. very oark brown. in a number of instances. the glass lined pits are raised slightly above the rock surface. it appears that the rock has been differentially eroded. with glass linings as resistant highs. four vesicles on upper surface all less than \(1 / 2\) mm in diameter. angular (bottom) side irregularly spaced vesicles approximately 1 ma in diameter averaging approximately 1 PER CM CIRCLE LINING walls of vesicles are abundant OLIVINE CRYSTALS APPROXIMATELY 2 MM ON LONG AXIS . NO IMPACT PITS ON BOTTOM. on bottom is a patch of thin glass spatter \(0.5 \times 0.6 \mathrm{Cm}\). the surface is highly ir
the following experiment was conducted on this sample
RCL ANALYSIS


Figure A-40. - Sample 12053.

SAMPLE NO. 12054 WEIGHT 687 GRAMS DIMENSIONS \(9 \times 7 \times 7\) CM GREENHOOD HIGHLY ANGULAR NO ROUNDING. PYRAMIDAL SHAPED BASE IS COVERED WITH BLACK GLASS THIN COAT OF VESICULAR GLASS APPROXIMATELY \(1 / 4\) MM THICK. THE GLASS COVERS UP approximately \(1 / 2\) Way up the pyramid. the rock is light gray. medium to coarse CRYSTALLINE FELDSPAR LATHS ARE 2 TO 3 MM IN LENGTH. LIGHT GREENISH BROWN MATRIX PYROXENE. COARSE 7 MM PHENOCRYST OF PYROXENE APPEARS EUHEDRAL. THE PYRAMID TOP OF ROCK APPEARS TO BE A SHATTERCONE. THERE ARE CONVERGING SLICKENSIDED SURFACES WITH GROUND UP AND SMEARED OUT MINERALS. THE BASE OF THE PYRAMID has one large and several small open fractures. the fractures are welded TOGETHER BY GLASS. THE ROCK APPEARS TO BE EXPANDED WITH BREADCRUST FASHION and IS HELD TOGETHER BY THE GLASS. at THE TOP OF THE PYRAMID IS a FRACTURE WITH A VEIN FILLED WITH REDDISH YELLOW GLASS. THE ROCK IS VERY FRIABLE AND FRAGILE AND MUCH FRACTURED UP. IN ADDITION TO GLASS COAiIiNG ADJACENT TO IT aND EXTENDING BEYOND THERE IS A BROWNISH BLACK DULL COATING ON ROCK THAT GOES INTO FRACTURES. IT IS DARKER THAN MEDIUM GRAY DUST AND APPEARS RELATED TO EVENT THAT CAUSED GLASS. IT IS THIN LESS THAN O.I MM AND IS EASILY SCRATCHED OFF WITH A NEEDLE. IT MAY BE EITHER BAKED DUST BELOW GLASS. WHICH WAS CHIPPED OFF OR A CHEMICAL SUBLIMATE ON THE ROCK.
at the intersect ion of open fractures the rock is granulated and some fractures HAVE BLACK GLASS FILLINGS. THE PYROXENE IS MICROFRACTURED ALSO AND THE FELDSPAR IS WITHOUT CLEAVAGE AND IS WHITE - THERE SEEMS TO BE A NUMBER OF IMPACT PITS THROUGH THE GLASS AND INTO THE ROCK. THE IMPACT PITS ARE GLASS LINED AND APPEAR TO HAVE BEEN SPALLED OUT. THE GLASS HAS A YELLOW BROWN INTERNAL REFLECTION WHERE ITS THIN. IT HAS A NUMBER OF BROWN VESICLES SOME GLASS IN PITS IS LIGHT COLORED. LIGHT BROWN YO CLEAR. THERE APPEARS TO BE A NUMBER OF SMALL SPHERULES APPROXIMATELY 2 MM IN DIAMETER TO 5 MM BONDED TO THE SURFACE. THERE IS NO EVIDEPSE OF The GLASS altering the rock below it. the liouid must have BEEN OF VERY LOW VISCOSITY TO SPREAD SO THIN AND TO GO INTO THE FRACTURE. WHERE
 GLASS AND SURROUNDED BY a HALO OUT TO 1 CRATER DIAMETER OF SHATTERED GLASS OF a LIGHT YELLOW BROWN COI.OR. THERE ARE A GREAT NUMBER OF THESE SMALL PITS IN THE GLASS. THE PITS GREATER THAN 1 MM GO INTO THE ROCK. LESS THAN 1 MM DO NOT. THE LARGER ONES BLAST AMAY THE GLASS AND HAVE A DARKER GLASS LINING OF GLASS. the rock itself has plagiociase laths. it has a trachytic texture. holoCRYSTALLINE. MAY BE a SUBTLE ORIENTATION OF plagioclase crystals near the base. fragments of this rock type are belded to the outside of the glass. there may be an Impact pit on one of the sides that is in general glass covered. the pit IS GLASS LINED APPROXIMATELY 3 MM ACROSS BUT THE AREA AROUND IT IS FREE OF GLASS THE ROCK IS THOROUGHLY FRACTURED WITH SUBPOLIGONAL FRACTURE SETS AND APPEARS TO BE EXPANDED ON A MICROSCALE. FRACTUR'S EXTEND THROUGH BLADES OF ILMENITE AND OTHER CRYSTALS. FELDSPAR IS APPROXIMATELY 50 PERCENT OF THE ROCK. THERE ARE DARK PYROXENE PHENOCRYSTS THROUGHOUT THE ROCK. NO VUGS IDENTIFIABLE. BONDED TO THE OUTSIDE OF THE GLASS THERE ARE CRYSTALS OF FELDSPAR AND PYROXENE YHICH are semitranslucent and appears in the rock with its glass coating. the rock WITH ITS GLASS COATING appears to have fallen on soil while the glass was still not bonding the soil to the rock. several of the fractures radiate out frgm the CENTER IN CARTWHEEL FASHION. THE FELDSPAR IS HIGHLY ALTERED BY SHOCK. THERE IS A REDDISH BROWN ACCESSORY MINERAL THAT IS PRISMATIC IN HABIT APPROXIMATELY 1/10 MILLIMETERS IN LENGTH.

THE FOLLOYING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
RARE GAS ANALYSIS


NASA-S-69-60985


NASA-S-69-60979


Figure A-41. - Sample 12054.

SAMPLE NO. 12055 DIMENSIONS \(12.5 \times 10 \times 5 \mathrm{CM}\) HEIKEN ROCK IS POSSIBLY TERRESTRIALLY CONTAMINATED.
SIDE 1 (UPPER) SUBROUNDED. HIGHLY FRACTURED WITH ELONGATION PARALLEL TO
FRACTURES. COLOR LIGHT GRAY COVERED WITH RADIATING MASSES OF FELDSPAR LATHS.
THE ROCK IS MEDIUM GRAINED HOLOCRYSTALLINE. VUGS ARE ASSOCIATED WITH
FRACTURES BUT NO VISIBLE VESICLES. FRACTURES ARE IRREGULAR. MOST ARE PARALLEL
TO EACH OTHER. SURFACE FEATURES ABUNDANT GLASS LINED IMPACT PITS RANGING FROM
\(1 / 2\) TO 3 MM PITS ARE LINED WITH DARK BROWN BUBBLY GLASS. THE GLASS IS LESS THAN
0.2 MM. SEVERAL 4 MM BLACK GLASS SPLASHES ON SURFACE. A FEW VESICLES.

MINERAL 1 APPROXIMATELY 45 PERCENT MILKY WHITE TO COLORLESS FELDSPARS.
LATHLIKE. BEING 0.2 MM WIDE ON AVERAGE AND 1 TO 8 MM LONG. THESE SHOW SOME
ALBITE TWINNING. PROBABLY PLAGIOCLASE. NO. 2 APPROXIMATELY 30 PERCENT LIGHT REDDISH BROWN PYROXENE APPROXIMATELY 0.2 niY WIDE 1 TO 3 MM LONG. SUBHEDRAL AND SHOW EXCELLENT CLEAVAGE. NO. 3 APPROXIMATELY 15 PERCENT VERY THIN BLADED LIKE CRYSTALS OF ILMENITE UP TO \(11 / 2\) MM LONG. NO. 4 APPROXIMATELY 10 PERCENT EQUANT 1 MM DIAMETER CRYSTALS LIGHT GRAY OLIVINE. THE ELONGATE FELDSPAR LATHS. PYROXENE CRYSTALS. AND BLADES OF ILMENITE ARE ALL SUBPARALLEL IN RADIALLY ORIENTED CLUMPS. THE CLUMPS ARE APPROXIMATELY 5 TO 8 MM IN DIAAMETER AT JUNCTIONS BETWEEN CLUMPS ARE SMALL MORE EQUANT CRYSTALS OF ILMENITE. VUGS WITHIN fractures are filled with well formed crystals of all fypes described. SHAPE. ELLIPSOIDAL. ONE END BROKEN OFF.
COLOR. NEUTRAL N7
TEXTURE. VUGGY. MEDIUM GRAINED. SUBJPHITIC.
FABRIC. NO OBSERVED LINEATIONS. RANDOM VUGS. 2 CM DOHN TO 2 MM . NO VESICLES. FRACTURES. THROUGH GOiNG FRACTURES APPROXIMATELY PARALLEL TO SURFACE SHAPE OF ROCK IS CONTROLLED BY FRACTURES.
SURFACE FEATURES. GLASS LINED PITS COMMON ON ALL SIDES 1 TO 4 MM IN DIAMETER. SOME SHATTERED TEXTURE ON SURFACE. ROUNDING INDENTATIONS PRESENT. LARGE PITS AND ROUNDING COMMON ON ROUNDED END OF ELIPSE. BOTTOM HAS A FRESH BROKEN SURFACE. MINERALOGY. MODE.

PLAGIOCLASE 45 PERCENT
PYROXENE 50 PERCENT
OLIVINE 5 PERCENT
opaQues. thin blades approximately 1 percent
PLAGIOCLASE UP TO 1 CM LONG. 04 MM WIDE. SOME IS 1 MM X 0.2 MM. SOME TIMES OCCURS AS SHEATHS. CLEAR TO WHITE.
PYROXENE EQUANT \(1 \times 1\) MM GRAINS BROWN.
OLIVENE. 0.4 EUHEDRAL EQUANT GRAINS.
OPAQUES. BLADED BLACK. \(0.1 \times 0.01\) MM.
VUGS. DOMINANT MINERAL IN VUGS IS PYROXENE. APPEARS TO BE PLAGIOCLASE AND OLIVINE IN VUGS TOO. PYROXENES ARE APPROXIMATELY I CM LONG APPROXIMATELY 0.8 MM WIDE. RANDOM ORIENTATION. NO CHANGE IN GROUND MASS NEXT TO VUG. PYROXENE APPEARS DARKER BROWN THAN PYROXENE WITH GROUND MASS. SHOCK ALTERATION OF SURFACE MINERALS. CALL it an olivine basalt.
SIDE 2 (BOTTOM) SUBROUNDED APPEARS TO HAVE AS MANY GLASS LINED PITS AS OTHER SIDE. TEXTURE IS SAME AS SIDE 1 WITH EXCEPTION THERE IS APPROXIMATELY 5 percent by volume of ovoid vesicles. the vesicles are lined with all VARIETIES LINING THE walls parallel to walls with exception of a large COELESCED VESICLE WITH TOTAL LENGTH OF APPROXIMATELY 16 MM. THE CAVITIES are PARTIALLY FILLED WITH INTERTWINED PYROXENE CRYSTALS UP TO 5 MM LONG WITH SLIGHT GREENISH TINGE. THE SIDES OF THE ROCK HAVE NUMEROUS GLASS LINED PITS ALSO.


NASA-S-69-61015


NASA-S-69-61033


NASA-S-69-61012


NASA-S-69-61024

Figure A-42. - Sample 12055.

SAMPLENO． 12056 WEIGHT 121.0 G DIMENSIONS \(8 \times 2.5 \times 5 C M\) HEIKEN ONE SIDE IS SUBROUNDED．ANGULAR WITH FRESH FRACTURE SURFACES ．MEDIUM GRAINED holocrystalline．varialitic texture．some fracturing parallel to surface AROUND EDGES APPROXIMATELY 2 PERCENT VESICLES ． 5 MM DIAMETER AND LARGER． SURFACE IMPACT PITS 0．I TO 2 MM IN DIAMETER GLASS LINED．DARK BROWN TO BLACK GLASS LINING．IN A CIRCLE 1 CM DIAMETER THERE ARE 5 PITS．bubbly SURFACE IN the glass．pits in glass linings are slightly raised above rock surface INDICATING HIGHER RESISTANCE THAN SURROUNDING ROCK．
FELDSPAR MILKY WHITE TO COLORLESS．LATH SHAPED CRYSTALS UP TO 1.5 MM LONG． 40 PERCENT．
PYROXENE ．LIGHT REDDISH GRAY TO REDDISH BROWN．ELONGATE CRYSTALS 1 TO 1.5 MM LONG GRO甘ING SUBPARALLEL TO THE FELDSPAR CRYSTALS．GRO甘ING RADIALLY AROUND WHAT appears to be a pyroxene nucleus and in other cases an olivine nucleus． 35 PERCENT．
ILMENITE CRYSTALS ． 5 TO 1 MM LONG． 20 PERCENT．FORM BOTH EQUANT AND BLADED CRYSTALS．
OLIVINE 5 PERCENT．VERY PALE YELLOWISH GREEN OLIVINE．EQUANT CRYSTALS ． 5 mM DIAMETER．
SOME VESICLES AND VUGS have euhedral pyroxene and olivine crystals growing in them but are not much bigger than the rest of the rock．on the bottom side are some elongate chains of vesicles． variolitic DIabase

SAMPLE NO． 12056 WEIGHT 121 G DIMENSIONS \(8 \times 2.5 \times 5 \mathrm{CM}\) VONES
SHAPE．ASSYMMETRIC TRIANGULAR PYRAMID．
COLOR．BROWNISH GRAY．SYR 6／』．
TEXTURE．VUGGY．FINE GRAINED．SUBOPHITIC．
FABRIC．NO OBSERVED LINEATIONS．PRONOUNCED TENDENCY FOR VUGS TO BE ALIGNED ALONG SUBPARALLEL PLANES．VUGS ABUNDANT．IRREGULAR IN SHAPE．
FRACTURES．FRACTURES COMMON AT EDGES．SET OF FRACUTRES SJBPARALLEL TO
FRESH SURFACE．SHAPE OF ROCK PROBABLY CONTROLLED BY FRACTURES．
SURFACE FEATURES． \(2 / 4\) mAJOR SURFACES ARE FRESH．OLDER SURFACES have haloed
PITS WITH GLASS LININGS．MILKY WHITE SHOCKED FELDSPARS．INDENTATIONS AND
ROUNDING．LARGEST PITS ARE 1.5 MM．PITS GREATER THAN 0.2 MM 6／CM2．SOME GLASS
ADHERING TO SURFACE OF ROCK．
MINERALOGY．
MODE．
PYROXENE 60 PERCENT
PLAGIOCLASE 30 PERCENT
OLIVINE 3 PERCENT
OPAOUES 7 PERCENT
OLIVINE．GREEN．GLASSY．ROUNDED GRAINS．0．2 MM．
PYROXENE．BROWN．LIGHT TO DARK．EQUANT．FORMS GROUNDMASS ONLY SLIGHTLY SMALLER THAN OLIVINE．
plagioclase．Clear．Lath shaped crystals． \(0.2 \times 0.8\) mm average grain size． OPAOUES．LUSTROUS．BLADED． \(0.01 \times 0.2\) COMMON SIZE．
VUGS APPEAR TO CONTAIN MORE PLAGIOCLASE THAN GROUNDMASS．PYROXENE AND OLIVINE ARE PRESENT IN VUGS．
TERRESTRIAL ANALOGUE IS MICROGABBRO．


NASA-S-69-62729


NASA-S-69-61044


NASA-S-69-61040


NASA-S-69-61036
Figure A-43. - Sample 12056.

Sample 12057 consists of fines and chips from the bottom of the D-ALSRC. The fines and chips were numbered and subsequently divided into the following subsets.
\begin{tabular}{lcr}
\(12057:\) & \(12057-7:\) & \(12057-10:\) \\
12057 & \(12057-7\) & \(12057-10\) \\
\(12057-1\) & \(12057-13\) & \(12057-11:\) \\
\(12057-2\) & \(12057-18\) & \\
\(12057-3\) & \(12057-19\) & \(12057-11\) \\
\(12057-4:\) & \(12057-25\) & \(12057-12\) \\
& \(12057-26\) & \(12057-22\) \\
\(12057-4\) & \(12057-33\) & \(12057-23\) \\
\(12057-14\) & \(12057-34\) & \(12057-29\) \\
\(12057-15\) & \(12057-41\) & \(12057-40\) \\
\(12057-31\) & & \\
\(12057-32\) & \(12057-8:\) & \\
\(12057-5:\) & & \\
\(12057-5\) & \(12057-8\) & \\
& & \\
\(12057-6:\) & \(12057-9:\) & \\
\(12057-6\) & & \\
\(12057-16\) & \(12057-9\) & \\
\(12057-17\) & \(12057-20\) & \\
\(12057-24\) & \(12057-21\) & \\
\(12057-37\) & \(12057-35\) & \\
\(12057-38\) & \(12057-36\) & \\
\(12057-39\) & \(12057-42\) &
\end{tabular}

Sample 12057


PROBABLY BASALTIC.
TYPE NO. 4 APPROXIMATELY 40 PERCENT. GREYISH-OLIVE GLASS ANGULAR FRAGMENTS EXHIBITING GOOD CONCHOIDAL FRACTURE. ROUND VESICLES APPROXIMATELY \(1 / 2\) MM IN DIAMETER. SURFACE IS COVERED WITH WHITE SPOTS . 05 TO 0.2 MM. THESE have a RADIAL SPHERULITIC APPEARANCE. POSSIBLY DEVITRIFICATION PRODUCTS.
SUBTYPE OF TYPE NO. 4 CONSISTS OF A MASS OF HIGHLY VESICULAR WELDED SPATTER \(\forall I T H\) EXTREMELY IRREGULAR APPEARANCE. WELDED. WITH GLASSY SPATTER. ARE LESS THAN . 1 MM GRAINS OF LUNAR SOIL. MANY OF DIFFERENT ROCK TYPES HAVE ON ONE OR TwO SIDES a THIN COAT gF DARK REDDISH BROWN GLASS. THE THIN COAT has a BUBBLY SURFACE.
TYPE NO 5. APPROXIMATELY 10 PERCENT. COARSE GRAINED HOLOCRYSTALLINE ROCK PORPHYRITIC. THE PHENOCRYSTS CONSIST OF 1. OLIVINE CRYSTALS UP TO 5 MI LONG PISTACHIO GREEN. SUBHEDRAL. HIGHLY FRACTURED. 2. SOME SMALLER PHENOCRYSTS approximately 1 mm long subhedrals blades of ilmenite in ground mass. the aVERAGE GRAIN SIZE OF OLIVINE APPROXIMATELY I MM LONG AND ARE SUBHEDRAL. OLIVINE MAKES UP APPROXIMATELY 30 PERCENT OF ROCK. ILMENITE MAKES UP APPROXIMATELY 10 PERCENT. 3. CINNAMON BRO甘N PYROXENE. SUBHEDRAL APFROXIMATELY 0.8 MM APPROXIMATELY 45 PERCENT. RCCK IS GAGBROIC.
TYPE NO. 6 IN TRACE AMOUNTS THERE ARE 1 MM GLASS BALLS IN MOD. OL IVINE BROGN. TYPE NO. 7 IN TRACE AMOUNTS IHDIVIDUAL ENHEDRAL CRYSTALS OF CINNAMON BROUN PYROXENE APPROXIMATELY 3 MM LONG.
TYPE NO. 8 IN TRACE AMOUNTS FINE GRAINED HOLOCRYSTALLINE ROCK CONSISTS OF \(1 / 2\) MM FELDSPAR CRYSTALS. IN A MEDIUM GREY MATRIX. MATRIX MINERALS ARE INDETERMINATE. BUT APPEAR BASALTIC. VESICLES FROM \(1 / 10\) TO 2.0 MM IN DIAMETER. THIS ROCK IS EXPECTED TO BE LGY IN TITANIUM. CHECK WITH CHEMICAL ANALYSIS.


Figure A-44. - Sample 12057; chips less than 1 centimeter but more than 1 millimeter in diameter (NASA-S-69-60961).

SAMPLE NO. 12057 WEIGHT 479 SAMPLE 675 CAN + SAMPLE DIMENSIONS FINES HEIKEN IN/CM 6 CHIPS ABOVE 1 CM IN DIAMETER. EACH CHIP WAS WRAPPED IN ALUMINUM FOIL and stored in can marked fines chips.
FINES CHIPS GREATER THAN 1 CM IN DIAMETER. CHIP A. \(1.1 \times 1.6 \times 1.0 \mathrm{CM}\) SUBROUNDED MEDIUM CYRSTALLINE ROCK. MEDIUM GREY. OLIVINE RICH GABBROIC. VUG ON ONE SIDE CONTAINS PERFECT CRYSTAL OF OLIVINE AND ILMENITE.
MINERALOGY. 1. 40 PERCENT OLIVINE. PISTACHIO GREEN WITH CONCHOIDAL FRACTURE. CRYSTALS APPROXIMATELY 0.6 MM IN DIAMETER. 2. 10 PERCENT REDDISH BROWN STUBBY CRYSTALS WITH GOOD CLEAVAGE FACES PYROXENE. 3. ILMENITE. BLACK WITH VERY SHINY METALLIC LUSTER. FORMS BLADES UP TO 3 MM LONG. 10 PERCENT. 4) 40 PERCENT FELDSPAR. SUBHEDRAL AND ANHEDRAL MILKY WHITE CRYSTALS UP TO 2 MM LONG. CHIP B. \(1.2 \times 1.2 \times 1.2\) CM. SUBANGULAR. FINE CRYSTALLINE ROCK. NO GLASS. ONE MAIN FRACTURE ACROSS THE MIDOLE OF THE ROCK WHICH BRANCHES INTO 3 DIRECTIONS ON OPPOSITE SIDE. PYROXENES AND FELDSPARS ARE ORIENTED. A SMALL IMPACT PIT ON the surface is 1 mm in diameter and 0.2 mm deep. It is lined with a thin layer OF LIGHT GREEN GLASS WITH A BUBBLY SURFACE. THERE IS A \(1 / 4\) MM WIDE WHITE HALO AROUND THE PIT. .
MINERALOGY. 1. ABOUT 15 PERCENT OLIVINE (LIGHT GREEN. ANHEDRAL CRYSTALS). 2. 15 PERCENT DARK REDDISH BROWH SUBHEDRAL PYROXENE. 3. 15 PERCENT ILMENITE. 4. 55 PERCENT POWDERY WHITE FELDSPAR.

CHIP C. \(1.2 \times 1.0 \times 1.0\) CM. HOLOCRYSTALLINE. MEDIUM GRAINED CRYSTALLINE ROCK. ANGULAR.
MINERALOGY. 1. 40 PERCENT MILKY WHITE FELDSPAR WITH 2 MM LONG LATHS. SOME PHENOCRYSTS UP TO 6 MM LONG. 2. LIGHT PINKISH BROHN SUBHEDRAL CRYSTALS UP TO 2 MM LONG. MOST ARE PARALLEL TO THE FELDSPAR LATHS. PYROXENE. 3. 20 PERCENT LONG. THIN SHEETS OF ILMENITE. 0.1 MM THICK AND 2 MM LONG.
CHiP D. \(1.3 \times 2.0 \times 1.0\) CM. ANGULAR. FINE GRAINED HOLOCRYSTALLINE FRAGMENT. FRACTURES PARALLEL TO SURFACE. IDENTICAL IN COMPOSITION AND TEXTURE TO CHIP 8. CHIP E. \(2.5 \times 3.2 \times 1.0\) CM. FINE GRAINED CRYSTALLINE BASALT. AVERAGE CRYSTAL SIZE IS ABOUT 0.2 MM. CONSISTS OF 35 PERCENT FELDSPAR. 30 PERCENT REDDISH BROWN PYROXENE. 20 PERCENT ILMENITE AND 15 PERCENT OLIVINE. IT CONTAINS ONE SURFACE PIT. 1 MM IN DIAMETER. LINED WITH PALE GREENISH YELLOW GLASS. a fRACTURE ACROSS ONE CORNER OF THE ROCK IS IN LINE WITH A 0.5 MM WIDE VUG. THE VUG CONTAINS GOOD CRystals of olivine and ilmenite. on one side of the rock are several patches UP TO 2 MM ACROSS. WHICH HAVE A DIKTYTAXITIC TEXTURE.
CHIP F. \(1.4 \times 1.0 \times 0.7\) CM. MEDIUM GREY. MEDIUM TO COARSE GRAINED HOLOCRYSTALLINE. MINERALOGY. 1. 50 PERCENT WHITE TO COLORLESS FELDSPAR CRYSTALS. UP TO 2 MM LONG. 2. 40 PERCENT DARK REDDI SH BROWN PYROXENE, UP TO 1. OMM LONG. 3. 10 PERCENT ILMENITE. 4. LESS THAN 1 PERCENT AMBER TO YELLOWISH BROWN SUBhedral mineral. OLIVINE (OUESTION).


Figure A-45. - Sample 12057; chips more than l centimeter in diameter (NASA-S-69-60962).

Sample 12057-4

SAMPLE NO 12057.14 OPAQUES
BRETT
1. ILMENITE
2. TROILITE
3. IRON
4. UNKNOWN BROHN PURPLE GREY OXIDE.
5. UNKNOUN PINK RROHN EITHER SULFIDE OR OXIDE
6. KHAKI COLORED PHASE

ILMENITE IN LATHS. COMMONLY SHOWING STRONG FRACTURING. RARELY AS ANHEDRAL MASSES. RARE EXSOLUTION OF VERY SMALL AMOUNTS OF 4.
ILMENITE IS ABOUT 85 PETiCENT OF OPAOUES.
TROILITE IN IRREGULAR MASSES. COMMONLY CONTAINING SMALL IRON BLEBS. NO
PARAGENESIS POSSIBLE EXCEPY ILMENITE EARLY.
IRON AS ABOVE. ALSO. AS IRREGULAR SOMEWHAT ROUNDED DISCRETE GRAINS.
UNKNOWN BROWN IN IRREGULAR GRAINS. LATH LIKE GRAINS AND AS POSSIBLE EXSOLUTION
in ilmenite. rarely contalns exsolution lamellae on a fine scale of grey
PHASE. ILMENITE.
two grains of this phase. reflectivity appears between that of a sulfide and OXIDE. ISOTROPIC.
one small grain of khaki phase. next to ilmenite. weakly ansotropic.
FOLLOWING APPARENT COMPATIBILITIES SEEN.
I/ TR / FE
\(4 / 1\)
\(4 / T R / F E\)
\(6 / I\)
A FEW SMALL VEINS CONTAINING VERY FINE GRAINED I / FE / TROILITE. SUGGESTIVE OF SHOCK VEINS.

SAMPLE NOS. 12057.14 AND 12057.15 SECTIONS FRONDEL MICROGABBPCS THAT HAVE BEEN SEVERELY SHOCKED (SEE PHOTOGRAPHS). SHOWS granulation. bending and dislocation of tiin lamellae in plagioclase. etc. CRISTOBALITE PRESENT IN BOTH ROCKS. IN PART EUHEDRAL AND IN PART AS SKELETAL CRYSTALS. THE ACCESSORY ILMENITE iS SMALLER AND MORE EOUANT IN HABIT THAN USUAL.

SAMPLE NO. 12057.15 STANDARD THIN SECTION WILCOX COARSE GRAINED SUBDIABASIC TEXTURE. \(\operatorname{VITH}\) MUCH FRACTURING OF CRYSTALS (SHOCK). BUT VERY LITTLE DIFFERENTIAL DISPLACEMENT. CRYSTALS AND PLATES UP TO \(21 / 2\) MM LONG. SOME IN SUBRADIAL CLUSTERS.
APPROXIMATE MODE.
CLINOPYROXENE 45 PERCENT
PLAGIOCLASE 40 PERCENT
OPAQUE OXIDE 10 PERCENT
CRISTOBALITE OR TRIDYMITE 4 PERCENT
CLINOPYROXENE OCCURS IN LONG CRYSTALS. INTENSELY FRACTURED. SOME WITH STRONGLY DEVELOPED LAMELLAE TYINNING (FROM STRESS). COLOR ZGNED FROM VERY PALE BROWN at Centers to brounish red at edges. optic angle positive. variable o to 35 DEGREES. EXTERIOR ANGLE LARGE, ZAC NEAR 45 DEGREES OR GREATER. PLAGIOCLASE APPEARS TO BE CALCIC. PERHAPS AN70 TO AN901 EST. FROM RELIEF AND HI EXTERIOR ANGLES. CRYSTALS ARE VERY LONG, VITH BROAD LAMELLAE THINNING MUCH SHATTERED BUT NOT SEPARATED. OPAOUE GRAINS OCCUR IN LONG CROSS SECTIONS (PLATES) VERY DARK GRAY IN REFLECTED LIGHT (FLASHLIGHT ON UNPOLISHED SURFACE). (A FEW YELLOW REFLECTING SMALL masSes are scattered through the rockj.
CRISTOBALITE OR TRIDYMITE. MASSES OF STRONG NEGATIVE RELIEF AND VERY LOW VARIABLE BIREFRINGENCE ARE NOT UNCOMMON. THEY RANGE UP TO SEVERAL TENTHS OF a mM IN length and have geometrically straight sides in many cases. they have a very pale brown color. Surface texture is wrinkled. reticulated. reminisCENT OF CRISTOBALITE. SECTION ACROSS ONE MASS OF THIS MATERIAL ABOUT \(0.2 \times 0.3\) MM SHOUS INCLUSIONS OF PYROXENE AND OPAOUES.


Figure A-46. - Sample 12057-4 (NASA-S-69-61393).

SAMPLE NO. 12057.5
HARMON
STEREO MICROSCOPE EXAMINATIONS OF AN APPROXIMATE 1 CM3 CHIP. A HOLOCRYSTALLINE HIGHLY SHOCKED ROCK. MICROGABBRO.
MINERALOGY.
phases readily identifiable are described as follows.
1. GROUNDMASS MATERIAL. VERY FINE GRAINED. WHITE COLOR. WITH A SUGARY TEXTURE. SOME GRAINS LARGE ENOUGH TO BE SEEN UNDER \(4 X\) MAGNIFICATION aRE lath shaped. the groundmass material. on the whole. appears to have a poor to falr cleavage. a plagioclase feldspar. highly shocked causing the GRANULAR TEXTURE. A PLAGIOCLASE FELDSPAR 30 PERCENT.
2. MAJOR MINERAL PHASE PRESENT. GRAIN SIZE RANGING UP TO 1 MM. A BROEN GREEN COLOR. LARGER CRYSTALS SHOW GOOD CLEAVAGE. MOST GRAINS ARE HIGHLY FRACTURED. CLINGPYROXENE APPROXIMATELY 50 PERCENT.
3. SECOND MAJOR MINERAL PRESENT. VERY PLATY HABIT. WITH A BLACK COLOR. THESE GRAINS CROSSCUT ALL OTHERS AND THE PLATES RANGE UP TO 0.3 CM IN LENGTH. ILMENITE APPROXIMATELY 15 PERCENT.
4. ACCESSORY PHASE. COLORLESS. CLEAR. OCCURRING IN EQUANT GRAINS USUALLY VERY ANGULAR WITH A SEMICONCHGIDAL FRACTURE. ANORTHITE FELDSPAR APPROXIMATELY 5 PERCENT.


Figure A-47. - Sample 12057-5 (NASA-S-69-61395).

Sample 12057-6

SAMPLE NO 12057.17 THIN SECTION FRONDEL
COARSE GRAINED MICROGABBRO. VITH CLINOPYROXENE. ANORTHITE. ILMENITE. ABUNDANT CRISTOBALITE AND VERY LITTLE OR NO OLIVINE. A FEW GRAINS OF AN UNIDENTIFIED pale yellow mineral were observed. not pleochroic.

SAMPLE NOS. 12057.18 AND 12057.17 THIN SECTION
FRONDEL OBSERVATIONS ON CRISTOBALITE IN SAMPLES.
CRISTOBALITE IS ABUNDANT IN THESE MICROGABBROS. IT IS GENERALLY EUHDDRAL TO SUB hedral and ranges in grain size up to about 0.5 mm. the crystals were ORIGINALLY HIGH CRISTOBALITE THAT HAVE INVERTED TO A MICROGRANULAR aGGREGATE OF LOW CRISTOBALITE. THERE IS A CONSIDERABLE DEGREE OF PREFERRED ORIENTATION IN THE GRAINS OF THE INVERSION PSEUDOMORPHS. AS SHOWN BY THE NEARLY UNIFORM EXTINCTION BET甘EEN CROSSED NICOLS AND BY THE PARALLEL ALIGNMENT OF INDIVIDUAL SETS OF INVERSION TWINS. THE HIGH CRISTOBALITE CRYSTALS APPEAR TO BE OCTAheDrons flattened on a (1111) face. SOME CRYSTALS were hexagoreal in outline WITH LATERAL EDGES ALTERNATELY SLOPING UP AND DOWN.J LATERAL SECTIONS THROUGH these tabular crystals are elongateg generally with six edges (or facesj. TRIDYMITE 甘AS NOT IDENTIFIED WITH CERTAINTY IN THESE ROCKS ALTHOUGH IT OCCURS TOGETHER WITH CRISTOBALITE IN APOLLO 11 ROCKS. CRISTOBALITE ALSO WAS OBSERVED TO OCCUR IN SKELETAL CRYSTALS RESEMBLING FOUR LEAFED CLOVERS (SEE PhotographS OF THESE AND OF OTHER CRISTOBALITE CRYSTALSJ.


Figure A-48، - Sample 12057-6 (NASA-S-69-61406).

Sample 12057-7

SAMPLE NO. 12057.13 THREE CHIPS 12057.7 1.9 GRAMS HARMON
BINOCULAR MICROSCOPE EXAMINATION AND IMMERSION OIL GRAIN MOUNTS. THE CHIP IS HOLOCRYSTALLINE. WITH A GRANULAR TEXTURE. GRAINS OF ALL HINERAL PHASES PRESENT are generally equant with grain size ranging up to 0.2 mm. the chips all have a VERY FRESH LOOKING APPEARANCE. SMALL (0.1 TO 0.5 MMJ IRREGULAR CAVITIES (VUGS) are present in all of the chips but no increase in grain size of the minerals surrounding these cavities Is observed. one of these chips sent for AA CHEMICAL ANALYSIS. MINERALOGY.
the sample is basically composed of four mineral fhases. three primary phases AND ONE ACCESSORY PHASE.
1. A MILKY WHITE TO COLORLESS MINERAL. GENERALLY EQUANT TO LATH SHAPED. OCCURRING IN AGGREGATES. TWO POOR FAIR CLEAVAGES. THE M!LKY WHITE GRAINS ARE always smaller and more fractured than rhe clear. colorless grains. index of REFRACTION APPROXIMATELY 1.57. GRAIN SIZE UP TO 0.2 MM. EXCELLENT POLYSYNTHETIC TWINNING FELDSPAR (ANORTHITE) APPROXIMATELY 35 PERCENT.
A. A COLORLESS MINERAL. OCCURS AS PLATELETS IN PARALLELOGRAM AND
polygonal shapes. the base fleavage is excellent. grain size is generally LARGER THAN THAT OF THE FELDSPAP DESCRIBED ABOVE. RANGING UP TO 2.0 MM. INDEX OF REFRACTION LESS THAN 1.48. ISOTOPIC WITH ABUNDANT INCLUSIONS. (MAY BE A SHOCKED FELDSPAR. MORE ACIDIC THAN THE PURE ANORTHITEJ APPROXIMATELY 5 PERCENT. PRIMARILY OCCURRING IN THE VUGS IN THE ROCK NOT SEEN AT ALL IN THE GROUNDMASS. this may be a contaminant.
2. A HONEY YELLOW TO BROWN MINERAL. GENERALLY EOUANT GRAINS. GRAIN SIZE RANGES UP TO O.5 MM. SOME GRAINS SHOW A POOR/FAIR CLEAVAGE AND OTHERS HINTS OF A PRISMATIC HABIT. INDEX OF REFRACTION GREATER THAN OR EQUAL TO 1.71. MODERATE BIREFRINGENCE. EXTINCTION ANGLE APPROXIMATELY 35 PERCENT. CCLINOPYROXENE/PIGEONITEJ APPROXIMATELY 40 PERCENT.
3. A bLACK OPAQUE MINERAL. GRAINS ARE IRREGULARLY SHAPED. GRAIN SIZE RANGES UP TO 1.0 MM WITH MOST GRAINS ABOUT O.5 MM. MUCH SMALLER GRA INS OCCUR as inclusions in all the other mineral phases present. some grains have a PLATY HABIT. (ILMENITEJ APP\&ROXIMATELY 20 PERCENT.
4. A GREEN MINERAL. GRAINS ARE EQUANT WITH GRAIN SIZE AVERAGING ABOUT 0.5 MM. ONE GRAIN OBSERVED SHOWED ELONGATION INTO A PRISMATIC HABIT WITH THE LONG AXIS \(2 \times\) the OTHER aXIS. mOSt GRAINS have inclusions of the black opaoue MINERAL. FRACTURING IS SEMI CONCHOIDAL. INDEX OF REFRACTION GREATER THAN 1.71 (OLIVINE) APPROXIMATELY 5 PERCENT.

SECTION 120057.18 CHIP FROM ROCK 1 TO 6 IN DOCUMENTED BOX. M. R. GREENHOOD DECEMBER E. 1969
a medium fine grained helocrystalline rock caverage grain size approximately 1 MMJ WITH TRACHYTIC TEXTURE. COMPOSED OF

3. ILMENITE 7 PERCENT
4. LIGHT YELLOW GREEN ORTHOPYROXENE APPROXIMATELY 3 PERCENT
5. OLIVINE APPROXIIMATELY 2 PERCENT
6. CRISTOBALITE APPROXIMATELY 2 PERCENT
7. ACCESSORIES. RUTILE AND REACT. ZONES APPROXIMATELY 1 PERCENT
the clinopyroxene and the plagioclase are compositionally zoned.
OLIVINE IS COMMONLY FOUND AS CORES OF CLINOPYROXENE CRYSTALS WITHOUT A REAC. OF RIM. WHERE ORTHOPYROXENE IS HANDED IN PART BY CLINOPYROXENE AND IN PART BY plagioclase a complicated reaction zone is formed between both the pyroxenes and between orthpyroxene and plagioclase. the intergrowth includes a clear LOW BIREFRINGENT HIGH RELIEF GLOBULAR TO SAUSAGE SHAPED MINERAL WHICH GROWS IN the plagioclase and in the pyroxene.
THE HIGH RELIEF MINERAL IS ENCLOSED IN A LOW RELIEF AND BIREFRINGENT ZONE IN THE PLAGIOCLASE. A FIBROUS. FINE GRAINED. INTERGROWTH OF A HIGH RELIEF AND BIREFRINGENT MINERAL AND OPAQUES REPLACE ORTHOPYROXENE. CRISTOBALITE TO HAVE CRYSTALLINE FROM THE RELIEF LIOUID INTO WHICH THE LAST PLAGIOCLASE WAS GROXING alternatively it could be on solid state replacement growth. ONE LATH OF plagioclase appears to nucleate or and grow parallel to both sides OF a CLINOPYROXENE BLADE WITH INCREASING SODIUM CONTENT THROUGH TIME. LATHS OF CLINOPYROXENE TEND TO GROW FROM COMMON NUCLEATION CENTERS TO DEFINE SECTIONS of CRystallization. these nucleation points may have been crystals of olivine and ORTHOPYROXENE IN THE MELT. SIMULTANEOUS GROWTH OF PLAGIOCLASE ON THE CLINOPYROXENE PRODUCED LONG BLADES WHICH TEND TO DOMINATE LOCAL TEXTURE CUP TO 1 CM ACROSSJ. DIFFERENT NUCLEATION CENTERS HAVE DIFFERENT ORIENTATI ON PATTERNS. perhaps due to out effect. the boundary zone between the nucleaticn sectors has mORE COMPLICATED INTERGROYTHS OF CLINOPYROXENE AND PLAGIOCLASE AND SOME SHEARING AND RECRYSTALLIZATION ALSO PERHAPS A HIGHER CCNTENT OF CRISTOBALITE. CRISTOBALITE CONTAINS TINY SAUSAGE SHAPED RED BROWN HIGH RELIEF inclusion that may be rutile.

SAMPLE NO. 12057.18 HARMON
THIN SECTION EXAMINATION OF A CHIP OF 12057.17 UNDER THE PETROGRAPHIC MICROSCOPE.
the sample IS holocrystalline with a medium to mecium coarse grain size with FIVE MAJOR MINERAL PHASES PRESENT. SOME SMALL CAVITIES AND FRACTURES PRESENT.
1. PLAGIOCLASE FELDSPAR. GENERAL OCCURRENCE IS LATH SHAPED GRAINS WITH VERY IRREGULAR BOUNDARIES • OFTEN GRAINS ARE VERY MUCH ELONGATED IN ONE DIRECTION. MaNy OF the GRaIN BOUNDARIES OF the feldSpars are cut by all of the OTHER PHASES PRESENT. BUT IN SO\&A CASES FELDSPAR GRAINS ENCLOSE PYROXENE GRAINS. SOME OF MORE ELONGATE GRAINS RANGE UP TO OVER 1 MM IN LENGTH \(W\) ITH THE AVERAGE GRAIN SIZE BEING ABOUT O.S MM. MOST GRAINS SHOW TYPICAL FELDSPAR TKINNING AND DO NOT APPEAR TOO SHOCKED. NO PREFERRED ORIENTATION OF THE FELDSPAR GRAINS WAS NOTED.
2. CLINOPYROXENE . GENERAL OCCURRENCE IS IN EQUANT TO PRISMATIC GRAINS. MANY OF THE GRAINS SHOW MORE HIGHLY DEVELOPED CRYSTAL FORMS THAN THE FELDSPAR INDICATING AN EARLIER CRYSTALLIZATION. SOME GRAINS REACHING 1 MM IN SIZE ARE PRESENT. BUT THE AVERAGE GRAIN SIZE IS ABOUT 0.3 MM.
3. OPAOUE OXIDE (ILMENITEJ. GENERAL OCCURRENCE IS IN PLATY TO IRP.EGULARLY SHAPED OPAQUE GRAINS. THE LARGER BETTER DEVELOPED GRAINS ARE 0. 2 TO 0.3 MM LONG AND CUT ACROSS ALL OTHER PHASES PRESENT.
4. OLIVINE. A VERY FEW EQUANT. HIGHLY BIREFRINGENT GRAINS WERE OBSERVED. SEMI CONCHOIDAL FRACTURING. WITH GRAIN SIZE AVERAGING ABUUT 0.2 MM.
5. CRISTOBALITE. GENERALLY OCCURS AS BOTH INTERSTITIAL MATERIAL AND AS INDIVIDUAL GRAINS. LOWLY BIREFRINGENT. CHARACTERISTIC TWINNING AND GENERAL MOTTLED APPEARANCE. SOME LARGER GRAINS RANGE UP TO 0.3 MM.
TWO POINT COUNTS OF 500 POINTS WAS CONDUCTED WITH THE FOLLOWING RESULTS. NUMBER POINTS
\(\begin{array}{lr}\text { PLAGIOCLASE FELJSPAR } & 14 \\ \text { CLINOPYROXENE } & 252\end{array}\) OPAQUE 63
OLIVINE 13
CRISTOBALITE 17
VOID SPACES 10
PLAGIOCLASE FELDSPAR 131
CLINOPYROXENE 243
OPAQUE 60
PERCENTAGE

OLIVINE
60
33
CRISTOBALITE 24
VOID SPACES 12
29.0
50.4
10.3
2.6
3.5
2.0
26.2
48.6
12.0
6.6
4.8
2.4

SAMPLE NO. 12057.18 STANDARD THIN SECTION (FROM CHIP 7) WILCOX
THIS IS a COARSE GRAINED CRYSTALLINE ROCK WITH MUCH CLINOPYROXENE AND CALCIC PLAGIOCLASE. LESS OPAOUE OXIDE AND OLIVINE. AN UNKNOdN GREEN MINERAL IS PRESENT IN SMALL QUANTITY.
MODE (VERY APPROXIMATE)
CLINOPYROXENE 40 PERCENT
PLAGIOCLASE 30 PERCENT
opaque 15 PERCENT
OLIVINE 10 PERCENT
UNKNOWN GREEN MINERAL 3 PERCENT
CRISTOBALITE 2 PERCENT
UNKNOWN GREEN MINERAL AS SCATTERED STUBBY CRYSTALS HAS PALE BOTTLE GREEN TO pale yellow green pleochroism in thin section. possibly 2 Cleavages at about 90 DEGREES. PARALLEL EXTINCTION. STRONG POSITIVE RELIEF, STRONG BIREFRINGENCE (NEAR 0.04) AND OPTIC ANGLE 2V NEGATIVE. SMALL (LESS THAN 30 DEGREES). IT SHOWS REACTION IN CONTACT WITH CLINOPYROXENE AND PLAGIOCLASE. IN REFLECTED LIGHT (FLASHLIGHT) THESE CRYSTALS ARE PALE POWDERY WHITE. AS IF DECOMPOSING. ELINOPYROXENE IS MOSTLY IN LONG CRYSTALS SLIGHT BROWN REDDISH COLOR. PLEOCHROISM WEAK OR ABSENT. SOME FAINT ZONING OF COLOR. SOME BUNDLES AND ROSETTES OF THIN CRYSTALS IN PLAGIOCLASE. OF SEVERAL \(2 V\) ESTIMATES NONE WERE LOWER Than 40 DEGREES. SLIGHTLY HIGHER BIREFRINGENCE ON RIMS OF SOME CRYSTALS.
plagioclase elongate. not strongly euhedral. only milo progressive zoning CALCIC COMPOSITION (BETVEEN ANGO TO AN 9O).
OLIVINE NEARLY COLORLESS. PRESENT AS CORES AND RELICS. NON EUHEDRAL. VITH OVERGROWTHS OF CLINOPYROXENE.
opaque grains many elongate plates. dark gray color in reflected light gflash
LIGHTJ. THERE ARE A FEW SCAYTERED BRIGHTLY REFLECTING GRAINS. CRISTOBALITE NOT EXAMINED IN DETAIL.

SAMPLE 12057.19
OPAOUE:S
BRETT
1. ILMENITE
2. TROILITE
3. IRON
4. PURPLE BROWN PHASE
5. BLUISH PURPLE GREY PHASE

ILMENITE LATHS. SCARCELY FRACTURED COMPARED TO 12057.14. NO EVIDENCE
OF EXFOLIATION.
TROILITE. AS FOR 12057.14.
IRON. AS FOR 12057.14.
PURPLE BRO甘N. PROBABLY SAME PHASE AS (4) IN 12057.14. CHARACTERISTICALLY CONTAINS CORE OF BLUISH PURPI_E GREY. ONLY OCCURRENCE OF BLUISH PURPLE. THIS MAY BE ZONING. NO NEW PHASE OR EXSOLUTION. PHASES APPEAR TO GRADE INTO ONE ANOTHER. surely the same structure if not the same mineral.

I / TR / FE


Figure A -49. - Sample 12057-7 (NASA-S-69-61390).

Sample 12057-8

SAMPLE NO. 12057.8 SMITH
DIMENSIONS \(12.6 \times 10.08 \times 6.3\) MM COLOR. GREENISH GRAY SPECKLED. FRACTURED AND FRIABLE. PERHAPS FROM ARTIFICAL BREAKAGE. RECOGNIZABLE MINERALS FROM STEREO MICROSCOPE EXAMXMATION ARE OLIVINE 30 PERCENT. CLINOPYROXENE 40 PERCENT. PLAGIOCLASE 25 PERCENT. OPAOUES 5 PERCENT. OLIVINE OCCURS IN CLEAR OLIVE YELLOW GREEN APPROXIMATELY EOUANT CRYSTALS RANGING FROM. 25 TO 3.E MM. THE OLIVINE GRAINS CONTAIN TINY OPAOUE INCLUSIONS . 05 TO . 0\%J MM IN DIAMETER.
CLINOPYROXENE OCCURS IN CLEAR PALE CINNAMON BROWN CRYSTALS 0.6 TO 7.5 MM LONG. THE LARGER CRYSTALS POIKILITICALLY ENCLOSE OLIVINE AND THE OTHER MINERALS. PLAGIOCLASE OCCURS IN LATH L. IKE AND GRANULAR MASSES 0.6 TO 2.5 MM LONG MOSTLY CLEAR TO MILKY TRANSLUCENT. POLYSYNTHETIC TWINNING READILY VISIBLE.
opaque minerals are of at least tho types.
1. TINY GRAINS . 05 TO . 075 MM INCLUDED IN OL.IVINE AND
2. LARGER GRAINS UP TO 1 MM OCCURRING AS A MAJOR MODAL MINERAL.
one small area of the fragment shoys a tiny dark grey brovn glass splash about . 05 MM IN DIAMETER.


Figure A-50. - Sample 12057-8
(NASA-S-69-61 388).
Sample 12057-9

SAMPLE 12057.21
W. R. GREENHOOD

DECEMBER 6. 1969 OLIVINE GABBRO CHIEF DESCRIPTION
a holocrystalline eouigranular rock composed of
OLIVINE 45 PERCENT
CLINOPYROXENE 30 PERCENT
PLAGIOCLASE 20 PERCENT
OPAQUES 5 PERCENT
OLIVINE IS EUHEDRAL. SOME CRYSTALS HAVE CORES OF PYROXENE.
PYROXENE AND OLIVINE FORM aGGREGATE CLUSTERS WITH THE INTERVENING area filled WITH PLAGIOCLASE.
plagioclase is about an 64.
the overall texture appears envealed. no obvious zoning was seen in plagioclase OR PYROXENE. THE TEXTURE IS SIMILAR TO COMULATE TEXTURES IN THE STILL甘ATER. PYROXENE SHOWING TWINNING AND OR BINDING. OLIVINE CONTAINS NEGATIVE CRYSTALS. SOME OF WHICH ARE FILLED WITH FINE CRYSTALLINE INTERGROWTHS. SOME APPEAR EMPTY. THIS ROCK MAY BE THAT FRQM WHICH THE ANORTHOSITE WAS EXTRUDED.

SAMPLE 12057.21 HARMON
a 100 point count of the section was made with the following results.
PLAGIOCLASE 21 POINTS 21 PERCENT
CLINOPYROXENE 59 POINTS 59 PERCENT
OPAQUE OXIDE 7 POINTS 7 PERCENT
VOID SPACE 4 POINTS 4 PERCENT
OLIVINE 9 POINTS 9 PERCENT

SAMPLE NO．12057．21 STANDARD UNPOLISHED THIN SECTION WILCOX COARSE OLIVINE RICH．CLINOPYROXENE．PLAGIOCLASE GRANULAR ROCK． APPROXIMATE MODE．

OLIVINE \(5 S\) PERCENT
CLINOPYROXENE 20 PERCENT
PLAGIOCLASE 20 PERCENT
OP\＆OUE 5 PERCENT
OLIVINE HAS FAINT COLOR．BROHNISH YELLO甘 ON THIS SCOPE．HAS 2V APPROXIMATELY 90 DEGREES（SEVERAL OPT EX SECTIONS）．LITTLE CLEAVAGE．GOOD UNIFORM EXTINCTION． INCLUSION OF VERY DARK GLASS AND CRYSTALLINE MATERIAL．OFTEN SHO甘ING CRYSTAL FORM．CSOME OF THESE SHO甘 UP AS NEGATIVE CRYSTALS CONTAINING TRUE BPAQUE INCLUSION．USING REFLECTED I．IGHT（FLASHLIGHTJ．OTHER INCLUSIONS ARE OPAQUE OXIDE AND CLINOPYROXENE．
CLINOPYROXENE HAS FAINT COLOR．REDOISH BROYN．NOT MUCH HORE INTENSE THAN THE OLIVINE．EXCEPT ONE CASE OF DISTINCT PLEOCHROISM TO BROLNISH LAVENDER AT EDGE OF ONE CRYSTAL．SOME THINNING．HAS A．2V VERY SMALL（S DEGREES TO 30 DEGREESJ IN SEVERAL FAVORABI＿E SECTIUNS．VARIABLES IN SOME CRYSTAL．NO LARGE 2V OBSERVED．EXTINCT ANGLE LARGE（SO DEGREES AIC）．MODERATELY ZONED AS SEEN NEAR OPTIC AXIS SECTION．
plagioclase has broad tyin lamellae．some streaks of inclusions．otheryise OPTICALLY HOMOGENEOUS AND UNZONED．HAS POSITIVE RELIEF BUT NOT HIGH．AS SEEN ON THIS MICROSCOPE．HAS EXT．ANGLE LARGE．BUT NO STRATEGIC SECTIONS FOUND FOR AN CONTENT．WITHIN THE WIDE．LIMITS ALLOWED UNDER THESE CONDITIONS OF ILLUMINATION THIN PLAGIOCLASE MIGHT BE SOMEWHERE BETWEEN AN 60 AND AN 90. opaQue oxide has various forms．nearly equant to long


Figure A－51．－Sample 12057－9
（NASA－S－69－61403）．

SAMPLE NO. 12057.12 SMITH
ONE LARGER ( \(5.0 \times 4.4 \times 3.2 \mathrm{MM}\) ) AND THREE SMALLER (LESS THAN 2.5 MM) CHIPS. DARK GRAY BLACK VESICULAR ROCK PORPHYRITIC WITH SPHERICAL VESICLES RANGING FROM . 63 MM DOWN TO LESS THAN . 025 MM. THE LARGEST CHIP HAS ONE ROUNDED OUTER SURFACE WITH A PATCH OF CHALKY WHITE FELDSPAR THAT MAY REPRESENT AN EXPOSED OUTER SURFACE IN THE LUNAR ENVIRONMENT. THE CHALKY WHITE PATCH APPROXIMATELY 1.0 X 1.5 MM CONTAINS TINY AREAS OF MORE CLEAR PALE YELLOWISH CRYSTALLINE MINERAL.
ONE OF THE SMALLER CHIPS SHOWS A TINY GLASS LINED PIT.
ALL CHIPS CONTAIN PLAGIOCLASE AS PHENOCRYSTS OR XENOCRYSTS UP TO . 6 MM LONG. ONE PALE YELLOW OLIVINE PHENOCRYST APPROXIMATELY. 4 MM WAS REMOVED AND CHECKED OPTICALLY (SEE BELOW).
PETROGRAFHIC EXAHINATION OF GRAINS SHOWS THE PLAGIOCLASE (N GREATER THAN 1. SS)
TO BE XENOCRYSTIC IN A GROUNDMASS OF DARK BROWN GLASS (N GREATER THAN 1. S5).
FELDSPAR LATHS AND MINOR OLIVINE AND PYROXENE. PLAGIOCLASE SHOWS BOTH POLYSYNTHETIC TWINNING AND ZONING. THE GROUNDMASS MINERALS ARE LIOUIDOUS CRYSTALS OR MICHOLITE. NOT DEVITRIFICATION PRODUCTS.
optics indicate
OLIVINE - FO LESS THAN 80. PERHAPS ABOUT 70.
PLAGIOCLASE - AN ABOUT 65
GLASS - H GREATER THAN 1.57.
SAMPLENO. 12057.23 BRECCIACHIP WILCOX
this appears to be a breccia of several generations of clasts. healed and REMELTED TO VARYING EXTENTS. PREDOMINANT FRAGMENTS ARE CALCIC PLAGICCLASE. CLINOPYROXENE AND AGGREGATES OF SAME. IN SERIAL SIZE DISTRIBUTICN FROM ABOUT 1.5 MM DO甘N TO IRRESOLVABLE PARTICLES.

ONE PROMINENT CLAST ABOUT 4 MM DIANETER IS MADE UP CHIEFLY OF CALCIC plagioCLASE FRAGMENTS. IN THIS MASS IS ONE ROUNDED FRAGMENT OF SANIDINE ABOUT 0. 3 mM DIAMETER. IT HAS LOW NEGATIVE RELIEF. 2V NEGATIVE. ABOUT 20 DEGREES. AND LOW BI REFRINGENCE. ONE GOOD CLEAVAGE SHOWN. POSSIBLY a SECOND CLEAVAGE PRESENT. DEVELOPING IN THE PERIPHERY ARE SMALL MASSES OF HIGHER POSITIVE RELIEF AND higher birefringence than the host sanidine. and these resemble the preDOMINANT CALCIC PLAGIOCLASE OF THE ROCK. anOTHER CRYSTAL FRAGMENT NEAR EDGE OF SLIDE SHOWS MODERATE NEGATIVE RELIEF. LOW BIREFRINGENCE. FAR OFF CENTER FIGURE POSSIBLY NEGATIVE SIGN. (THE MODERATE NEGATIVE RELIEF ARGUES AGAINST SANIDINE FOR THIS FRAGMENTJ. ADDENDUM TO NOTE OF 12/9/69 ON THIS THIN SECTION.
in the same breccia fragment as the sanidine referred to already are several CLOTS OF STRONG NEGATIVE RELIEF. VERY LOW BIREFRINGENT MATERIAL CCRISTOBALITE/ TRIDYMITEJ IN WHICH ARE SET NUMEROUS STUBBY CRYSTALS OF POSITIVE RELIEF (PYROXENE). THESE MAY BE VUG FILLINGS. BUT THE ARRANGEMENT OF PYROXENE CRYSTALS IN SOME CLOTS IS REMINISCENT OF THAT IN GHOSTS OF QUARTZ XENOCRYSTS in some basalts.
FURTHER ADDENDUM. IN REGARD TO THE SILICA-RICH CLOTS MENTIONED IN MY NOTE OF DECEMBER 11. A FURTHER POSSIBLE ORIGIN TO BE CONSIDERED. AND ONE WHICH SEEMS mORE PLAUSIBLE than those 2 previously suggested. would be that they are RELICS OF SILICA-RICH GLASS FRAGMENTS IN THE BRECCIA. SUCH GLASS COULD liguify readily on reheating of the rock white the predominant calcic plagioClase and the scattered olivine afd pyroxene fragments remalned essentially UNAFFECTED. SUBSEQUENT SLOW COOLING YOULD RESULT IN THE FELDSPAR-TRIDYMITE MASSES OBSERVED.

SAMPLE NO. 12057. 23
CHAO
TRIANGULAR-SHAPED THIN SECTION COVERED. IT IS A BRECCIA EMBEDDED IN A RECRYSTALLIZED VESICULATED MELT.

VESICULAR DARK FINE-GRAINED GROUNDMASS WITH NUMEROUS FELDSPAR CHIPS BOTH ANGULAR AND ROUNDED. AND A LARGER FRAGMENT OF BRECCIA THAT IS RICH IN FELDSPAR. A FEW SMALLER ROUNDED BRECCIA FRAGMENTS ALSO INCLUDED. THE ABUNDANCE OF FELD-SPAR-RICH ROCK FRAGMENTS IS YGRTH NOTING.

THE VESICULAR DARK GROUNDMASS CONSISTS OF SMALL LATH-SHAPED CRYSTALS OF LOW BIREFRINGENCE PROBABLY FELDSPAR AND FINE-GRAINED MAT OF PROBABLY PYROXENE.

A FEW VESICLES 0.6 TO 1.4 MM ACROSS SPACED 1 TO ABOUT 3 MM APART. CHIP SIZE FROM ABOUT 20 MICRO UNITS TO 1.5 MM THE LARGE FRAGMENT IS \(5 \times 5\) MM. SEE MENTION OF SANIDINE (QUESTION) IN THIS BRECCIA BY WILCOX.

THE BRECCIA SEEMS EMBEDDED IN A VESICULAR GLASS WHICH HAS RECRYSTALLIZED. THE THIN LAYER OF GLASS AROUNG THE LARGE BRECCIA (OLDJ FRAGMENT IS A COHMON OCCURRENCE AMONG IMPACT-PRODUCED BRECCIAS.

THE ROUNDING OF SCME OF THE FRAGMENTS MAY HAVE BEEN PRODUCED PRIOR TO INCLUSION IN THE MELT SINCE SMALLER FRAGNENTS APPEAR TO RETAIN SHARP ANGULAR SHAPE.
the abundance cf gragments in the recrystallized glass is perhaps unusual. ONE TWINNED PLAGIOCLASE FRAGMENT SHOY LAMELLAR MICROSTRUCTURE OF PROBABLE SHOCK ORIGIN.

THE BRECCIA IS PROBABLY AN IMPACT BRECCIA. THE RECRYSTALLIZED GLASS : PROBABLY PRODUCED BY IMPACT. I FIND IT OIFFICULT TO ABSOLUTELY RULE CUT THi POSSIBILITY THAT SUCH PJLVERIZED ROCK CHIPS COULD NOT HAVE BEEN CAUGHT IN a melt MAGMATIC ORIGIN.

SAMPLE 12057.23 OPAOUES ROBIN BRETT
ROCK IS BRECCIA AND CONTAINS UNCOMMONLY LO甘 OPAOUE CONTENT. A FEW ILMENITE grains and metal blebs reminisient of metal in impactites.

SAMPLE NO. 12057.23 THIN SECTION FRONDEL
A POLYMICT MICROBRECCIA. ON THE WHOLE THE ROCK APPEARS TO BE MORE FELDSPATHIC THAN THE APOLLO \(1!\) miCROBRECCIAS. THE LATTER ALSO CONTAINED MORE LITHIC FRAGMENTS OF IGNEOUS ROCK TYPES INCLUDING BOTH GABBROIC AND BASALTIC TYPES AND also more glass. a fragment of a curious rock type was observed that contained ELONGATE TINY FELDSPAR CRYSTALS AND THAT MAY BE A DEVITRIFIED GLASS.
W. R. GREENWOOD DECEMBER 6. 1969 THIN SECTION 12057.23 VESICULAR CRYSTAL AND ROCK FRAGMENT PYROCLASTIC ROCK. SIMILAR IN APPEARANCE TO IMPACTITE FROM METEOR CRATER. ARIZONA.
THE MATRIX (A) OF THE ROCK IS A FINE INTERGROWTH OF CRYSTALS AND BRUWN GLASS PROBABLY PYROXENE, PLAGIOCLASE AND ILMENITE. THIS MATRIX VARIES IN GRAIN SIZE FROM ONE EDGE AT \(100 U\) OR SO TO THE INTERIOR AT CSOU.
PYROXENE FRAGMENTS COLIVINE MAY ALSO BE PRESENT / INSPECTION TOO BRIEF TO TELL\} CONSTITUTE ABOUT 20 TO 30 PERCENT OF THE FRAGMENTS IN THE MATRIX (A). PLAGIOClase fragments dominate. the plagioclase and pyroxene laths which are crystalLIZED OUT OF THE MATRIX (A) FORM AN INTERGROWTH WHICH IS SIMILAR TO THE MATRIX OF IMPACTITE FROM METEOR CRATER. ARIZ. MATRIX (A) INCLUDES A LARGE UNIT OF MATRIX (B) COMPOSED OF PLAGIOCLASE CRYSTAL FRAGMENTS AND ALMOST DEVOID OF PYROXENE OR OLIV!NE. MATRIX (B) CONTAINS A ROCK FRAGMENT OF ANORTHOSITE. MATRIX (B) ALSO CONTAINS ONE LARGE ROUNDED CPYSTAL FRAGMENT WHICH WILEOX indicates has paradine gptics. a large plagioclase crystal fragment in matrix (B) ACTS AS a NUCLEATION POINT FOR PLAGIOCLASE CRYSTALS WHICH GROY JUT INTO THE MATRIX. NO PYROXENE WAS OBSERVED IN A BRIEF INSPECTION OE THE CRYSTALS GROWING IN THE MATRIX (B). ALSO THE MATRIY. (B) LACKS THE BROWN COLOR OF MATRIX (a). the laree plagioclase CRystal has been sheared and granulated in place in MATRIX (B), SUGGESTING THAT MATRIX (B) WAS BROKEN UP BEFORE INCLUSION IN MATRIX (A). NO GLASS SPHERES OR GLASS FRAGMENTS WERE SEEN IN EITHER MATRIX (A) OR (B). ONE LARGE IRREGULAR VESICLE IN MATRIX (A) (MATRIX (B) NOT VESICULATED) IS FILLED WITH LOOSE LUNAR SOIL INCLUDING BROZN GLASS SPHERES.
the sanadine crystal fragment may be related to a last stage differentiate of THE ANORTHOSITE MAGMA YHICH may have previously been Differentiated from the CUMULATE TEXTURED GABBRO (12057.21).

SAMPLE NO. 12057.23
SMITH
THIN SECTION EXAMINATION OF THIS ROCK INDICATES THAT THE CHIP IS NOT REPRESENTATIVE OF The bhole sample. the rock represented by the thin section is a CURIOUS MIXTURE OF XENOCRYSTS AND ROCK FRAGMENTS IN A GROUNDMASS OF VESICULATED GLASSY ROCK THAT YAS CRYSTALLIZING TINY CRYSTALS OF PLAGIOClase and pyroxene YHEN OUEPSCHED.
many of the plagioclase xenocrysts shek melting relations yith the groundmass GLASS AND IN SOME THE FELDSPAR GLASS SHO甘S RECRYSTALLIZATIONS PRODUCTS.
THE ROCK SEEMS CLEARLY A PRODUCT OF SOME KINO OF BRECCIATION. FUSION. VESICULATION. PARTIAL RECRYSTALLIZATION. ASD QUENCHING IN THAT ORDER OR PERHAPS MIXING OF FUSED AND BRECCIATED MATERIAL. FURTHER PARTIAL FUSIUN OF FELOSPIAR AND PROBABLY PYROXENE. VESICULATION. PARTIAL RECRYSTALLIZATIGN AND OUENCHING. the general felations seeit in this rock are atypical of volcaric phenomena although it prozably cainivot be ruled out and are more suggestive of cohplex IMPACT HISTORY.


Figure A-52.- Sample 12057-11 (NASA-S-69-61405).

SAMPLE NO. 12059
FINES AND A ROCK CHIP - SGEEPINGS FROM BIO PREP.
THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE total Carbon analysis

\section*{SAMPLE 12060}

SAMPLE NU . 12060 PCTL C. FRONDEL DESCRIPTION OF FINES FROM TOTE BAG. THE FINES CONSIST OF PYROXENE ABOUT 40 PERCENT. ANORTHITE ABOUT 30 PERCENT. OLIVINE ABOUT 10 PERCENT OR LESS. GLASS ABOUT 20 PERCENT. LESS THAN 1 PERCENT tRIDYMITE IS PRESENT. THE AMOUNT OF GLASS IS MUCH LESS THAN IN THE FINES FROM THE APOLLO 11 SITE. THE GLASS RANGES FROM COLORLESS THROUGH PALE GREEN. PaLE YELLOW. TAN. BROYN AND DARK RED BROGN. ON THE WHOLE. THE GLASS AND ALSO THE BULK FINES are somewhat lighter in color than in the apollo 11 material. the pale YELLOW GLASS HAS AN INDEX OF REFRACTION BELOd 1.640 THE TAN AND DARKER COLORED GLASS IS OVER 1.640. THE COLORLESS GLASS IS NOT ABUNDANT. SOME GRAINS ARE JUST BELOW 1.570. BUT MOSTLY THE INDEX IS SOMEWHAT OVER 1.570. FELDSPAR GLASS SEEMS TO BE MUCH LESS ABUNDANT THAN IN THE APOLLO 11 SAMPLE. GLASS SPheres. DUKBBELLS. RODS. AND TEARDROPS ARE PRESENT IN ADDITION TO ANGULAR FRAGMENTS. AN UNIDENTIFIED DARK BROßN MINERAL. NOT PLEOCHROIC. WITH INDICES BELOW 1.570 WAS NOTED. MANY OF THE MINERAL GRAINS ARE WELL ROUNDED. AS IN A DETRITAL SAND OR DUNE SAND (SEE PHOTOS).
the following experiment was conoucted on this sample
E-SPEC ANALYSIS
RARE GAS ANALYSIS
X-RAY ANALYSIS

SAMPLE 12061

SAMPLE NO. 12061 CHIPS LARGEST CHIP WEIGHT EST. YT. 3 GMS.
SAMPLE NO. LARGEST CHIP
DIMENSIONS \(2 \times 2 \times 1 / 2 \mathrm{CM}\)
THIS IS A HOLOCRYSTALLINE MEDIUM FINE GRAINED MICROGASQROIC ROCK YITH OLIVINE. SIMILAR TO APOLLO 11 TYPE B WITH PROBABLY LESSER AMOUNT OF ILMENITE. THE TYPE OF BROZN PYROXEIVE APPEARS TO BE THE SANE AUGITIC CLINOPYFOXENE OF APGLLO I! SAMPLES IN COLOR APD HABIT.. FLAT AND SLIGHTLY CONVEX. DISK SHAPED. SPECKLED BRO甘NISH GREY. SUBOPHITIC TO GRANULAR TEXTURE. HOLOCRYSTALLINE, VESICLES pRESENT. the flat Surzface is a fracture surface several glass litied pits on CORVEX SIDE SURROURDED BY A HALO OF MILKY EHITE MATERIAL. FRACTURED FELDSPAR。 200 TO 500 U IN DIAi:ETER. Oit THE CONVEX. ROUNDED SIDE NOT Ois THE FLAT FRACTURED SIDE. AVERAGE GRAIN SIZE IS ABOUT 2 TO 300 MICRONS. LARGEST CRYSTAL ABOUT 1.5 MM. LARGER CRYSTALS PROBABLY PLAGIOCLASE AND ILMENITE. FRACTURED MILKY plagioclase on rounded convex surface. mineralogy. l. clear platy lath SHAPED TO IRREGULAR SHAPED CRYSTALS WHICH ARE PROBABLY PLAGIOCLASE. ABOUT 45 TO 50 PERCENT. PROBABLY POIKILITIC. 2. PALE BROWN TO CLEAR BROWN STUBBY PRISMATIC TO IRREGULAR CRYSTALS. PROBABLY PYROXENE SIMILAR TO CLINOPYROXENE OF APOLLO 11. ABOUT 40 TO 45 PERCENT. 3. BLACK PLATY AND HIGHLY REFLECTING MINERAL YITH LUSTROUS FRACTURES. PROBABLY ILMENITE 5 TO 10 PEREENT. 4. GREENISH YELLOW MINERAL IN SMALL AMOU!JTS ABOUT 2 TO 300 MICRONS ACROSS AND OCCURRING IN PATCHES. PROBABLY OLIVINE.

SAMPLE NO. 12061 SECOND LARGEST CHIP DIMENSIONS \(2 \times 1 \times 0.6\) CM CHAO ELONGATED YITH TRIANGULAR CROSS SECTION. SPECNLED BROWNISH GREY. SIMILAR TO the largest chip. vuggy IrRegular cavities exist with tabular plagioclase AND STUBBY PYROXENE PROTRUDING INTO THEM. THEY SOMETIMES COALESCE TO FORM OPENINGS 2 TO 3 MM IN LENGTH. ROUND HEMISPHERIC 1 MM IN DIAMETER. HAYE BEEN noted as surface features. there is the suggestion the surface area apound the PITS Which are as much as 1 mm in clameter. average crystal size is again about 2 TO 300 MICRONS. LONG PLATY CRYSTALS OVER 1 MM IN LENGTH HAVE BEEN KOTED. mineralogy. Quite similar to the mineralogy noted in the previous chip. preOOMINANTLY CLEAR PLATY PLAGIOCLASE FELDSPAR. BROWN CLINOPYROXENE. AND PLATY black ilmenite. accessory olivine is also present.

SAMPLE NO. \(12061 /\) THIRO LARGET CHIP DIMENSIONS \(1 \times 1 \times 0.4\) CM CHAO flat with some fracturing. also speckled brownish grey. similar to the LARGEST CHIP. ABUNDANT VESICLES. AT TIMES THEY COALESCE TO 1 TO 1.5 mm in LENGTH. IRREGULAR VUGS ARE AGAIN PRESENT UITH PRISMATIC AND PLATY BROKN PYROXENES ALONG WITH CLEAR PLATY PLAGIOCLASE IN THEM. NO PITS ARE OBVIOUS AND SO SUSPECTEO TO BE AN INTERIOR CHIP. VELL FORMED SHORT PRISMATIC PYROXENE CRYSTALS ARE PRESENT. AVERAGE GRAIN SIZE OF THE CRYSTALS IS ABOUT 100 TO 200 mICRONS. LARGE CRYSTALS ARE AS MUCH AS 1 MM. mINERALOGY. A LARGE GREEN YELLOW OLIVINE CRYSTAL ABOUT 0.8 MM IN DIAMETER WAS NOTED. OLIVINE AGAIN EXISTS AS AN ACCESSORY MINERAL. MINERALOGY IS AGAIN SIMILAR TO THAT OF THE LARGEST CHIP.

SAMPLE NO. \(12061 / F O U R T H\) LARGEST CHIP DIMENSIONS \(1 \times 0.8 \times 0.3 \mathrm{CM}\). CHAO flaf oblong shaped fragment. Similar to other chips. Similar texture. long lathLIKE plagioclase crystals aeout 1 mi in length appear poikilitic. no pits NOTED. AVERAGE GRAIN SIZE IS ABOUT 2 TO 300 MICRONS. MINERALOGY. SIMILAR. SAMPLE NO. 120612 SMALLEST CHIPS DIMEHSICNS ABOUT \(0.8 \times\) AGOUT \(0.7 \times\) ABOUT 0.3 ChaO COLOR SAME AS OTHERS. tEXTURE SAME AS OTHERS. VUGGY AND SIMILAR. ONE SURFACE PIT NOTED. LONG PLATY PLAGIOCLASE CRYSTALS OCCUR ABOUT 1 MM IN LENGTH. MINERALOGY. SIMILAR TO OTHER CHIPS.


Figure A-53. - Sample 12061 (NASA-S-69-61659).

SAMPLE NO. 12062 VEIGHT 787.7 GRAMS DIMENSICNS \(12 \times 8 \times 4\) CM SMITH this rock has the apfroximate shafe of an irregular flattened half deme. with PARTLY CONCAVE BOTTOM. ANGULAR BROKEN SIDE. A:ID RQUNDED TOP. COLOR IS MEDIUM GRAY TO LIGHT GRAY VITH WHITISH MOTTLING. SOHE OF THE WHITISH AREAS aRE haloes surround ing glass pits cnot abuirdant on this specimenj. other vhitish areas are simply spots of chalky feldopar that remaln after glass pits have ERODED AHAY. PART OF THE CONCAVE BOTTOH AND A PORTION OF THE BRCKEN SIDE are DARKER AND LESS MOTTLED ThAN THE REMAINDER OF THE ROCK AND MAY REPRESENT a BURIED OR OTHERHISE PROTECTED PART OF THE ROCK ON THE LUNAR SURFACE. CONCENTRIC FRACTURES SUBPARALLEL TO THE RGCK SURFACE APPEAR ON PART OF THE TOP AND BORKEN SIDE AiSD RESEMBLE EXFOLIATION FRACTURES. SOME OF THESE FRACTURES SEEM TO PENETRATE DEEPLY. R RADIAL SET OF FRACTURES CENTER OF THE EXFOLIATION SPHEROID AND SUGGEST THAT THE EHOLE SYSTEM IS IHPACT INDUCED.
Small vesiclies afd vugs are present but not abundant at viewifg scales. ONE SMOOTH YALLED VESICLE (APPROXIMATELY 3 TO \& MM) APPEARS ON THE BROKEN SIDE AND SHOWS BRIGHTLY REFLECTING CRYSTAL FACES OF FELDSPAR. TEXTURE IS BEST DESCRIBED AS OPHITIC TO SUBOPHITIC. WITH LARGER CRYSTALS IN VUGGY ARERS.
major minerals are cinnamon red to broypl pyroxente. feldospar. opaoues and olivine THE OLIVINE IS SPAR - BUT OCCURS IN LARGE CUP TO 7 MMJ CRYSTAL AGGREGATES. much of the concave eottoia side has fine textured hackly surface with strongly ADHERING DUST AAD SCATTEFEC AREAS OF GLASS SPLASH NOT FOUND ON TOP SURFACE. a FEW GLASS LIAED PITS OCCUR ON THE OUTER PERIPHERY OF THE CONCAVITY, BUT NONE MERE SOUND IN THE CENTRAL PART UITHIN AN AREA ABCUT 3.3 CM IN DIAMETER. IN the center of the concave surface is a suboued flat cone or mound about 1.2 Cm IN GIAMETER AND SEVERAL MM HIGH THAT FORMS THE FOCUS FOR A SUBTLE RADIAL FRACTURE SET.
It seems probably that this concave surface is actually an impact crater and THE CONCENTRIC AHD RADIAL FRaCTURE PATTERN ON ROCK'S OPPOSITE SIDE IS genetically related.
at least cne otrien lafge rock in the apgllo 12 return has one deep concave side (first rock loúiied at in f201). perhaps these ccincave sides have similar ORIGINS.
MORFHOLOGY. MACROSCGPIC
FLAT HALF DCUÍE. BOTTC:I SIDE PARTLY CGICAVE. EROKEN SIDE OF DOHE AMGULAR.
REMAINDER OF TOP RCU::DED. NEDIUIA GRAY TO LIGHT GRAY AIVD LHITISH HOITLED.
PROBABLY SUBOPHITIC TO OPHITIC. MEDIUM GRAINED LUNAR ROCK. COARSE TYPE A. NO LINEATIONS OBVIOUS. VESICLES FRESENT BUT NOT ABUNDANT AT THIS SCALE OF VIEWING. ONE LARGE SMOOTH WALLED VESICLE ON BROKEN SIDE (APPROXIMATELY 3 MM) CONTAINS BRIGHTLY REFLECTING CRYSTAL FACES. FRACTURES PRESENT BUT NOT ABUNOANT. ONE FRACTURE OF DOMICAL TOP AND BROKEN SIDE SHOWS CONCENTRIC EXFOLIATION FRACTURES. these seem to penetrate deeply into rock and are rssociated vith a radiai set CENTERING ON THE EXFOLIATION SPHEROID. NO SPLASHES NOTED ON TOP. SURFACE PITS PRESENT QVER DOMAL TOP AND SIDES BIJT SEEMINGLY NOO ABUNDANOH
APPROXIMATE MODES. OLIVINE LESS THAN 1 PERCENT
PYROXENE 50 PERCENT
FELDSPAR 40 PERCENT
opaque less than 10 PERCENT
pyñoxenes approximately equant
FELDSPAR LATH LIKE
opagues tabular to platy.
CRYSTALS LARGER NEAR VUGS. NO OBVIOUS ALTERATION.
terrestrial analogue. fine grained diabasic olivine bearing basalt.
SAMPLENO. 12062 VEIGHT 737.7 GRAMS DIMENSION \(10 \times 6 \times 4\) CM HARMON THE GENERAL SHAPE OF THE ROCK IS THAT OF \(1 / 4\) OF A SPHERE OR RATHER AN ELLIPSOID SUBSEOUENTLY. SOME OF THE CORNERS AND EDGES OF THE ROCK APPEAR TO HAVE ERODED
abay. the rounded surface of the rock has beathered to an extent that it appears like a small scale exfoliation dome. the color of the rock is a light MEDIUM GREY WITH AREAS OF THE SURFACE COVERED WITH SPLOTCHES OF A YHITE CCLOR. IN TwO PLACES THESE WHITE AREAS ARE ASSOCIATED WITH IMPACT PITS IN THAT THEY are shattered areas surrounding the craters to about one ciater olameter out FROM THE CRATERS. THESE OTHEP. WHITE SPLOTCHES NOT ASSOCIATED WITH PITS ARE PROBably Shatter areas underlying pits that have since been eroded ayay. one very NICE VESICLE ABOUT 2 mM IN DIAmeter IS PRESENT ON ONE SUnface OF the rock. THIS ROCK SHOHS A MODERATE AMOUNT OF FRACTURES CHARACTERIZED BY THE EXFOLIATION features. the density of pirs and vesicles is very low. the cbottomb concave SURFACE OF THE ROCK IS ALSO a FRACTURE SURFACE AND APPEARS ALSO TO BE AN exfoliation feature. the (topj Convex surface of the rock also appears to have a Shatter crust that is lighrer in color than the fresh surfaces of the rock WHERE EXPOSED ALONG EXFOLIATICN FRACTURES. LATH SPADED MINERALS AND A MINERAL WITH a metallic luster are ogvious in ground mass on a macroscale.
the follohing experiment was conducted on this sample
E-SPEC ANALYSIS
RARE GAS ANALYSIS
X-RAY ANALYSIS


NASA-S-69-61660
Figure A-54. - Sample 12062.

SAMPLE NO. 12063 WEIGKT 2426.0 G DIMENSIONS \(12 \times 8 \times 18 \mathrm{CH}\) FOSS
IRREGU!AR, SUZANGULAR TO SUBROUHDED, SGiiE PLAFAR SURFACES. ONE MAJOR CONCAVITY FORMED BY PLAINAR FRACTURES CGNE \(21 / 2 \times 5 \mathrm{CH} . \mathrm{L}\). LGHT TO AEDIUM GREY.
WEATHERED SURFACE VUGGY AND LIGHTLY PITTED. FRESH SURFACE SHO:iS OPHITIC textures ncnporphyritic. have some vesicles elongate in plane. most vesicles CONCENTRATED IN SINGLY PLANAR ZONE THAT INCLIJDES THE LONGEST AND SHORTEST AREA OF PIt. 1 Parallel vesicle plane. one set of 3 OR 4 approximately 30 degree TO THIS. ONE LARGE CAVITY BANGLED BY PLANAR FRACTURES. ONE SPALL (CONCENTRIC) ONE SPLASH 6 mM \(X\) I CM. aVERAGE SIZE. halo of Chalky feldsfar around glass SPLASH. TERRESTRIAL ANALOGUE DIABASE.

SAMPLE NO. 12063 LARGE ROCK FROM TOTE BAG
WEIGHT 2426 GRAMS
triangular cross section. CNE flat side.
GENERAL APPEARANCE - IT IS A MASSIVE SPECKLED. MEDIUM GRAY FINE-GRAINED
HOLOCRYSTALLINE ROCK WITH A BROWNISH TINGE. SLIGHTLY VUGGY。 CONTAINS TRUE
VESICLES 1.5-2.5 MM DIAMETER. WIDELY SCATTERED. THE VESICLES APPEAR TO BE more Concentrated on the flat side. forming funnels incicating a flat joint SURFACE FROM WHICH GASES ESCAPED PARALLEL TO THE FUNNE: AXIS (UPWARDS).

SURFACE FEATURES - GLASS PITS ABUNDANT FROM 0.1 MM TO ABOUT 1 MM IN SIZE. LINED WITH DARK GLASS. A FEW PER SOUARE CM ON ALL SIDES.
texture and grain size - mostly equigranular. in places plagioclase laths APPEAR IN SUBPARALLEL ARRANGEMENT BUT NOT PRONOLINCED.
GRAIN SIZE 0.2 TO 1 MM AVERAGE ABOUT 0.3 MM.
MINERALS - MEGASCOPIC
1. CINNAMON BROWN CL!NOPYROXENE ABOUT 45 PERCENT.
2. LATH-SHAPED AND EQUIGRANULAR CLEAR TO WHITE PLAGIOCLASE ABOUT 40

PERCENT.
3. Small platy opaoue ilmenite. widely scattered about 10-is percent.
4. GREENISH YELLOW OLIVINE. SOME ARE MICROPHENOCFYSTIC UP TO 0.6 MM

ACROSS ABOUT 2-S PERCENT. THE GREENISH COLOR IS OUITE PRONOUNCED.
SHOCK - THE ROCK IS LARGELY UNFRACTURED. HO EVIDENCE OF SHOCK.
REMARKS - THIS ROCK MAY BE a REPRESENTATIVE TYPE AND MAY BE CLASSIfIED AS A FINE-GRAINED ILMENITE MICROGABSRO SIMILAR TO APOLLO 11. THE COMPOSITION OF OLIVINE. CLINOPYDOXENE AND PLAGIOCLASE SHOULD BE ESTIMATED OR DETERMINED

SAMPLENO. 12063.5 POLISHED THIN SECTION IN 64-7950 CHAO TEXTURE - SUZGPHITIC

GRAIN SIZE - LATH-SHAPED PLAGIOCLASE UO TO 1.5 MM LONG STUBBY
PRISriS OF CLINOPYROXENE \(0.3 \times 0.6 \mathrm{MM}\) OLIVINE. AVERAGE 0.3 MM . MINERALS -
1. PALE GINE-BROHN CLINGPYROXENE - MORE ABUNDANT THAN PLAGIOCLASE. BIAX. ( + ). 2V 25-30 DEGREES THUS PIGEONITIC. SLIGHT WAVY EXTINCTION ESTIMATE[ ABOUT 45 PERCENT.
2. CLEAR PLAGIOCLASE. POLYSYNTHETICALLY THINiNED. EXTINCTION ANGLE IN

ZONE 1 (GIO) ABOUT 43 DEGREES. ESTIMATED AN 75 + ESTIMATED ABOUT 40 PERCENT.
3. OLIVINE - IN SEPARATE GRAINS. SONE AS CORES TO CLINOPYROXENE. BIAX. (-). VERY LARGE \(2 V\) ESTIMATFO ABOUT 2-5 PERCENT.
4. ILMENITE - PLATY. mOSTly \(0.1 \times 0.6\) mm opaque about 10 percent.
5. CRISTOBALITE - CLEAR. LOW INDEX. COMPLEX TWINNING. SIMILAR TO THE LOW CRISTOBALITE IN APOLLO I: MICROGABBRO. LESS THAN \& PERCENT.
6. DUSTY. HIGH RELIEF. HIGH BIREFRINGENCE MINERAL BIAX. (-) SMALL TO moderate 2v. Fayalite (Quesiign). occur near cristobalite.
the modal composition should be determined instead of estimates. the section REMARKS - CONFIRMS MEGASCOPIC DESCRIPTION AS AN ILMENITE MICROGABBRO WITH SUBOPHITIC TEXTURE. SOME OLIVINE AND TRACE OF CRISTOBALITE.


NASA-S-69-60610


NASA-S-69-60606

Figure A-55. - Sample 12063.

SAMPLE NO．12063．6 WEIGHT 4．5 GRAMS DIMENSIONS \(4.5 \times 3 \times 2\) CM FOSS （HAND SPECIMEN 12063 AND CHIP 12063.6 ］．THE ROEK IS IRREGULASLY SHAPED．SUB－ angular to subrounded．with several planar．subfarallel surfaces．and ene major CONCAVITY FORMED BY PLANAR FRACTURES（2．5 X 5 CM）．THE DIMENSICNS OF THE LONGEST．INTERMEDIATE AND SHORTEST AXES OF THE ROCK ARE 18 CM． 12 CM．AND 8 CM RESPECTIVELY．THE SHAPE IS ROUGHLy THAT OF A SMALL．PARTIALLY COLLAPSED FOOTBALL．
THE ROCK IS LIGHT TO MEDIUM GRAY IN COLOR．HITH MANY DARKER SPOTS CAUSED BY
 BOUNDED CONCAVITY SHOWS A SUBOPHITIC TO OPHITIC TEXTURE OF WHITE FELDSPAR LATHS INTERGRO甘N 甘ITH A BROWNISH GLASSY MINERAL．PROBABLY PYROXENE．
a Rather Striking feature of the rock is a planar zone of somewhat flattened VESICLES THAT INCLUDES THE LONG AND SHORT AXES OF THE ROCK．THE VESICLES ARE Flattened perpendicular to the zone and have an average long dimension of ABOUT 0．5 CM．THE REMAINDER OF THE ROCK IS RELATIVELY FREE FROM VESICLES． ALTHOUGH SOME SMALL（LESS THAN O．S CM）VUGGY CAVITIES ARE PRESENT THROUG：HOUT THE ROCK．
there appears to be one major fracture that coincides with the plane of VESICLES．A SET OF 3 OR 4 CLOSELY SPRCED FRACTURES CROPS OUT ON ONE SURFACE OF the rock．at an angle of about 30 degrees to the vesicle zene．one large cavity IN A CORNER OF THE ROEK IS BOUNDED SY PLANAR FRACTURES．AND ONE CORNER IS EXPOSEU BY a CONVEX OUTVARD SMALL FRACTURE．
THE ROCK EXHIBITS OX：E LARGE PATCH OF GLASS（G MM By 1 CM）That may be the BOTTOM OF A LARGE IMPACT PIT OR A GLASS SPLASH FROM ELSE甘HERE．THE THO MAJOR EXTERIOR SURFACES OF THE ROCK OTHER THAN THE SUBPARALLEL PLANAR SURFACES have ABUNDANT SMALL APPROXIHATELY 1 HM IMPRCT PITS．THE SUBPARALLEL PLANAR SURFACES ARE RELATIVELY FREE FROM PITS．THERE IS A DISTINCT tititish halo of CHALKY FELDSPAR ARGU！VD THE PITS AND AROU：UO THE GLASS PATCH．
THE ROCK IS AIJALOGGUS TO A TERRESTRIAL DIABASE OR FINE GRAINED GABSRC． THE CHIP has the shape of a rough hemisphere with one flattened side and a SLIGHTLY CONCAVE BASE．DIAMETER OF HEMISPHERE 4．5 CM．DIAMETER TO FLATtENED SIDE 3 CM．HEIGHT 2 CM．
THE CHIP IS LIGHT BROWNISH GRAY ON A FRESHLY BROKEN SURFACE AND SHOWS a SUB－ OPHITIC TEXTURE．THE ROCK CONTAINS SOME VUGS THAT APPEAR TO BE OF TWO TYPES． SOME ARE ANGULAR AND ABOUNDED BY CRYSTAL FACES OF PLAGIOCLASE FELDSPAR．OTHERS are more rounded and have crystals of feldospar．pyroxene．and ilmenite grobing INTO THEM．THE ILMENITE AND PYROXENE CRYSTALS SHOW GOOD CRYSTAL FACES IN THE VUGS．
the rock is made up of 1 1． 50 percent Glassy tabular crystals of plagioclase WITH AVERAGE SIZE 0．1 MM．2． 40 PERCENT LIGHT BROWN TO AMEER EQUANT CRYSTALS OF PYROXENE WITH AVERAGE SIZE 0.01 mM．3． 5 PERCENT BLACK mETALLIC blade like crystals of Ilmenite with average size o． 02 mm．4．less than 5 per CENT PALE GREEN GLASSY CRYSTALS OF OLIVINE WITH aVERAGE SIZE＇j． 9 mm． ROCK HAS A DEFINITE PORPHYRITIC TEXTURE OF OLIVINE PHENOCRYSTS IN A SUBOPHITIC GROUNDMASS OF PLAGIOCLASE．PYROXENE AND ILMENITE．

SAMPLE NO． 12063.6 STANDARD THIN SECTION WILCOX
COARSE GRAINED CLINOPYROXENE．OLIVINE．PLAGIOCLASE．ILMENITE ROCK． APPROXIMATE MODE．

CLINOPYROXENE 40 PERCENT
plagiaclase 30 PERCENT
OLIVINE 10 PERCENT
OPAQUE（ILMENITE） 13 PERCENT
UNKNOUN GREEN．TRIDYMITE．AND ACCESSORIES \(=7\) PERCENT
CLINOPYROXENE VARIOUSLY COLORED．MOSTLY PALE REDDISH BROWN．AS ILL FORMED
CRYSTALS．SOME OVERGROUN ON ANHEDRAL OLIVINE CORES．
plagioclase．long blades．calcic．twinned．

OLIVINE NEARLY COLORLESS．SOME EUHEDRAL．SOME AS CORES OF CLINOPYROXENE CRYSTALS OPAOUES LONG BLADES．NOT EXAMINED IN REFLECTING LIGHT． UNKNO甘N GREEN．PALE GREEN．HI RELIEF．HI 8IREFRINGENCE．MODERATE（MINUS） 2V．（FAYLITE）．THIS ASSOCIATIGN YITH THE TRIDYMITE AND SEVERAL COLORED ACCESSORY MINERALS．

SAMPLE NO． 12063.7 CRUSHED GRAINS VILCOX
LEMMON YELLO甘 CRYSTAL COLIVINEJ．
UNCALIBRATED LIOUIDS．2VX 85 LIEGREES PLUS／MINUS 5 DEGREES（OA FIGUREJ
NX 1．704 PLUS／MINUS ． 002
NY 1．726 PLUS／MINUS ． 002
NZ 1．744 PLUS／MINUS ． 002
NZ MINUS NX 0．040 PLUS／MINUS ． 004
MODAL ANALYSES OF ROCK 12063
a modal analysis yas made in re：flected light on polished thin section NUMBER 12063．5．SIX HUNDRED FORTY POINTS WERE COUNTED ON A O． 3 MILLIMETER GRID．A TOTAL MAGNIFICATiON OF 125 WAS USED FOR OBSERVATION．TRANSMITTED LIGHT WAS USED TO AID IDENTIFICATION OF NON－OPAQUE CONSTITUENTS．THE PHASES RECOGNIZED AND THEIR VOLUME PERCENTAGES FOLLO甘．

1．PALE YELLOK TO TAN．WEAKLY PLEOCHRJIC CLINEPYROXENE． 52.8 PERCENT
2．CLEAR PLAGIOCLASE．AN 78．BYTOWNITE BY MICHEL LEVY＇S METHOD． 28.0
PERCENT．
3．PALE YELLOW OLIVINE．9， 8 PERCENT．
4．PINKISH－BROWN BLADED ILMENITE． 5.5 PERCENT．
5．PALE GREEN UNIDENTIFIED MINERAL AND REACTION PRODLICES． 2.7 PERCENT． THIS MINERAL IS BIAXIAL－NEGATIVE WITH A MODERATE OPTIC ANGLE．BIREFRENGENCE IS AT LEAST 0．031．IT NORMALLY EXHIBITS A CLOUD OF REACTION PRODUCTS WHISH are at least in part glass．it is usually in close spatial relationship with CRISTOBAI．ITE．

6．CLEAR．CHARACTERISTICALLY FRACTURED AND THINNED CRISTOBALITE 1.1 PERCENT
7．TROILITE．0．1 PERCENT．
8．METALLIC IRON．LESS THAN 0．1 PERCENT．
a MODAL ANALYSIS YAS MADE IN TRANSMITTED LIGHT ON THIN SECTION 12063．6．ONE
thousand thirty one points on a 0．3 mm grid were identified and tabulated． a TITAL MAGNIFICATION OF ABOUT 157 WAS USED FOR OBSERVATION．THE PHASES RECOGNIZED ARE AS FOR THE MODAL ANALYSIS FOR SECTION 12063.5 EXCÉPT THAT THE OPAQUE MINERALS ARE UNDIFFERENTIATED．VOLUME PERCENTAGES ARE AS FOLLOKS．

CLINO－PYROXENE
PLAGIOCLASE（BYTOWNITE．AN 78）
OPAQUE PHASES
OLIVINE
CRISTOBALITE i．7 PERCENT
PALE GREEN．UNIDENTIFIED MINERAL AND REACTION PROCUCTS 1．S PERCENT
OARK INCLUSIONS IH FELDSPAR O．1 PERCENT

51．4 PERCENT
27． 0 PERCENT
：0．7 PERCENT
7．7 PERCEN

THE FOLLOWING EXPERIMENT WAS C：ONDUCTED ON THIS SAMPLE
E－SPEC ANALYSIS
RARE GAS ANALYSIS
TOTAL CARBON ANALYSIS
X－RAY ANALYSIS

SAMPLE NO． 12064 WEIGHT 1214.3 G CHAO
THIS IS a falrly COARSE GRaINED hOLOCRYSTALLINE GABBROIC ROCK wITh CRyStals MOSTLY 0．5 TO 1 MM ACROSS．EQUIGRANULAR TO SUBOPHITIC TEXTURE．CONSISTING ESSENTIALLY OF CLEAR PLAGIOCLASE．BROGN F IROXENE AND BLACK ILMENITE AND aCCESSORY MILKY WHITE CRACKLY LO甘 CRISTOßALITE（SAME APPEARANCE AS IN APOLLO 11 TYPE B ROCK）．OLIVINE LOGKED FOR BUT NOT F（IUND．A GOOD ROCK FOR BASIC MINERAL IDENTIFICATION．NO SHOCK EVIDENCE EXCEPT ARUUND GLASS PITS AND THE WH！TE CRUST ON ROUNDED SURFACES．。 SPECKLED BROWN\＆SH MEDIUM GREY．HOLOCR：STALLINE NEARLY EQUIGRANULAR ROCK HITH AN AVERAGE GRAIN SIZE OF 0.5 MM TO 1 rim WITH SOME AS LARGE AS 3 Him．VUGS FROM 1 TO 1.5 mM ARE PRESENT（MIAROLITICJ．THIN PLATY CLEAR CRYSTALS（PLAGIOCLASEJ AND BRO甘N PRISMATIC FYROXENE OCCUR IN THE VUGS．A FEW WIDELY SPACED FRACTURES ARE PRESENT．VIOELY SCATTERED GLASS PITS OCEUR ON SEVERAL SURFACES FRCH O．1 TO 1 MM IN DIAMETER．THE GLASS LINING IS EITHER A CLEAR TO PALE BROXN COLOR OR BLACK．BOTH OCCUR．EXCEPT FOR THE SURFICIAL CRUST There IS NO EVIDENCE OF SHOCK．MINERALOGY．1．Lath Shaped RECTANGULAR CROSS SECTION TO PLATY CLEAR PLAGIOCLASE IS THE mOST abundant MINERAL．APPROXIMATELY 45 PERCENT．2．BRO甘N STUBBY PRISMATIC TO IRREGULAR CLINOPYROXENE IS THE NEXT MOST AEUNOANT MINERAL．APPROXIMATELY 40 PERCENT． 3．BLACK PLATY ILMENITE IS ALSO PRESENT（S TO 10 FERCENT）．4．MILKY\＆HITE LUW CRISTOBOLITE IS ALSO PRESENT．5．A RARE ORANGE YELLOW MINERAL IS aLSO PRESENT
plagioclase
PYROXENE 45 PERCENT
oproue
CR：STOBALITE

40 PERCENT
5 TO 10 PERCENT
T

SAMPLE NO． 12084 WEIGHT \(12 \mathrm{i} 4.3 G\) DIMENSIONS 11 CM \(\times 8\) CM \(\times 6\) CM LOFGREN／HARMON THIS ROCK HAS A BLOCHY SHAPE WITH 甘ELL DEFINED CORNERS AND ANGLES ．A VERY ANGULAR ROCK シITH LITTLE CR NO ROUNDING．THE ROCK IS HIGHLY FRACTURED WITH three masor fractures cutting through the rock．one surface does show a little SURFACE ROUNDING AND A FE甘 IMPACT PITS（ASSUMED UP SIDEJ．NO OTHER SURFACES SHOW ANY IMPACT PITS．CNLY T甘O GLASSLINED PITS ARE PRESENT AND © © THE SLIGHTLY ROUNDED SURFACE．THE ROCK IS COURSE GRAINED CRYSTALLINE ROCK WITH A LIGHT GREY COLOR．PITS ON Thé up SURFACE Shob the thite halo．the roundeo（up）surface also has a lighter cast thinn the remalnoer of the rock（shatter crust）． PLAGIOCLASE FELDSPAR．EVE：H C：H A MACRO SCALE．IS THE PREDO：IIIERIT MINERAL OCCURRING IN TRACHYTIC AGEREGATES IN PLACES／GRAINS ARE EOUANT TO TABULAR IN Shape．a mineral yith a metallic luster．Ilmenite．is pressent．sut not agumoant． VUGS ARE PRESENT IN MCDERATE QURiltITY GITH CFYSTA！GROiith BEING LAREER IN THESE features．vugs are irregularly shaped with some being almost closed．the mineral protruding into the vugs appear to be ilmeniteg grain size ranges up to 3 m \(m\) for the plagioclase．and ilmenite laths range up to 5 mm．

SAMPLENO．12064．A ROCK FRONDEL
a hicrogabbro very similar to the coarser graineo microgabbro from the apollo 11 SITE．GRAIN SIZE UP TO 1 HM．POROUS OR VUGGY ON A SMALL SCALF KITH EUHEDRAL CRYSTALS OF ANORTHITE，PYROXENE AND ILMENITE PROJECTING INTO CAVITIES． PYROXENE BROWN TO YELLOYISH BROWN IN COLOR．A SECTION NEARLY PERPENDICULAR TO THE C AXIS SHOWED CONCENTRIC COLOR ZONING．GLIVINE SPARINGLY PRESENT aS PaLE YELLOW GREEN GRAINS．ANORTHITE IN PART GLASSY CLEAR．NOT MUCH EVIDENCF．OF SHOCK．

THE FOLLOWING EXPERIMENT WAS CONDUCTED CN THIS SAMPLE
E－SPEC ANALYSBS
RARE GAS ANALYSIS
RCL ANALYSIS


NASA-S-70-44454


NASA-S-70-44458


NASA-S-70-44455


NASA-S-70-44459

Figure A-56. - Sample 12064.

SAMPLE NO． 12065 DIMENSIONS \(11.8 \times 12 \times 9 \mathrm{CM}\) D．R．VONES
SHAPE．RECTANIGULAR PRISM WITH AN ASYMPETRIC TERMINATION（PYRAMIDAL）． COLOR．NEUTRAL（NS TO NB）YITH A TOI＇CH OF IO YR \(6 / 2\)（GSA ROCK COLOR CHART）． varlable color depending on the amount of glaze．
TEXTURE．COARSE．INDIVIDUAL CRYSTALS UP TO I CM LONG（PIGEONITE）．MANY ARE
5 MM LONG X O． 5 TO 1．0 MM 甘IDE．SMALLER EQUANT CRYSTALS PRESENT（ 0.5 TO 1 MM） PROBABLY PYROXENE．OPAQUES PRESENT．TEXTURE SUBOPHITIC 甘ITH PYROXENE LATHS． VUGS ARE PRESENT UP TO 1 CM ARROSS．
FABRIC．NO LINEATIONS．NO APPARENT ORIENTATION OF VUGS．
fractures．fractures ape related to present surfaces．
SURFACE FEATURES．NO OBVIOUS GLASS SPLASHES．WHITE CRUST COVERS MOST OF SURFACE．black agCregates are present on surfaces．large nluber of INDENTATIONS ON ALL SIDES．A GIRDLE APPEARS AROUND ROCK ORTHCGOINAL TO SMALL DIMENSIONS．ONE FACET HAS LESS PITTIHG．PITS HAVE HALOES．1． 3 mM average SIZE 0．j mM Qepth．there are 1 TO 2 PITS PER SOUARE CENTIMETER． mineralogy．

PYROXENE 70 PERCENT．OCCURS AS LATH LIKE PHENOCRYSTS ．I 0 MM \(\times 0.5 \mathrm{MM}\) （ \(10 \times 0.1\) MM YIGRE CCM：MON］．AND AS EOUANT ©O．5 MM）GRAINS IN GROUNDMASS． both pigecinte aitd subcalcic augite present．pigeonite hrs alpha less than 1．700．GAMiMA AEUUT I． 740.
aUGITE HAS ALPHA AEGU＇1．710．GRIMA ABOUT 1．745．THIS INDICATES FE／FE＋MG CF ABOUT 0．5 OR GREATER．
plagioclase 20 percent．lath shaped crystals intimately intergrorid with PYROXENE．

OLIVINE 1 PERCENT．CLEAR GREEN EOUANT GRAINS．ONLY SEEN IN POWDERED
GRAIN MOUNTS．NOT OBVIOUS IN HAND SPECIMEN ALPHA ABOUT 1．700．BETA ABOUT 1．720．GAMMA ABOUT 1．740．THIS INDICATES FE／FE＋MG OF ABOUT 0．35．
opalues 9 percent．bladed．probably ilmenite．
THERE APPEARS TO BE A CONCENTRATION OF DARK MINERALS TOWARD VUGS． TERRESTRIAL ANALOGUE．DIABASE．

SAMPLE NO． 12065 LARGE ROCK FROM TOTE BAG CHAO
SIMENSIONS ABOUT iz \(\times 10 \times 8\) CM ROUNDED RHOMBIC－SHAPED BLOCK．
general appearance－this is a massive medium gray fine－grained holo－ CRySTALLINE REEK WITH A LAVENDER BROWNISH TINGE．SLIGHTLY VUGGY．WITH RARE but true vesicles cless than 1 mm in oiameter）．although the surfacs is RGUNDED．DUE TE THE PREDOMINANT PLATY OR PRISMATIC HABIT OF THE MINERALS
 OF THE ROCK．

SURFACE FEATURES－GLASS（DARK）LINED PITS A FEy PER SQUARE CM UP TO 3 MM ACROSS ON ALL SIDES．YHITENING OF MINERALS DUE TO FRACTURING IS CHARACTERISTIC ON SUCH ROUNDED SURFACE．PATCHES OF GLASS SPlashes（GLOBULAR MASSES．DARK COLORED）ALSO PRESENT．

TEXTURE AND GRAIA：SIZE－PORPHYRITIC．SUBPARALLEL TO FAN－SHAPED OR STEP－ LADDER ARRANGEMENT OF GROUNDMASS（MOSTLY BLADED OR PEISMATIC－SHAPED CRYSTALS）． I．E．．TNED TO BE TRACHYTIC．THIS TEXTURE IS DISTINCT FROM THE MICROGABBRO 12063 OR THE OPHITIC TEXTURE CF DIABASE 12038．BASED ON THE TEXTURE ALONE．THIS ROCK IS THE FINE－GRAINED ECUIVALENT OF 12021.
MOST GRAINS ARE PLATY OR PRISMATIC \(0.05-0.1 \times 0.4-0.6\) MM．AVERAGE GRAIN SIZE LESS THAPH O． 3 MM．

MINERALS－MEGASCOPIC
1．LAVENDER OR PURPLISH BRO甘N PRISMATIC．PLATY CLINOPYROXENE ABOUT 45 PERCENT．

2．milky white to clear lath－shaped to sheaf́s alternating with the CLINOPYROXENES ABOUT \(\{0\) PERCENT．

3．BLACK．VITREOUS LUSTER ON FRACTURES．NARROY PLATY HABIT．ILMENITE ABOUT 10－15 PERCENT．


NASA-S-69-60584


NASA-S-69-60591


Figure A-57. - Sample 12065.

4．GREENiSh yello＇d Olivine aecut 2 percent（less than 2 percent）． SHOCK－No EVIDENCE OF Shock．fractures are of no special significance． REMARKS－THIS ROCK IS SIMILAR TO 12063 IN MINERAL CCMOOSITIJN EUT DISTINCT in texture．the sußparallel aind elqivoate habit ci the major minerals suggest that it is a phrt of a floh virit vinlike the micfiggnosro． BECAUSE OF ITS UNIOUE TEXTURE THIS ROCK IS OF PETRUGRAPHIC INTEREST，ALSO SUITABLE FOR BULK CHEMICAL COMPOSITION AND BLLK ROCK AGES．IT IS OF PADIICULAR interest in the origin of the texture and tire paragenesis of tye minerals． MINERAL COMPOSITION NOT DETERMINEU OPTICALLY．
THIS ROCK IS AN OLIVIAE－bEARING TITANIFEROUS baSalt with a Variolitic－ilke texture or a ney texture characteristic of cooling in a certain lunar ENVIRONMENT．

SAMPLE NO． 12065.1 SMITH．R．L．
DARK YELLOWISH BRO甘N HOLOCRYSTALLINE ROCK CHIP． \(15 \times 14.5 \times 5.7 \mathrm{MM}\)
Sawed face shows one smooth balled vesicle．I mm in diameter that opens on one
SIDE INTO a VUGGY AREA AriD OPEN mESH甘ORK OF GROUNCMASS PYROXENE／FELDSPAR CRYSTALS UP TO ． 75 MM LONG．THE ROCK IS PORPHYRITIC WITH LARGE PRISMATIC PHENOCRYSTS OF ZONED P！GECNITE SET IN A PECULIAP GROUNDMASS（SEE PHOTOSJ OF SUERAUIAL．STELLAP．AND CURVED RADIAL INTEPGROHTHS OF CLINOPYROXENE AND plagioclase．these intergrobith bundles iend to group in ophitic patterns． PIGEONITE PHENOCRYSTS 30 0／O．GROLND：HASS CLINOPYROXENE 20 O／O．PLAGIO－ CLASE 45 PERCENT．OPAOUEXS 5 PERCENT．OLIVIME 1 PERCENT． OLIVINE PIGEONITE
NB APPROXIMATELY 1.732
\(2 V=5\) DEGREES TO 10 DEGREES
NA GREATER THAN 1.732
R GREATER THAN \(V\)
NG LECS THAN 1.748
SAMPLENO．12065．1 THIN SECTION FRONDEL
the Climopyroxene in this rock is pigeonite．the \(2 v\) was oeserved to range FROM ABOUT S DEGREES UP TO ABOUT 12 DEGREES．A VARIATION IN \(2 V\) IN INDIVIDUAL CRYSTALS WAS GENERALLY OZSERVED．

SAMPLE NO．12065．6 POLISHED THIN SECTION IN 64．7952 CHAO TEXTURE－PORPHYRITIC．VARIOLITIC－LIKE． GRAIN SIZE－CLINOPYROXENE PHENOCRYSTS－THIN LONG ． 150 MM WIDE
4 MM LONG TO ． \(4 \times 3.0\) MM．
GROUNDMASS－ 10 MICROERAMS X 300 MICROGRAMS BLADES．
MINERALOGY－
1．CLINOPYROXENE PHENOCRYSTS－PALE PINKISH BROHN OUTER ZONE WITH CLEAR
InNER CORE．DISTINCTLY ZCNED CUSUALLY 2 CLEAp ZÜNES．MOST SHO甘 SMALL \(2 V\). SOME
THE INNER CGRE HAS 2V NE！if ZERO．THE GUTER ZONE \(2 V\) ABOUT 15 DEGREES．OTHERS THE CORE HAS \(2 V\) about 10 DEGREES AND GUTER ZONE \(2 V\) AbJUT 25 DEGREES．BIAX．（ + ；． THUS PREGOHIMANTLY PIEEGIITIC．
CLINOPYROXENE IN GROUNU：iAミS－VARIES FROM PARALLEL GROWTH ALTERHATING yITh Calcic plagioclase to sujparallel to fan－shaped．preogminrntly gine pale groyn COLOR．2V about 30 Degrees biax．（＋）．thus more suicalcic augite and pigeonite MIXTURE．

2．plagioclase－long bladed．polysynthetically twinned．orientation not SUITABLE FOR ESTIMATING COMPOSITION．SOMETIMES 2 OR SEVERAL BLADES EXTINCT TOGETHER．SLIGHTLY LONGER THAN THE INTERGROWTH PRISMATIC CLINOPYROXENE．

3．OLIVINE－AT LEAST HALF A DOZEN GRAINS OBSERVED．EQUANT．UP TO 0.5 mM
BIAX．（－）LARGE 2V．CLEAR．PHENOCRYSTIC．
4．OPAQUES－A．THIN PLATY UP TO 0.6 MM LCNG BUT ONLY 60 MICRO UNITS
WIDE．ILMENITE．
B．CUBIC OUTLINE．Of CUBO－OCTAhEDRAL OUTLINE－SPINEL
GROUP－CHROMITE．LESS CGMMON．
someone should measure the made -
REMARKS - THIS IS A PORPHYRITIC. OLIVINE BEARING (LESS THAN 1 PERCENT) Ilmenite basalt with a unioue texture. the surparallel phenocpysts suegest floy. the texture should be of interest to the petrographers. the amount of ILMENITE IS LESS THAN APOLLO 11 RCCKS. THIS TEXTURE IS UNIOUE TO APOLLO 12. NOT STUDIED WITH REFLECTED LIGHT.

SAMPLE NO. 12065.7 A THIN ૬ECTION OF A TOTE BAG SARIPLE HARMON A HOLOCRYSTALLINE ROCK WITH A GENERALLY APHANITIC GROUNDMASS AND PYROXENE PHENOCRYSTS. FOUR BASIC MINERAL PHASES ARE PRESENT. A CLINOFYROXENE. A plagioclase feldspar. an opaque oxide and olivine.
1. CLINOPYROXENE. OCCUPS AS BOTH PHENJCRYSTS AND GROUNDMASS MATERIAL.

THE LARGER GRAINS Riñge up TO 2 mM IN GRAIN SIZE. THESE PHENOCRYSTS ARE MOSTLY EUHEDRAL GRAINS THAT RESORPTION OR REMELTING EFFECTS AS SHOYN BY THE FACT THAT CRYSTAL BOUNUARIES ARE IRREGULAR AND MOST CROSS SECTIONS PRESENT SHOW ZONING. IN THE GROUNDiAASS IT OCCURS AS SLONGATE RADIATING CRYSTAL AGGREGATES. INTER GROWN WITH PLAGIOCLASE FELDSPAR. a TEXTURE INDICATIVE OF RAPID COOLING. MANY OF THE PHEHOCRYSTS OF CLINOPYROXENE SHCE A ZONED CROSS SECTION WITH THESE GROUNDMASS AGGREGATES OF CLINOPYROXENE AND FELDSPAR IN THE CENTER. PHENOCRYSTS ARE PIGEONITE.
2. PLAGIOCLASE FELDSPAR. OCCURS AS GROUNDMASS MATERIAL IN THO FORMS. A) STUBBY. LATH SPADED GRAINS. RECTANGULAR IN HABIT AND BJ RADIATING ELONGATE GRAINS INTERGRO甘N WITH THE A CLINOPYROXENE OF
the same hablt.
3. OPAQUE OXIDE. OCCURS AS PLATY AND IRREGULARLY SHAPED GRAINS. MOST GRAINS CUT ACROSS GRAIKS OF ALL OTHER PHASES. BUT SOME OF THE LARGER GRAINS TOTALLY ENCLOSE SỦiE SHALL FE:LDSPAR GRA!NS. OPAQUES APPEAR TO BE MORE AEUNDANT IN THIS ROCK than any otiter osserved to onte.
4. OLIVINE. OCCURS AS LARG? GRAINS UP TO I MM IN GRAIN SIZE. MOST GRaINS ENCLCSE SMALLER GRAINS GF THE OPAOLIE.
ROCK NAHIF. MI IVINE BFARIMI FIgEGNITE. ILHENITE BASALT
A 500 POINT COUNT OF THIS SECTION RESULTED IN THE FOLLOWING MODES.
PIGEONITE PHENOCRYSTS
CLINOPYROXENE GROUNDMASS
OPAQUE OXIDE
PLAGIOCLASE GROUNDMASS
OLIVINE
VOID SPACE
NUMBER POINTS

PERCENTALS
162

\section*{136} 63

115 13 11
32.4
27.2
12.6
23.0
2.6
2.1

SAMPLE NO. 12065.7 FINE: GRAINED SUT UNPOLISHED WILCOX
(FIELD 1.2 MM DIAMETER WITH IOX OBJECTIVE). THIS IS A COARSE PORPHYR!TIC ROCK. WITH IAANY LONG PHEROCRYSTS OF CLINCPYROXENE UF TO 2 MM LENGTH. A FEW OF OLIVINE (UP TO \(1 / 2\) MM). AND GLADES. ETC.. OF OPAQUES. GROUNDMASS IS ACICULAR BUNDLE AND ROZETTE INTERGROWTHS OF CLINOPYROXENE AND PLAGIOCLASE UP TO ABOUT 0.5 MM LENGTH AND ELOHGATE OPAQUES.

A STPKING FEATURE OF THE CLINOPYROXENE PHENECRYSTS IS THEIR STRONGLY EXPRESSED
ZONING. A CENTRAL PORTION OF SLIGHT COLOR AND LOW OPTIC ANGLE RIMMED BY PALE REDDISH BROWN PYROXENE OF MODERATE OPTIC ANGLE AND HIGHER BIREFRINGENCE THAN THAT OF THE CENTER. FROM THE CENTER OUT甘ARD THE OPTIC ANGLE INCREASES. FROM NEAR O DEGREES TO SAY 10 OR \(1: 5\) DEGREES AT ABOIST \(3 / 4\) OF The WAY OUT. Then RAPIDLY TO ABOUT 40 OR JO DEGREES IN THE RIM.
APPROXIMATE MODE.
PHENOCRYSTS ABOUT 40 PERC:ENT
GROUNDMASS SO PERCENT
CLINOPYROXENE 65 PERCENT
PLAGIOCLASE 20 PĒRCENT

OPAQUES 8 PERCENT
OLIVINE 5 PERCENT
CRISTOBALITE 2 PERCENT
LAVENDER MINERAL TRACE
CLINOPYROXENE (SEE ALSO AJOVE)
PHENOCRYSTS ELOiNGATE SOME CROSS SECTIONS ARE LOZENGE SHAPED ZONED. GROUNDmass Clinopyroxene are more stroidgly colored than rims of phenocrysts. in YELLOWISH BRONNIS. \(:\) IUES. OPTIC ANGLE ESTIMATED MODERATE. POSITIVE ON GNE CRYSTAL。
BIREFR!i!gENCE STILL HIGHER THAN PHENOCRYST RIMS.
PLAGIOCLASE APPEARS TO EE CALCIC BUT NO CLOSE ESTIMATE OF AN CONTENT MADE. IT IS COMMONLY PRESENT IN GROUNDMASS AS A GRAPHIC INTERGROITH GITH PYROXENE AND opalues.
opaOUE MINERAL OCCURS CHIEFLY AS PLATES HITH EiHEOPPAL TERMINATIONS. RARELY
GRADING INTG TRAMGI IICENT MEFP REN FPRIUN CGIOR ( A SEFARATE MINERAL).
OLIVINE OCCURS AS SCATtERED STUBBY CRYSTALS
CRISTOBALITE SCatterej GRAINS Interstitial to grojnoriass plagioclase ano CLINOPYROXENE.
LAVENDER MINERAL (SPINELJ IS PRESENT AS RARE SMALL PLATES. HIGH INOEX. LOW OR NO B!REFRINGENCE.

SAMPLENO. 12065.7 THIN SECTION FRONDEL
an unusual rock. Characterized by phenocrysts of figeonite with a relatively COARSE GROUNDMASS COitPOSED OF FAN LIKE TO RADIAL TO SUBPARALLEL aGGREGATES OF LONG PRISMATIC TO ACICULAR PLAGIOCLASE AND PIGEONITE. THE PIGEONITE IS VERY STRONGLY ZONED. THE TEXTURED RELATIONS INDICATE RAPID CRYSTALLIZATION DURING THE CLOSING Stages. a similar but much less marked texture was noted in 12057. 19 SEE PHOTOGRAPHS. ROCK IS A PIGEONITE BASALT.
the following experiment was conducted on this sample
E-SPEC ANALYSIS
Rare gas analysis
total carbon analysis
X-RAY ANALYSIS

SAMPLE 12070

SAMPLE NO. 12070.0 WEIGHT. 1102.0 GRAMS HAFMON
CONTINGENCY FINES WILL NOT BE EXAMINED DURING PET TO PREVENT CONTAMINATION.
the following experiment was conducted cin this sample
E-SPEC ANALYOIS RARE GAS ANALISIS
X-R̃AY ANALYSIS

SAMPLE 12071 DECEMBER S. 1969 WONES
SEpARATED THESE CHIPS INTO DAUGHTER SAMPLES.
12071 FINES IN CAN 3429 . 89 GRAMS
12071.6 MICROSRECCIA CHIPS IN CAN 520203 2.08 GRAMS
12071.3 BASALT SCORIA IN CAN 31 0171 3.55 GRAMS
12071.4 OLIVINE BASALT IN CAN 510172 1.15 GRAMS
12071.5 CHIHUAHUA SPOOR IN CAN 551 0151 1.38 GRAMS

SAMPLE NO. 12071.6
three chips. all have IRREGULAR polyhedial shapes.
LARGEST. \(1.5 \times 1.0 \times 0.7 \mathrm{CM}\)
MIDOLE. \(\quad 1.0 \times 1.0 \times 0.7\)
SMALLEST. \(0.5 \times 0.5 \times 0.7 \mathrm{CM}\)
NEUTRAL (N7) WITH WHITE SPECKS (N9). FRAGMENTAL. LARGEST ROCK AND MINERAL FRAGMENT 2 MM IN DIAMETER. PLAGIJCLASE/PYROXENE ROCK DOMINANT TYPE. OLIVINE agGregates and opaques observed. Glass spheres also seen. Chips too small fer MACROFABRIC. NO FRACTURES OBSERVED. EXEEPT FOR BPECCIATICN OF CLIVINE AND plagioclase. pits and glass adhering to surfaces. glass. plagioclase. pyroxene OLIVINE AND OPAOUES. TERRESTRIAL ANALOGUE. MICROBRECCIA.
MICROBRECCIA. LARGEST FRAG:AENT 2 MM DIAMETER. PLAGIOCLASE/PYROXENE DOMINANT ROCK FRAGMENTS. OLIVINE, OPAQUES GLASS SPHERES ALSO OBSERYED. PITS AND GLASS ADHERING TO SURFACE. VERY SMALL CHIPS.

SAMPLE NO. 12071.3 DIMENSIONS \(1.7 \times 1.5 \times 1.3 C M \quad\) VONES
ROCK PLACED IN CAN SI 0171. IRREGULAR LUMP. NEUTRAL (NT) GKAY. VESICULAR. LARGE (! CM) COALESCING VESIELES UITH POLYHEDRAL SHAPES. FINE GRAINED CRYSTAL LINE LESS THAN 0.1 MM GROUNDMASS WITH O.1 MM CIRCULAR VESICLES. NO FRACTURES OBSERVED. MAJORITY OF SURFACES FRESH. SOME SHATTER ZONES. GLASS AND P!TiING on one face.
mineralogy. flagioclase ang pyroxene. nothing else large enough to see. no ALTERATION GF CRYSTALS IN VESICLES.
terrestrial analogue. basalt sceria.
BASALT SCORIA. LARGE COALESCING POLYHEDRAL VESICLES. FINE GRAINED (LESS THAN . 1 MMJ GROUNDMASS. NO FRACTURES. MOST FACES FRESH. GOOD VOLCANIC TEXTURE.

SAMPLE NO. 12071.4 DIMENSIONS \(1.0 \times 1.0 \times 0.8 \mathrm{CM} \quad\) WONES
PLACED IN CAN 51 0172. IRREGULAR LUMP. NEUTRAL GRAY (N2). VUGGY. FINE GRAINED LESS THAN 0.1 MM GROUND MASS PGRPHYRITIC. NO LINEATION. VUGS MAY bE CLUSTERED. NO FRACTURES OBSERVED. PITS. GLASS SMEARS. SHATTERED ZONES ON SURFACE.
MINERALOGY MODE. GROUNDMASS 90 PERCENT
OLIVINE PHENOCRYSTS 10 PERCENT
OLIVINE. EUHEDRAL EQUANT 0.2 MM GRAINS.
terrestrial analogue. olivine gasalt.
SAMPLE NO. 12071.5 DIMENSIONS \(2.0 \times 0.7 \times 0.8 \mathrm{CM}\) DEUS EXMACHINA LONG IRREGULAR LUMPY (CHIHUAHUA SPCCR). LIGHT GRAY (N8). HIGHLY IRREGULAR. VESICULAR. FINE GRAINED. COARSE GRAINED. GLASSY. IN SHORT. A REAL MESS. SCOKIACEOUS WITH CRYSTALS IN CAVITIES. GLASSY LAYERS. ADHERING DUST. VESICLES APPEAR POLYHEDRAL. NO FRACTURES OBSERVED. ADHERING DUST. NONE OF TYPICAL LUNAR MATERIAL.
mineralogy. mgoe ridiculous. clear platy crystals in vesicles. may be TRIDYMITE. 0.2 HIM DIAMETER.
TERRESTRIAL ANALOGUE. LITHOPHYSAE. COPROLITE. BRECCIATED SCORIA. YOU PICK IT LaRGE CRYSTALS IN CAVITIES. may CONTAIN TRIDYMITE.


Figure A-58. - Sample 12071.

SAMPLE NO. 12072 EEIGHT 103.6 DIAENSIONS \(5 \times 3 \times 2.7 \mathrm{CM}\) LOFGREN AN EGG SHAPED RED IUM GRAY IGAEOUS APPEARIRG VUGGY ROCK. THE SURFACE IS SLIGHTLY PITtED aND ShO甘S a SUfface thitenling presuradely related to chalky rILDSPAR CRYSTALS ON SURFACE. THE VUES ARE SUBROUVDED AND LINED WITH CRYSTALS OF PYRUXENE AND OLIVINE. THE LATTER BEING RARE. THE VUES RRE RANOGiHy ORIENTATED AND IRREGULAPLY QISTR!quTEG TH:ROUCHOUT THE RECK. FFACTURES ARE FE甘 and parallel the surface. pits are glass litied nil ramge from 0.5 TO 1.5 mm IN DIAMETER. MOST HKVE hRLOES GF Hhit TE MATERIAL. SOHE ARE AT THE SURFACE aND SOME PITS STILL BOTTOM BELOW THE SURFACE LP TO \(1 / 2\) MM DEEP. DENSITY IS SMALL aND ABOUT SAME ON BOIH SIDES APPROxIMATELY 1/CM2. OLIVINE IS ABU:YDANT 5 TO 10 PERCEN:i. PLAGIOCLASE AND PYROXENE BOTH OBVIGUS. PYROXENE IS HONEY GROWN. ILMER.ITE IS NOT OBVIOUS.


NASA-S-69-61743


NASA-S-69-61740


NASA-S-69-61756


NASA-S-69-61748

Figure A-59. - Sample 12072.

SAMPLE 12073
SAMPLE NO. DIMENSIONS \(10 \times 6 \times 6 \mathrm{CM}\) LOFGREN
NO VESICLES EXCEPT IN FRAGMENTS. FEW FRACTURES. RANDOM FRACTURE ORIENTATION.
MUCH GLASS ON SURFACE.
IS A. MEDIUM GRAY RECTANGULAR mODERATELY ROUNDED BRECCIA OR TYPE C ROCK. THE COLOR OF A FRESHLY BROKEN SURFACE IS ONLY SLIGHTLY LIGHTER THAN ORIGINAL SURFACE the surface is pitted and has glass coating. the fits are glass lined and SHALLOW. THEY RESEMBLE THE PYTS ON CRYSTALLINE RX MORE THAN THE PITS ON the bRECCIAS IN the apollo 11 ROCKS. SOME EVEN have Slight haloes. the surface DENSITY IS REASONABLY EVEN OVER THE SURFACE APPRCXIMATE 2 TO 3 CM2. THE ROCK has large areas of vesicular glass splasi that appears to be a coating. another area of glass separate from the large splash has more the appearance of eeaded SOLDER WITH RADIATING FRACTURES AND RIDGES FROM THE GLASS. THE LARGE GLASS COATING SHOULD be COLLECTED AND PROBED. THERE ARE NO I INEATIONS AND FRACTURES are mogerately abundant and randomly orientaied.
THIS BRECCIA IS HARDER THAN THE AVERAGE APSLLO 11 BRECCIA AND MOST SIMILAR TO APOLLO 11 BRECCIA 1005 WHICH APPEARS TO BE BAKED. THE CRYSTALLINE FRAGMENTS are mostly vesicular and fine grained. some are coarse grained and vuggy. fey OLIVI:IE PICH FRAGMENTS WERE Oß̉SERVĒD.
ROCKS 12073 AND 12074 ARE PARTS OF THE SAME ROCK. I RECOMMEND THiAT WE COMBINë the numbers to 12073 and make the pieces one rock number.

THE FOLLOWING EXPERIMENT WAS CONDUCTED ON THIS SAMPLE
E-SPEC ANALYSIS
RCL ANALYSIS


Figure A-60. - Sample 12073.

SAMPLE NO． 12075 WEIGHT 232.5 DIMENSIONS \(8.5 \times 5 \times 5 \mathrm{CM}\) ．D．R．VONES SHAPE．TFIIANGULAR PRISM WITH PROJECTION AT ONE END．ROUNGED EDGES ON ONE END．EXTENDED CORNER ABCUT TO BREAK OFF．
COLOR．NEUTRAL GRAY NS TO NG GSA ROCK COLOR CHART．
TEXTURE．VUGGY．FINE GRAINED（LESS THAN O． 1 MM GROUNOMASSJ PORPHYRITIC．
EUHEDRAL OLIVINE PHENOCRYSTS（O．2 MM）IS A GROUNDMASS UOMINATED BY PLAGIJCLASE
AND PYROXENE．EUHEDRAL CRYSTALS OF PYROXENE AND PLAGIOCLASE（O． 4 MM）
ARE IN VUGS．VUGS ARE CLUSTERED AND RANGE FROM 2 TO 7 mM IN DIAMETER．
fabric．NO LINEATIONS．VUGS tend TO be in a planar mass．falRly abunuant 5 to
10 PERCENT．
FRACTURE．FRACTURE ON EDGE OF POINTED PROJECTION（SEE ABOVE）．ORIENTATION
RELATED TO PRESENT SURFACES OF RLOCK．
SURFACE FEATURES．ONE SIDE FFESH．LGNG SIDES ROUNDED，COVEREO bITH SHATTERED material．pitted bith scife halees．surface features not notable．
\begin{tabular}{ll} 
PLAGIOCLASE & 50 PERCENT \\
PYROXENE & 30 PERCENT \\
OLIVINE & 20 PERCENT
\end{tabular}

OLIVINE UVE 20 PERCENT
MINERALOGY．OLIVINE（ 20 PERCET－；．EUHEDRAL．GREEN．TABULAR．PHENIOCRYSTIC． BUT ALSO IN VUGS．OPTICS．（WILLOX \(\because\) OND WONES）ALPYiA ABOUT 1．695．BETA ABOUT 1．720．AND GAMMA ABOUT 1．740．FE／FE＋MG ABOUT 0．j0．X RAY．（w．8．NANCE） 130 D SPACING INDICATES 0．45 FE／FE＋MG．DISCREPANCY DUE TO O．OS CA．VERIFIED BY OES（ROSS TAYLOR）SI．MG GT FE GT GT CA GT GR MN．TI．AL．NI．ZR NOT DETECTED． PLAGIOCLASE 550 PERCENTJ．LATH SHAPED．WHILE STRIATED．SUBOPHITIC IN GROUNDMASS．LARGEST LATH 0.2 mm．VELL SHAPED IN VUGS．GAMMA LESS THAN 1.586 （WILCOX）

PYROXENE（3O PERCENT）．EQUANT TO LATH SHAPED．OPTICS（WILCOX）alpha about 1．700．BETA ABOUT 1．705．GAMMA ABOUT 1．725．THIS WOULD INDICATE FE／FE MG OF ABOUT 0．50．UNCOLORED PYROXENE HAS SLIGHTLY LOWER GAMMA． OfaQues（LESS than 1 PERCENT）．SOME ILMENITE LAMELLAE．LARGEST GRAIN IN VUGS CONTAIN COARSER CYFSTALS．ALL ARE PRESENT IN VUGS．BUT OLIVINE CONTENT IS LOWER．MORE OPAQUES IN VUGS． terrestrial analogue．olivine basalt．
SPECIAL RECOMMENDATION．VUGS SHOULD BE PRESERVED FOR SINGLE CRYSTAL WORK． Small opaoće octahedra should be identified．they could de magmetite．this WOULD BE IMPORTANT IN DETERMINING WHETHER ANY LATE STAGE OXIDATION TOGK plice． CRYSTALS SHOULD BE PRESERVED BEFORE THEY ARE LOST．

SAMPLENO． 12075 CONTINGENCY BAG CHAO
WEIGHI 232．5 GRAMS DIMENSIONS \(8 \times 5 \times 4.5 \mathrm{CM}\) LOAF OF BREAD SHAPED GENERAL A．PPEARANCE－THIS IS A MEDIUM GRAY。FINE－GRAINED．VERY VUGGY．HOLO－ CRYSTALLINE ROCK WITH A LAVENDER TINGE．IT IS SIMILAR TO 12055 IN APPEARANCE． SURFACE FEATURES－TOP ROUNDED SURFACES COVERED WITH MANY SMALL GLASS LINES PITS．THE FLAT FRACTURE SURFACE OR BASE IS FREE OF GLASS PITS．WITH VUGS UP TO 0．8 CM．IN ONE QUADRANT OF THIS FLAT SUKFACE．VESICLES NOT FOUNG． TEXTURE AND GRAIN SIZE－SLIGHTLY TRACHYTIC．PORPHYRITIC．SIMILAR TEXTURE AS 12065 EXCEPT THIS ONE IS MORE PORPHYRITIC．
the Greenish yellow olivines are coafser and phenocrystic cup to immu．the LAVENDER CR PURPLIGH BROWN CLINOPYROXENE OCCIIRS AS LONG PRISM CUP TO 1.8 MM． IN THE VUGS．
mineralogy－megascopic
1．GREENISH YELLOH OLIVINE．PHENOCRYSTIC．COMTAINS DARK OPAOUE INCLUSIONS SOME ARE BEAUTIFLL OCTAHEDREA（SPINEL GROUP。 CHECK CHOOMITE）．ABGUT \(30+0 / 0\) ． 2．LAVENDER ERO甘N PRISMîT IC CRYSTALS OF（YELLO甘ISH COREJ CLiMOPYROXENE WITH BUNCHES OF RADIATING PRISMATIC CRYSTALS ALONG THE LARGER PHEFIOCRYSTIC CLINGPYRCXENE．ABOUT SO PERCENT．TAE YELLOWISH CORES ARE PREBAELY PIGEONITE． 3．CLEAR PLAGIOCLASE．INTERGROUN YITH SMALL CLINOPYROXEIIE BLRDES．ABOUT 15 PERCENT．


NASA-S-70-44018

NASA-S-70-44023



NASA-S-70-44020


NASA-S-70-44015

Figure A-61. - Sample 12075.
4. platy thin black ilnenite. also parallel sheaf grouth gith either plagioclase or clinopyroxene. about 5 percent.
5. SMALL (UP TO 100 MILRCGRA:AS) CCTAHEQRAL OPAQUE SPINEL - CHROMITE. SHOCK - NO EVIDENCE. FRACTURES NOT IMPORTANT.
REMAFKS - This is a Cumulative olivine rich rock (picrite basaltu similar TO 12065 IA: TEXTURE. EXCEPT THE OLIVINE CONTENT, VUGGY. NICE CRYSTALS OF CHROMITE. OLIVINE AND CLINOPYROXENE CAN BE PICKED OUT FOR DETAILED MINERALOGICAL AND X-RAY CRYSTAL STUDIES.
ROCK MAY BE CLASSIFIED AS SIMILAR TO A PICPITE BASALT. THE AMOUNT OF PLAGIOCLASE AND OF CLIVINE SHOULD BE BETTER ESTIMATED FROM A THIN SECTION. AS WELL AS TO CONFIRM THE SIMILAR TEXTURE BETHEEN THIS ROCK AND 12065 . THIS ROCK IS ALSO MORE PORPHYRITIC.

SAMPLE NO. 12075.1 ROCK FRONDEL
an olivine pyroxenite. Contains very little plagioclase. the rock is UNUSUAL IN CONTAINING VUGS INTO WHICH PROJECT WELL FORMED PRISAIATIC CRYSTALS of pyfoxene. no oftical data taken but suspect pyroxene to be aueitic. PHOTOGRAPHS TAKEN OF ROCK. TERRESTRIAL PYROXENITES GENERALLY LACK VUGS OR CAVITIES OTHER THAN CAUSED BY LATER HYOROTHERMAL ACTION.

SAMPLE NO 12075.1 BRETT
the rock is an angular fragment. a Chif. so shape is of no great significance. APPROXIMATE DIMENSIONS ARE \(1.5 \times 1 \times 0.75\) CM. COLOR MEDIUM GREY. SALT AND PEPPER WITH GREEN OLIVINE CRYSTALS EVIDENT UPON CLOSE MACROSCOPIC INSPECTION. TEXTURE HCLOCRYSTALLINE BASALTIC. NO LINEntIONS EVIDEnt EXCEPT AN EXTREMELY IRREGULAR PLANE RICH IN IRREGULAR VUGS UP TO 2 MM IN DIAMETER UP TO ABOUT 10 PER SQUARE CM. REMAINDER OF ROCK CONTAINS NO VUGS. VUGS ARE OVOID TO SPHERICAL TO IRREGULAR DUE TO COALESCENCE. VUGS ARE VERY RICH IN WELI DEVELOPED PRISMATIC LAVENDER GLIFF PYROXENE CRYSTALS UP TO 2 MM. THESE RARE: Y PRN'SCT INTO VUG. LINE VUGS FORMING ONE OR MORE YALLS OF A VUG AND ARE RICH IN THAT PGRTION OF THE rock surrgund ing vugs. rare plagioclase plates also line vugs. marked COARSENING OF GRAIN SIZE IN REGIONS SURROUNDING VUGS. NO FRACTURES EVIDENT. no surface features evinent.
MINERALOGY. MODAL PERCENTAGES ARE VERY APPROXIMATE.
OLIVINE 45 PERCENT
PYROXENE 40 PERCENT
plagioclase 5 to 10 percent
ILMENITE 5 TO 10 PERCEHT
GLASS LESS THAN 1 PERCEITT
OLIV!NE. IN MAIN MATRIX OF ROEK GREEN OLIVINE GRAINS EASILY VISIBLE AS CRYSTALS TO 0.3 MiA IN A FINER GRAINED MATRIX. IPOEX VERY APPROXIMATE G = 1. 735 (SMITH) GIVING FO7O GR SO. VERY ROUGH. FINER GRAINED OLIVINE O.I HM OR SO IN THE FINE GRAINED MATRIX. IS IT SAME COMPOSITION.
PYROXENE. AS PRISMATIC CRYSTALS ASSURED VUGS. ALSO AS FINER GRAINED SUBHEDRAL GRAINS ABOUT 0.1 MM IN MATRIX. ARE 2 PYROXENES FRESENT.
plagiuclase. rare o. i mm somekirat lath liñe grains and rare sheaves betwsen INTERSTICLES OF MINERALS. NO TWININING SEEN.
ilmenite. opague laths and subuedral grains present. 0.1 mm or so. no positive IDENTIFICATION FOR ILMENITE.
GLASS. DARK. NEARLY OPAOIJE GLASS SPHERES TU 0.5 MM in Larger olivine crystals. RARE, A GRAIN IF IT CONTAINS SPHERES USUALLY EONTAINS SEVERAL.
terrestrial andilogue. olivine pyroxenite. texture and mineralogy suegest a CUMULATE ROCK.
STRGNGLY RECOMMEND SAMPLE BE USED FOR CRYSTalLOGRAPHIC STUDIES

SAMPLE NO. 12076 YEIGHT 54.55 DIMENSIOAS \(5.0 \times 4.3 \times 2.6\) YONES IRREGULAR LUMP. VERY FRIAEBLE. WILL BE IN SEVERAL CHIPS BEFORE LONG. NEUTRAL GRAY N7 SPECKLED WHITE. FINE GRAINED. SIJQUPHITIC. VUGGY. NO LINEATIONS OBSERVED. LARGE IRATEJLAR VUG. ABUNDANT FRACTURES. NO COMMON ORIENTATION. THROUGH GOING. SPECIMEN FRIABLE. MOST SURFACES ARE FRESH. THE ONE OLD SURFACE HAS PITS WITH GLASS LININGS. VUG COATED WITH SPLASH. MINERALOGY.
mode plagioclase 40
PYROXENE 55
OLIVINE 5
OPAQUE LESS THAN 1
MINERALS PLASIOCLASE. LATH 1 MM TO O.1 MM AND SMALLFR CLEAR TO WHITE.
PYROXENE. BROUN EQUANT O.1 MM TO 0.1
OLIVINE. EUHEDRAL GREEN EQUANT 0.2 MM GRAINS.
OPAQUE. SMALL I.ESS THAN 0. 05 Mi BLACK.
LARGE CRYSTALS OF PYROXENE. PLAGIOCLASE. AND OLIVINE. RADIATING ACICULAR PYROXENE SHEAVES. ALSO COATING OF SPLASH OR SHATTER ON CRYSTALS IN VUUS. SHATTER TEXTURES ON SURFACES CF MINERALS. ALTERATION. terrestrial analogue. vugriy olivine basalt.

SAMPLE NU. 12076 YONES
x ray data (y. fincel again shoys ariomalolis 130 spacing indicative of ca in OLIVINE.

THE FOLLOwING EXPERIMENT \(\mathrm{H}_{\mathrm{H}}\) S CONDUCTED GN THIS SAMPLE X-RAY ANALYSIS


Figure A-62. - Sample 12076.
```

SAMPLE NO. 12077.0 WEIGHT 22.63 DIMENSIONS 4.6 x 2 x 1.S CM YONES
CHIP FELL OFF AFTER ORIGINAL CANNING. CHIP IS LABELED 12077.1. APPROPRIATE
SHAPE. RECTANGULAR PRISM.
COLOR. LIGHT GRAY. N7.
TEXTURE. VUGGY. FINE GRAINED. SUBOPHITIC.
FABRIC. LINEATICN NOT OBVIOUS. BUT ROCK IS ELONGATE AND VUGS MAY BE ALIGNED
PARALLEL TH LCNG DIMENSION.
fRACTURE. thRGUGH GOI IGG FRACTURE PARALLEL TO LONG DIHENSIONS. ShapE Cf ROCK
DUE TO FRACTURE SYSTEH. ROCK IS FRIAOLE AS A RESULT.
Supface fehturies. tyo sides are rouniod and pittted. sore glass splash. some
SHATTERED MATERIAL. NOT ESPECIALLY GOOD FCR SURFACE FEATURES.
MINERALOGY.
PLAGIOCLASE (: 3 PERCENT). GREY STRIATED LATHS O.S MM X 0.05 MM. BETA
ABOUT 1.570. EXT ON 010 LESS THAN 38 DEGREES. AN9O.
PYROXENE (G5 PERCENT). EQUANT 0.05 MM X 0.05 MM VARIOUS SHACES OF BROWN.
DARKER BROGN APPEARS TO HAVE LOyER RE?RACTIVE INDEX. GAMMA AJOUT 1.740
INDICATES VERY IRON RICH. QUITE UUSTY WITH ORAQUE INELUSIONS.
OLIVINE (2O PERCENY). EQUANT. EUHEDRAL. GREEN. 0.2 MM. ALPHA ABOUT
1.700. GAMMA ABOUT 1.743. THIS INDICATES FE/FE AND mG OF 0.35. X-RAY (NANCE)
IMPLIES FE/FE+MG OF 0.50. DISCREPANCY COULD BE DUE TO CA. TAYLOR ANALYZED
MATERIAL AND FOUND SI.MG GT FE GT GT CA. AL.N.ZR NOT DETECTED.
OPAQUE. PLATY LESS THAN 0.04 MM . lUSTROUS.
OPAQUES 3 PERCENT
ALL mINERALS ARE PRESENT IN VUGS.
TERRESTRIAL ANALOGUE. OLIVINE BASALT.
SAMPLE 12077.4 D. R. YONES
OIL IMMERSION MOUNTS OF PO甘DERED MATERIAL.
USED OILS 1.570. 1.700. 1.743.
OLIVINE--A APPROXIMATELY 1.700+/-.005 FO65 FA35
G APPROXIMATELY !. 743+/-.010 F065 FA3S
PYRIXENE--B APPROXIMATELY 1.743+/-.010 Z-B APPROXIMATELY 40 JEG
HIGHLy variable COLOR. OARKER COLOR LOyER INDEX. (May be PIGEONITE aND augITE].
PLAGIOCLASE BJ1.570--EXT-010 APPROXIMATELY 38 DEG AN9O
estimates of plagioclase in hand specimen too high.
mODE. OLIVINE 20 PERCENT
plagioclase l3 percent
PYROXENE 65 PERCENT
OPAQUES APPROXIMATELY 2 PERCENT
SmALL SPHERE OF ORANGE GLASS gESERVED. MAY bE ADHERING FiNES.
THE FOLLOZING EXPERIMENT WAS CONDIICTED ON THIS SAMPLE
E-SPEC ANALYSIS
X-RAY diNALYSIS

```


Fi.gure A-63.- Sample 12077.

\section*{THIN SECTIONS}

Figures A-64 to A-95 are photomicrographs of the Apollo 12 lunar-sample thin sections. Descriptions of these photomicrographs are presented in table A-II.

TABLE A-II. - DESCRIPTION OF THIN-SECTION PHOTOMICROGRAPHS
\begin{tabular}{|c|c|c|c|c|}
\hline Figure number & Sample number & NASA photograph number & Light & Special notes \\
\hline A-64 & 12002-7 & S-70-31576 & Plane polarized & Variolitic texture \\
\hline A -65 & 12004-10 & S-70-31582 & Reflected & Variolitic texture \\
\hline A-66 & 12008-15 & S-70-44572 & Reflected & Olivine phenocrysts \\
\hline A-67 & 12009-17 & S-70-25428 & Reflected & Skeletal olivine stringers \\
\hline A-68 & 12010-29 & S-70-44542 & Reflected & Breccia \\
\hline A-69 & 12012-5 & S-69-24220 & Plane polarized & Variolitic texture \\
\hline A-70 & 12013-4 & S-69-24223 & Plane polarized & Breccia \\
\hline A-71 & 12014-5 & S-69-24210 & Plane polarized & Pyroxene and olivine phenocrysts \\
\hline A-72 & 12018-79 & S-70-44547 & Reflected & Pyroxene and olivine phenocrysts \\
\hline A-73 & 12020-9 & S-70-30253 & Plane polarized & Variolitic texture \\
\hline A-74 & 12021-5 & S-69-24219 & Plane polarized & Large pigeonite crystals \\
\hline A-75 & 12021-4 & S-69-24205 & Plane polarized & Hourglass structure and pigeonite \\
\hline A-76 & 12022-10 & S-70-24742 & Reflected & Skeletal ilmenite and olivine \\
\hline A-77 & 12034-3 & S-70-28217 & Reflected & Breccia \\
\hline A-78 & 12035-21 & S-70-45637 & Plane polarized & Granular texture \\
\hline A-79 & 12038-2 & S-69-24203 & Plane polarized & Lath-shaped plagioclase \\
\hline A-80 & 12040-3 & S-69-24211 & Plane polarized & Ophitic texture \\
\hline A-81 & 12044-2 & S-69-24207 & Plane polarized & Granular texture \\
\hline A - 82 & 12051-55 & S-70-40811 & Reflected & Ophitic texture \\
\hline A-83 & 12052-6 & S-70-25417 & Reflected & Plagioclase and olivine phenocrysts (variolitic texture) \\
\hline A -84 & 12053-76 & S-70-36474 & Plane polarized & Variolitic texture \\
\hline A-85 & 12057-14 & S-69-64831 & Reflected & Granular texture \\
\hline A-86 & 12057-37 & S-69-23374 & Plane polarized & Lath-shaped plagioclase \\
\hline A-87 & 12057-18 & S-69-63411 & Plane polarized & Ophitic texture \\
\hline A-88 & 12057-36 & S-69-23371 & Plane polarized & Large pyroxene crystals \\
\hline A-89 & 12057-22 & S-69-63404 & Reflected & Breccia \\
\hline A-90 & 12062-18 & S-70-30256 & Plane polarized & Ophitic texture \\
\hline A -91 & 12063-17 & S-70-30270 & Plane polarized & Subophitic texture \\
\hline A-92 & 12064-9 & S-70-30264 & Plane polarized & Granular texture \\
\hline A-93 & 12065-6 & S-69-23378 & Plane polarized & Variolitic texture \\
\hline A-94 & 12073-5 & S-70-20744 & Reflected & Breccia \\
\hline A-95 & 12075-23 & S-70-44546 & Reflected & Olivine phenocrysts \\
\hline
\end{tabular}


Figure A-64.- Sample 12002-7 (NASA-S-70-31576).


Figure A-65. - Sample 12004-10 (NASA-S-70-31582).


Figure A-66. - Sample 12008-15 (NASA-S-70-44572).


Figure A-67. - Sample 12009-17 (NASA-S-70-25428).


Figure A-68. .- Sample 12010-29 (NASA-S-70-44542).


Figure A-69. .- Sample 12012-5 (NASA-S-69-24220).


Figure A-70. - Sample 12013-4 (NASA-S-69-24223).


Figure A-71. - Sample 12014-5 (NASA-S-69-24210).


Figure A-72. - Sample 12018-79 (NASA-S-70-44547).


Figure A-73.. - Sample 12020-9 (NASA-S-70-30253).


Figure A-74. - Sample 12021-5 (NASA-S-69-24219).


Figure A-75. - Sample 12021-4 (NASA-S-69-24205).


Figure A-76. - Sample 12022-10 (NASA-S-70-24742).


Figure A-77. - Sample 12034-3 (NASA-S-70-28217).


Figure A-78. - Sample 12035-21 (NASA-S-70-45637).


Figure A-79. - Sample 12038-2 (NASA-S-69-24203).


Figure A-80. - Sample 12040-3 (NASA-S-69-24211).


Figure A-81. - Sample 12044-2 (NASA-S-69-24207).


Figure A-82. - Sample 12051-55 (NASA-S-70-40811).


Figure A-83. - Sample 12052-6 (NASA-S-70-25417).


Figure A-84. - Sample 12053-76 (NASA-S-70-36474).


Figure A-85. - Sample 12057-14 (NASA-S-69-64831).


Figure A-86. - Sample 12057-37 (NASA-S-69-23374).


Figure A-87. - Sample 12057-18 (NASA-S-69-63411).


Figure A-88. - Sample 12057-36 (NASA-S-69-23371).


Figure A-89. - Sample 12057-22 (NASA-S-69-63404).


Figure A-90. - Sample 12062-18 (NASA-S-70-30256).


Figure A-91. - Sample 12063-17 (NASA-S-70-30270).


Figure A-92.-- Sample 12064-9 (NASA-S-70-30264).


Figure A-93.-- Sample 12065-6 (NASA-S-69-23378).


Figure A-94.- Sample 12073-5 (NASA-S-70-20744).


Figure A-95. - Sample 12075-23 (NASA-S-70-44546).

\section*{APPENDIX B}

\section*{TOTAL CARBON AND ORGANIC ANALYSES DATA SHEETS}

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Control Sample Number: 1200
2. Weight: 100 grams
3. Sample Description (from original description)

Rock type: Ottawa sand (Ames Research Center (ARC))
Physical appearance: Control for sand monitor in Biological Preparation Laboratory (Bioprep) (from ARC); analyzed as supplied by ARC
4. Sample History

Return container:
Schematic processing diagram: ARC—GAL—GAL glove box
Storage container sequence: Glass jar
Processing comments: The sand was stored in a glass jar with a plastic cap. The reagent-grade Ottawa sand was acid washed and fired by the supplier at \(1000^{\circ} \mathrm{C}\) for 30 hours at ARC and shipped to the LRL in a clean glass jar.

Control sample number: Not applicable
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
1. 0082
\(7 \pm 2\)
6. Organic Analysis Results

Maximum total ionization: \(2.6 \times 10^{4}\)
Total ionization: \(3.3 \times 10^{5}\)
Estimated organic content (total of indigenous and contamination): <0.1 ppm
7. Remarks

Early spectra data indicate some general mass spectra as seen in the Bioprep monitor.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Control Sample Number: 1201
(originally B108)
3. Sample Description (from original description)

Rock type: Ottawa sand (ARC)
Physical appearance: Bioprep cabinet monitor
4. Sample History

Return container:
Schematic processing diagram: ARC—GAL——Bioprep-GAL glove box
Storage container sequence: Glass jar—Teflon bag-Quick-seal canWasserburg container

Processing comments: Control sample 1201 was exposed to the Bioprep cabinet atmosphere for 5 hours during the early stages of the D-ALSRC processing. The sample was sterilized into the Bioprep in a Teflon bag at \(160^{\circ} \mathrm{C}\).

Control sample number: 1200
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0.4618
\(4 \pm 2\)
6. Organic Analysis Results

Maximum total ionization: \(3.8 \times 10^{4}\)
Total ionization: \(5.2 \times 10^{5}\)
Estimated organic content (total of indigenous and contamination): <0.1 ppm
7. Remarks

The spectra were characterized by low \(\mathrm{CO}_{2}\) evolution compared to the lunar samples. Material of \(\mathrm{m} / \mathrm{e} 58\) and other low-weight materials were the obvious contaminants ( \(\mathrm{m} / \mathrm{e} 84\) and 86 is methyl chloride from sample handling). The higher weight materials seen in some of the lunar samples (deep core) were not obvious in this blank. The mass spectrometer scans for control sample 1201 are shown in figure \(\mathrm{B}-1\).


Figure B-1.- Mass spectrometer scans for control sample 1201.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Control Sample Number: 1210 2. Weight: 250 grams
3. Sample Description (from original description)

Rock type: Ottawa sand (MSC)
Physical appearance: Control for the sand monitor in the F201 vacuum system; analyzed after cleaning.
4. Sample History

Return container:
Schematic processing diagram: Washed-dried at \(110^{\circ} \mathrm{C}\)-fired at \(1000^{\circ} \mathrm{C}\) sealed in Teflon bag-GAL glove box

Storage container sequence: Teflon bag
Processing comments: None
Control sample number: Not applicable
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
1. 0001
\(18 \pm 3\)
6. Organic Analysis Results

Maximum total ionization: \(7.5 \times 10^{4}\)
Total ionization: \(1.5 \times 10^{6}\)
Estimated organic content (total indigenous and contamination): <0.1 ppm
7. Remarks: None

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Control Sample Number: 1211
2. Weight:
3. Sample Description (from original description)

Rock type: Ottawa sand (MSC)
Physical appearance: F20:l system monitor
4. Sample History

Return container:
Schematic processing diagram: GAL-F201 chamber-GAL glove box
Storage container sequence: Teflon bag-bolt-top can
Processing comments: The Ottawa sand was washed in water, dried overnight at \(110^{\circ} \mathrm{C}\), and then fired at \(1000^{\circ} \mathrm{C}\) in a muffle furnace for 24 hours in the GAL. The sand was sealed in a Teflon bag for approximately 2 weeks before being loaded into a bolt-top can for transfer into the F201 chamber. The sand was transferred into the bolt-top can on a clean bench. The sample was exposed to the F201 vacuum chamber beginning on November 29, 1969 (0800), and was sampled on December 10, 1969 (0930). During this time, the F201 chamber was backfilled with N three times for a total of approximately 60 hours.

Control sample number: 1.210
5. Total Carbon Analysis Results: Not available
6. Organic Analysis Results

Maximum total ionization: \(7.6 \times 10^{4}\)
Total ionization: \(2.3 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.1 ppm
7. Remarks: None

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12003-1
2. Weight: 300 grams
3. Sample Description (from original description)

Rock type: D
Physical appearance: Chips and loose material from S-ALSRC
4. Sample History

Return container: S-ALSRC
Schematic processing diagram: S-ALSRC—F201 chamber——Bioprep—GAL glove box

Storage container sequence: S-ALSRC—bolt-top can—Wasserburg container
Processing comments: This material was collected from the floor of the F201 chamber and from the S-ALSRC York-mesh packing. The sample was exposed in the F201 chamber for 3 days (approximately 70 hours), stored in a bolt-top can, transferred to Bioprep, and sampled for organic analysis within a few minutes after being opened in Bioprep.

Control sample numbers: 1201, 1202, 1211
5. Total Carbon Analysis Results

Run no. Sample weight, g
0.1571
. 1128
. 1480
. 1605

Carbon content. ppm
\(185 \pm 20\)
\(195 \pm 25\)
\(120 \pm 10\)
\(200 \pm 10\)
6. Organic Analysis Results

Maximum total ionization: \(1.2 \times 10^{5}\)
Total ionization: \(4.4 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.3 ppm
7. Remarks

Most of the ion current was due to previously recognized contaminants. This sample was one of the few samples that displayed m/e 78 and 91 as pyrolysis products, a common occurrence in the Apollo 11 preliminary analysis. The additional handling is probably reflected in the higher total C found in this sample relative to other Apollo 12 samples. The mass spectrometer scans for sample 12003-1 are shown in figure B-2.


Figure B-2. - Mass spectrometer scans for sample 12003-1.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12024-7
2. Weight: 100 grams
3. Sample Description (from original description)

Rock type: GASC
Physical appearance: Fines
4. Sample History

Return container: GASC
Schematic processing diagram: D-ALSRC—Bioprep —GAL glove box
Storage container sequence: GASC-glass vial
Processing comments: The GASC was not opened until it had been sterilized and transferred to the GAL. It was first punctured on the gas-extraction table. The estimated pressure at the time of puncture was 11 torr. Analysis of the gases indicated that leakage had occurred. The GASC then was valved off, transferred to the glove box, and opened. A total of 600 milligrams of fines material was removed from the GASC and stored in a chromic-acid-cleaned glass vial approximately 30 minutes after opening.

Control sample number: 1202
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm 1
0.1395

115
6. Organic Analysis Results

Maximum total ionization: \(5.1 \times 10^{4}\left(1.1 \times 10^{5}\right.\) second run)
Total ionization: \(7.6 \times 10^{5}\left(3.0 \times 10^{6}\right.\) second run)
Estimated organic content (total of indigenous and contamination): 0.3 ppm ( 0.3 ppm second run)
7. Remarks

Two runs were made with very similar results. The higher weight material may be due to exposure to the plastic bottle cap when the Teflon liner developed a crack. The CO and \(\mathrm{CO}_{2}\) evolution was very high. The mass spectrometer scans for sample 12024-7 are shown in figure B-3 for the first run and in figure B-4 for the second run.


Figure B-3. - Mass spectrometer scans for sample 12024-7, run 1.
SUMM 1202 MTZG 12029.7 GASC FINES REPEAT \(12 / 19\)
MAX TYOSZ

\[
\begin{aligned}
& \text { SUMM M/E } 44 \text { US SCAN } 4.1202 .12029 .7 \text { GASC FINES } \\
& \text { MAX TI }=\text { 1OTEZ }
\end{aligned}
\]
(


Figure B-4. - Mass spectrometer scans for sample 12024-7, run 2.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12026-1 2. Weight: 54.2 grams
3. Sample Description (from original description)

Rock type: Core tube 2013
Physical appearance: Fines from 29-centimeter scale position
4. Sample History

Return container: Core tube - S-ALSRC
Schematic processing diagram: S-ALSRC—F201 chamber—Bioprep —GAL glove box

Storage container sequence: Core tube \(\longrightarrow\) Wasserburg container
Processing comments: The core tube was transferred to Bioprep unopened; it was open in Bioprep for approximately 24 hours before the sample for organic analy sis was taken.

Control sample numbers: 1.201 and 1202
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0.018
\(44 \pm 25\)
6. Organic Analysis Results

Maximum total ionization: 6 . \(1 \times 10^{4}\)
Total ionization: \(1.1 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.7 ppm

\section*{7. Remarks}

A small amount of low-molecular-weight material was present (notable m/e 64 \(\left(\mathrm{S}_{2}\right.\) or \(\left.\mathrm{SO}_{2}\right)\) ). Considerable CO and \(\mathrm{CO}_{2}\) were evolved. The mass plot of \(\mathrm{m} / \mathrm{e} 95\), which may be due to indigenous material or to a strongly adsorbed contaminant, was of special interest. The sample weight was too small for a good total C analysis. The mass spectrometer scans for sample 12026-1 are shown in figure B-5.


Figure B-5. - Mass spectrometer scans for sample 12026-1.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12026-2
2. Weight: 54.2 grams
3. Sample Description (from original description)

Rock type: Core tube 2013
Physical appearance: Fines from 21-centimeter scale position
4. Sample History

Return container: Core tube - S-ALSRC

Schematic processing diagram: S-ALSRC \(\longrightarrow\) F201 chamber \(\longrightarrow\) Bioprep \(\longrightarrow\) GAL glove box

Storage container sequence: Core tube \(\longrightarrow\) Wasserburg container
Processing comments: The processing comments are the same as for sample 12026-1.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results: Not available
6. Organic Analysis Results

Maximum total ionization: \(4 \times 10^{4}\left(3.3 \times 10^{4}\right.\), second run)
Total ionization: \(1.1 \times 10^{6}\left(4.3 \times 10^{5}\right.\), second run \()\)
Estimated organic content (total of indigenous and contamination): 0.5 ppm ( 0.1 ppm , second run)
7. Remarks

The second run was a re-run of the first run sample and was exposed to the atmosphere in the GAL glove box. Two points are important: (1) m/e 58 and other low-molecular-weight peaks; were present in both runs and (2) the CO and \(\mathrm{CO}_{2}\) evolution (compare 1209 and 1211 summation m/e 44 plots in figs. B-6 and B-7) slowly increased in the second run to approximately the level of the first run, indicating that CO and \(\mathrm{CO}_{2}\) are the result of the sample pyrolysis. The mass spectrometer scans for sample 12026-2 are shown in figure B-6 for the first run and in figure B-7 for the second run.


\[
\text { SUMM } 1209 \text { MAE } 12026.2 \text { CDRE TUBE }
\]




Figure B-6. - Mass spectrometer scans for sample 12026-2, run 1.
SUMM MAX \(^{12}=11\) MT35 32020.2 REPEAT

\[
\begin{aligned}
& \text { SUMM M/E Qa. } 12121 \text { 12O2G,2 BLANK REPEAT } \\
& \text { MAX } T I=166
\end{aligned}
\]






Figure B-7. - Mass spectrometer scans for sample 12026-2, run 2.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12028-1
2. Weight: 96.8 grams
3. Sample Description (from original description)

Rock type: Core tube 2012
Physical appearance: Fines from lower end of core tube; material lighter in color than that from upper end of core tube
4. Sample History

Return container: Core tube - D-ALSRC
Schematic processing diagram: D-ALSRC—Bioprep-GAL glove box
Storage container sequence: Core tube-Wasserburg container
Processing comments: The core tube was opened in Bioprep and the material removed for analysis. The sample was sealed in the Wasserburg container 2 hours after the core tube was opened.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results: Not available
6. Organic Analysis Results

Maximum total ionization: \(8.1 \times 10^{4}\)
Total ionization: \(2.5 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 1.0 ppm
7. Remarks

The summary plot indicates, in later scans, the evolution of organic material that may be indigenous. The spectra are characterized by what may be unsaturated hydrocarbon peaks. High evolution of CO and \(\mathrm{CO}_{2}\) was noted. Sample 12028-1 is the most promising sample analyzed. Some m/e 64 evolved ( \(\mathrm{S}_{2}\) or \(\mathrm{SO}_{2}\) ). The first 10 scans indicate that terrestrial contamination is present; however, later scans in the summary plot show the evolution of material that may be indigenous. The mass spectrometer scans for sample 12028-1 are shown in figure B-8.


\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12032-1
2. Weight: 310.6 grams
3. Sample Description (from original description)

Rock type: D
Physical appearance: Fines from documented sample bag 4-D; medium dark gray, poorly sorted; some angular fragments up to 4 millimeters in length
4. Sample History

Return container: Teflon bag
Schematic processing diagram: Teflon bag \(\longrightarrow\) Bioprep-GAL glove box
Storage container sequence: Teflon bag \(\longrightarrow\) stainless steel can-Wasserburg container

Processing comments: The material was stored in the Teflon bag inside a stainless steel can until the bag was opened. The sample for organic analysis was taken within 30 minutes after the bag was opened and 15 days after the D-ALSRC was opened in Bioprep.

Control sample number: 1201
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content. ppm
1
0. 1519
\(20 \doteq 10\)
2
. 3813
6. Organic Analysis Results

Maximum total ionization: \(1.0 \times 10^{5}\)
Total ionization: \(2.3 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.1 ppm
7. Remarks

As with the other sample of fines from a documented bag (sample 12042-1), this sample is extremely low in organic content. The low total C content correlates with the low organic content.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12033-1
2. Weight: 322.7 milligrams
3. Sample Description (from original description)

Rock type: D
Physical appearance: Fines from documented sample bag 5-D; described as lightcolored volcanic ash
4. Sample History

Return container: Teflon bag
Schematic processing diagram: Teflon bag \(\longrightarrow\) Bioprep \(\longrightarrow\) GAL glove box
Storage container sequence: Teflon bag \(\longrightarrow\) stainless steel can \(\longrightarrow\) Wasserburg container

Processing comments: The processing comments are the same as for sample 12032-1.

Control sample number: 1201
5. Total Carbon Analysis Results
\begin{tabular}{ccc} 
Run no. & Sample weight, g & Carbon content, ppm \\
1 & 0.1997 & \(20 \pm 5\) \\
2 & .6014 & \(23 \pm 2\) \\
3 & .1254 & \(80 \pm 10\)
\end{tabular}
6. Organic Analysis Results: Not available
7. Remarks

The sample for the third run was provided by the Physical-Chemical Test Laboratory (PCTL) and was transferred to the GAL in a plastic vial, which explains the high C content. An organic analysis was not performed on this sample.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12034-2 2. Weight: 153 grams
3. Sample Description (from original description)

Rock type: Breccia (C)
Physical appearance: Medium light-gray matrix of fine-grained material; includes crystal fragments and fragments of a number of rock types; documented sample bag 6-D
4. Sample History

Return container: Documented sample bag (Teflon)
Schematic processing diagram: D-ALSRC—Bioprep-GAL glove box
Storage container sequence: Documented sample bag-stainless steel can \(\longrightarrow\) Wasserburg container

Processing comments: The rock was exposed in the cabinet for approximately 6 hours before the organic sample was taken. The rock was not touched by rubber gloves, only by Teflon and stainless steel.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results
Run no. Sample weight, g Carbon content, ppm
1
0.2446
\(65 \pm 12\)
6. Organic Analysis Results

Maximum total ionization: \(1.7 \times 10^{4}\)
Total ionization: \(1.1 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.4 ppm
7. Remarks

The sample was contaminated slightly with Teflon (scan 80, fig. B-9). Other organic material was very low in quantity and was possibly contamination from other sources. The mass spectrometer scans for sample 12034-2 are shown in figure B-9.
SUMM :20G \(1: 2034.2\) BRECCIA CHIP MTES
MAX TI
\(=17398\)

\[
\begin{aligned}
& \text { SUMM } \text { MAX }_{\text {M/E }}^{=} \text {SQ. } 1204,12034,2 \text { BRECCIA CHIP } \\
& \text { Si862 }
\end{aligned}
\]


Figure B-9. - Mase spectrometer scans for sample 12034-2.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12040-2 2. Weight: 319 grams
3. Sample Description (from original description)

Rock type: B
Physical appearance: Light gray with slight greenish tinge caused by olivine; no vesicles but a number of vugs; high olivine content
4. Sample History

Return container: D-ALSRC
Schematic processing diagram: D-ALSRC \(\longrightarrow\) Bioprep \(\longrightarrow\) GAL glove box
Storage container sequence: D-ALSRC \(\longrightarrow\) stainless steel can \(\longrightarrow\) Wasserburg container

Processing comments: The rock was exposed to the Bioprep cabinet atmosphere for approximately 6 hours before the organic sample was taken. The material sampled was from the interior surface of the freshly broken rock.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content. ppm
1
0.2245
\(45 \doteq 15\)
6. Organic Analysis Results

Maximum total ionization: \(2.9 \times 10^{4}\)
Total ionization: \(1.2 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.1 ppm
7. Remarks

Sample 12040-2 shows lower CO and \(\mathrm{CO}_{2}\) evolution and a very small amount of organic material, which is possibly a nylon or dust-particle-type contamination. The mass spectrometer scans for sample 12040-2 are shown in figure B-10.





Figure B-10. - Mass spectrometer scans for sample 12040-2.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12042-1
2. Weight: 225.6 grams
3. Sample Description (from original description)

Rock type: D
Physical appearance: Fines from documented sample bag 12-D
4. Sample History

Return container: Teflon bag
Schematic processing diagram: Teflon bag-Bioprep-GAL glove box
Storage container sequence: Teflon bag \(\longrightarrow\) stainless steel can-Wasserburg container

Processing comments: The processing comments are the same as for sample 12032-1.

Control sample number: None
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0. 2452
\(125 \doteq 5\)
2
. 3409
\(132 \pm 5\)
6. Organic Analysis Results

Maximum total ionization: \(2.5 \times 10^{4}\)
Total ionization: \(1.2 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.1 ppm
7. Remarks

Sample 12042-1 was extremely clean and showed considerably less material than did the fines from other sources. The \(\mathrm{CO}_{2}\) evolution, however, was comparable to other samples of fines.

\section*{TOTAL CARIBON AND ORGANIC ANALYSIS}
1. Sample Number: 12044-2, -1
2. Weight: \(\frac{145.4 \text { milligrams }}{\text { (sample } 12044-2)}\)
3. Sample Description (from original description)

Rock type: A
Physical appearance: Fine-grained crystalline rock in documented sample bag
4. Sample History

Return container: Teflon bag
Schematic processing diagram: Teflon bag—Bioprep—GAL glove box
Storage container sequence: Teflon bag—stainless steel can—Wasserburg container

Processing comments: The rock was removed from the bag and stored in a stainless steel can. The sample was taken for organic analysis by chipping the larger rock 15 days after the D-ALSRC was opened. Both the interior and exterior surfaces of the rock were analyzed.

Control sample number: 1201
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0.3071
\(44 \pm 5\)
6. Organic Analysis Results

Maximum total ionization: \(1.0 \times 10^{5}\)
Total ionization: \(1.8 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.2 ppm
7. Remarks

Samples 12044-2 and 12044-1 have the same probable contaminants as the other samples. As in previous runs, this rock sample showed less organic content than did the fines. Considerable \(\mathrm{CO}_{2}\) evolution was noted.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12052-4
2. Weight: 3119 grams (three pieces)
3. Sample Description (from original description)

Rock type: B
Physical appearance: Coarse-grained rock; some pyroxene crystals 810 millimeters long by 0.5 millimeter wide; high in ilmenite; radially oriented feldspar in patches; rock apparently heavily shocked; olivine basalt
4. Sample History

Return container: D-ALSRC
Schematic processing diagram: D-ALSRC—Bioprep-GAL glove box
Storage container sequence: D-ALSRC——stainless steel can-Wasserburg container

Processing comments: The rock was exposed to the Bioprep cabinet atmosphere approximately 6 hours before the organic sample was taken. The rock chip was broken and subdivided in the GAL glove box. The chip was approximately 20-percent exterior surface.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results
\begin{tabular}{ccc} 
Run no. & Sample weight, g & Carbon content, ppm \\
1 & 0.3326 & \(34 \pm 10\) \\
2 & .1261 & \(65 \pm 15\) \\
3 & .4487 & \(25 \pm 4\)
\end{tabular}
6. Organic Analysis Results

Maximum total ionization: \(3.4 \times 10^{4}\)
Total ionization: \(6.2 \times 10^{5}\)
Estimated organic content (total of indigenous and contamination): 0.1 ppm
7. Remarks

Considerably less material (organics plus CO and \(\mathrm{CO}_{2}\) ) was found in sample 12052-4 than in the fines or core-tube samples. The mass spectrometer scans for sample 12052-4 are shown in figure B-11.
SUMM \(\operatorname{MAX}\) IZOS 12052.4 CORRSE GRAINED MTZ9 \(12 / 16\)





Figure B-11. - Mass spectrometer scans for sample 12052-4.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12057-1
2. Weight: 0.5 gram
3. Sample Description (from original description)

Rock type: D
Physical appearance: Medium dark chip; may be a breccia
4. Sample History

Return container: D-ALSRC
Schematic processing diagram: D-ALSRC——Bioprep-Wasserburg container
Storage container sequence: D-ALSRC—Wasserburg container
Processing comments: The chip was removed from the box and sealed in the Wasserburg container 1 hour after the box was punctured for gas analysis. The lid had been off the box for only 2 minutes when the sample for carbon and organic analysis was collected.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0.2194
\(120 \pm 10\)
6. Organic Analysis Results

Maximum total ionization: \(2.5 \times 10^{4}\)
Total ionization: \(1.2 \times 10^{6}\)
Estimated organic content (total of indigenous and contamination): 0.3 ppm
7. Remarks

Considerable CO and \(\mathrm{CO}_{2}\) and some \(\mathrm{m} / \mathrm{e} 64\) was noted. Almost no other material evolved. The mass spectrometer scans for sample 12057-1 are shown in figure \(\mathrm{B}-12\).


Figure B-12. - Mass spectrometer scans for sample 12057-1.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12059-1
2. Weight: 460.2 milligrams
3. Sample Description (from original description)

Rock type: D
Physical appearance: Fines and some small (10 to 15 milligram) chips
4. Sample History

Return container: D-ALSRC and documented sample bags
Schematic processing diagram: D-ALSRC——Bioprep-GAL glove box
Storage container sequence: D-ALSRC—stainless steel can—Wasserburg container

Processing comments: Material was dusted from the loose rocks and the Teflon sample bags into a stainless steel pan. The material was exposed to cabinet atmosphere for 25 hours before sampling for carbon analysis. The rocks were dusted by a gas stream blown from a polyethylene squeeze bottle.

Control sample numbers: 1201 and 1202
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0. 1270
\(240 \pm 25\)
\(2 \quad .1336 \quad 120 \doteq 15\)
6. Organic Analysis Results

Maximum total ionization: \(1.9 \times 10^{6}\)
Total ionization: \(4.2 \times 10^{7}\)
Estimated organic content (total of indigenous and contamination): \(>2 \mathrm{ppm}\)
7. Remarks

Sample 12059-1 was contaminated severely compared to the other samples that were run. Scan 40 (fig. B-13) is representative of one type of contaminant; Teflon (scan 92) is the other contaminant. The excess contamination was probably caused by flaking of the Teflon bag, blowing N from the polyethylene bottle, and extra handling. The second run contained a chip mixed in with the fines. The high \(C\) content correlates with the higher organic content.


Figure B-13. - Mass spectrometer scans for sample 12059-1.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12063
2. Weight: 2416 grams
3. Sample Description (from original description)

Rock type: A
Physical appearance: Light to medium gray with many darker spots caused by glass in small pits and shadowed vugs
4. Sample History

Return container: Tote bag
Schematic processing diagram: Tote bag \(\longrightarrow \mathrm{LM} \longrightarrow \mathrm{CM} \longrightarrow \mathrm{CRA} \longrightarrow \mathrm{PCTL}\)
Storage container sequence: Tote bag-CDR's gloved (?) hand-aluminum foil-copper-flanged stainless steel container

Processing comments: Sample 12063 was subjected to considerable handling and to the LM, CM, and terrestrial atmospheres. The copper-flanged container was cleaned by ultrasonication in benzene/methanol and by vacuum bakeout. The rock chip was taken in the PCTL and sterilized at \(160^{\circ} \mathrm{C}\).

Control sample number: None
5. Total Carbon Analysis Results

Run no. Sample weight, g Carbon content, ppm
1
0.2755
\(35 \pm 10\)
6. Organic Analysis Results: Not available

\section*{7. Remarks}

Excessive handling and exposure to atmosphere apparently has not increased the contamination, which could be explained if the sample were an interior surface.

\section*{TOTAL CARBON AND ORGANIC ANALYSIS}
1. Sample Number: 12065
2. Weight:
3. Sample Description (from original description)

Rock type: AB
Physical appearance: Pigeonite porphyry
4. Sample History

Return container: Tote bag
Schematic processing diagram: Tote bag \(\longrightarrow \mathrm{LM} \longrightarrow \mathrm{CM} \longrightarrow \mathrm{CRA} \longrightarrow \mathrm{PCTL}\)
Storage container sequence: Tote bag \(\longrightarrow\) CDR's gloved (?) hand \(\longrightarrow\) aluminum foil-copper-flanged stainless steel container

Processing comments: The processing comments are the same as for sample 12063.

Control sample number: None
5. Total Carbon Analysis Results
\begin{tabular}{ccc} 
Run no. & Sample weight, g & Carbon content, ppm \\
1 & 0.4920 & \(29 \pm 4\) \\
2 & .1438 & \(38 \pm 10\)
\end{tabular}
6. Organic Analysis Results: Not available
7. Remarks

The remarks are the same as for sample 12063.

\section*{APPENDIXC}

\section*{ORGANIC-MONITOR DATA SHEETS}

\section*{OTTAWA-SAND ORGANIC MONITORS}

Baked Ottawa sand was used to monitor the background levels in the various LRL sample-processing cabinetry. Standard Ottawa sand is sieved to pass 20 to 30 mesh, which calculates to an average spherical grain volume of \(5.2 \times 10^{-4}\) cubic centimeters and an average grain weight of 1.4 milligrams. Thus, the surface area was approximately \(22.6 \mathrm{~cm}^{2} / \mathrm{g}\) of sand.

Two batches of sand were prepared: one to monitor the F201 vacuum system and one to monitor the nitrogen processing in the Bioprep cabinet. The F201 OM was prepared by washing the sand with water and firing it at \(1000^{\circ} \mathrm{C}\) overnight. The Bioprep OM was prepared at ARC by washing the reagent-grade Ottawa sand with acid and firing it at \(1000^{\circ} \mathrm{C}\) for 30 hours. Samples of both batches were analyzed using benzene/ methanol extraction and high-resolution mass spectrometry at UCB and pyrolysis mass spectrometry at the LRL; the results of these analyses served as the control data. Approximately 200 grams of both the control and the exposed portions of each of these monitors were available for distribution to the Group D Principal Investigators.

The F201 OM control (Teflon bagged) yielded \(3.08 \mu \mathrm{~g} / \mathrm{g}\) of extractables, which calculated to \(0.136 \mu \mathrm{~g} / \mathrm{cm}^{2}\); the Bioprep OM control yielded \(2.32 \mu \mathrm{~g} / \mathrm{g}\) of extractables, which calculated to \(0.103 \mu \mathrm{~g} / \mathrm{cm}^{2}\). A second extraction of this sample yielded only background. The high-resolution mass-spectral data indicated mainly hydrocarbons from \(\mathrm{C}_{4}\) to \(\mathrm{C}_{25}\) of as much as \(6^{\circ}\) of unsaturation and octoil (dioctyl phthalate). Oxygenated species were found in minor amounts (cyclic ketones, low-weight carboxylic acids, and an oxygenated compound with the composition \(\mathrm{C}_{23} \mathrm{H}_{32}{ }^{\mathrm{O}} 2\), after loss of one \(\mathrm{C}_{10} \mathrm{H}_{20}\) group).

The results of the pyrolysis mass-spectrometer analyses for the control samples are given in appendix B. The mass spectrometer scans for the Ottawa-sand organic monitors are shown in figure \(\mathrm{C}-1\).


Figure C-1. - Mass spectrometer scans for Ottawa-sand organic monitors.

\section*{ORGANIC MONITOR 1007-2}

Organic monitor 1007-2 was cleaned by the ALSRC-1574 cleaning procedure together with the contents of ALSRC 1009 (the S-ALSRC). The sample weighed 49.96 grams and yielded a benzene/methanol (3:1) extract residue of 0.2 milligram. Assuming a York-mesh surface area of \(60 \mathrm{~cm}^{2} / \mathrm{g}\), the residue was equivalent to \(0.05 \mu \mathrm{~g} / \mathrm{cm}^{2}\) of extractable organics. The gas chromatogram (GC) showed only trace peaks above the background level, and the high-resolution mass-spectral data (one of the scans is illustrated in fig. \(\mathrm{C}-2\) ) indicated the presence of a more diverse suite of organic compounds. The major constituents were octoil ( \(\mathrm{C} / \mathrm{H}_{3}\) plot, fig. C-2), which was substantiated by the GC run, and hydrocarbons ranging from \(\mathrm{C}_{4}\) to \(\mathrm{C}_{12}\). Traces of carboxylic acids to \(\mathrm{C}_{8}\) were found.


Figure C-2. - Mass spectrometer scans for organic monitor 1007-2.

\section*{ORGANIC MONITOR 1007-4}

Organic monitor 1007-4 was cleaned by the ALSRC-1574 cleaning procedure together with the ALSRC 1009 box, the temperature sensor, and the seal protectors. The sample weighed 40.92 grams and yielded a benzene/methanol (3: 1) extract residue of 0.25 milligram, which was equivalent to \(0.12 \mu \mathrm{~g} / \mathrm{cm}^{2}\). This high value was the result of some fine \(\mathrm{AlO}_{2}\) passing through the filtering grit. The GC trace showed no peaks, and the high-resolution mass-spectral data indicated only trace hydrocarbons that were barely above the solvent background.

The mass spectrometer scans for OM 1007-4 are shown in figure C-3.


Figure C-3.- Mass spectrometer scans for organic monitor 1007-4.

\section*{ORGANIC MONITOR 1008}

Organic monitor 1008 was cleaned by the ALSRC-1574 cleaning procedure together with the contents of ALSRC 1008 (the D-ALSRC) and then baked under vacuum conditions at \(160^{\circ} \mathrm{C}\) in the LRL F250 conditioning chamber. The sample of York mesh weighed 11.02 grams, and the benzene/methanol (3:1) extract residue was 0.05 milligram above the solvent background, which corresponded to \(0.08 \mu \mathrm{~g} / \mathrm{cm}^{2}\) of extractables. No GC trace was run, but the high-resolution mass-spectral data indicated carboxylic acids to approximately \(\mathrm{C}_{12}\) as the major components, with octoil and hydrocarbons as minor constituents.

The mass spectrometer scans for OM 1008 are shown in figure C-4.


Figure C-4.- Mass spectrometer scans for organic monitor 1008.

Organic monitor 1009 was cleaned by the ALSRC-1574 cleaning procedure together with the ALSRC 1009 contents and then baked under vacuum conditions at \(160^{\circ} \mathrm{C}\) with ALSRC 1009 in the LRL F250 conditioning chamber. The sample weighed 12.31 grams, and the benzene/methanol (3:1) extract residue was 0.06 milligram above the solvent background, which corresponded to \(0.08 \mu \mathrm{~g} / \mathrm{cm}^{2}\) of extractables. The GC trace indicated no peaks at the highest attenuation. The high-resolution mass-spectral data indicated mainly a suite of hydrocarbons from \(\mathrm{C}_{4}\) to \(\mathrm{C}_{16}\) of varying degrees of unsaturation and octoil. Oxygenated compounds also were present in significant amounts; for example, cyclohexanone, cyclopentanone, butyric acid, and tetrahydronaphthol.

The mass spectrometer scans for OM 1009 are shown in figure C-5.


Figure C-5. - Mass spectrometer scans for organic monitor 1009.

\section*{EXTRACTION SOLVENTS}

One liter each of benzene and methanol (both nanograde purity) were evaporated. This amount represents a tenfold larger quantity of solvent than was used for the extraction. The GC traces were run and showed no detectable peaks. The benzene background consisted mainly of hydrocarbons ranging from \(\mathrm{C}_{4}\) to \(\mathrm{C}_{18}\) of varying degrees of unsaturation and minor amounts of octoil and carboxylic acids from \(\mathrm{C}_{4}\) to \(\mathrm{C}_{15}\). The methanol background consisted mainly of dissolved inorganics, traces of hydrocarbons, and low-weight carboxylic acids.

The high-resolution mass-spectral data for methanol are shown in figure C-6 and for benzene in figure C-7.


Figure C-6. - High-resolution massspectral data for methanol.


Figure C-7. - High-resolution mass-spectral data for benzene.

ALSRC 1008 LID

The ALSRC 1008 lid sample was the residue from the cleaning solution used to clean the LESC and GASC lid hardware that was stowed in ALSRC 1008 during the Apollo 12 mission. The cleaning procedure consisted of washing both the inside and the outside of the lid of the prime organic container. The extractable portion of the solution weighed 5 . 0 milligrams after solvent evaporation. The GC of the extract (the heptane solubles) is shown in figure C-8. The high-resolution mass-spectral data indicated dioctyladipate and octoil as the major components. The presence of dioctyladipate was substantiated by the series of peaks in figure C-8. Hydrocarbons and the free acids \(\mathrm{C}_{4}\), \(C_{5}, C_{12}\), and \(C_{13}\) were found as minor components.

The mass spectrometer scans for the ALSRC 1008 lid are shown in figure C-9.


Figure C-8. - Data plot of ALSRC 1008 lid wash.


Figure C-9. - Mass spectrometer scans for ALSRC 1008 lid.

\section*{APPENDIX D}

\section*{PHOTOGRAPHIC INDICES}

The photographs of the Apoll.o 12 lunar samples have been indexed in the following ways: (1) a log of all photographs taken, (2) an index of photographs by sample number and an index of samples by photograph number, and (3) a cross-reference of samples with the lunar-surface collection location, photographs, and chronological sequence.

\section*{PHOTOGRAPHIC LOG}

Effective use of 70-millimeter photographs taken on the Apollo 12 EVA requires extensive information about the camera parameters and camera location and orientation at the time each photograph was taken. The amount of such data that are being derived for each picture is too extensive to include concisely in one listing. The log has therefore been divided into two versions. The first version, which is presented here, is designed primarily to support general photographic interpretation. Two complete photographic listings are presented in this version. The first listing (table D-I) is a listing of all the photographs in chronological sequence and is useful for understanding the context of each photograph taken during the EVA traverses. The second listing (table D-II) is a sequential listing of photographs from each individual magazine and is useful for locating information about any given photograph. The second version, which is still in preparation, contains detailed geometric information required for precise mensuration of surface features from the photographs.

The two cameras used for primary lunar-surface scientific and engineering documentation during the Apollo 12 lunar stay were 70 -millimeter Hasselblad cameras with automatic electric-film-advance and shutter-cocking mechanisms. Each camera was equipped with a specially designed f/5.6 Biogon lens and a reseau plate at the film plane that imprinted a five-by-five array of crosses on each photograph at the time of exposure. Although the focus settings on each camera were continuously variable, three detents were provided in the focusing ring to provide a finite number of repeatable focus settings. The conventional set of detents was available at 0.5 f-stop intervals on the adjusting ring for the iris. Shutter speeds of 1 to \(1 / 500\) th second were available; however, with few exceptions, the exposure setting used on the lunar surface was \(1 / 250\) th second. Both cameras were calibrated prior to launch for photometric and photogrammetric data reduction.

During the first EVA, color film was used in magazines Y and V . Magazines X and Z , used during the second EVA, contained black-and-white film.

Three main types of analyses were used to prepare this part of the log: (1) comparison of images on the Hasselblad photographs with those on Lunar Orbiter photographs, (2) comparison of photographs of geological sample sites with those taken of returned samples in the LRL, and (3) comparison of image data with data transmitted verbally during the EVA.

An explanation of the boxheads used in tables D-I and D-II is given in the following paragraphs.

PHOTO: The last six digits of the official NASA number assigned to each photograph shortly after processing. Each number is prefixed by "AS12." The last four digits of each number are unique, but numbers are sequential within a given film magazine only. The numbers do not represent a chronological order because two magazines were used simultaneously.

MAG: The letter designation assigned to the film magazine.
SEQ: The chronological sequence in which each picture was taken, as nearly as can be determined.

REMARKS: Comments about each picture that may refer to objects in the picture, to something the crew said about their reasons for taking the picture, to some unusual aspect of the subject of the picture, to number designations of samples appearing in the picture, or to the inferred reason for taking the picture. Descriptions of the photographic surveys and definitions of acronyms and abbreviations referred to in this column are given in the following two sections.

GET: Ground elapsed time, which is the time since lift-off, in hours and minutes, when the picture was taken, as nearly as can be determined from voice transmissions.

BY: Crewmember who took the picture. Discussion by the crew of subject matter in several pictures was sufficient to identify the photographer.

DIST and AZLM: Distance and azimuth of camera stations from the center of the LM (clockwise from north). These were determined by identifying features on both Lunar Orbiter and Apollo 12 EVA photographs and by computing photograph location using the standard surveying technique of resection. The distances given are not the same as those given in some of the remarks, which simply refer to the shortest distance to any part of the LM.

AZ: Azimuth (clockwise from north) along which the camera was aimed. This was also determined during resection. When the photograph was part of a panorama, the azimuths of other photographs in the panorama were measured from photomosaics of the panorama.

\section*{Photographic Surveys}

Three basic types of photographic surveys were made by the Apollo 12 astronauts specifically for lunar-surface interpretation: (1) panoramas, (2) sample surveys, and (3) a polarimetric survey. These surveys are described in the following paragraphs.

Panoramas. - A total of 23 panoramas was taken during the Apollo 12 lunar stay. These include partial panoramas from inside the LM taken through both windows, complete \(360^{\circ}\) panoramas taken from the surface at intervals throughout the traverse, and
partial panoramas frequently taken in pairs for stereoscopic average of large features of particular interest.

Panoramas taken from the LM windows are useful because of their high vantage point, even though their azimuthal field of view is little more than \(180^{\circ}\). The view from the windows of the area in the vicinity of the LM is not often occulted by local topography, as photographs from the surface are. This lack of occultation permits detailed examination of continuous views of the surface.

Complete panoramas are taken to record as much lunar-surface detail as possible with a lunar-surface-based camera. Comparison of the appearance of surface features in pictures taken from orbit and in pictures taken from the lunar surface is useful in geological interpretation. Panoramic photographs also augment crew discussions of the area. When joined together as mosaics, the panoramas provide accurate map control data in the form of horizontal angles. This can be done analytically, with high precision, from measurements of glass-plate reproductions of the photographs, or graphically, with moderate precision, by measuring the mosaics themselves. Complete panoramas are more useful than broken or partial panoramas in the sense that they provide an immediate check of error accumulation in measuring horizontal angles, and because lunar directions can be determined accurately and independently of any other data from the locations of the image of the sun and the image of the astronaut's shadow. This was one of the reasons that the crew was requested to take pictures into the sun, even though poor picture quality was anticipated.

Partial panoramas produce some of the same data as complete panoramas at a considerable saving of film. They are useful for photographic documentation of large features of geological interest. When two partial panoramas are taken of the same feature from slightly different vantage points, pairs of pictures from the adjacent panoramas can be viewed stereoscopically, and precise photogrammetric measurements of the feature can be made.

Sample surveys. - The sample surveys were taken to illustrate the in situ characteristics of samples of lunar material returned to earth and to aid identification of sampling locations along the traverse. Most of the sample pictures were taken in stereoscopic pairs to aid in interpretation and photogrammetric measurement of the sample area. Many contain a self-righting wand, or gnomon, which serves as a scale, a vertical reference, and, by casting a shadow, a lunar azimuth indicator.

Polarimetric survey. - A polarimetric survey was made only once, early in the second EVA, with a polarizing filter attached to the camera. This type of survey was made to study the polarizing properties of lunar material. A series of pictures of the same area was taken from different locations and with different orientations of the polarizing filter.

\section*{Glossary of Acronyms and Abbreviations}

\section*{Used in the Photographic Log}
\begin{tabular}{|c|c|}
\hline ALSEP & Apollo lunar-surface experiments package \\
\hline AUX & Auxiliary \\
\hline BOT & Bottom or underside \\
\hline CAM & Camera \\
\hline CDR & Commander (Astronaut Charles C. Conrad) \\
\hline CENT STA & Central station of ALSEP \\
\hline CH & Changed \\
\hline COMP A & One of two compartments on the Surveyor III spacecraft containing electronic components \\
\hline CONT & Contingency sample \\
\hline CSM & Command and service module \\
\hline CT & Core tube \\
\hline CTR & Crater \\
\hline DN SUN & Camera was aimed directly away from the sun when the picture was taken. \\
\hline DPS & Descent propulsion system, i.e., the exhaust cone under the descent stage of the LM \\
\hline E & East \\
\hline EVA & Extravehicular activity, i.e., astronaut activity outside the LM \\
\hline FLD SPL & A number designation on sample bags carried by the astronauts. One or more samples in the same bag were designated by the same 'field' sample number. \\
\hline IDENT & Identification \\
\hline IN & Inch \\
\hline L & Left \\
\hline LESC & Lunar-environment sample container \\
\hline LM & Lunar module \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline LMP & Lunar module pilot (Astronaut Alan Bean) \\
\hline LRL SPL & A number given in the LRL to a sample of lunar material. More than one LRL sample may have the same field sample number. \\
\hline LTR & Lighter \\
\hline MAG & Film magazine \\
\hline N & North \\
\hline OMNI & Omnidirectional antenna. The Surveyor III spacecraft has two such antennas, designated "Omni A" and "Omni B." \\
\hline PSE & Passive-seismic-experiment instrument \\
\hline R & Right \\
\hline RADVS & Radar altimeter and Doppler velocity sensor - part of the automatic landing system on the Surveyor W spacecraft \\
\hline RK & Rock \\
\hline RTG & Radioisotope thermoelectric generator - the power source for ALSEP instruments \\
\hline RTND & Returned \\
\hline S & South \\
\hline SEQ BAY & Scientific equipment bay - a storage compartment on the descent stage of the LM \\
\hline SMSS & Soil mechanics surface sampler - the scoop on the Surveyor III spacecraft \\
\hline SPL & Sample (of lunar material) \\
\hline SWC & Solar-wind-composition measuring device \\
\hline SWE & Solar-wind-experiment instrument \\
\hline TRN & Trench \\
\hline W & West \\
\hline X-SUN & Camera was aimed across the direction of illumination. \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS


\section*{TABLE D－I．－CHRONOLOGICAL SEQUENCE OF 70－MILLIMETER}

\section*{PHOTOGRAPHS－Continued}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{P}+\mathrm{T}^{\text { }}\) & \(\cdots{ }^{\prime}=\) & SEQ & REMARKS \\
\hline 4大－676．3 & \(Y\) & 108 & PAN 3 \\
\hline 46－5764 & Y & 109 & PAVJRAMA 4，\＆AETEPS SE JF LM \\
\hline 46－6， 76.5 & \(Y\) & 110 & PAV 4 \\
\hline 46－5766 & \(Y\) & 111 & PAN 4 \\
\hline 4介－ム767 & \(Y\) & 112 & PAV 4 \\
\hline 40－ム768 & \(\because\) & 113 & PAN 4 \\
\hline 40－く769 & \(Y\) & 114 & PAN 4 \\
\hline 4ヶーム770 & Y & 115 & PAN 4 \\
\hline 46－ヶ771 & Y & 116 & PAN 4 \\
\hline 46－6772 & Y & 117 & DAN 4 \\
\hline 46－6773 & Y & 118 & PAV 4 \\
\hline 46－6774 & Y & 119 & PAN 4 \\
\hline 46－5775 & Y & 120 & PAV 4 \\
\hline 46－6776 & Y & 121 & DAN 4 \\
\hline 46－ヶ777 & Y & 122 & PAN 4 \\
\hline 46－5778 & Y & 123 & PAN 4 \\
\hline 46－5779 & Y & 124 & PAV 4 \\
\hline 46－5780 & Y & 125 & PAV 4 \\
\hline 46－5781 & Y & 126 & PAN 4 \\
\hline 46－6782 & Y & 127 & DAN 4 \\
\hline 46－6783 & Y & 128 & UNLJADIN：AICED E？Jイ LY \\
\hline 4ト－6784 & Y & 129 & STLAR WTVD SPESTROAFTER \\
\hline 46－5785 & Y & 130 & RTT， \\
\hline 4大－大785 & Y & 131 & FUEL CAPSULE DFMOVAL \\
\hline 44．5787 & Y & 132 & FJEL CAPSULE RFATVAL \\
\hline 46－6788 & Y & 133 & FUEL CAPSULE RFiOVAL \\
\hline 45－5789 & Y & 134 & FUEL CAPSULF R\＆：ィาV\L \\
\hline 46－5，790 & Y & 135 & FUEL EAPSULE 2 r foval \\
\hline 46－5791 & Y & 136 & PREP TC ENROY ALSES \\
\hline 46－6792 & Y & 137 & DREP TO CARRV ALSFD \\
\hline 46－5793 & Y & 138 &  \\
\hline 46－5794 & Y & 139 & LARGE MJJVT，STIERE？（L） \\
\hline 46－6795 & Y & 140 & LARGE YOJV＇J．STERF？（R） \\
\hline 46－6796 & Y & 141 & PAVORAMA 5，ALCEP A？ \\
\hline 46－6797 & Y & 142 & PAV 5 \\
\hline 46－6798 & \(Y\) & 143 & DAN 5 \\
\hline 46－6799 & Y & 144 & PAN 5 \\
\hline 46－6800 & Y & 145 & PAN 5 \\
\hline 46－6801 & Y & 146 & DAN 5 \\
\hline 46－6802 & Y & 147 & PAN 5 \\
\hline 46－6803 & Y & 148 & PAN 5 \\
\hline 46－6804 & Y & 149 & PAN 5 \\
\hline 46－6805 & \(Y\) & 150 & PAN 5 \\
\hline 46－6806 & Y & 151 & PAN 5 \\
\hline 46－6807 & Y & 152 & PAN 5 \\
\hline 46－6808 & Y & 153 & PAN 5 \\
\hline 46－6809 & Y & 154 & PAN 5 \\
\hline 4ヶ－6810 & Y & 155 & PAN 5 \\
\hline 46－6811 & Y & 156 & PAN 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{TET} & BY & DIST & 4．T． 4 & A？ \\
\hline 116 & 24 & CDR & 15.4 & 32．？ & 109．？ \\
\hline 116 & 75 & CDR & 9.7 & 1ヶ\％．？ & \(5 \% .7\) \\
\hline 116 & 25 & CDR & 9.7 & 14．h． 3 & 99.0 \\
\hline 116 & 25 & CDR & 9.7 & 1く6． & 82．8 \\
\hline 116 & 25 & CDR & 9.7 & 14ヶ． 3 & 82. \\
\hline 116 & 25 & CDR & 9.7 & 146.3 & 112. \\
\hline 116 & 25 & CDR & 9.7 & 14：． 3 & 128. \\
\hline 116 & 26 & CDR & 9.7 & 14.4 .3 & 157.6 \\
\hline 116 & 26 & CDR & 9.7 & 14：\％ & 160．1 \\
\hline 116 & 26 & CDR & 9.7 & 145.3 & 191.3 \\
\hline 116 & 26 & CDR & 9.7 & 145．3 & 700．9 \\
\hline 116. & 26 & CDR & 9.7 & 14．． 3 & 232.7 \\
\hline 116 & 26 & CDR & 9.7 & 14E．3 & 261.0 \\
\hline 116 & 26 & CDR & 9.7 & 14ヶ．3 & 287.4 \\
\hline 116 & 26 & CDR & 9.7 & 14F．3 & \(319 . ?\) \\
\hline 116 & 26 & CDR & 0.7 & 14\％．3 & 292.9 \\
\hline 116 & 26 & CDR & 9.7 & \(14^{4} \cdot 3\) & \(=44.4\) \\
\hline 116 & 26 & CDR & 9.7 & 145.3 & 6.7 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 25.5 \\
\hline \multirow[t]{11}{*}{116} & \multirow[t]{11}{*}{26} & CDR & 9.7 & 146.3 & 54.8 \\
\hline & & CDR & 7.6 & 122．6 & 285.0 \\
\hline & & CDR & 7.6 & 122.6 & 250.0 \\
\hline & & CDR & 7.6 & 122．6 & 785.0 \\
\hline & & CDR & 6.0 & 133.0 & 330.0 \\
\hline & & CDR & 7.2 & 168.8 & 250.0 \\
\hline & & CDR & 7.2 & 168.8 & 350.0 \\
\hline & & CDR & 8.0 & 112.7 & ？ 05.0 \\
\hline & & CDR & S． 0 & 112.7 & 295.0 \\
\hline & & CDR & 10.2 & 172.1 & 5.0 \\
\hline & & CDR & 10.2 & 172.1 & 5.0 \\
\hline 116 & 55 & CDR & 93.5 & 296.6 & 274.0 \\
\hline 116 & 55 & CDR & 106.0 & 295.6 & 237.0 \\
\hline 116 & 55 & CDR & 107.8 & 296.4 & 250.0 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 2483.1 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 274.6 \\
\hline 116 & 55 & CDR & 116.4 & \(=05.7\) & 299.1 \\
\hline 116 & 55 & COR & 116.4 & 305.7 & 325.2 \\
\hline 116 & 55 & CDR & 116.4 & 205.7 & 34＊． 5 \\
\hline 116 & 55 & CDR & 116.4 & 205. & \(1: 6\) \\
\hline 116 & 55 & CDR & 116.4 & 205.7 & 30.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 50.6 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 72.5 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 80 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 110.5 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 138.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 163.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 181.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 210.3 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 233.3 \\
\hline
\end{tabular}

TABLE D－I．－CHRONOLOGICAL SEQUENCE OF 70－MILLIMETER

\section*{PHOTOGRAPHS－Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTO & － 4 AS & \(S F Q\) & －EMARくS & \multicolumn{2}{|r|}{SET} & RY & DIST & A 2 L＇4 & \(\Delta 2\) \\
\hline 4ヶ－1812 & Y & 157 & SOLAP，WIVJ FXP IV PLAET & & & C．JR & 122.9 & 311.8 & 317.0 \\
\hline 4t－4813 & Y & 158 &  & & & C．DR & 128.3 & 314.5 & 152．0 \\
\hline 46－4814 & Y & 159 & Cevtral station & & & EnR & 129.1 & 314.1 & 158.0 \\
\hline 4r－48！ 5 & Y & 150 & CENTRAL ¢TATİN & & & こDR & 120.1 & 314.1 & 170.0 \\
\hline 46－6，8，1 \({ }^{\text {a }}\) & Y & 161 & CENTRAL STATTON & & & COR & 129.8 & 314.5 & 180.0 \\
\hline 4勺－4817 & Y & 162 & alsep iv olace & & & COR & 131.2 & 314.5 & 150.0 \\
\hline 4ち－5818 & Y & 163 & LMP AT IN DFTFCTOn & & & CDR & 129.9 & 312.5 & 22．．0 \\
\hline 46－6819 & \(Y\) & 164 & \％LARE & & & CDR & & & \\
\hline 4ヶ－58？ 0 & Y & 165 & ALSEP IV OLACF & & & CDR & 128.9 & 305.0 & 346.0 \\
\hline 4\％－大， 821 & \(Y\) & 166 & LYP AV ITV DFTESTITR & & & CDR & 128.0 & 302.0 & 39.0 \\
\hline 46－9822 & Y & 167 & SMALL YOUNO & 11 ！ & 1 & CDR & 155.6 & \(319 . ?\) & 304.0 \\
\hline & & & START DF SELFCTET） SAMPLF TPAVERSF & & & & & & \\
\hline 4t－68？\({ }^{4}\) & Y & 168 & SMALL MOINT & 118 & 1 & CDR & 156.5 & 320.0 & 204.0 \\
\hline 46－6，924 & \(y\) & 169 & SMALL YOIIVD & 118 & 2 & \(\therefore D R\) & 157.7 & 318.0 & 304.0 \\
\hline \(4!-\) ¢． \(8>5\) & \(\checkmark\) & 170 & SMALL MOIND & 118 & 2 & こDR & 157.8 & 310.4 & 205.0 \\
\hline \(46-6826\) & Y & 171 & LYP AT ALCFP & 118 & 4 & CDR & 152．1 & 319.1 & 162.0 \\
\hline 4t－68つ7 & Y & 188 & \(\triangle P P R O A C H I V G\) LADGE A M \(!\) NV & 118 & 6 & CDR & 120.3 & 70.6 .6 & 173.0 \\
\hline \(4 t-6828\) & Y & 189 & \(\triangle P P R O A C H I V G L G O G F ~ M O U N D\) & 118 & 6 & COD & 121.3 & 295．3 & 165.0 \\
\hline 46－5829 & Y & 190 & ＇BIG ROCく＇NW TF LARCF MOUND & 118 & 6 & cors & 121．3 & 295．？ & 107.0 \\
\hline 45－6830 & \(Y\) & \(1 \bigcirc 1\) & ＇BIG RJCK＇NW TF LARCF MOUND & 118 & 6 & CDR & 121.3 & 294.3 & 187.0 \\
\hline 45－5831 & \(Y\) & 193 & LARGE A？UVD，SPL 1 OOn8． SPL IDENT．TFNTATIVF & 118 & 9 & CDR & 113.2 & 291.2 & 337.0 \\
\hline \(4+-1837\) & \(Y\) & 194 & LARGF MOUVO，COL 120 O8 SPL IDENT．TEVTATIVF & 118 & 9 & EDR & 112.3 & 291.3 & 337.0 \\
\hline \(46-68 \geq 3\) & \(Y\) & 200 & \[
\begin{aligned}
& \text { LRL SPLS } 12010,12013 \text {, } \\
& \text { 12O19 SOL IOEVT } \\
& \text { TENTATIVE }
\end{aligned}
\] & 118 & 16 & CDR & 140.8 & 307.6 & 180.0 \\
\hline 45－683 & Y & 202 & & 118 & 16 & CDR & & & 0.0 \\
\hline \(4 \therefore-5335\) & Y & 203 & & 118 & 16 & CDR & & & \\
\hline \(44-4826\) & \(Y\) & 204 & \[
\begin{aligned}
& \text { PAVJRAMA K, CTFRFO (F) } \\
& \text { MIDDLF CDFSCFVT CTD }
\end{aligned}
\] & 118 & 18 & CDR & 280.9 & \(30 \leq 5\) & 48.7 \\
\hline 46－6837 & \(Y\) & 205 & PAV 6 & 118 & 18 & CDP & 280.9 & こ0． 5 & 3：4．8 \\
\hline 46－6838 & Y & 206 & PAV 6 & 118 & 18 & CDR & 280.9 & 200.5 & 319.5 \\
\hline 46－6839 & Y & 207 & PAV 6 & 118 & 18 & こDR & 280.9 & －00． 5 & 306.5 \\
\hline 45－4840 & Y & 208 & PA＇V 6 & 118 & 18 & C J P & 280.9 & 309.5 & ？ 00.2 \\
\hline 46－5841 & Y & 209 & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & ？ 81.5 \\
\hline 4t－684？ & Y & 210 & PAV 6 & 118 & 18 & CDR & 280.9 & 309.5 & 256．6 \\
\hline 46－5843 & Y & 211 & PAN 6 & 118 & 18 & CDR & 280.9 & 300.5 & 254．1 \\
\hline 46－6844 & Y & 212 & PAV 6 & 118 & 18 & CDR & 280.9 & 300.5 & 240.8 \\
\hline 46－6845 & Y & 213 & \[
\begin{aligned}
& \text { PAVJRAMA } 7 \text {, STFRE' (L) } \\
& \text { MIDDLE CSESCFNT CT' }
\end{aligned}
\] & 118 & 19 & CDR & 285.2 & 307.1 & 229.4 \\
\hline 46－5846 & Y & 214 & PAV 7 & 118 & 19 & CDR & 285.2 & 307.1 & 253．3 \\
\hline 46－5847 & Y & 215 & PAV 7 & 118 & 19 & CDR & 285.2 & 307.1 & 272.8 \\
\hline 46－6848 & Y & 216 & PAV 7 & 118 & 19 & CDR & 285．2 & 307.1 & 287.5 \\
\hline 46－6849 & Y & 217 & PAV 7 & 118 & 19 & CDR & 285.2 & 307.1 & 297.3 \\
\hline 45－6850 & Y & 218 & PAV 7 & 118 & 19 & CDR & 285．？ & 307.1 & 311.2 \\
\hline 46－6851 & Y & 219 & PAN 7 & 118 & 19 & CDR & 205.2 & 307.1 & 324.3 \\
\hline 46－6852 & Y & 220 & PAN 7 & 118 & 19 & CDR & 285.2 & 20\％．1 & 343.9 \\
\hline
\end{tabular}

\section*{TABLE D－I．－CHRONOJ＿OGICAL SEQUENCE OF 70－MILLIMETER}

\section*{PHOTOGRAPHS－Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTO & \(\cdots \Delta G\) & SEC & ПEMARKS & & OET & BY & DIS T & AZLM & A 2 \\
\hline 46－ちょ853 & Y & 3 C 4 & PAVJRA＇イA 1.1 ，L WINDriw & & & CDR & l．t & 2 E．た． 4 & 289．0 \\
\hline 4．6－6854 & Y & 305 & PAN 11 & & & CDR & 1.6 & 266：． 4 & 271.0 \\
\hline 4イ－6855 & Y & 306 & PAN 11 & & & CDR & 1.6 & 266．4 & 243.6 \\
\hline 46－6856 & Y & 307 & PAN 11 & & & CDR & J． .6 & 26.6 .4 & 284.2 \\
\hline \(4 t-5857\) & Y & 308 & PAN 11 & & & CDR & 1．t & 26\％．4 4 & 262.5 \\
\hline 4t－6858 & Y & 309 & PAN 11 & & & CDR & 1.1 & 26．5．4 & 235.3 \\
\hline 45－6859 & Y & 310 & PAN 11 & & & CDR & 3． .6 & 2130．4 & 223.1 \\
\hline 46－5860 & Y & 311 & PAN 11 & & & CDR & 1．t & 260.4 & 290.5 \\
\hline \(45-6861\) & Y & 312 & PAVJPAAA 11，：WIVJO． & & & LMP & 1.8 & 290.3 & 343.0 \\
\hline 4 6 －68大2 & Y & 313 & PAN 11 & & & LMP & 1.8 & 200.3 & 320.5 \\
\hline 4 2 －6863 & Y & 314 & PAN 11 & & & LMP & I． 8 & 200． 3 & 302.5 \\
\hline 46－58＋4 & Y & 315 & PAN 11 & & & LMP & 1.8 & 29C． 3 & 299.3 \\
\hline 46－6865 & Y & 316 & PAN 11 & & & LMP & 1.8 & 25：3．3 & 348.5 \\
\hline 4 4－ti8 4 & Y & 317 & PAN 11 & & & LMP & 1.8 & 299.3 & 304.0 \\
\hline \(4 t-58+7\) & \(\checkmark\) & 318 & PA 111 & & & LMP & 1.8 & 290． 3 & 315.0 \\
\hline \(4 t-686.9\) & Y & 310 & PAN 11 & & & LMP & 1.8 & 299．3 & 306.5 \\
\hline 47－6と69 & V & 1 & TSIGLK日V：くY & & & CDR & & & \\
\hline 47－5870 & V & 2 & TSTOLくJVEくY & 107 & 23 & CDR & & & \\
\hline 47－6871 & V & 3 & FAOTH！TG： & 1.07 & 28 & LMP & & & \\
\hline 47－587？ & V & 4 & EARTHRISE & 107 & 38 & LMP & & & \\
\hline \(47-5872\) & V & 5 & FARTHRIS： & 107 & 28 & LMP & & & \\
\hline 47－5874 & \(v\) & 6 & EARIHRIS： & 107 & 23 & LMP & & & \\
\hline 47－5875 & V & 7 & CJPFRNICUS & 108 & 8 & L！AD & & & \\
\hline 47－6876 & V & 8 & COPERNICUS & 108 & 8 & LMP & & & \\
\hline \(47-5877\) & V & 9 & CSM AFTF：UNITOKTM？ & 108 & 8 & CDR & & & \\
\hline 47－5878 & V & 10 & CSM AFTEU UVDJCKIN． & 108 & 8 & CDR & & & \\
\hline 47－6879 & V & 11 & EARTHPISF． & 109 & 38 & L．MP & & & \\
\hline 47－6880 & V & 12 & FARTH＇RISE & 109 & 38 & LMP & & & \\
\hline 47－6891 & V & 13 & FARTHRISF & 109 & 38 & LMP & & & \\
\hline 47－6882 & V & 14 & FARTHDISE & 109 & 38 & LMP & & & \\
\hline 47－6883 & V & 15 & FARTHRISE & 109 & 38 & LMP & & & \\
\hline 47－5884 & V & 16 & 「ARTHRIS： & 109 & 38 & LMP & & & \\
\hline 47－6885 & V & 17 & FARTHEISF & 109 & 38 & LMP & & & \\
\hline 47－689\％ & \(v\) & 18 & TARTHRISF： & 109 & 38 & L．MP & & & \\
\hline 47－689\％ & \(\cdots\) & 19 & FARTHRISE & 109 & 38 & LMP & & & \\
\hline 47－5883 & V & 20 & FARTHRISF． & 109 & 38 & LMP & & & \\
\hline 47－6880 & V & 21 & FARTHRISF & 109 & 38 & LMP & & & \\
\hline 47－6800 & \(v\) & 22 & FARTHRISE & 109 & 38 & LMO & & & \\
\hline 47－6891 & \(v\) & 23 & EARTHRISF & 109 & 38 & LMP & & & \\
\hline 47－6892 & V & 24 & FARTHRISE & 109 & 38 & LMP & & & \\
\hline 47－6893 & V & 25 & FARTHRISF & 109 & 38 & LMP & & & \\
\hline 47－4894 & \(v\) & \(2 E\) & EARTHRIS & 109 & 38 & LMP & & & \\
\hline ¢7－5895 & V & 27 & EARTHRISF & 109 & 38 & LMP & & & \\
\hline 47－5896 & \(v\) & 55 & SETTING UP FLA & 116 & 21 & LMP & 14.3 & 13.7 & 360.0 \\
\hline 47－6897 & V & 56 & SETTING UD FLAF， & 116 & 21 & LMP & 17.9 & 1.3 & 220.0 \\
\hline 47－6898 & V & 57 & SJLAR WIVD CIMMP FXU & 116 & 21 & LMP & 38.0 & 340.7 & 320.0 \\
\hline \(47-5809\) & V & 58 & SOLAR WIVO CJMD EXP，LM & 116 & 21 & LMP & 43.1 & 341.6 & 165.0 \\
\hline 47－5900 & V & 59 & －Y PAD AREA & 116 & 21 & LMP & 6.1 & 185.6 & 10.0 \\
\hline 47－6901 & V & 60 & －Y PAD AREA & 116 & 21 & LMP & 7.1 & 210.6 & 10.0 \\
\hline 47－6902 & V & 61 & ＋ 2 P＾＾）ARFA（IV SHACn（W） & 116 & 21 & LMP & 6.8 & 304.8 & 180.0 \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQU ENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTC & MAG & SEQ & REMARKS & \multicolumn{2}{|r|}{GET} & BY & DIST & AZLM & A2 \\
\hline 47-6903 & V & 62 & + 2 PAD AREA (IN SHADOW) & 116 & 21 & LMP & 5.3 & 317.3 & 180.0 \\
\hline 47-6904 & V & 63 & FRAMES 6904THRU 6907 & 116 & 23 & LMP & 5.1 & 15.9 & 200.0 \\
\hline & & & ARE A STEREO 'FLIGHT & & & & & & \\
\hline & & & LINE' OF THE + Y FOOT & & & & & & \\
\hline & & & PAD AND ITS FIRST & & & & & & \\
\hline & & & IMPACT POINT. & & & & & & \\
\hline 47-6905 & V & 64 & +Y PAD AREA & 116 & 23 & LMP & 5.2 & 41.1 & 200.0 \\
\hline 47-6906 & V & 65 & +Y PAD AREA & 116 & 23 & LMP & 5.9 & 48.5 & 200.0 \\
\hline 47-6907 & V & 66 & +Y PAD AREA & 116 & 23 & LMP & 6.1 & 61.8 & 200.0 \\
\hline 47-6908 & V & 67 & -Z PAD AREA & 116 & 23 & LMP & 6.5 & 99.7 & 290.0 \\
\hline 4.7-6909 & V & 68 & -Z PAD AREA & 116 & 23 & LMP & 5.8 & 111.2 & 290.0 \\
\hline 47-6910 & V & 69 & DPS AREA (WEAK STEREO)R & 116 & 26 & LMP & 6.0 & 133.0 & 320.0 \\
\hline 47-6911 & V & 70 & DPS AREA (WEAK STEREO)L & 116. & 26 & LMP & 5.6 & 154.8 & 320.0 \\
\hline 47-6912 & V & 71 & OPENING SEQ BAY & 116 & 26 & LMP & 4.0 & 121.7 & 190.0 \\
\hline 47-6913 & V & 72 & OPENING SEQ RAY & 116 & 26 & LMP & 4.0 & 121.7 & 190.0 \\
\hline 47-6914 & V & 73 & OPENING SEQ BAY & 116 & 26 & LMP & 4.0 & 121.7 & 190.0 \\
\hline 47-6915 & V & 74 & -Z PAD AREA & 116 & 26 & LMP & 4.1 & 174.4 & 55.0 \\
\hline 47-6916 & V & 172 & PASSIVE SEISMOMETER & 118 & 4 & LMP & 126.9 & 315.7 & 180.0 \\
\hline 47-6917 & V & 173 & PASSIVE SEISMOMETER & & & LMP & 123.4 & 315.4 & 330.0 \\
\hline 47-6918 & V & 174 & PSE, CENT.STA.,AND SWE & & & LMP & 121.3 & 315.1 & 285.0 \\
\hline 47-6919 & V & 175 & CDR NEAR MAGNETOMETER & & & LMP & 119.9 & 315.1 & 265.0 \\
\hline 47-6920 & V & 176 & MAGNETOMETER IN PLACE & & & LMP & 109.5 & 311.0 & 335.0 \\
\hline 47-6921 & V & 177 & DEPPLOYED ALSEP & & & LMP & 102.6 & 310.0 & 335.0 \\
\hline 47-6922 & V & 178 & ION DET.(RT STEREJ) & & & LMP & 127.1 & 311.9 & 0.0 \\
\hline 47-6923 & V & 179 & ION DET.(LEFT STEREO) & & & LMP & 127.9 & 311.6 & 0.0 \\
\hline 47-6924 & V & 180 & TOP OF ION DETECTOR & & & LMP & 127.8 & 312.2 & 0.0 \\
\hline 47-6925 & V & 181 & TOP OF CENTRAL STATION & & & LMP & 128.3 & 314.5 & 190.0 \\
\hline 47-6926 & V & 182 & CENTRAL STATION & & & LMP & 128.3 & 314.5 & 190.0 \\
\hline 47-6927 & V & 183 & CENTRAL STATION & & & LMP & 127.6 & 315.4 & 240.0 \\
\hline 47-6928 & V & 184 & CENT.STA,LM IN DISTANCE & & & LMP & 128.3 & 314.5 & 135.0 \\
\hline 47-6929 & V & 185 & CENT.STA, SWE, MOUND & & & LMP & 130.5 & 312.9 & 172.0 \\
\hline 47-6930 & V & 186 & CENT.STA, ION DETECTIR & & & LMP & 128.3 & 314.5 & 210.0 \\
\hline 47-6931 & V & 187 & PSE, MAGNETOMETER & 118 & 6 & LMP & 127.7 & 316.0 & 165.0 \\
\hline 47-6932 & V & 192 & \[
\begin{aligned}
& \text { CDR REACHING FOR SPL } \\
& 12021
\end{aligned}
\] & 118 & 8 & LMP & 116.4 & 294.8 & 180.0 \\
\hline 47-6933 & V & 195 & \begin{tabular}{l}
TAKING SPL 12022 FROM MOUND. SPL IDENT. \\
TENTATIVE
\end{tabular} & 118 & 10 & LMP & 115.1 & 293.5 & 180.0 \\
\hline 47-69う4 & V & 196 & SAMPLING AT LARGE MOIJND & 118 & 10 & LMP & 114.7 & 293.0 & 180.0 \\
\hline 47-6935 & V & 197 & LARGE MOUND, SPL NOT IDENTIFIED & 118 & 11 & LMP & 115.7 & 292.8 & 180.0 \\
\hline 47-6936 & V & 198 & FRESH SECONDARY CRATERS LRL SPL 12004, SPL IDENT TENTATIVE & 118 & 15 & LMP & 158.6 & 305.8 & 5.0 \\
\hline 47-6937 & V & 199 & SHOWS HORIZON N OF 47-6936 & 118 & 15 & LMP & 158.1 & 305.5 & 5.0 \\
\hline 47-6938 & V & 201 & 'VALENTINE' & 118 & 16 & LMP & & & 330.0 \\
\hline 47-6939 & V & 221 & FRESH CRATER, LRL SPL 12016, SPL IDENT tentative & 118 & 22 & LMP & 252.3 & 303.4 & 335.0 \\
\hline
\end{tabular}

\title{
TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
}

\section*{PHOTOGRAPHS - Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P40T? & MAS & SEQ & \multicolumn{3}{|l|}{QEMARKS} & \multicolumn{2}{|r|}{\(\therefore\) ¢} & RY & пr \({ }^{\text {r }}\) & A71:1 & \(\Delta l\) \\
\hline 47-4940 & V & 222 & TUNGS, LOL SDL & \(1 \geqslant 014\) & & & & LMP & & & \\
\hline 47-5941 & V & 223 & oavorama o, lo DF LM & HFTERC & ! & 118 & 27 & LMP & 13.9 & 287.0 & 270.3 \\
\hline 47-6.94? & V & 224 & PAV 8 & & & 118 & 27 & LMP & 13.9 & ? 82.0 & 251.9 \\
\hline 47-6943 & V & 225 & PA.V 8 & & & 118 & 27 & LMP & 13.9 & 282.0 & ? 34.9 \\
\hline 47-6944 & V & 226 & DAN 8 & & & 118 & 27 & LMP & 13.9 & 282.0 & ? 14.5 \\
\hline 47-5945 & V & 227 & DAN 8 & & & 118 & 27 & LMP & 13.9 & 282.0 & 194.1 \\
\hline 47-6946 & V & 228 & DAV 8 & & & 118 & 27 & LinP & 13.9 & 282.0 & 175.7 \\
\hline 47-5947 & V & 229 & OAN 8 & & & 118 & 27 & Lind & 13.9 & 282.0 & 158.9 \\
\hline 47-6948 & V & 230 & DAV 8 & & & 118 & 27 & LMP & 13.9 & 282.0 & 144.5 \\
\hline 47-5949 & V & 231 & -AN 8 & & & 118 & 27 & LMP & 13.9 & 287.0 & 130.5 \\
\hline 47-5950 & V & 232 & PAN 8 & & & 118 & ?7 & LiMP & 13.9 & 282.0 & 105.2 \\
\hline 47-5351 & V & 233 & PAN 8 & & & 118 & 27 & LIMP & 13.9 & 282.0 & 83.2 \\
\hline 47-695? & V & 234 & PAV 8 & & & 11.8 & \(\cdots\) & LMD & 13.9 & 732.0 & 60.5 \\
\hline 47-5953 & V & 235 & DAN 8 & & & 118 & ? 2 & LMP & 13.9 & 392.0 & 47.4 \\
\hline 47-6954 & v & 236 & PAV 8 & & & 118 & 28 & LMP & 13.9 & -82.0 & 35.5 \\
\hline 47-5955 & V & 237 & PAN A & & & 118 & 28 & LMP & 13.9 & 282.0 & 18.0 \\
\hline 47-6956 & V & 238 & \({ }^{\text {D }}\) A 8 & & & 118 & 28 & LMP & 13.9 & ?87.0 & 2.8 \\
\hline 47-69に\% & v & \(23 \%\) & 口AV 8 & & & 115 & ?8 & LIAP & 13.9 & 282.0 & 340.4 \\
\hline 47-5958 & V & 240 & PAN 8 & & & 118 & 28 & 1,MP & 13.0 & 282.0 & 317.5 \\
\hline 47-5959 & V & 241 & PAN 8 & & & 118 & 28 & LMP & 13.9 & 282.0 & 300.8 \\
\hline 47-i, 960 & V & 242 & PAN 8 & & & 118 & 28 & LMP & 13.9 & 282.0 & 2¢5.8 \\
\hline 47-6961 & v & 243 & PAVIRAMA \(\because\), 8 DF LM & IFTEMS E & & 118 & \(? 9\) & LMP & 11.8 & 105.2 & 289.? \\
\hline 47-6,9+2 & V & 244 & PAV 9 & & & 118 & 29 & LMP & 11.8 & 105.2 & 263.? \\
\hline 47-6963 & V & 245 & PAN 9 & & & 118 & 29 & LMP & 11.8 & 105.2 & 24 2.8 \\
\hline 47-5964 & V & 246 & PAN 9 & & & 118 & 29 & LMP & 11.8 & 105.? & 218.9 \\
\hline 47-59+5 & V & 247 & DAN 9 & & & 118 & 29 & LMP & 11.8 & 105.2 & 20.5.4 \\
\hline 47-59+5 & V & 248 & CAN 9 & & & 118 & 29 & LMP & 11.5 & 105.2. & 184.1 \\
\hline 47-6967 & V. & 249 & PAN 9 & & & 118 & 29 & LMP & 11.8 & 105.2 & 170.1 \\
\hline 47-6968 & V & 250 & PAN 9 & & & 118 & 29 & LMP & 11.8 & 105.2 & 155.2 \\
\hline 47-6969 & V & 251 & PAN 9 & & & 118 & 29 & LMP & 11.8 & 105.? & 138.7 \\
\hline 47-6970 & V & 252 & PAN 9 & & & 113 & 29 & LMP & 11.8 & 105.2 & 123.6 \\
\hline 47-6971 & V & 253 & PAN S & & & 118 & 29 & LMP & 11.8 & 105.2 & 107.3 \\
\hline 47-6972 & V & 254 & PAV 9 & & & 118 & 29 & LMP & 11.8 & 105.2 & 81.5 \\
\hline 47-19973 & V & 255 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 62.1 \\
\hline 47-5974 & V & 256 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 46.5 \\
\hline 47-6975 & V & 257 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 36.8 \\
\hline 47-6976 & V & 258 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 10.6 \\
\hline 47-5977 & V & 259 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 356.4 \\
\hline 47-6978 & v & 260 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 341.8 \\
\hline 47-6979 & V & 261 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 327.8 \\
\hline 47-6980 & V & 262 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 31\%.2 \\
\hline 47-6981 & V & 263 & PAN 9 & & & 118 & 30 & LMP & 11.8 & 105.2 & 30?.0 \\
\hline 47-6982 & V & 264 & PANORAMA 10, 9 NE OF LM & METERS & & 118 & 31 & LMP & 12.7 & 20.3 & 305.9 \\
\hline 47-6983 & V & 265 & PAN 10 & & & 118 & 31 & LMP & 12.7 & 20.3 & 201.7 \\
\hline 4 1-6984 & V & 266 & PAN 10 & & & 118 & 31 & LMP & 12.7 & 20.3 & 281.5 \\
\hline 47-6985 & V & 267 & PAN 10 & & & 118 & 31 & LMP & 12.7 & 20.3 & 268.0 \\
\hline \(47-6986\) & V & 268 & PAN 10 & & & 118 & 31 & LMP & 12.7 & 20.3 & 253.9 \\
\hline
\end{tabular}

TABLE D－I．－CHRONOLOGICAL SEQUENCE OF 70－MILLIMETER
PHOTOGRAPHS－Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PHOT \({ }^{\text {，}}\) & \(\cdots A=\) & SEO & OFADRKS & 二 5 T & BY & 015T & ATLM & A 2 \\
\hline 47－ヶ98？ & V & 269 & PAV 10 & 118，3＇． & LMP & 12.7 & 20.3 & 239.0 \\
\hline 47－5908 & V & 270 & －AN 10 & 11831 & L．MD & 12.7 & 20.3 & 221.4 \\
\hline 47－5989 & V & 271 & DAV 10 & 11831 & LMP & 12.7 & 20.3 & ？ 06.7 \\
\hline 47－59「0 & V & 272 & PAV 10 & 11831 & LMP & 12.7 & 20.3 & 126．9 \\
\hline 47－6991 & V & 272 & PAN 10 & 11831 & LMP & 12.7 & 20.3 & 106．5 \\
\hline 47－6．9．2 & v & 274 & PGV 10 & 11831 & LMP & 12.7 & 20.3 & 147．6 \\
\hline 47－5002 & V & 275 & PAN 10 & 11831 & LMP & 1．2．7 & 20．2 & 141.0 \\
\hline 47－639： & V & 276 & DAN 10 & 11831 & LMP & 12.7 & 20.2 & 129．5 \\
\hline 47－6905 & v & 277 & －AN 10 & 11831. & LMP & 12.7 & 20.3 & 113.1 \\
\hline 47－5906 & v & 278 & PAV 10 & 11831 & LMP & 12.7 & 20.3 & 105．8 \\
\hline  & v & 279 & \(\bigcirc \triangle N 10\) & 11831 & LMP & 12.7 & 20.3 & 87.0 \\
\hline 47－ムのぐを & v & 280 & PAV 10 & 11831 & LMP & 12.7 & 20.3 & 75.6 \\
\hline 47－600． & V & 281 & DAV 10 & 11831 & LMP & 12.7 & 20.3 & 55.7 \\
\hline 47－700へ & V & 282 & DAV 10 & 11831 & LMP & 12.7 & 20.3 & 44.3 \\
\hline 47－7001 & V & 282 & DAV 10 & 11831 & LMP & 12.7 & 20.3 & 30.2 \\
\hline \(47-7002\) & v & 294 & OAN 10 & 11.831 & LMP & 12.7 & 20.3 & 14.6 \\
\hline ＋．－10以i & V & 205 & OAS 10 & 118 ¢ & LIMP & 12.7 & 20.3 & 4.3 \\
\hline 47－700．4 & v & 286 & DAN 10 & \(118 ? 1\) & LMP & 12.7 & \(20 . ?\) & －55．3 \\
\hline 47－7005 & V & \(28 \%\) & PAN 10 & 11831 & LMP & 12.7 & 20.3 & 338.4 \\
\hline 47－700t， & V & 288 & PAN 10 & 11831 & LMP & 12.7 & 20.3 & 325.2 \\
\hline 47－7007 & V & 289 & LRL SPL 1＞02f，CT 2013 & 11836 & LMP & 19.0 & 33.2 & 20.0 \\
\hline ＋7－7008 & V & ？ 90 & LRL SPL 1202t，CT 2013 & 11836 & LMP & 19.6 & 35.6 & 0.0 \\
\hline 47－7009 & V & 291 & CDP EvTERING L＇ & 1195 & LMP & & & \\
\hline 47－7010 & V & 292 & C．DR EVTERING L＇ & 1195 & \(1 . M P\) & & & \\
\hline 47－7011 & V & 293 & PAVJRAMA 11，P WTV）rur & & LM \({ }^{\text {L }}\) & 1.8 & 299.3 & 286．0 \\
\hline 47－701？ & v & \(2 \bigcirc 4\) & OAN 11 & & LMP & 1.8 & 29c． 3 & 205．\({ }^{\text {2 }}\) \\
\hline \(47-7013\) & V & 295 & PAN 11 & & LMP & 1.8 & 299.3 & 206.6 \\
\hline 47－7014 & V & 296 & 口AN 11 & & LMP & 1.8 & 299.3 & 326.8 \\
\hline 47－7015 & V & 297 & AN 11 & & LMP & 1.8 & 299.3 & 347.2 \\
\hline 47－7016 & V & 298 & PA＇V 11 & & LMP & 1.8 & 299.3 & 10.4 \\
\hline 47－7017 & V & 299 & PAV 11，（UVDFPLXDつSFO） & & LMP & 1.8 & 290.3 & \\
\hline 47－7018 & V & 300 & OAN 11 & & LMP & 1.8 & 299.3 & 354.2 \\
\hline 4：－7019 & v & 301 & PAV 11 & & LMP & 1.8 & 299.3 & 333.8 \\
\hline 47－7020 & v & 307 & OAU 11 & & LMP & 1.0 & 299.3 & 287.4 \\
\hline 47－7021 & \(v\) & 303 & ？AN 11 （OADTTAI FOAMF） & & 1 M 0 & 1． & 290.3 & \\
\hline 48－7022 & x & 28 & DAVJRAイA 1 ，L WIVn＂．．． （FDGGFD） & & Cop & 1.6 & 266.4 & 216.2 \\
\hline 4：8－7023 & X & 29 & DAN 1 & & CrjR & 1.6 & 26t．4 & \(238 . ?\) \\
\hline \(48-7024\) & X & 30 & DAV 1 & & CDD & 1.6 & 266.4 & 270． 5 \\
\hline 48－7075 & \(x\) & 31 & DAV 1 & & CDR & 1.6 & 266.4 & 242.4 \\
\hline 40－7020 & \(x\) & 32 & PAN 1 & & CDR & 1.6 & 265.4 & 24.4 .5 \\
\hline 4－－7027 & \(x\) & 33 & DAV 1 & & CDR & 1.6 & 266.4 & 239.0 \\
\hline 4\％－7028 & x & 34 &  & & LMP & 1.8 & 299.3 & 29ミ． 5 \\
\hline 48－7020 & \(x\) & 35 & DA：N 1 & & LMP & 1.8 & 299．3 & 319.3 \\
\hline 48－7030 & \(x\) & 36 & O\＆V 1 & & LMP & 1.8 & 299.3 & \(350 . ?\) \\
\hline 48－70．1 & X & 37 & PAV 1 & & L．MP & 1.8 & 299．3 & 342.0 \\
\hline 4．3－7032 & \(x\) & 38 & PAV 1 & & LMP & 1.8 & 299.3 & 324.0 \\
\hline 48－7．023 & X & 39 & －AN 1 & & LMD & 1.9 & 200.3 & 328.0 \\
\hline 48－7034 & X & 320 & －3．5 X 3．5＇＇R．CK＇（DOS） & 13157 & LMD & t． 1 & 176.2 & 0.0 \\
\hline 48－7025 & X & 321 & VEAR DPS ENTIVE & 13157 & LMP & 3.3 & 231.1 & 60.0 \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline РНОто & MAG & SEQ & REMARKS & & GET & BY & DIST & AZLM & \(A Z\) \\
\hline 48-7036 & X & 322 & STEP WEDGE İN SUN & 131 & 57 & LMP & 30.3 & 351.3 & 292.0 \\
\hline 48-7037 & X & 323 & STEP WEDGE DN SUN & 131 & 58 & LMP & 30.3 & 351.3 & 293.0 \\
\hline 48-7038 & \(x\) & 324 & STEP WEDGE IN SHADOW & 131 & 58 & LMP & & & \\
\hline 48-7039 & \(x\) & 325 & STEP WEDGE IN SHADOW & 131 & 58 & LMP & & & \\
\hline 48-7040 & X & 326 & STEP WEDGE IN SHADOW & 131 & 58 & LMP & & & \\
\hline 48-7041 & x & 327 & SWC & 131 & 59 & LMP & 38.7 & 34く.5 & 294.0 \\
\hline 48-7042 & X & 328 & SWC & 131 & 59 & LMP & 41.8 & 342.5 & 209.0 \\
\hline 48-7043 & x & 334 & GLASS IV CTR,N RIM HEAD LRL SPL 12030, FLD SPL 10 & 132 & 13 & LMP & & & \\
\hline 48-7044 & X & 335 & \begin{tabular}{l}
GLASS IN CTR,N RIM HEAD \\
LRL SPL 12030, \\
FLD SPL 10
\end{tabular} & 132 & 13 & LMP & & & \\
\hline 48-7045 & x & 336 & \begin{tabular}{l}
GLASS IN CTR,N RIM HEAD \\
LRL SPL 12030, \\
FLD SPL 10
\end{tabular} & 132 & 13 & LMP & & & \\
\hline 48-7046 & \(x\) & 340 & N RIM OF HEAD CTR & 132 & 15 & LMP & 150.9 & 273.4 & 252.0 \\
\hline 48-7047 & X & 341 & N RIM OF HEAD CTR & 132 & 15 & LMP & 150.9 & 273.4 & 252.0 \\
\hline 48-7048 & X & 351 & \begin{tabular}{l}
'LIGHT COLOR WHEN \\
DISTURBED', LRL SPL \\
12031,FLD SFL 3D
\end{tabular} & 132 & 19 & LMP & & & \\
\hline 48-7049 & x & 354 & SHOWS PART OF TRENCH & 132 & 19 & LMP & & & \\
\hline 48-7050 & x & 355 & \[
\begin{aligned}
& \text { POST SPL SHOT } \\
& \text { LRL SPL } 12031 \text {, } \\
& \text { FLD SPL } 30
\end{aligned}
\] & 132 & 19 & LMP & & & \\
\hline 48-7051 & \(x\) & 362 & \begin{tabular}{l}
N RIM OF HEAD CTR \\
LRL SPL 12033, FLD \\
SPL 5D, LRL SPL \\
12034, FLD SPL 6D
\end{tabular} & 132 & 26 & LMP & & & \\
\hline 48-7052 & x & 363 & N RIM OF HEAD CTR LRL SPL 12033, FLD SPL 50 & 132 & 26 & LMP & & & \\
\hline 48-7053 & X & 368 & N RIM OF HEAD CTR DOWN-SUN,MOVED ROCK & 132 & 27 & LMP & 185.8 & 272.7 & 250.0 \\
\hline 48-7054 & x & 369 & N RIM OF HEAD CTR DOWN-SUN,MOVED ROCK & 132 & 27 & LMP & 185.8 & 272.7 & 255.0 \\
\hline 48-7055 & x & 370 & N RIM OF HEAD CTR DOWN-SUN,MOVED ROCK & 132 & 27 & LMP & 185.8 & 272.7 & 255.0 \\
\hline 48-7056 & x & 371 & PANORAMA 12, E RIM OF TRIPLE CRATER & 132 & 31 & LMP & 210.7 & 268.1 & 258.5 \\
\hline 48-7057 & \(x\) & 372 & PAN 12 & 132 & 31 & LMP & 210.7 & 268.1 & 280.3 \\
\hline 48-7058 & X & 373 & PAN 12 & 132 & 31 & LMP & 210.7 & 268.1 & 302.3 \\
\hline 48-7059 & X & 290 & \begin{tabular}{l}
'SHARD EDTE OK-TYOICAL' \\
LQL SPL IつOG2 YOVF')
\end{tabular} & 122 & 73 & LMP & 222.1 & 255.1 & 225.0 \\
\hline 48-70¢0 & X & 303 & -FILLETS 3 N ALI SIDFC' & 132 & 35 & LMP & 23?.7 & 248.6 & 255.0 \\
\hline 49-70¢1 & X & 394 & -FTLLFTS ON ALL SITEC' & 132 & 35 & LMP & 233.1 & 748.3 & 240.0 \\
\hline 49-706? & X & 328 & IEILLETS 7 N ALI SITEC' & 132 & 35 & LMP & 236.7 & 249.5 & 170.1 \\
\hline
\end{tabular}

TABLE D－I．－CHRONOLOGICAL SEQUENCE OF 70－MILLIMETER
PHOTOGRAPHS－Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTO & MAG & SEO & REMARKS & & GE T & RY & DIST & AZLN． & A Z \\
\hline 48－7063 & X & 411 & N＇W RIM OF BENCH CTO L？L SPL I？n5z InWN－SUN，MOVFO & 132 & 41 & LMD & 204.6 & \(\rightarrow 31.8\) & 255.0 \\
\hline 48－7064 & \(x\) & 414 & & & & LMP & 310.8 & 232.5 & \\
\hline 4？－70ト5 & X & 442 & －RLAST EFFECTI AT SHARD CTR，GNOMON AT TDFNCH \＆CORF STTF & 132 & 53 & LMP & 429.9 & 235.5 & \\
\hline \(4^{\circ}-7045\) & x & 443 & ＇RLAST EFEFCTI \(\triangle T\) SUARD CTR，GNOMTN \(\triangle T\) TOFNCH \＆CORE SJTF & 132 & 53 & LMP & 439.9 & 235.5 & \\
\hline 48－7067 & X & 444 & DN－SUN QE TRENCH & 132 & 53 & LMP & 420.9 & 235.5 & \\
\hline 49－7068 & X & 4ヶ0 & INN－SUN CTIOE TURE IN TRN LRL SDL 170？7 & 132 & 56 & LMP & 439.0 & 735.5 & \\
\hline \(48-70<0\) & \(x\) & \(4 \times 1\) & ITN－SUN CODE TUPE IN TRN LOL SPL l？ 2 ？ 7 & 132 & 56 & LMP & 439.9 & 235.5 & \\
\hline 48－7070 & \(x\) & 465 & DV－SUN，CT GCNF（SHARD） & 132 & 58 & LMP & 430.9 & 235．5 & \\
\hline 49－7071 & X & 465 & CONRAD（LM IN BACKGONT） & 133 & 3 & LMP & 259.7 & ？ 16.0 & \\
\hline 48－707？ & \(x\) & 468 & SW OF SURVFYRR CTD & 133 & 8 & LMP & 186.5 & 198.3 & 210.0 \\
\hline 48－7072 & X & 469 & SW OF SUPVFYMR STR & 133 & 8 & LMP & 186.5 & 198.3 & 205.0 \\
\hline 48－7074 & X & 4.73 & \begin{tabular}{l}
＇NEW UNIT＇ \\
（AREA OF LRL SDL \\
12042 FLD \(P\) PL 1271
\end{tabular} & 133 & 19 & LMP & 185.6 & 198.4 & 200.0 \\
\hline \(49-7075\) & \(x\) & 474 & \begin{tabular}{l}
＇VEW UNIT＇ \\
（AREA OF LRL SPL \\
12042 FLT SPL 12「）i
\end{tabular} & 133 & 20 & LMP & 185.6 & 198.4 & 170.0 \\
\hline 48－707h & x & 475 & \begin{tabular}{l}
＇NEW UNIT＇ \\
（AREA OF LRL SDL \\
12042 FLn SPL 127）
\end{tabular} & 133 & 20 & LMP & 185.6 & 198．4 & 165.0 \\
\hline 48－7077 & \(x\) & 478 & LAST DHOTN FRDM 1016 DOUBLE CT ！／2 & 123 & 33 & LMP & 244.5 & \(18^{2} .4\) & 220.0 \\
\hline 48－7078 & \(x\) & 479 & CAM FAILUQE，fngGen & & & L．MP & & & \\
\hline 48－7079 & X & 480 & FOGGEn & & & LMD & & & \\
\hline 48－7080 & x & 481 & FTrGeg & & & LMP & & & \\
\hline 48－708！ & X & 487 & FJGGED & & & LMP & & & \\
\hline 48－708？ & X & 571 & MAG FROM lolt PH TOT 1002，LRL SPLS 12042 \＆ 12044 ，FLD \(\operatorname{SDL} 14 n\) & 133 & 46 & LMP & & & \\
\hline 48－7083 & \(x\) & 522 & ＇rLASS DIIMBELL＇ LRL SDL 12043， FLD SDL 140 & 133 & 53 & LMP & & & \\
\hline 48－7084 & \(x\) & 523 & \(40 M\) S OF SURVEYOR & 133 & 54 & LMP & 179．9 & 142.8 & 7.0 \\
\hline 48－7085 & \(x\) & 524 & 4OM S OF SURVEYOR & 133 & 54 & LMP & 179.5 & 142.8 & 1.5 \\
\hline 48－7086 & \(x\) & 525 & 4OM S OF SURVEYOR & 133 & 54 & LMP & 179.5 & 142.8 & 357.5 \\
\hline 48－7087 & \(x\) & 526 & 4OM S OF SURVEYOR & 133 & 54 & LMP & 179.5 & 142.8 & 6.5 \\
\hline 48－7088 & X & 527 & \(30 M\) S OF SURVEYOR & 133 & 54 & LMP & 189.7 & 139.4 & 346.0 \\
\hline 48－7089 & x & 528 & 30 M S OF SURVEYOR & 133 & 54 & LMP & 189.7 & 139.4 & 351.0 \\
\hline 48－7090 & \(x\) & 529 & 3OM S OF SURVEYOR & 133 & 54 & LMP & 189.7 & 139.4 & 340.0 \\
\hline 48－7091 & X & 530 & SURVEYOR AND LM & 133 & 55 & LMP & 188.5 & 134.5 & 322.0 \\
\hline 48－7092 & \(x\) & 531 & SURVEYOR AND LM & 133 & 55 & LMP & 188.1 & 131.3 & 305.0 \\
\hline 48－7093 & \(x\) & 532 & SURVEYOR DOWN SUN & 133 & 55 & LMP & 180.0 & 127.7 & 282.0 \\
\hline 48－7004 & X & 533 & SMSS，LM，AND BLOCK CTP & 133 & 56 & LMP & 165.4 & 131.7 & 224.0 \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued
\begin{tabular}{rll} 
PLATR & & \\
\(48-7095\) & \(X\) & 534 \\
\(48-7096\) & \(X\) & 535 \\
\(48-7097\) & \(X\) & 536 \\
\(48-7008\) & \(X\) & 537 \\
\(48-7099\) & \(X\) & 538 \\
\(48-7100\) & \(X\) & 539 \\
\(48-7101\) & \(X\) & 540 \\
& & \\
\(49-7102\) & \(X\) & 541 \\
\(48-7103\) & \(X\) & 542 \\
\(48-7104\) & \(X\) & 543 \\
\(48-7105\) & \(X\) & 544 \\
\(48-7106\) & \(X\) & 545
\end{tabular}
OFAARKS
SURVEYOR
SURVEYOR
BLJCK CRATFR
ACCIDENTAL?
SURVEYJR AVD LA
SURVEYIGR AVD LM
PANORAMA 2O, VFAR
SURVEYOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{3FT} & \(B Y\) & OIST & A2! M & \(\Delta 2\) \\
\hline 133 & 56 & LMP & 15う.4 & 121.7 & 218.0 \\
\hline 133 & 56 & LMP & 165.4 & 131.7 & 200.0 \\
\hline 133 & 56 & LMP & 165.4 & 131.7 & 342.0 \\
\hline 133 & 57 & LMP & & & \\
\hline 133 & 58 & LMP & 161.0 & 132.7 & 307.0 \\
\hline 133 & 58 & LMP & 161.0 & 132.7 & 20.30 \\
\hline 134 & 2 & LMP & 158.1 & 133.1 & 38.1 \\
\hline 134 & ? & Lid & 158.1 & 123.1 & ¢ \\
\hline 1.34 & 2 & L.AP & 158.1 & 153.1 & 1.6 \\
\hline 134 & 6 & LMP & 158.1 & \(13^{2} .1\) & 345.0 \\
\hline 134 & 6 & LMP & 158.1 & 133.1 & 340.4 \\
\hline 134 & 6 & LMP & 158.1 & 133.1 & 10. \\
\hline
\end{tabular}

SHOW THF SOIL \(\because F C H-\) ANICS SCONP (SMSS) AVD TREVCHED AREA. THEY CAN BE VIEWFN STEREOSCOPICALLY IN VARIOUS CרMBINATICNS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 48-7107 & \(x\) & 546 & & 134 & 6 & LMP & 158.1 & 133.1 & 12.0 \\
\hline 48-7108 & X & 547 & & 134 & 6 & LMP & 158.1 & 133.1 & 357.! \\
\hline 48-7109 & \(x\) & 548 & & 134 & 7 & LMP & 158.1 & 133.1 & 1.0 \\
\hline 48-711.0 & X & 549 & \[
\begin{aligned}
& \text { LFFT STFPEU JF SURV- } \\
& \text { EYOR FOOTDAN? AREA. }
\end{aligned}
\] & 134 & 7 & LIMP & 158.8 & 123.4 & \\
\hline 48-7111 & \(x\) & 550 & RT STEREO OF PAD ? APFA & 134 & 7 & LMP & 158.8 & 133.4 & \\
\hline 48-7112 & X & 551 & LEFT STEDED AFTE" ORLITERATINラ PAD ? IMPRINT. & 134 & 9 & LMP & 158.8 & 133.4 & \\
\hline 48-711.3 & \(x\) & 552 & PT STERED OF 7112 & 134 & 9 & LMP & 158.8 & 133.4 & \\
\hline 48-7114 & X & 553 & \begin{tabular}{l}
RADVS,CDIAP.A,FUFL TANK, \\
VERNIER ENGINE 2, AND \\
BASE DF LES 2.
\end{tabular} & 134 & 13 & LMP & 157.4 & 133.4 & 333.0 \\
\hline 48-7115 & \(x\) & 554 & LEFT STERE! ?F ABJVF. & 134 & 13 & LMP & 157.4 & 133.4 & 2050 \\
\hline 48-7116 & x & 555 & I.FET STERES IF 7115 & 134 & 13 & LMP & 157.4 & \(13 \%\). 4 & ? 3 ? 0 \\
\hline 48-7117 & X & 556 & COMPAR TYEVT A & 134 & 13 & LMP & 156.7 & 133.1 & ? 20.0 \\
\hline 48-7118 & X & 557 & \[
\begin{aligned}
& \text { CJMP A, RADVS,BASE JF } \\
& \text { LEG I AND CMNI A }
\end{aligned}
\] & 134 & 13 & LMP & 156.0 & 133.4 & 342.0 \\
\hline 48-7119 & \(x\) & 558 & RT STEREJ, PAD 1 AREA & 134 & 14 & LMP & 155.3 & 133.6 & \(342 . C\) \\
\hline 48-7120 & X & 559 & LEFT STEREO,PAD 1 ARFA & 134 & 14 & LMF & 155.3 & 133.6 & 42.0 \\
\hline 48-7121 & \(x\) & 560 & SURVEYJR & 134 & 14 & LMP & 158.7 & 135.4 & 13.0 \\
\hline 48-7122 & X & 561 & SURVEYJR & 134 & 14 & LMP & 158.7 & 135.4 & 7.C \\
\hline 48-7123 & \(x\) & 562 & SURVEYOR & 134 & 14 & LMP & 155.2 & 134.7 & 31.0 \\
\hline 48-7124 & X & 563 & W. SIDE JF PAD 3 & 134 & 14 & LMP & 153.2 & 132.8 & 80.0 \\
\hline 48-7125 & X & 564 & CANOPUS SFNSTR & 134 & 14 & LMP & 153.2 & 132.8 & 170.0 \\
\hline 48-7126 & \(x\) & 565 & Q.STEREO,SMSS TRENCHFS & 134 & 14 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 48-7127 & \(x\) & 566 & L. STEREJ IF 7126 & 134 & 14 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 43-7128 & X & 567 & R. STEREO, SMCS TRENCHES & 134 & 15 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 48-7129 & \(x\) & 568 & L. STEREC JF 7178 & ! 34 & 15 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 48-7130 & X & 569 & SURVEYDE TV CAMERA & 1.34 & 15. & LMP & 156.8 & 137.1 & \(? 50.0\) \\
\hline 48-7131 & X & 570 & STREAK IN DUST ON GURVEYOR CAMERA MIRROR. & 134 & 15 & LMP & 156.8 & 132.1 & 244.0 \\
\hline
\end{tabular}

TABLE D－I．－CHRONOLOGICAL SEQUENCE OF 70－MILLIMETER
PHOTOGRAPHS－Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline －： & AAS & SE0 & WF＇AARくS & & ¢T & QY & DTST & A 71 M & \(\Delta \%\) \\
\hline 48－713？ & X & 571 & SIMILAR TH 7131 & 134 & & LMP & 156.8 & 13？．1 & 277.0 \\
\hline \(48-713.3\) & x & 577 & CON，SURVFYOR，AVD L 4 & 134 & 16 & LYP & 161．7 & 132.4 & 305．0 \\
\hline 48－7134 & X & 573 & Q．STEDFO OF 7123 & 1.34 & 16 & LMP & 161.7 & 132.4 & \(\bigcirc 07.0\) \\
\hline \(48-71 \times 5\) & x & 574 & C．DR，SURVFYOR，\(\triangle\) VD L 1 & 134 & 16 & LMP & 158．？ & 132.1 & 237．0 \\
\hline \(48-7136\) & X & 575 & SAME AS 7135 & 134 & 16 & LMP & 158.2 & 137．1 & 208．0 \\
\hline \(48-71^{2}\) & X & \(\because 75\) & \[
\begin{aligned}
& \text { COMP.A WITH FENT HKAT } \\
& \text { OFFLFCTO: }
\end{aligned}
\] & 134 & 28 & 440 & 156．？ & 132.6 & 23？ 3 \\
\hline 49－7128 & x & 577 & \[
\begin{aligned}
& \text { AJX.BATTEXY FITH 1AンKS } \\
& \text { IN DUST }
\end{aligned}
\] & 1.34 & 29 & LMD & 155.4 & 13？．0 & 213.0 \\
\hline 48－7129 & x & 578 & \begin{tabular}{l}
VICINITY רF SURVEVOR \\
LRE．SPL 12062 \\
SPL IDFVT QUFSTIUN－ \(\triangle B L\) ？
\end{tabular} & 134 & & LMP & & & \\
\hline 48－7140 & X & 570 & DAVJPAMA \(\operatorname{DI}\) ，VFAR RLCCK CTR & 134 & & Lup & 113.8 & 95.1 & 202.4 \\
\hline 48－7141 & \(x\) & 580 & PAN 21 & 134 & & LMP & 11.3 .8 & 95.1 & 200.6 \\
\hline 48－7142 & X & 581 & PAN 21 & 134 & 39 & LMP & 113.8 & 95.1 & 227.4 \\
\hline 48－7143 & \(x\) & 582 & PAV 21 & 134 & 39 & LMP & 113.8 & 95.1 & 256.3 \\
\hline 48－7144 & x & 583 & PANORAMA 22，NFAR BLFCK C．TR & 134 & 39 & LMP & 109.8 & 94.7 & 173.2 \\
\hline 48－7145 & X & 584 & －\(\Delta V 27\) & 134 & & LMP & 109．8 & 94.7 & 1．93．5 \\
\hline 48－7146 & X & 585 & PAV 22 & 134 & 39 & LMP & 100.8 & 94.7 & 217.9 \\
\hline 48－7147 & \(x\) & 586 & PAN 2？ & 134 & 39 & LMP & 100.8 & 94.7 & 244.2 \\
\hline 48－7148 & X & 587 & \begin{tabular}{l}
V RIM OF RLOCK CTF LRL．SPL l？045， \\
FLD SPL lक？
\end{tabular} & 134 & 40 & LMP & & & \\
\hline 48－7149 & \(x\) & 5\％\％ & \[
\begin{aligned}
& \text { VOIM Nr, GIGrK CIO } \\
& \text { CRL SML OOCS, } \\
& \text { FLD SDL } 150
\end{aligned}
\] & 134 & 40 & 1．MD & & & \\
\hline \(48-7150\) & \(x\) & ちと＂ & －R MM BF BLJCK CTD LRL SPL \(1204^{\circ}\) ， 1204 f
\[
\text { א. } 12047 \text {, FLD SDL } 150
\] & 134 & & LMP & & & \\
\hline 140－7151 & \(x\) & 500 & V RIM JF SUPVEYJD CTO & 134 & 43 & LMP & 116.4 & 141.5 & 262.0 \\
\hline 40－715？ & \(x\) & 501 & \(V\) RIM JF SUPVEYJR CTO & 134 & 43 & LMP & 116.4 & 141.5 & ？ 68.0 \\
\hline \(4:-7153\) & \(x\) & 592 & DAVJRAMA 23 ，L WIVDר1．1 & & & CDD & 1.6 & 266．4 & 231.0 \\
\hline 48－715； & x & 503 & PAN 23 & & & CDR & 1.6 & 266．4 & 243.2 \\
\hline 48－7155 & X & 504 & PAN 23 & & & CDR & 1.6 & 266.4 & 283.5 \\
\hline 49－7156 & X & 595 & PAN 23 & & & CDR & 1.6 & 266.4 & 252．0 \\
\hline \(48-7157\) & X & 506 & ロAN 23 & & & COR & 1.6 & 266．4 & 773.0 \\
\hline 48－7158 & \(x\) & 597 & －AN 23 & & & CUR & 1.6 & 260．4 & ？ 59.0 \\
\hline 49－7159 & X & 598 & OAVORAMA \(23, \mathrm{R}\) WINOM！ & & & LMF & 1.8 & 290．3 & 303.5 \\
\hline 48－7160 & \(x\) & 590 & PAV 23 & & & LMP & 1.8 & 290.3 & 337.5 \\
\hline 48－i 161 & X & 600 & DAN 23 & & & LMP & 1.8 & 299．3 & 308.0 \\
\hline 48－7 le？ & \(x\) & ¢01 & PAV 23 & & & LMO & 1.8 & 299．3 & 1.5 \\
\hline 48－7163 & X & 502 & PAV 23 & & & LMP & 1.8 & 299．2 & 336.0 \\
\hline 48－7164 & X & \(60^{2}\) & PAN 23 & & & LMP & 1.8 & 299.3 & 4.5 \\
\hline 48－7165 & X & 604 & PAV 23 & & & LMP & 1.8 & 299.3 & 7.5 \\
\hline 48－7166 & X & 605 & PAiv 23 & & & LMP & 1.8 & 299.3 & 347.3 \\
\hline 48－7167 & \(\times\) & 6C6 & PAV 23 & & & LM？ & 1.8 & 299．3 & 329.5 \\
\hline 48－7168 & \(x\) & 6.07 & PAV 23 & & & LHP & 1.8 & 299.3 & 315.3 \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTO & MAG & SEQ & REMARKS & & GET & \(B Y\) & DIS T & A L L M & \(A 2\) \\
\hline 48-7169 & \(X\) & 608 & PAN 23 & & & LMP & 1.8 & 299.3 & 302.U \\
\hline 48-7170 & \(X\) & 609 & PAN 23 & & & LMP & 1.8 & 299.3 & 291.6 \\
\hline 48-7171 & \(X\) & 610 & PAN 23 & & & LMP & 1.8 & 299.3 & \\
\hline 49-7172 & Z & 329 & FOGGED & & & CDR & & & \\
\hline 49-7173 & Z & 330 & N RIM OF HEAD CTR, POLARIMETRY SURVEY & 132 & 12 & CDR & 148.8 & 277.3 & 205.0 \\
\hline 49-7174 & 2 & 331 & HEAD CTR POI_AR SURVEY & 132 & 12 & CDR & 148.8 & 277.3 & 206.0 \\
\hline 49-7175 & Z & 332 & HEAD CTR POLAR SURVEY & 132 & 13 & CDR & 148.8 & 277.3 & 200.0 \\
\hline 49-7176 & 2 & 333 & HEAD CTR POLAR SURVEY & 132 & 13 & CDR & 148.8 & 277.3 & 207.0 \\
\hline 49-7177 & Z & 337 & HEAD CTR POL_AR SURVEY & 132 & 12 & CDR & 152.3 & 278.6 & 194.0 \\
\hline 49-7178 & 2 & 338 & HEAD CTR POLAR SURVEY & 132 & 14 & CDR & 152.3 & 278.6 & 196.0 \\
\hline 49-7179 & Z & 339 & HEAD CTR POLAR SURVEY & 132 & 14 & CDR & 152.3 & 278.6 & 196.0 \\
\hline 49-7180 & Z & 342 & HEAD CTR POLAR SURVEY & 132 & 15 & CDR & 152.3 & 278.6 & 195.0 \\
\hline 49-7181 & 2 & 343 & HEAD CTR POLAR SURVEY & 132 & 15 & CDR & 152.3 & 278.6 & 196.0 \\
\hline 49-7182 & Z & 344 & HEAD CTR POLAR SURVEY & 132 & 15 & CDR & 152.3 & 278.6 & 196.0 \\
\hline 49-7183 & Z & 345 & HEAD CTR PCILAR SURVEY & 132 & 16 & CDR & 159.3 & 278.3 & 174.0 \\
\hline 49-7184 & 2 & 346 & HEAD CTR PCILAR SURVEY & 132 & 16 & CDR & 159.3 & 278.3 & 175.0 \\
\hline 49-7185 & Z & 347 & HEAD CTR POLAR SURVEY & 132 & 17 & CDR & 159.3 & 278.3 & 175.0 \\
\hline 49-7186 & Z & 348 & HEAD CTR POLAR SURVEY & 132 & 17 & CDR & 163.7 & 276.6 & 149.0 \\
\hline 49-7187 & 2 & 349 & HEAD CTR POLAR SURVEY & 132 & 18 & CDR & 163.7 & 276.6 & 151.0 \\
\hline 49-7188 & 2 & 350 & HEAD CTR POLAR SURVEY & 132 & 18 & CDR & 163.7 & 276.6 & 150.0 \\
\hline 49-7189 & 2 & 352 & N RIM OF HEAD CTR LRL SPL 12031, FLD SPL 3D & 132 & 19 & CDR & & & \\
\hline 49-7190 & Z & 353 & N RIM OF HEAD CTR LRL SPL 12031, FLD SPL 30 & 132 & 19 & CDR & & & \\
\hline 49-7191 & Z & 356 & TRENCH, X -SUN, HEAD CTR & 132 & 20 & CDR & & & \\
\hline 49-7192 & Z & 357 & \[
\begin{aligned}
& \text { TRENCH,X-SUN } \\
& \text { LRL SPL } 12033 \text {, } \\
& \text { FLD SPL } 50
\end{aligned}
\] & 132 & 20 & CDR & & & \\
\hline 49-7193 & Z & 358 & TRENCH, HEA [) CTR & & & CDR & & & \\
\hline 49-7194 & 2 & 359 & ```
N RIM OF HEAD CTR
LRL SPL 12033,
FLD SPL 5D
``` & 132 & 23 & CDR & & & \\
\hline 49-7195 & Z & 360 & \begin{tabular}{l}
N RIM OF HEAD CTR \\
LRL SPL 12034, \\
FLD SPL 60
\end{tabular} & 132 & 24 & CDR & & & \\
\hline 49-7196 & Z & 361 & N RIM OF HEAD CTR LRL SPL 12034, FLD SPL 6D & 132 & 25 & CDR & & & \\
\hline 49-7197 & Z & 364 & ```
'6 IN RK,LTR GRAY BOT'
LRL SPL 12055
UNMOVED
``` & 132 & 27 & CDR & 185.8 & 272.7 & 140.0 \\
\hline 49-7198 & Z & 365 & ```
'6 IN RK,LTR GRAY BOT'
LRL SPL 12055
UNMOVED
``` & 132 & 27 & CDR & 185.8 & 272.7 & 130.0 \\
\hline 49-7199 & 2 & 366 & N RIM OF HEAD CTR MOVED ROCK & 132 & 27 & CDR & 185.8 & 272.7 & 180.0 \\
\hline 49-7200 & Z & 367 & N RIM OF HEAD CTR MOVED ROCK & 132 & 27 & CDR & 185.8 & 272.7 & 170.0 \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHUTI? & MAS & SEO & DEMARKS & & OT & BY & DIST & \(\triangle Z . M\) & \(\Delta 7\) \\
\hline 49-7201 & 7. & 374 & PANDRAMA l2,W IIM DF HEAD CRATFR & 132 & 3? & CDR & 2.22. 2 & 254.1 & 133.5 \\
\hline 40-7202 & 7 & 375 & PAN 13 & 132 & 32 & CDR & 22?.2 & 2.54.1 & 158.2 \\
\hline 49-7202 & z & 376 & PAN 13 & 132 & 37 & CDR & ? 2?.2 & 254.1 & 178.4 \\
\hline 49-7204 & 2 & 377 & PAV 13 & 132 & 3 ? & CDR & 2?2.2 & 254.1 & 204.2 \\
\hline 49-7205 & 2 & 378 & -AN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 22.6 .6 \\
\hline 40-7205 & Z & 379 & DAN 13 & 132 & 3? & CDR & 222.2 & 254.1 & 246.8 \\
\hline 49-7207 & 2 & 380 & DAV 13 & 132 & 32 & CDR & 272.2 & 254.1 & 267.8 \\
\hline 40-7208 & 7 & 381 & \(\rightarrow\) TV 13 & 132 & \(3 ?\) & CDR & 272.2 & ? 54.1 & 293.9 \\
\hline 40-7209 & 7. & 382 & \(\bigcirc A N 13\) & 132 & 32 & CDR & 2??.? & \(\bigcirc 54.1\) & 309.9 \\
\hline 49-7210 & 2 & 383 & OAV 13 & 132 & \(3 ?\) & CDR & ? 22.? & 254.1 & 341.0 \\
\hline 49-7211 & 2 & 384 & PAN 13 & 132 & ?? & cor & 2?2.2 & 254.1 & 3.1 \\
\hline 49-7212 & 2 & 385 & OAV 13 & 132 & 3? & COR & 222.2 & 254.1 & 19.3 \\
\hline 49-7213 & 7 & 386 & DAV 13 & 132 & 32 & CDR & 222.2 & 254.1 & 5.3 .3 \\
\hline 49-7214 & 2 & 387 & -AV 13 & 132 & 32 & CrR & 2?2.2 & 754.1 & 71.5 \\
\hline 49-7215 & 2 & 388 & DAN 13 & 132 & \(3 ?\) & Cin & 222.2 & 754.1 & 91.0 \\
\hline 49-7216 & 2 & 389 & DAN 13 & 132 & 33 & CDR & 272.2 & 254.1 & 115.2 \\
\hline 49-7217 & 2 & 391 & \begin{tabular}{l}
'SHARP EUGF RK-TYDICAL' \\
LRL SPL 1?05? 10VFI
\end{tabular} & 132 & 33 & CDR & 224.0 & 755.2 & 328.0 \\
\hline 49-7218 & \(z\) & 392 & \begin{tabular}{l}
- SHARP EDTE DK-TYPTCAL. \\
LRL SPL lフO5?
\end{tabular} & 132 & 33 & CDR & 224.0 & 255.? & 325.0 \\
\hline 40-7219 & Z & 395 & 'fillets on all sidec' & 132 & 35 & CDF & 239.4 & 248.4 & 340.0 \\
\hline 49-7220 & 2 & 396 & 'fillets in all sides' & 132 & 35 & C)R & 238.5 & 248.3 & 335.0 \\
\hline 40-7221 & Z & 397 & 'FILLETS JN ALl. SIDi: \({ }^{\prime}\) & 132 & 35 & CDR & 239.4 & 247.1 & 345.0 \\
\hline 49-7222 & Z & 309 & 'Fillets on all sides' & 132 & 35 & CDR & 237.2 & 247.2 & 330.0 \\
\hline 49-7223 & 2 & 400 & DAVORAIA 14 , V PIM DF PENCH CRATER & 132 & 37 & CDR & 295.8 & 232.5 & 143.3 \\
\hline \(40-7274\) & z & 401 & DAN 14 & 132 & 37 & CDR & 295.8 & 23i. 5 & 166.7 \\
\hline 40-7775 & Z & 402 & OAN 14 & 132 & 37 & C.DR & 205.8 & 232.5 & 180.6 \\
\hline 4-17? 6 & 2 & 402 & PAN 14 & 132 & 37 & CDR & 295.8 & 23?.5 & 198.8 \\
\hline 40-7227 & 2 & 404 & PAN 14 & 132 & 37 & CDR & 295.8 & 232.5 & 215.5 \\
\hline \(49-7228\) & Z & 405 & PAN 14 & 132 & 37 & CDR & 295.8 & 232.5 & 233.1 \\
\hline 40-7229 & Z & 406 & \begin{tabular}{l}
PAVORAMA Ij, N RIM OF \\
©FNCH CRATER
\end{tabular} & 132 & 38 & CDR & 305.2 & 232.7 & <11.9 \\
\hline \(40-7930\) & Z & 407 & \(\square^{\square} \mathrm{AN} 15\) & 132 & 38 & CDR & 305.2 & 232.7 & 190.8 \\
\hline 49-7221 & 2 & 408 & PAN 15 & 132 & 38 & CDR & 305.2 & 232.7 & i 74.7 \\
\hline 49-723? & Z & 409 & PAN 15 & 132 & 38 & CDR & 305.2 & 232.7 & 161.4 \\
\hline \(4 \cdots-1233\) & Z & 410 & -AN 15 & 132 & 38 & CDR & 305.2 & 232.7 & 145.5 \\
\hline \(4:-72.34\) & Z & 412 & NW RIM DF REVCH CTR LQL SPL 1205 ? 1 OVFD & 132 & 41 & CDR & 294.0 & 232.0 & 180.0 \\
\hline \(49-7 ? 35\) & Z & 413 & NW RIM IF BEVCH CTQ LRL SPL 12053 'AOVED & 132 & 41 & CDR & 294.0 & 232.0 & 175.0 \\
\hline 49-7236 & Z & 415 & NW RIM JF BENCH CTR LRL SPL 12035, FLD SPL 7D, LRL SPLS 12036 \& 12037, FLD SPL 80 & 132 & 43 & CDR & 310.8 & 232.5 & \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued

TABLE D-I. - CHRONOLOGICAL SEQU ENCE OF 70-MILLIMETER
PHOTOGRAPHS - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTO & MAG & SEQ & REMARKS & & GET & BY & DI 5 T & AZLM & AZ \\
\hline 49-7258 & Z & 437 & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 218.3 \\
\hline 49-7259 & Z & 438 & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 200.1 \\
\hline 49-7260 & Z & 439 & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 179.0 \\
\hline 49-7261 & z & 440 & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 157.2 \\
\hline 49-7262 & Z & 441 & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 138.2 \\
\hline 49-7263 & Z & 445 & PaNORAMA 17, E RIM OF SHARP CRATER & 132 & 54 & CDR & 441.4 & 235.0 & 311.3 \\
\hline 49-7264 & Z & 446 & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 299.6 \\
\hline 49-7265 & Z & 447 & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 289.9 \\
\hline 49-7266 & Z & 448 & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 272.3 \\
\hline 49-7267 & 2 & 449 & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 254.2 \\
\hline 49-7268 & Z & 450 & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 243.4 \\
\hline 49-7269 & 2 & 451 & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 224.0 \\
\hline 49-7270 & Z & 452 & panorama l8, E RIM OF SHARP CRATER & 132 & 54 & CDR & 443.9 & 234.8 & 238.0 \\
\hline 49-7271 & z & 453 & PAN 18 & 132 & 54 & CDR & 443.9 & 234.8 & 251.4 \\
\hline 49-7272 & Z & 454 & PAN 18 & 132 & 54 & CDR & 443.9 & 234.8 & 260.8 \\
\hline 49-7273 & Z & 455 & PAN 18 & 132 & 54 & CDR & 443.9 & 234.8 & 285.3 \\
\hline 49-7274 & Z & 456 & PAN 18 & 132 & 54 & CDR & 443.9 & 234.8 & 305.2 \\
\hline 49-7275 & Z & 457 & PAN 18 & 132 & 54 & CDR & 443.9 & 234.8 & 322.2 \\
\hline 49-7276 & Z & 458 & X-SUN STEREO OF TRENCH & 132 & 56 & CDR & 439.9 & 235.5 & \\
\hline 49-7277 & Z & 459 & X-SUN STEREO OF TRENCH & 132 & 56 & CDR & 439.9 & 235.5 & \\
\hline 49-7278 & Z & 462 & LMP WITH LESC LRL SPL 12023 & 132 & 57 & CDR & 439.9 & 235.5 & \\
\hline 49-7279 & Z & 463 & X-SUN, CT2 IN TRN LRL SPL 12027 & 132 & 57 & CDR & 439.9 & 235.5 & \\
\hline 49-7280 & Z & 464 & X-SUN, CT2 IN TRN LRL SPL 12027 & 132 & 57 & CDR & 439.9 & 235.5 & \\
\hline 49-7281 & Z & 467 & BEAN & 133 & 3 & CDR & 174.2 & 241.2 & \\
\hline 49-7282 & 2 & 470 & SW OF SURVEYOR CTR & 133 & 8 & CDR & 187.5 & 198.2 & 164.0 \\
\hline 49-7283 & Z & 471 & SW OF SURVEYOR CTR & 133 & 8 & CDR & 187.5 & 198.2 & 164.0 \\
\hline 40-7284 & Z & 472 & SW OF SURVEYOR CTR & 133 & 8 & CDR & 187.5 & 198.? & 170.0 \\
\hline 49-7295 & Z & 476 & \[
\begin{aligned}
& C T 1(L R L ~ S P L ~ 12025) / \\
& C T 3(L R L ~ S D L ~ 12028)
\end{aligned}
\] & 133 & 25 & CDR & 244.5 & 183.4 & 180.0 \\
\hline 49-7286 & Z & 477 & \[
\begin{aligned}
& C T 1(L R L ~ S P L ~ 12025) / \\
& C T 3(L R L ~ S P L ~ 12028)
\end{aligned}
\] & 133 & 28 & COR & 244.5 & 183.4 & 190.0 \\
\hline 49-7287 & Z & 483 & CT1(LRL SPL 12025)/ CT3(LRL SPL 12028) & 133 & 33 & LMP & 244.5 & 183.4 & 180.0 \\
\hline 49-7288 & 2 & 484 & CT1(LRL SPL 12025)/ CT3(LRL SPL 12028) & 133 & 33 & LMP & 244.5 & 183.4 & 160.0 \\
\hline 49-7289 & Z & 485 & PANORAMA l9, SW OF SURVEYOR CRATER & 133 & 35 & LMD & 239.5 & 182.3 & 254.2 \\
\hline 49-7290 & Z & 486 & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 232.2 \\
\hline 49-7291 & Z & 487 & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 209.7 \\
\hline 49-7292 & 2 & 488 & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 186.9 \\
\hline 49-7293 & Z & 489 & PAN 19 & & & LMP & 239.5 & 183.3 & 165.0 \\
\hline 49-7294 & Z & 490 & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 143.1 \\
\hline 49-7295 & Z & 491 & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 133.4 \\
\hline 49-7296 & Z & 492 & PAN 19 & 133 & 35 & LMP & こ39.5 & 183.3 & 116.7 \\
\hline 49-7297 & 7 & 402 & DAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 100.7 \\
\hline
\end{tabular}

TABLE D-I. - CHRONOLOGICAL SEQUENCE OF 70-MILLIMETER
PHOTOGRAPHS - Concluded
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PHOTO & MAF & SEQ & RFMARKS & & ET & \(B Y\) & DTST & \(\triangle 714\) & A 2 \\
\hline \(4-7208\) & Z & 494 & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 83.1 \\
\hline 4y-7299 & Z & 495 & PAN 19 & 133 & 36 & LMP & 239.5 & 182.3 & 65.1 \\
\hline 49-7300 & Z & 496 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 48.0 \\
\hline 49-7301 & Z & 497 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 31.3 \\
\hline 40-7302 & Z & 498 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 19.7 \\
\hline 49-7303 & 7 & 499 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 9.5 \\
\hline 49-7304 & Z & 500 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 353.0 \\
\hline 49-7305 & Z & 501 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 337.1 \\
\hline 40-7306 & 2 & \(50 ?\) & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 325.0 \\
\hline 40-7307 & Z & 503 & PAN 19 & & & LMP & 239.5 & 183.3 & 308.6 \\
\hline 49-7208 & Z & 504 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 290.4 \\
\hline 40-7309 & Z & 505 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & \(283 . ?\) \\
\hline 49-7310 & Z & 506 & PAN 19 & 133 & 36 & LMP & 239.う & 183.3 & 265.5 \\
\hline 49-7311 & Z & 507 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 257.5 \\
\hline 49-7312 & Z & 508 & SW OF SURVFYYOR CTR FLD SPL 130 NOT RTAJI & 133 & 39 & LMP & & & \\
\hline 49-7313 & Z & 509 & SW OF SURVE:YOR CTR LRL SPL 12054 & 133 & 39 & LMP & & & \\
\hline 49-7314 & Z & 510 & SW OF SURVE:YOR CTR LRL SPL 12054 & 133 & 39 & LMP & & & \\
\hline 49-7315 & Z & 511 & SW OF SURVE:YRR CTR & 133 & 39 & LMP & & & \\
\hline 49-7316 & Z & 512 & SW OF SURVE:YIIR CTR & 133 & 39 & LMP & 191.1 & 181.1 & 1.0 \\
\hline 49-7317 & Z & 513 & SW OF SURVE:YOR CTR & 133 & 45 & LMP & 191.1 & 181.1 & 0.0 \\
\hline 49-7318 & 2. & 514 & SW OF SURVEYYR CTR LRL SPL 12051 & 133 & 45 & LMP & 191.1 & 181.1 & 172.0 \\
\hline 49-7319 & Z & 515 & SW OF SURVFYOR CTR LRL SPL 12051 & 133 & 45 & LMP & 191.1 & 181.1 & 165.0 \\
\hline 40-7320 & Z & 516 & SW OF SURVEYRR CTR AFTER LRL SPL 12051 & 133 & 45 & LMP & 197.2 & 181.3 & 150.0 \\
\hline 49-7321 & Z & 517 & S RIM OF SURVEYOR CTR FOGGED & & & LMP & 194.2 & 181.4 & 72.0 \\
\hline 49-7322 & 2 & 518 & S RIM OF SIURVEYOR CTR & & & LMP & 194.2 & 181.4 & 66.0 \\
\hline 49-7323 & Z & 519 & S RIM OF SURVEYOR CTD
FOGGED & & & LMP & 194.2 & 181.4 & 52.0 \\
\hline 40-7324 & Z & 520 & \[
\begin{aligned}
& \text { S RIM OF SURVEYOR CTR } \\
& \text { FOGGED }
\end{aligned}
\] & & & LMP & 194.2 & 181.4 & 59.0 \\
\hline
\end{tabular}

TABLE D－II．－SEQUENTIAL LISTING OF 70－MILLIMETER PHOTOGRAPHS FROM

\section*{EACH CAMERA MAGAZINE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEq & PHCTS & MAG & REMARKS & & GET & BY & DIST & A ZLM & \(A Z\) \\
\hline 1 & 47－0．8．69 & V & TSIOLKOVSくY & & & CDR & & & \\
\hline 2 & 47－6870 & V & TSIOLKOVSKY & 107 & 23 & CDR & & & \\
\hline 3 & 47－6871 & V & EARTHRISE & 107 & 38 & LMP & & & \\
\hline 4 & 47－6872 & V & EARTHRISE & 107 & 38 & LMP & & & \\
\hline 5 & 47－6373 & V & EARTHRISE & 107 & 38 & LMP & & & \\
\hline 6 & 47－6874 & V & EARTHRISE & 107 & 38 & LMP & & & \\
\hline 7 & 47－5875 & V & COPERNICUS & 108 & 8 & LMP & & & \\
\hline る & 47－6875 & V & COPERNICUS & 108 & 8 & LMP & & & \\
\hline 9 & 47－5877 & V & CSM AFTER UNDOCKINS & 108 & 8 & CDR & & & \\
\hline 10 & 47－6873 & V & CSM AFTER UNDOCKING & 108 & 8 & CDR & & & \\
\hline 11 & 47－5879 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 12 & 4\％－6883 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 13 & 47－6631 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 14 & 47－6882 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 15 & 47－6893 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline ！ 3 & 47 4884 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 17 & 47－5と85 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 18 & 47－6886 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 1． 9 & 4？－nこを7 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 20 & 47－68こ8 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline ＞： & 41－ć989 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline \(\cdots\) & 47－6890 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline ？ 3 & 47－6891 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 24 & 47－6892 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 25 & 47－6893 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline \(? 6\) & 47－6894 & V & EARTHRISE & 109 & 38 & LMP & & & \\
\hline 27 & 47－5855 & v & EARTHDISE & 109 & 38 & LMP & & & \\
\hline 28 & 48－7022 & X & PANOPAMA 1 ，Li wIVDOin （FOGGED） & & & CDR & 1.6 & 266.4 & 216.2 \\
\hline 29 & 48－7023 & \(x\) & PAN 1 & & & CDR & 1.6 & 266.4 & 238.2 \\
\hline 30 & 48－7024 & X & PAN 1 & & & CDR & 1.6 & 266.4 & 270.5 \\
\hline 31 & 48－7025 & \(x\) & PAN 1 & & & CDR & 1.6 & 266.4 & 242.4 \\
\hline 32 & 48－7026 & X & PAN 1 & & & CDR & 1.6 & 266.4 & 264.5 \\
\hline 33 & 48－7027 & X & PAN 1 & & & CDR & 1.6 & 266.4 & 239.0 \\
\hline 34 & 48－7028 & X & PAVORAMA 1，R WINDOW & & & LMP & 1.8 & 299．3 & 295.5 \\
\hline 35 & 48－7029 & \(x\) & PAN 1 & & & LMP & 1.8 & 290． 3 & 319.3 \\
\hline 36 & 48－7030 & X & PAN 1 & & & LMP & 1.8 & 299．3 & 350.2 \\
\hline 37 & 48－7031 & x & PAV 1 & & & LMP & 1.8 & 290.3 & 342.0 \\
\hline 38 & 48－7032 & x & PAN 1 & & & LMP & 1.8 & 299.3 & 324.0 \\
\hline 39 & 48－7033 & X & PAV 1 & & & LMP & I． 6 & 200.2 & 230．0 \\
\hline 40 & 46－6715 & \(Y\) & CDR ON ：JORCH & 115 & 13 & LMP & & & 200.0 \\
\hline 41 & 46－6716 & Y & CDR ON PORCH & 115 & 13 & LMP & & & 300.0 \\
\hline 42 & 46－6717 & Y & CDR ON PDRCH & 115 & 13 & LMP & & & 300.0 \\
\hline 43 & 46－6718 & \(Y\) & CDR ON PORCH & 115 & 13 & LMP & & & 300.0 \\
\hline 44 & 46－6719 & Y & CONT SPL AREA & 115 & 47 & CDR & 14.6 & 307.5 & 350.0 \\
\hline 45 & 46－6720 & \(Y\) & CONT SPL AREA & 115 & 47 & CDR & 14.6 & 307.5 & 340.0 \\
\hline 46 & 46－6721 & Y & CONT SPL AREA & 115 & 47 & CDR & 14.6 & 30.7 .5 & 335.0 \\
\hline 47 & 46－6722 & Y & CONT SPL AREA & 115 & 47 & CDR & 14.6 & 307.5 & 0.0 \\
\hline 48 & 46－6723 & Y & CONT SPL AREA & 115 & 47 & CDR & 14.6 & 307.5 & 0.0 \\
\hline 49 & 46－6724 & \(Y\) & LMP ON PORCH & 115 & 50 & CDR & 6.1 & 323.7 & 135.0 \\
\hline 50 & ハn－5725 & Y & INO DN PJREH & & & COR & 6.1 & 323.7 & 135.0 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM

\author{
EACH CAMERA MAGAZINE - Continued
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(S=Q\) & PHOTO & MAG & DEMARKS & & ET & \(B Y\) & DIST & AZLM & \(A 2\) \\
\hline 51 & 46-6726 & \(Y\) & LMP UV LAUJER & 115 & 50 & CDR & 6.1 & 223.7 & 135.0 \\
\hline 52 & 46-6727 & Y & LMP OV LADOE & 115 & 50 & CDR & 6.1 & 323.7 & 135.0 \\
\hline 53 & 46-6728 & \(Y\) & LMP OV LADDFR & 115 & 50 & CDR & 6.1 & 323.7 & 135.0 \\
\hline 54 & 46-6729 & Y & LYP ON SUPFACE & 115 & 50 & CDR & 5.1 & 323.7 & 135.0 \\
\hline 55 & 47-6896 & \(v\) & SETTIVG UP FI.AE & 116 & 21 & LMP & 14.3 & 13.7 & 250.0 \\
\hline 56 & 47-6897 & V & SFTTING UP FLAG & 116 & 21 & LMP & 17.9 & 1.3 & 220.0 \\
\hline 57 & 47-6898 & V & SJLAR WIVr) CJMP EXP & 116 & 21 & LMP & 38.0 & 340.7 & 320.10 \\
\hline 58 & 47-6899 & V & CJLAR WINT) CJilp EXP, LY & 116 & 21 & LMP & 43.1 & 341.6 & 165.0 \\
\hline 59 & 47-6900 & V & -Y PAD AREA & 116 & 21 & LMP & 6.1 & 185.6 & 10.0 \\
\hline 60 & 47-6901 & V & -Y PAD AREA & 110 & 21 & LMP & 7.1 & 210.6 & 10.0 \\
\hline 61 & 47-6902 & \(v\) & +Z PAD AREA (IV SHADDW) & 116 & \(\because 1\) & LMP & 6.8 & 304.8 & 180.0 \\
\hline 62 & 47-6903 & \(v\) & + 2 PAD \(A R E A\) (IV SHADCW) & 116 & 21 & LMP & 5.3 & 317.3 & 180.0 \\
\hline 63 & 47-6904 & V & FRAMES 6OI4THRU 6907 ARE A STERED 'FLISHT LINE' DF THE + Y FDOT DAD AVD ITS FIOST IMPACT POTNT. & 116 & 23 & LMP & 5.1 & 15.9 & \(\because 00.0\) \\
\hline 64 & 47-6905 & \(v\) & +Y PAD AREA & 116 & 23 & LMP & 5.2 & 41.1 & 200.0 \\
\hline 45 & 47-6906 & \(v\) & +Y PAD AREA & 116 & 23 & LMP & 5.9 & 48.5 & 200.0 \\
\hline +6 & 47-6907 & V & +Y PAD ADEA & 116 & 23 & L:MP & 6.1 & 61.8 & 200.0 \\
\hline 67 & 47-6008 & \(v\) & -Z PAD A PEA & 116 & 23 & LMP & 6.5 & 99.7 & 290.0 \\
\hline \(\leqslant 8\) & 47-5009 & \(v\) & -z PAD AREA & 116 & 23 & LiAP & 5.8 & 111.? & 290.0 \\
\hline 69 & 47-6.910 & V & JPS AREA (WFAK STEREJ)? & 116 & 26 & LMP & 6.0 & 133.0 & 320.0 \\
\hline 70 & 47-6911 & \(v\) & DPS AREA (WEAS STEPFJIL & 116 & 26 & LMP & 5.6 & 154.8 & 320.0 \\
\hline 71 & 47-6912 & V & IPENIVG SFQ RAY & 116 & 26 & LMP & 4.0 & 121.7 & 190.0 \\
\hline 72 & 47-6913 & V & JPENIVG SEQ BAY & 116 & 26 & LMP & 4.0 & 121.7 & 19C.0 \\
\hline 73 & 4T-6914 & V & DPEVIVG SEQ GAY & 116 & 26 & LMP & 4.0 & 121.7 & 190.0 \\
\hline 74 & 47-6915 & \(v\) & -Z PAD AREA & 116 & 26 & LMP & 4.1 & 174.4 & 55.0 \\
\hline 75 & 46-6730 & Y & PAVJRAMA 2, 11 AETERC W OF LM & 116 & 22 & CDR & 14.9 & 281.2 & 251.5 \\
\hline 76 & 46-6731 & Y & PAN 2 & 116 & 22 & CJR & 14.9 & 281.2 & 275.0 \\
\hline 77 & 46-6732 & Y & PAN 2 & 116 & 22 & CDR & 14.9 & 281.? & 294.6 \\
\hline 78 & 46-6733 & \(Y\) & PAN ? & 116 & 22 & C.OR & 14.0 & 381.2 & 31:. \\
\hline 79 & 46-0134 & \(Y\) & PAV 2 & 116 & 22 & CJR & 14.9 & 281.2 & 339.2 \\
\hline 80 & 46-6735 & Y & PAN 2 & 116 & 22 & CJR & 14.9 & 281.2 & 350.9 \\
\hline 81 & 46-6736 & Y & PAN 2 & 116 & 22 & CDR & 14.9 & 281.2 & 10.7 \\
\hline 92 & 46-6737 & \(Y\) & PAN 2 & 116 & 23 & CDR & 14.9 & 281.2 & 34.3 \\
\hline 83 & 46-6738 & \(Y\) & PAN 2 & 116 & 23 & CDR & 14.9 & 281.2 & 57.8 \\
\hline 84 & 46-6739 & \(Y\) & PAN 2 & 116 & 23 & CDR & 14.9 & 281.2 & 81.1 \\
\hline 85 & 46-6740 & Y & PAN 2 & 116 & 23 & CDR & 14.9 & 281.2 & 118.4 \\
\hline 86 & 46-6741 & Y & PAN 2 & 116 & 23 & COR & 14.9 & 281.2 & 144.4 \\
\hline 87 & 46-6742 & \(Y\) & PAN 2 & 116 & 23 & EDR & 14.9 & 281.2 & 165.9 \\
\hline 88 & 46-6743 & Y & PAN 2 & 116 & 23 & CDR & 14.9 & 281.2 & 164.4 \\
\hline 89 & 46-6744 & Y & PAN 2 & 116 & 23 & CDR & 14.9 & 281.2 & 191.5 \\
\hline 90 & 46-6745 & Y & PAN 2 & 116 & 24 & CDR & 14.9 & 281.2 & 215.5 \\
\hline 91 & 4t-6746 & Y & PAVORAMA 3, 11 MFTESS NE OIF LM & 116 & 24 & CDR & 15.4 & 33.1 & 144.0 \\
\hline 92 & 4t-6747 & Y & PAN 3 & 116 & 24 & CDR & 15.4 & 33.1 & 168.4 \\
\hline 93 & 46.07748 & Y & PAN 3 & 116 & 24 & CDR & 15.4 & 33.1 & 187.6 \\
\hline 94 & 46-6749 & Y & PAN 3 & 116 & 24 & CDR & 15.4 & 33.1 & 211.9 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM EACH CAMERA MAGAZINE - Continued
\begin{tabular}{|c|c|c|c|}
\hline SEO & PHOTO & MAG & REMARKS \\
\hline 95 & 46-6750 & Y & UAN 3 \\
\hline 96 & 46-6751 & Y & PAN 3 \\
\hline 97 & 46-6752 & Y & PAN 3 \\
\hline 98 & 46-6753 & Y & PAN 3 \\
\hline 99 & 46-6754 & \(Y\) & PAN 3 \\
\hline 100 & 46-6755 & Y & PAN 3 \\
\hline 101 & 46-6756 & Y & PAN 3 \\
\hline 102 & 46-6757 & Y & PAN 3 \\
\hline 103 & 46-6758 & Y & PAN 3 \\
\hline 104 & 46-6759 & \(Y\) & PAN 3 \\
\hline 105 & 46-6760 & \(Y\) & PAN 3 \\
\hline 106 & 46-6761 & \(Y\) & PAN 3 \\
\hline 107 & 46-6762 & Y & PAN 3 \\
\hline 108 & 46-6763 & Y & PAN 3 \\
\hline 109 & 46-6764 & Y & panorama 4, 6 METERS SE OF LM \\
\hline 110 & 46-6765 & Y & PAN 4 \\
\hline 111 & 46-6766 & \(Y\) & PAN 4 \\
\hline 112 & 46-6767 & \(Y\) & PAN 4 \\
\hline 113 & 46-6768 & \(Y\) & PAN 4 \\
\hline 114 & 46-6769 & \(Y\) & PAN 4 \\
\hline 115 & 46-6770 & \(Y\) & PAN 4 \\
\hline 116 & 46-6771 & \(Y\) & PAN 4 \\
\hline 117 & 46-6772 & \(Y\) & PAN 4 \\
\hline 118 & 46-6773 & \(Y\) & PAN 4 \\
\hline 119 & 46-6774 & Y & PAN 4 \\
\hline 120 & 46-6775 & \(Y\) & PAN 4 \\
\hline 121 & 46-6776 & \(Y\) & PAN 4 \\
\hline 122 & 46-6777 & Y & PAN 4 \\
\hline 123 & 46-6778 & Y & PAN 4 \\
\hline 124 & 46-6779 & Y & PAN 4 \\
\hline 125 & 46-6780 & \(Y\) & PAN 4 \\
\hline 126 & 46-6781 & Y & PAN 4 \\
\hline 127 & 46-6782 & Y & PAN 4 \\
\hline 128 & 46-6783 & Y & UNLOADING ALSEP FROM LM \\
\hline 129 & 46-6784 & \(Y\) & SOLAR WIND SPECTROMETER \\
\hline 130 & 46-6785 & Y & RTG \\
\hline 131 & 46-6.786 & \(Y\) & fuel capsule removal \\
\hline 132 & 46-6787 & Y & FUEL CAPSULE REMOVAL \\
\hline 133 & 46-6788 & \(Y\) & FUEL CAPSULE REMOVAL \\
\hline 134 & 46-6789 & \(Y\) & FUEL CAPSULE REMJVAL \\
\hline 135 & 46-6790 & Y & FUEL CAPSULE REMOVAL \\
\hline 136 & 46-6791 & \(Y\) & PREP TO CARRY ALSEP \\
\hline 137 & 46-6792 & \(Y\) & PREP TO CARRY ALSEP \\
\hline 138 & 46-6793 & \(Y\) & LARGE MOUND, DDWN-SUN \\
\hline 139 & 46-6794 & Y & LARGE MOUND, STEREO (L) \\
\hline 140 & 46-6795 & Y & LARGE MOUND, STEREO (R) \\
\hline 141 & 46-6796 & \(Y\) & PANORAMA 5, ALSEP AREA \\
\hline 142 & 46-6797 & \(Y\) & PAN 5 \\
\hline 143 & 46-6798 & \(Y\) & PAN 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{TFT} & BY & DIST & AZLM & A 2 \\
\hline 110 & 24 & こDR & 15.4 & 33.1 & 237.0 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 257.0 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 269.7 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 290.5 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 304.1 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 319.9 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 335.2 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 350.6 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 5.0 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 21.9 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 41.2 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 61.5 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 83.8 \\
\hline 116 & 24 & CDR & 15.4 & 33.1 & 109.2 \\
\hline 116 & 25 & CDR & 9.7 & 146.3 & 66.7 \\
\hline 116 & 25 & CDR & 9.7 & 146.3 & 89.0 \\
\hline 116 & 25 & CDR & 9.7 & 146.3 & 82.8 \\
\hline 116 & 25 & CDR & 9.7 & 140.3 & 82.8 \\
\hline 116 & 25 & CDR & 9.7 & 14;.3 & 112.1 \\
\hline 116 & 25 & CDR & 9.7 & 146.3 & 128.1 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 157.6 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 160.1 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 191.3 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 200.9 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 232.7 \\
\hline 116 & 26 & C. \(\mathrm{D}^{-}\) & 9.7 & 146.3 & 261.0 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 287.4 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 319.2 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 292.9 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 344.4 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 6.7 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 25.5 \\
\hline 116 & 26 & CDR & 9.7 & 146.3 & 54.8 \\
\hline & & CDR & 7.6 & 122.6 & 285.0 \\
\hline & & CDR & 7.6 & 122.6 & 250.0 \\
\hline & & CDR & 7.6 & 122.6 & 285.0 \\
\hline & & CDR & 6.0 & 133.0 & 330.0 \\
\hline & & CDR & 7.2 & 168.8 & 350.0 \\
\hline & & CDR & 7.2 & 168.8 & 350.0 \\
\hline & & CDR & 8.0 & 112.7 & 295.0 \\
\hline & & CDR & 8.0 & 112.7 & 295.0 \\
\hline & & CDR & 10.2 & 172.1 & 5.0 \\
\hline & & CDR & 10.2 & 172.1 & 5.0 \\
\hline 116 & 55 & CDR & 93.5 & 296.6 & 274.0 \\
\hline 116 & 55 & CDR & 106.0 & 295.6 & 237.0 \\
\hline 116 & 55 & CDR & 107.8 & 296.4 & 250.0 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 248.1 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 274.6 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 299.1 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Continued

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{GET} & BY & DIST & AZLM & AZ \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 326.2 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 347.5 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 13.6 \\
\hline 110 & 55 & CDR & 116.4 & 305.7 & 30.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 50.6 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 72.5 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 89.0 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 110.5 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 138.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 163.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 181.7 \\
\hline 116 & 55 & CDR & 116.4 & 305.7 & 210.3 \\
\hline \multirow[t]{11}{*}{116} & 55 & CDR & 116.4 & 305.7 & 233.3 \\
\hline & & CDR & 122.9 & 311.8 & 310.0 \\
\hline & & CDR & 128.3 & 314.5 & 152.0 \\
\hline & & CDR & 129.1 & 314.1 & 158.0 \\
\hline & & CDR & 129.1 & 314.1 & 170.0 \\
\hline & & CDR & 129.8 & 314.5 & 180.0 \\
\hline & & CDR & 131.2 & 314.5 & 159.0 \\
\hline & & CDR & 129.9 & 312.6 & 225.0 \\
\hline & & CDR & & & \\
\hline & & CDR & 128.9 & 305.0 & 346.0 \\
\hline & & CDR & 128.0 & 303.6 & 39.0 \\
\hline 118 & 1 & CDR & 155.6 & 319.2 & 304.0 \\
\hline 118 & 1 & CDR & 156.5 & 320.0 & 294.0 \\
\hline 118 & 2 & CDR & 157.7 & 318.9 & 304.0 \\
\hline 118 & 2 & CDR & 157.8 & 319.4 & 295.0 \\
\hline 118 & 4 & CDR & 152.1 & 319.1 & 162.0 \\
\hline \multirow[t]{15}{*}{118} & 4 & LMP & 126.9 & 315.7 & 180.0 \\
\hline & & LMP & 123.4 & 315.4 & 330.0 \\
\hline & & LMP & 121.3 & 315.1 & 285.0 \\
\hline & & LMP & 119.9 & 315.1 & 265.0 \\
\hline & & LMP & 109.5 & 311.0 & 335.0 \\
\hline & & LMP & 102.6 & 310.0 & 335.0 \\
\hline & & LMP & 127.1 & 311.9 & 0.0 \\
\hline & & LMP & 127.9 & 311.6 & 0.0 \\
\hline & & LMP & 127.8 & 312.2 & 0.0 \\
\hline & & LMP & 128.3 & 314.5 & 190.0 \\
\hline & & LMP & 128.3 & 314.5 & 190.0 \\
\hline & & LMP & 127.6 & 315.4 & 240.0 \\
\hline & & LMP & 128.3 & 314.5 & 135.0 \\
\hline & & LMP & 130.5 & 312.9 & 172.0 \\
\hline & & LMP & 128.3 & 314.5 & 210.0 \\
\hline 118 & 6 & LMP & 127.7 & 316.0 & 165.0 \\
\hline 118 & 6 & CDR & 120.3 & 296.6 & 173.0 \\
\hline 118 & 6 & CDR & 121.3 & 295.3 & 165.0 \\
\hline 118 & 6 & CDR & 121.3 & 295.3 & 107.0 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & РНОто & MAG & remarks & & GET & BY & DIST & AZLM & \(\Delta 7\) \\
\hline 191 & 46-6830 & \(Y\) & bbig roek. Nw Jf lakge MOUND & 118 & 6 & CDR & 121.3 & 294.3 & 187.0 \\
\hline 192 & 47-6932 & \(\checkmark\) & CDR REACHING FOR SPL 12021 & 118 & 8 & LMP & 116.4 & 294.8 & 180.0 \\
\hline 193 & 46-6831 & \(Y\) & LARGE MOUND, SPL 12008. Spl ident. tentative & 118 & 9 & CDR & 113.2 & 291.2 & 337.0 \\
\hline 194 & 46-6832 & \(Y\) & LARGE MOUVD, SPL 12008 SPL ident. tentative & 118 & 9 & CDR & 112.3 & 291.3 & 337.0 \\
\hline 195 & 47-6933 & \(v\) & TAKING SPL 12022 FROM MOUND. SPL IDENT. tentative & 118 & 10 & LMP & 115.1 & 293.5 & 180.0 \\
\hline 196 & 47-6934 & v & Sampling at large moind & 118 & 10 & LMP & 114.7 & 293.0 & 180.0 \\
\hline 197 & 47-6935 & \(v\) & LARGE MOUVD, SPL NOT Identified & 118 & 11 & LMP & 115.7 & 292.8 & 180.0 \\
\hline 198 & 47-6936 & \(v\) & fresh secondary craters LRL SPL 12004, SPL IDENT TENTATIVE & 118 & 15 & LMP & 158.6 & 305.8 & 5.0 \\
\hline 199 & 47-6937 & \(v\) & SHOWS HORIZON N OF 47-6936 & 118 & 15 & Lmp & 158.1 & 305.5 & 5.0 \\
\hline 200 & 46-6833 & Y & \[
\begin{aligned}
& \text { LRL SPLS } 12010,12013, \\
& \text { 12019 SPL IDENT } \\
& \text { TENTATIVE }
\end{aligned}
\] & 118 & 16 & CDR & 140.8 & 307.6 & 180.0 \\
\hline 201 & 47-6938 & \(v\) & 'valentine' & 118 & 16 & LMP. & & & 330.0 \\
\hline 202 & 46-6834 & Y & & 118 & 16 & CDR & & & 0.0 \\
\hline 203 & 46-6835 & Y & & 118 & 16 & CDR & & & \\
\hline 204 & 46-6836 & \(Y\) & PANORAMA 6, STEREO (R) middLe CRESCENT CTR & 118 & 18 & CDR & 280.9 & 309.5 & 348.7 \\
\hline 205 & 46-6837 & Y & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 334.8 \\
\hline 206 & 46-6838 & \(Y\) & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 319.5 \\
\hline 207 & 46-6839 & Y & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 306.5 \\
\hline 208 & 46-6840 & \(Y\) & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 300.2 \\
\hline 209 & 46-6841 & \(Y\) & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 281.5 \\
\hline 210 & 46-6842 & Y & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 266.6 \\
\hline 211 & 46-6843 & \(Y\) & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 254.1 \\
\hline 212 & 46-6844 & \(Y\) & PAN 6 & 118 & 18 & CDR & 280.9 & 309.5 & 240.8 \\
\hline 213 & 46-6845 & Y & panorama 7, Stereo (l) middle CRESCENT CTR & 118 & 19 & CDR & 285.2 & 307.1 & 229.4 \\
\hline 214 & 46-6846 & Y & PAN 7 & 118 & 19 & CDR & 285.2 & 307.1 & 253.3 \\
\hline 215 & 46-6847 & \(Y\) & PAN 7 & 118 & 19 & CDR & 285.2 & 307.1 & 272.8 \\
\hline 216 & 46-6848 & Y & PAN 7 & 118 & 19 & CDR & 285.2 & 307.1 & 287.5 \\
\hline 217 & 46-6849 & Y & PAN & 118 & 19 & CDR & 285.2 & 307.1 & 297.3 \\
\hline 218 & 46-6850 & Y & PAN 7 & 118 & 19 & CDR & 285.2 & 307.1 & 311.2 \\
\hline 219 & 46-6851 & \(Y\) & PAN 7 & 118 & 19 & CDR & 285.2 & 307.1 & 324.3 \\
\hline 220 & 46-6852 & Y & PAN 7 & 118 & 19 & CDR & 285.2 & 307.1 & 343.9 \\
\hline 221 & 47-6939 & \(v\) & FRESH CRATER, LRL SPL 12016, SPL IDENT TENTATIVE & 118 & 22 & LMP & 252.3 & 303.4 & 335.0 \\
\hline 222 & 47-6940 & \(v\) & TONGS, LRL SPL 12014 & & & LMP & & & \\
\hline 223 & 47-6941 & \(v\) & panorama 8, 10 meters W & 118 & 27 & LMP & 13.9 & 282.0 & 270.3 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Continued

EACH CAMERA MAGAZINE－Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & PHCT？ & MA； & MARKS & & FT & QY & 1．）IST & \(\Delta Z L: 1\) & \(\Delta z\) \\
\hline 272 & 47－6990 & V & PAN 10 & 118 & 31 & LMP & 12.7 & 21.3 & 186． 5 \\
\hline 273 & 47－6991 & V & DAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 1 6 ¢． \\
\hline 274 & 47－699？ & V & PAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 147．ヶ \\
\hline 275 & 47－6993 & V & DAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 141.0 \\
\hline 776 & 47－5994 & リ & DAN 10 & 118 & 31 & LMP & 12．7 & 20.3 & 129.5 \\
\hline 277 & 47－6995 & \(v\) & PAV 10 & 118 & 31 & LMP & 12.7 & 20.3 & 113．1 \\
\hline 278 & 47－6998． & V & DAV 10 & 118 & 31 & LMP & 12.7 & 20.3 & 105.8 \\
\hline 279 & 47－6997 & V & PAN 10 & 118 & \(? 1\) & LMP & 12.7 & 20.3 & 87.0 \\
\hline 230 & 47－6998 & V & PAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 75.6 \\
\hline 281 & 47－6999 & V & DAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 55.7 \\
\hline 282 & 47－7000 & V & PAV 10 & 118 & 31 & LMP & 12.7 & 20.3 & 44．\({ }^{\text {a }}\) \\
\hline 293 & 47－7001 & V & PAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 30.2 \\
\hline 294 & 47－700？ & V & DAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & \(14 . t\) \\
\hline 285 & 47－7003 & V & DAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 4.3 \\
\hline 286 & 47－7004 & \(\checkmark\) & PAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 355．？ \\
\hline 2と7 & 47－7005 & V & PAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 338.4 \\
\hline 298 & 47－7006 & V & PAN 10 & 118 & 31 & LMP & 12.7 & 20.3 & 325.2 \\
\hline 289 & 47－7007 & V & LRL SPL 1？026，CT 2013 & 118 & 36 & LMP & 19.0 & 33.2 & 20.0 \\
\hline \(29 ?\) & 47－7009 & V & LRL SPL 1＞02f，CT 2012 & 118 & 36 & LMP & 19.6 & 35.6 & 0.0 \\
\hline \(2 \rightarrow 1\) & 47－7009 & V & COR FJTEDING L＊ & 119 & 5 & LMP & & & \\
\hline 297 & 47－7010 & \(v\) & COP ENTFQINr．L＾ & 119 & 5 & LMP & & & \\
\hline c： 3 & \(41-7011\) & \(v\) & PAVORAMA \(11, \square \cdots I V \cap O M\) & & & LMP & 1.8 & 299．3 & 286.0 \\
\hline 294 & \(47-7012\) & V & PAV 11 & & & LMP & 1.8 & 290． 3 & 295.8 \\
\hline 295 & 47－7013 & V & PAN 11 & & & LMP & 1.8 & 299.3 & 306.6 \\
\hline 206 & 47－7014 & V & PAV 11 & & & LMP & 1.8 & 290．3 & 376.8 \\
\hline 297 & 47－7015 & V & PAV 11 & & & LMP & 1.8 & 290.3 & 347.7 \\
\hline 298 & 47－7016 & V & PAV 11 & & & LMP & 1.9 & 290.3 & 10．4 \\
\hline 200 & 47－7017 & V & PAV 11，（JNOFREXPJSFC） & & & LMP & 1.8 & 299.3 & \\
\hline 300 & 47－7018 & V & PAV 11 & & & LMP & 1.8 & 299．3 & 354.2 \\
\hline 301 & 47－7019 & V & PAV 11 & & & LMP & 1.8 & 299．3 & 333.8 \\
\hline 302 & \(47-7020\) & V & PAN 11 & & & LMF & 1.8 & 290．3 & 287．4 \\
\hline 303 & 4？－7021 & V & PAV 11 （ DAPTIAL F？\(\triangle\) PF） & & & LMP & 1.8 & 299．3 & \\
\hline 304 & \(4 t-6.853\) & Y & DAVJRAMA ll，L WINDJい & & & C．DR & 1.6 & 266.4 & 299．0 \\
\hline 305 & 46－6854 & \(Y\) & DAN 11 & & & CDR & 1． 6 & 266．4 & 271.0 \\
\hline 306 & \(46-6855\) & Y & ？AN 11 & & & CDR & 1.6 & 266.4 & 243.6 \\
\hline 307 & 46－6856 & Y & PAV 11 & & & CDR & 1.6 & 266.4 & 284．？ \\
\hline 308 & 46－6857 & Y & PAV 11 & & & CDR & 1.6 & 266.4 & 262.5 \\
\hline 300 & 46－6858 & Y & PAN 11 & & & CDR & 1.6 & 266.4 & 235.3 \\
\hline 310 & 46－6859 & \(Y\) & PAV 1i & & & CDR & 1.6 & 266.4 & 223.1 \\
\hline 311 & 46－6860 & \(Y\) & DAN 11 & & & CDR & 1.6 & 266.4 & 200.5 \\
\hline 312 & 46－6861 & Y & PANORAMA 11，？WIVD骨 & & & LMP & 1.8 & 299．3 & 343.0 \\
\hline 313 & 4 4 －6862 & Y & PAV 11 & & & LMP & 1.8 & 209.3 & 320.5 \\
\hline 314 & 46－6863 & Y & PAN 1． & & & LMP & 1.8 & 299．3 & 302.5 \\
\hline 315 & 46－6854 & \(Y\) & PAN 11 & & & LMP & 1.8 & 29.3 & 299.3 \\
\hline 316 & 46－6865 & Y & PAV 11 & & & L．MP & 1.8 & 290．3 & 348.5 \\
\hline 317 & 46－685 & Y & PAN 11 & & & LMP & 1.8 & 29.3 & 304.0 \\
\hline 318 & 46－68ち7 & Y & PAN 11 & & & LMP & 1.8 & 279．3 & 315.0 \\
\hline 319 & 46－6868 & Y & PAN 11 & & & LMP & 1.8 & 299．3 & 306.5 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Continued

TABLE D－II．－SEQUENTIAL LISTING OF 70－MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE－Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEO & PHOT 7 & MAG & 二FYARKS & & if \(T\) & BY & OIST & A ZL 4 & AL \\
\hline 356 & & Z & TRENCH，X－SUN，HIFAD CTD & 132 & \(\leq 0\) & CDR & & & \\
\hline 357 & 40－7192 & Z & \[
\begin{aligned}
& \text { TRENCH, X-SUN } \\
& \text { LRL SPI. 17032, } \\
& \text { FLD SPL 5D }
\end{aligned}
\] & 132 & 20 & CDR & & & \\
\hline 358 & 49－7193 & Z & TRENCH，HEAD CTR & & & CDR & & & \\
\hline 359 & 49－7104 & Z & N RIM JF HEAT CTR LRL SPL 12032， \(\because\) LD SPL 50 & 132 & 23 & CDR & & & \\
\hline 30 & 49－7195 & z & \(V\) RIM JF WC．AD CTR L．RL SPL 12034， FLD SPL क & 132 & 24 & COR & & & \\
\hline 361 & 49－7136 & \(z\) & N RIA OF HEAD C．TR LRL SPL 12034， FLD SPL SD & 132 & \(? 5\) & CDR & & & \\
\hline 367 & 48－7051 & \(x\) & \[
\begin{aligned}
& V \text { RIM OF HEAD CTK } \\
& L ? L \text { SPL } 1>O 3^{2}, \text { FLO } \\
& C P L S D, ~ L R L S P L \\
& 1 ? O 34, ~ F L D S P L \text { SD }
\end{aligned}
\] & 132 & \(? 6\) & LMP & & & \\
\hline 303 & 48－705？ & x & V RIM JF HFAO C．TR LRL SPL 12033， FLD SPL 5D & 132 & 26 & LMP & & & \\
\hline 364 & 49－7197 & Z & －S IN Rく，LTF GQAY 3חT： LRL SPL \(1 ? 055\) UNMOVFD & 132 & 27 & CDR & 185.8 & 272.7 & 140.0 \\
\hline 356 & 49－7：98 & z & －6 IN RK，LTR＇GQAY 8！JT＇ LKL SPL 1 ？ 055 UNMOVEO & 132 & 27 & CDR & 185.8 & 272.7 & 130.0 \\
\hline 266 & \(4 \ni-7199\) & z & V RIM OF HEAC ©TR MOVED ROCK & 132 & 27 & CDR & 185.8 & 272.7 & 180.0 \\
\hline 167 & \(49-7200\) & Z & \[
\begin{aligned}
& \text { Y RIM OF :IFAD CTR } \\
& \text { MOVED RUCK }
\end{aligned}
\] & 132 & 27 & COR & 185．8 & 272．7 & 170．0 \\
\hline 36,8 & 48－7053 & x & N RJM OF ：HEAD CTR DCJW N－SUN，：IOVED ？：CK & 132 & 27 & LMP & 185.8 & 272.7 & 250.0 \\
\hline 369 & 48－7054 & x & V RIM OF HEAD ERR DDWN－SUV，AOVFD ！？CK & 132 & 27 & LMP & 185.8 & 272.7 & \(\therefore 55.0\) \\
\hline 370 & 48－7055 & X & \(N\) RIM JF HEAD CTR OOWV－SIN，MOVED STK． & 13？ & 27 & LMP & 185.8 & つつこ．7 & 255.0 \\
\hline \(3: 2\) & 48－リリャ． & \(x\) & PANORAMA 12，E RIM ᄀF TRIPLE CRATER & 132 & 31 & LMP & 21．1．7 & CoCli & 258．5 \\
\hline 372 & 48－7057 & X & PAN 12 & 132 & 31 & LMP & 210.7 & 263．1 & 280.3 \\
\hline 373 & 48－．7058 & X & PAN 12 & 132 & 31 & LMP & 210.7 & 268．1 & 302.3 \\
\hline 374 & 49－7201 & Z & PAVORAMA 13，W 2 IM JF HEAD CRATER & 132 & 32 & C．DR & 222.2 & 254.1 & 133.5 \\
\hline 375 & 49－7202 & Z & PAN 13 & 132 & 32 & CD？ & 222.2 & 254.1 & 158.2 \\
\hline 376 & 49－7203 & 2 & PAN 13 & 132 & 32 & CDR & 222．2 & 254.1 & 178.4 \\
\hline 377 & 49－7204 & 2 & PAY 13 & 132 & 32 & CDR & 222.2 & 2.54 .1 & 204．2 \\
\hline 378 & 49－7205 & 2 & PAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 226.6 \\
\hline 370 & 49－7206 & Z & PAN 13 & 132 & 32 & CDR & 222．2 & 254．1 & 246.8 \\
\hline 320 & 49－7207 & Z & PAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 267.8 \\
\hline 381 & 49－7208 & Z & PAN 13 & 132 & 32 & CDR & 222.2 & 254．1 & 293.9 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM

\section*{EACH CAMERA MAGAZINE - Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & PHOTO & MAS & UFMAPKS & & ST & \(3 Y\) & ग! \(\mathrm{T}^{\text {T }}\) & \(\triangle 7.14\) & \(\Delta 7\) \\
\hline 302 & 4ソ-7209 & z & PAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 305.5 \\
\hline 393 & 49-7210 & 2 & PAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 341.0 \\
\hline 384 & 49-7211 & 2 & DAN 13 & 132 & 32 & CDR & 222.? & 254.1 & 3.1 \\
\hline 385 & 49-7212 & Z & PAV 13 & 132 & 32 & CDR & 222.2 & 254.1 & 19.3 \\
\hline 396 & 49-7213 & 2 & PAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 53.3 \\
\hline 387 & 49-7214 & Z & PAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 71.5 \\
\hline 398 & 49-7215 & Z & DAN 13 & 132 & 32 & CDR & 222.2 & 254.1 & 91.0 \\
\hline 399 & \(49-7216\) & z & PAN 13 & 132 & 33 & CDR & 222.2 & 254.1 & 115.2 \\
\hline 390 & 1.8-7059 & X & 'SHARP EDGF \(2 K-T Y P I C A L '\) LRL SPL \(1205 ?\) YOVED & 132 & 33 & LMP & 222.1 & 255.1 & 225.0 \\
\hline 391 & 49-7217 & z & - SHARD EJGE OK-TYPICAL' LRL SPL 12052 YOVED & 132 & 33 & CDR & 224.0 & 255.2 & 328.0 \\
\hline 392 & 49-7218 & 7 & \begin{tabular}{l}
'SHARP EDGE マK-TYPICAL' \\
LRL SPL 12052
\end{tabular} & 132 & 33 & CDR & 224.0 & 255.2 & 375.0 \\
\hline 393 & 49-7060 & \(x\) & 'FILLETS ON ALL SIDFS' & 132 & 35 & LMP & 232.7 & 248.6 & 255.0 \\
\hline \(3 \cdot\) & 48-7061 & X & 'FILLETS 3 N AILL SIDES' & 132 & 35 & LMP & 233.1 & 348.3 & 240.0 \\
\hline 3\%) & 49-7219 & z & -FILLETS ? Y ALL SIDES' & 132 & 35 & CDR & 239.4 & 2.48 .4 & 340.0 \\
\hline 39\% & 4.9-72.20 & Z & 'FIL.'ETS Jiv ALL SIDES' & 132 & 35 & CDR & 238.5 & 248.3 & 335.0 \\
\hline 397 & 49-7221 & Z & 'Fillets Jn Ali sines' & 132 & 35 & CDR & 239.4 & 247.1 & 346.0 \\
\hline 398 & 48-7062 & \(x\) & 'FILLETS JNALL SIDES' & 132 & 35 & LMP & 236.7 & 249.5 & 170.0 \\
\hline 309 & 49-7222 & Z & 'FILLETS JN ALL SIDES' & 132 & 35 & CDR & 237.2 & 747. ? & 3.39 .0 \\
\hline 400 & 49-7223 & z & PANORAMA l4, N RI'A DF BENCH CRATER & 132 & 37 & CDR & 295.8 & 232.5 & 148.3 \\
\hline 401 & 49-7224 & Z & PAN 14 & 132 & 37 & CDR & 295.8 & 232.5 & 166.7 \\
\hline 402 & 49-7225 & Z & PAN 1'4 & 132 & 37 & CDR & 295.8 & 232.j & 180.6 \\
\hline 403 & \(47-7226\) & Z & PAN 14 & 132 & 37 & CDP & 295.8 & 232.5 & 198.8 \\
\hline 404 & 49-7227 & z & PAN 14 & 132 & 37 & CDR & 295.8 & 232.3 & \(\because 15.5\) \\
\hline 405 & 49-7228 & Z & PAN 14 & 132 & 37 & CDR & 295.8 & 222.5 & 233.1 \\
\hline 4!) & 49-7229 & z & PANORAMA 15, V PI 1 OF BENCH CRATER & 132 & 38 & CDR & 305.2 & 222.7 & 211.9 \\
\hline & 49-7230 & z & PAM 15 & 132 & 38 & CDR & 305.2 & 232.7 & 190.8 \\
\hline 408 & 49-7231 & 2 & Pat 1\% & 132 & 38 & CDR & 305.2 & 232.7 & 174.7 \\
\hline 409 & 49-7232 & Z & PA.V 15 & 132 & 38 & CDR & 305.2 & 232.7 & 161.4 \\
\hline 410 & 49-7223 & z & PAN 15 & 132 & 38 & CDR & 305.2 & 232.7 & 146.5 \\
\hline 411 & 48-7063 & X & NW RIM OF EENCH CTR LRL SPL 12053 DOWN-SUN, YOVED & 132 & 41 & LMP & 294.6 & 231.8 & 255.0 \\
\hline 412 & 49-7234 & z & NW RIM JF BENCH CTR. LRL SPL 12052 AJVED & 132 & 41 & CDR & 294.0 & 232.0 & 180.0 \\
\hline ' 13 & 49-7235 & z & NW RIM OF BENCH CTR LRL SPL 12053 MOVED & 132 & 41 & CDR & 294.0 & 232.0 & 175.0 \\
\hline 414 & 48-7064 & x & & & & LMP & 310.8 & 232.5 & \\
\hline 415 & 49-7236 & Z & NW RIM JF BENCH CTR LRL SPL l? 035 , FLD SPL 7D, LPL SPLS 1?036 \& 1 0037 , FLD SPI 8D & 132 & 43 & CDR & 310.8 & 232.5 & \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & PHOT & MA & \(\therefore F M A R K S\) & & GF.T & EY & DIST & AZ LM & A 2 \\
\hline 416 & 49-7237 & Z & NW RIM OF BENC: CTQ FRACTURED RIJCK LRL SPL 12035, FLD SPL 7D, LRL SPLS 12036 \(\mathcal{1} 1>037\), FLD SPL 8D & 132 & 43 & CDR & 310.8 & 232.5 & \\
\hline 417 & 49-7238 & 2 & NW RIM DF BEVCH CTR FRACTURED 足OCK LRL SPL 12035, FLD SPL 7D, LPL SPLS 12036 \& \(1>037\), FLD SPL 8D & 132 & 45 & CDR & 310.8 & 237.5 & \\
\hline 418 & 49-7239 & Z & 'VIV RIM UF BENCH CT? LRL SPL 12035, FLD SPL 7D, LRL SPLS 17036 \& 12037 , FLD SPL 8D & 132 & 45 & CDR & \(31 ก 8\) & 237.5 & \\
\hline 419 & 49-7240 & Z & NW RIM JF BENCH CTR (AREA OF LRL SPLS 12038 FLD SPL \(\circ\) D, LRL SPL 12039 FLD SPL 10D,LRL SPL 12.040 FLD SPL IOD) & 132 & 46 & COR & 322.6 & 22?.1 & \\
\hline 420 & 49-7241 & 2 & N:V RIM JF BENCH CTR IAREA OF LRL SPES 12038 FLD \(\because P L\) OO, IRL SPL 12020 FL ! IOD,LRI \(\subset P L\) ! ? CO FLD SL! ! OD) & 132 & 46 & C.DR & 322.6 & 222.1 & \\
\hline 421 & 49-7? \({ }^{\prime}\) & 2 & EFVEH STR, SPLS MOVEO IRL SPLS 12039 \& 12040, FLD SPL 100 & 132 & \(4 i j\) & - & 3 \(2<0\) i & \(\therefore \triangleleft<1\) & \\
\hline 422 & 49-7243 & z & \begin{tabular}{l}
SCOOP MJVED \\
LRL SPLS 12039 \& \\
12040, FLD SPL 100
\end{tabular} & \(13 ?\) & 48 & CDR & 322.8 & 232.1 & \\
\hline 423 & 49-7744 & Z & DAVORAMA 1G, VF IF SHARP CRATER & 132 & 52 & CDR & 410.4 & 230.5 & 117.5 \\
\hline 424 & 49-7245 & Z & PAN 16 & 132 & 52 & CDR & 410.4 & 230.5 & 89.4 \\
\hline 425 & 49-7246 & 2 & PAV 16 & 132 & 52. & CDR & 410.4 & 230.5 & 66.8 \\
\hline 426 & 49-7247 & z & PAN 16 & 132 & 52 & C!) R & 410.4 & 230.5 & 55.0 \\
\hline 427 & 49-7248 & 2 & PAN 16 & 132 & 52 & CDQ & 410.4 & 230.5 & 48.4 \\
\hline 428 & 49-7249 & z & PAN 16 & 132 & 52 & CDR & 410.4 & 230.5 & 31.2 \\
\hline 429 & 49-7250 & Z & PAN 16 & 132 & 52 & CDR & 410.4 & 230.5 & 19.2 \\
\hline 430 & 49-7251 & Z & DAN 16 & 132 & 52 & CDR & 410.4 & 230.5 & 7.2 \\
\hline 4.31 & 40-725? & Z & PAN 16 & 132 & 52 & CDR & 410.4 & 230.5 & 348.1 \\
\hline 432 & 49-7253 & Z & PAN 16 & 132 & 52 & CDR & 410.4 & 230.5 & 326.6 \\
\hline 423 & 49.7254 & Z & PAN 16 & 1.32 & 52 & CDR & 410.4 & 230.5 & 304.6 \\
\hline 424 & 49-7255 & \(?\) & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 277.4 \\
\hline 4.5 & 49-7256 & z & PAív 16 & 132 & 53 & CDR & 410.4 & 230.5 & 260.8 \\
\hline 436 & 49-7757 & 2 & PAN 16 & 132 & 53 & CDR & 410.4 & ? 30.5 & 249.7 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM

\section*{EACH CAMERA MAGAZINE - Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & PHOTO & MAG & REMARKS & & ET & \(B Y\) & DIST & AZLM & A 2 \\
\hline 437 & 49-7258 & Z & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 218.3 \\
\hline 438 & 49-7259 & Z & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 200.1 \\
\hline 439 & 49-7260 & Z & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 179.0 \\
\hline 440 & 49-7261 & Z & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 157.2 \\
\hline 441 & 49-7262 & Z & PAN 16 & 132 & 53 & CDR & 410.4 & 230.5 & 138.2 \\
\hline 442 & 48-7065 & X & 'BLAST EFFECT' AT SHARP CTR,GNOMON AT & 132 & 53 & LMP & 439.9 & 235.5 & \\
\hline 443 & 48-7066 & X & TRENCH \& CORE SITE 'BLAST EFFECT' AT SHARP & 132 & 53 & LMP & 439.9 & 235.5 & \\
\hline & & & CTR, GNOMON AT TRENCH \& CORE SITE & & & & & & \\
\hline 444 & 48-7067 & \(x\) & DN-SUN OF TRENCH & 132 & 53 & LMP & \[
439.9
\] & \[
235.5
\] & \\
\hline 445 & 49-726.3 & Z & PANORAMA 17, E RIM OF SHARP CRATER & 132 & 54 & CDR & \[
441.4
\] & \[
235.0
\] & 311.3 \\
\hline 446 & 49-7264 & Z & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 299.6 \\
\hline 447 & 49-7265 & Z & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 289.9 \\
\hline 448 & 49-7266 & Z & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 272.3 \\
\hline 449 & 49-7267 & \(z\) & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 254.2 \\
\hline 450 & 49-7268 & Z & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 243.4 \\
\hline 451 & 49-7269 & Z & PAN 17 & 132 & 54 & CDR & 441.4 & 235.0 & 224.0 \\
\hline 452 & 49-7270 & Z & PANORAMA 18, E RIM OF SHARP CRATER & 132 & 54 & CDR & 443.9 & 234.8 & 238.0 \\
\hline 453 & 49-7271 & Z & PAN 18 & 132 & 54 & CDR & 443.9 & 234.8 & 251.4 \\
\hline 454 & 49-727? & Z & PAN 18 & 132 & 54 & \(C D\) & 443.9 & 234.8 & 260.8 \\
\hline 455 & 49-7273 & Z & PAN 18 & 132 & 54 & COR & 443.9 & 234.8 & 285.3 \\
\hline 456 & 49-7274 & 2 & PAN 18 & 132 & 54 & \(C \cap R\) & 443.9 & 234.8 & 205.2 \\
\hline 457 & 49-7775 & Z & PAN 18 & 132 & 54 & COR & 443.9 & 234.8 & 322.2 \\
\hline 458 & 49-7276 & Z & X-SIIN STERED OF TRENCH & 132 & 56 & CDR & 439.9 & 235.5 & \\
\hline 459 & 49-7277 & Z & \(X-S I I N ~ S T E R E D ~ O F ~ T R E N C H ~\) & 132 & 56 & CDR & 439.9 & 235.5 & \\
\hline 460 & 48-7068 & \(X\) & DN-SUN CDRE TIIRF IN TRN LRL SPL 12027 & 132 & 56 & LMP & 439.9 & 235.5 & \\
\hline 461 & 48-7069 & \(X\) & DN-SUN CDRE TURF IN TRN LRL SPL 12027 & 132 & 56 & LMP & 439.9 & 235.5 & \\
\hline 462 & 49-7278 & Z & LMP WITH LESC LRL SPL 12023 & 132 & 57 & CDR & 430.9 & 235.5 & \\
\hline 463 & 40-7279 & Z & X-SUN, CT? IN TRN LRL SPL 12027 & 132 & 57 & \(C D R\) & 430.9 & 235.5 & \\
\hline 464 & \(40-7790\) & Z & X-SUN, CTフ IN TRN LRL SPL 12027 & 132 & 57 & C.OR & 439.9 & 235.5 & \\
\hline 465 & 48-7070 & \(x\) & IN-SIJN, CT (;ONE (SHARP) & 132 & 58 & LMP & 439.9 & 235.5 & \\
\hline 466 & 48-7071 & \(x\) & CONRAD (LM IN FACKRGND) & 133 & 3 & LMP & 259.7 & 216.0 & \\
\hline 467 & 49-7281 & Z & RFAN & 133 & 3 & CDR & 174.2 & \(241 . ?\) & \\
\hline 468 & 48-7nフ2 & \(x\) & SW OF SURVEYMR CTR & 133 & 8 & LMP & 186.5 & 198.3 & 210.0 \\
\hline 469 & 48-7073 & \(x\) & SW OF SURVEYCR CTR & 133 & 8 & LMP & 186.5 & 198.3 & 205.0 \\
\hline 470 & 49-7282 & Z & SW OF SURVEYCR CTP & 133 & 8 & CDR & 187.5 & 198.2 & \(164 . \mathrm{C}\) \\
\hline 471 & 49-7283 & Z & SW OF SURVEYCR CTR & 133 & 8 & CDR & 187.5 & 198.2 & 164.0 \\
\hline 472 & 49-7284 & 2 & SW OF SURVEYCR CTR & 133 & 8 & COR & 187.5 & 198.2 & 170.0 \\
\hline 473 & 48-7074 & X & ```
'NEW INIT'
{AREA OF LRL SOL
12042 FLD ¢PL 12п)
``` & 133 & 19 & LMP & 185.6 & 198.4 & 200.0 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL LISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SFO & PHOTS & MAF, & RFMARKS & & , ET & BY & DIST & A Z L M & AZ \\
\hline 474 & 48-7075 & X & \begin{tabular}{l}
' NEW UNIT' \\
(AREA OF LRL SPL \\
12042 FLD SPL 1201
\end{tabular} & 133 & 20 & LMP & 185.6 & 198.4 & 170.0 \\
\hline 475 & 48-7076 & \(x\) & \begin{tabular}{l}
'NEW UNIT' \\
(AREA OF LRL SPL \\
12042 FLD SPL 12D)
\end{tabular} & 133 & 20 & LMP & 185.6 & 198.4 & 165.0 \\
\hline 476 & 49-7285 & Z & \[
\begin{aligned}
& \text { CT1(LRL SPL 12025)/ } \\
& \text { CT3(LRL SPL } 12078)
\end{aligned}
\] & 133 & 25 & CDR & 244.5 & \(18^{2} .4\) & 180.0 \\
\hline 477 & 49-7?86 & Z & CTI(LRL SPL 12025)/ CT3(LRL SPL 12028) & 133 & 28 & C.DR & 244.5 & 183.4 & 190.0 \\
\hline 478 & 48-7077 & \(x\) & LAST PHOTO FROM 1015 DOUBLE CT 1/? & 133 & 33 & LMP & 244. 5 & 183.4 & 220.0 \\
\hline 479 & 48-7078 & \(x\) & CAM FAILURE, FOGGFn & & & LMP & & & \\
\hline 480 & 48-7079 & X & FOGGED & & & LMP & & & \\
\hline 481 & 48-7080 & X & FDGGED & & & LMP & & & \\
\hline 482 & 48-7081 & X & FDGGED & & & LMP & & & \\
\hline \(4 ? 3\) & 49-7287 & Z & \[
\begin{aligned}
& \text { CT1(LRL SPL } 12025) \text { ) } \\
& \text { CT3(LRL SPL } 12028)
\end{aligned}
\] & 133 & 33 & LMP & 244.5 & 183.4 & 180.0 \\
\hline 484 & 49-7289 & Z & CT1(LRL SPL 12025)/ CT3(LRL SPL 12028 ) & 133 & 33 & LMP & 244.5 & 183.4 & 160.0 \\
\hline 485 & 49-7289 & Z & painorama l9, sw of SURVEYOR CRATER & 133 & 35 & LMP & 239.5 & 183.3 & 254.? \\
\hline 486 & 49-7290 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 232.2 \\
\hline 487 & 49-7291 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 209.7 \\
\hline 488 & 49-7292 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 186.9 \\
\hline 489 & 49-7293 & Z & PAN 10 & & & LMP & 239.5 & 183.3 & 165.0 \\
\hline 490 & 49-7294 & Z & DAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 143.1 \\
\hline 491 & 49-7295 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 133.4 \\
\hline 492 & 49-7296 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 116.7 \\
\hline 493 & 49-7297 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 100.7 \\
\hline . 494 & 49-7298 & Z & PAN 19 & 133 & 35 & LMP & 239.5 & 183.3 & 83.1 \\
\hline 495 & 49-7299 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 65.1 \\
\hline 496 & 49-7300 & Z & DAN 10 & 133 & 36 & LMP & 239.5 & 183.3 & 48.0 \\
\hline 497 & 49-7301 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 31.3 \\
\hline 498 & 49-7302 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 19.7 \\
\hline 499 & 49-7303 & Z & OAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 9.5 \\
\hline 500 & 49-7304 & 2 & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 353.0 \\
\hline 501 & 49-7305 & Z & -AN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 337.1 \\
\hline 502 & 49-7306 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 182.3 & 325.0 \\
\hline 503 & 49-7307 & Z & -AN 19 & & & LMP & 239.5 & 182.3 & 308.6 \\
\hline 504 & 49-7308 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 182.5 & 290.4 \\
\hline 505 & 49-7309 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 283.7 \\
\hline 506 & 49-7310 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 265.5 \\
\hline 507 & 49-7311 & Z & PAN 19 & 133 & 36 & LMP & 239.5 & 183.3 & 257.' \\
\hline 508 & 49-7312 & Z & SW DF SURVEYOR CTR FLD SPL 130 NOT RTND & 133 & 39 & LMP & & & \\
\hline 509 & 49-7313 & Z & SW OF SURVEYQR CTR LRL SPL 12054 & 133 & 39 & LMP & & & \\
\hline 510 & 49-7314 & Z & SW OF SURVEYOR CTR LRL SPL 12054 & 133 & 39 & LMP & & & \\
\hline
\end{tabular}

\section*{EACH CAMERA MAGAZINE - Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & PHOTO & MAG & REMARKS & & GET & \(B Y\) & OIST & AZLM & A 2 \\
\hline 511 & 49-7315 & Z & SW OF SURVEYOR CTR & 133 & 39 & LMP & & & \\
\hline 512 & 49-7316 & Z & SW OF SURVEYOR C.TR & 133 & 39 & LMP & 191.1 & 181.1 & 1.0 \\
\hline 513 & 49-7317 & Z & SW DF SURVEYOR CTR & 133 & 45 & LMP & 191.1 & 181.1 & 0.0 \\
\hline 514 & 49-7318 & Z & SW OF SURVEYMR CTR LRL SPL 12051 & 133 & 45 & LMP & 191.1 & 181.1 & 172.0 \\
\hline 515 & 49-7210 & Z & SW OF SURVEYOR CTR LRL SPL 1205 ! & 133 & 45 & LMP & 191.1 & 181.1 & 165.0 \\
\hline 516 & 49-7320 & Z & SW OF SURVEYOR CTR AFTER LRL SPL 12051 & 133 & 45 & LMP & 197.2 & 181.3 & 150.0 \\
\hline 517 & 49-7221 & Z & ```
S RIM OF SURVEYOR CTR
FOFGED
``` & & & LMP & 194.2 & 181.4 & 72.0 \\
\hline 518 & 49-7322 & Z & S RIM OF SURVEYOR ¢TR & & & LMP & 194.2 & 181.4 & 66.0 \\
\hline 519 & 49-7? ? 3 & Z & ```
S RIM OF SURVEYDR CTO
FOGGFO
``` & & & LMP & 194.2 & 181.4 & 52.0 \\
\hline 520 & 49-7224 & Z & ```
S RIM OF SURVFYOR CTR
FOGGED
``` & & & LMP & 194.2 & 181.4 & 59.0 \\
\hline 521 & 48-7082 & X & MAG FROM 1016 CH TII 1002, LRL SPLS 12043 \& 12044, FLD SDL \(14 \pi\) & 133 & 46 & LMP & & & \\
\hline 522 & 48-7083 & X & \begin{tabular}{l}
'GLASS DUMBELL' \\
LRL SPL 1?043, \\
FLD SPL 140
\end{tabular} & 133 & 53 & LMP & & & \\
\hline 523 & 48-7084 & \(x\) & 4OM S OF GURVFYOR & 133 & 54 & LMP & 179.5 & 142.8 & 7.0 \\
\hline 524 & 48-7085 & X & 40M S OF GURVEYOR & 133 & 54 & LMP & 179.5 & 142.8 & 1.5 \\
\hline 525 & 48-7086 & \(x\) & 40 M S OF SURVEYOR & 133 & 54 & LMP & 179.5 & 142.8 & 357.5 \\
\hline 526 & 48-7087 & X & 4OM S OF SURVEYOR & 133 & 54 & LM! & 179.5 & 142.8 & 6.5 \\
\hline 527 & 48-7088 & X & 30M S OF 'iURVFYOR & 133 & 54 & LMP & 189.7 & 139.4 & 346.0 \\
\hline 528 & 48-7089 & \(x\) & 30M S OF SURVEYOR & 133 & 54 & LMP & 189.7 & 139.4 & 351.0 \\
\hline 529 & 48-7090 & X & 3OM S OF SURVEYOR & 133 & 54 & LMP & 189.7 & 139.4 & 340.0 \\
\hline 530 & 48-7091 & X & SURVEYOR AND LM & 133 & 55 & LMP & 188.5 & 134.5 & 322.0 \\
\hline 521 & 48-7092 & X & SURVEYOR AND LM & 133 & 55 & LMP & 188.1 & 131.3 & 305.0 \\
\hline 522 & 48-7093 & \(x\) & SURVEYOR DOWN SUN & 133 & 55 & LMP & 180.0 & 127.7 & 282.0 \\
\hline 533 & 48-7094 & \(x\) & SMSS,LM, AND BLOCK CTP & 133 & 56 & LMP & 165.4 & 131.7 & 334.0 \\
\hline 534 & 48-7095 & X & SURVEYOR & 133 & 56 & LMP & 165.4 & 131.7 & 318.0 \\
\hline 535 & 48-7096 & X & SURVEYOR & 133 & 56 & LMP & 165.4 & 131.7 & 290.0 \\
\hline 536 & 48-7097 & X & BLOCK CRATER & 133 & 56 & LMP & 165.4 & 131.7 & 342.0 \\
\hline 537 & 48-7098 & \(x\) & ACCIDENTAL? & 133 & 57 & LMP & & & \\
\hline 538 & 48-7099 & X & SURVEYOR AND LM & 133 & 58 & LMP & 161.0 & 132.7 & 307.0 \\
\hline 539 & 48-7100 & \(x\) & SURVEYOR AND LM & 133 & 58 & LMP & 161.0 & 132.7 & 309.0 \\
\hline 540 & 48-7101 & X & PANORAMA 20, NFAR SIJR VEYOR & 134 & 2 & LMP & 158.1 & 133.1 & 38.1 \\
\hline 541 & 48-7102 & \(x\) & PAN 20 & 134 & 2 & LMP & 158.1 & 133.1 & 18.9 \\
\hline 542 & 48-7103 & \(x\) & PAN 20 & 134 & 2 & LMP & 158.1 & 133.1 & 1.6 \\
\hline 543 & 48-7104 & \(x\) & PAN 20 & 134 & 6 & LMP & 158.1 & 133.1 & 345.0 \\
\hline 544 & 48-7105 & \(x\) & PAN 20 & 134 & 6 & LMP & 158.1 & 133.1 & 340.4 \\
\hline 545 & 48-7106 & X & PHOTOS 7106 THRIS \(710^{\circ}\) SHOW THE GOIL MFCHANICS SCOOP (SMSS) AND TRENCHED AREA. they can be vifweis stereoscojpically in VARIOUS COMBINATIDNG & 134 & 6 & LMP & 158.1 & 133.1 & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(s=0\) & our & 9＾1 & \(\cdots 110 \mathrm{~K}\) & & －r：\({ }^{\text {r }}\) & PY & nret & － 7 L＇ & \(\Delta 7\) \\
\hline 565 & \(12-710^{7}\) & \(x\) & & 134 & 6 & \(1 M D\) & 150．1 & 122.1 & 17．0 \\
\hline \(5<7\) & \(49-7108\) & \(x\) & & 134 & 6 & LMD & 15\％．1 & 132．1 & 357.0 \\
\hline 50.0 & ＜0－7100 & \(x\) & ， & 134 & 7 & LMP & 150.1 & 133.1 & 1.0 \\
\hline 510 & \(48-7110\) & x & LFFT．STFMEN ne cUOV－「YOR FONTOAD ，AOEA． & 13\％ & 7 & L＊P & 158.8 & 133.4 & \\
\hline 550 & 48－7111 & \(x\) & DT STERE］DF PAD \(\sim\) AFEA & 134 & 7 & LMP & 158.8 & 133.4 & \\
\hline 551 & \(48-7112\) & X & LFFT STEPEO AFTFD へ3L－ ITERATIN：PAD ？ IMPRINT． & 134 & 9 & LMP & 158.8 & 133.4 & \\
\hline 55 ？ & 48－7113 & X & OT STEREत OF 711？ & 134 & 9 & LMP & 158．8 & 133.4 & \\
\hline 553 & 48－7114 & X & RADVS，CJ1P．A，FUFI．TANく， VERNIER ENGINF 2，AV！ EASE OF LEG ？ & 134 & 13 & LMD & 157.4 & 133.4 & 333.0 \\
\hline 554 & 48－7115 & \(x\) & LEFT STEREJ JF \(\triangle B\) OVE． & 134 & 13 & LMP & 157.4 & 133.4 & 325.0 \\
\hline 5に5 & 48－7115 & X & LEFT STEREJ JF 7115 & 134 & 13 & LMP & 157.4 & 133.4 & 322.0 \\
\hline 5at & 48－7117 & X & COMPARTMEVT A & 134 & 13 & LMP & 156.7 & 133.1 & 320.0 \\
\hline 557 & 48－7118 & X & COMP．A，RADVS，BASE 3F LEG 1 AND OMNI A & 134 & 13 & LMP & 156.0 & 133.4 & 342.0 \\
\hline 558 & 48－7119 & \(x\) & PT STEREJ，PAD 1 ADFA & 134 & 14 & LMP & 155.3 & 133.6 & 34？．c \\
\hline 559 & 48－7120 & \(x\) & LEFT STEDFS，PAD 1 ARFA & 134 & 14 & LMP & 155.3 & 133.5 & 42.0 \\
\hline 560 & 48－7121 & X & SIJRVFYOR & 134 & 14 & LMP & 158.7 & 135.4 & 13.0 \\
\hline 561 & 48－712？ & X & SIIRVEYOR & 134 & 14 & LMP & 158.7 & 135.4 & 7.0 \\
\hline 562 & 48－7123 & \(x\) & SIIRVEYOR & 134 & 14 & LMP & 155.2 & 134.7 & 31.0 \\
\hline 563 & 48－7124 & X & －SIDE 7 F PAD 3 & 134 & 14 & LMP & 153.2 & 132.8 & 80.0 \\
\hline 564 & 48－7125 & x & CANDPIIS SFNSTR & 134 & 14 & LMP & 153．？ & 132.8 & 170.0 \\
\hline 565 & 48－7126 & X & R．STERED，SMSS TREVCHFS & 134 & 14 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 566 & 48－7127 & \(x\) & L．STERE＂OF 7126 & 12.4 & 14 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 567 & 48－7128 & \(x\) & ๑．STEPES，SMSS TRFVCHES & 13： & 15 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 568 & 48－7129 & X & L．STERES רr 71 ？ & 134 & 15 & LMP & 156.8 & 132.1 & 180.0 \\
\hline 509 & 48－7120 & \(x\) & SURVFYOR TV CAMEDA & 134 & 15 & LMP & 156.6 & 137.1 & 250.0 \\
\hline 570 & 48－7131 & x & STREAK IN DUST IN SIO－ veyor camera mirror． & 134 & 15 & LMP & 156.8 & 122．1 & ？ 44.0 \\
\hline 571 & 48－713？ & \(x\) & CIMILAR T＇ 7131 & 134 & 15 & LMP & 156.8 & 132.1 & 277.0 \\
\hline 512 & 48－7132 & X & CDR，SUPVEYMR，AND La & 134 & 16 & LMP & 161.7 & 132.4 & 305.0 \\
\hline 573 & 48－71こ4 & \(x\) & P．＇STEREU JF 71：3 & 134 & 16 & LMP & 161.7 & 132.4 & 307.0 \\
\hline 574 & 48－1135 & \(x\) & CDR，SURVEYOR，AND 11 & 134 & 16 & LMP & 158.2 & 132.1 & 297.0 \\
\hline 575 & 48－7136 & X & FAlGE AS 7135 & 134 & 16 & LMP & 158.2 & 132.1 & 298.0 \\
\hline 575 & 48－7137 & \(x\) & CJMP．A WITH RENT HEAT REFLECTOR & 134 & 28 & LMP & 156.8 & 132.6 & 237.0 \\
\hline 577 & 48－7138 & x & AUX．BATTERY WITH VARKS IN DUST & 134 & 29 & LMP & 155.4 & 132.0 & 213.0 \\
\hline 578 & 48－7139 & \(x\) & \begin{tabular}{l}
VICINITY JF SURVEYOR \\
LRL SPL 12062 \\
SPL IDENT QUESTION－ \(\triangle B L E\)
\end{tabular} & 134 & 33 & LMP & & & \\
\hline 579 & 48－7140 & \(x\) & PAVORAMA 21，NEAP BLCCK CTR & \(13 \%\) & 39 & LMP & 113.8 & 95.1 & 202．4 \\
\hline 580 & 48－7141 & \(x\) & PAN 21 & 134 & 39 & LMP & 113.8 & 95.1 & 200．6 \\
\hline 581 & 48－714？ & X & PAN 21 & 134 & 39 & LMP & 113.8 & 95.1 & 227.4 \\
\hline
\end{tabular}

TABLE D-II. - SEQUENTIAL J.ISTING OF 70-MILLIMETER PHOTOGRAPHS FROM
EACH CAMERA MAGAZINE - Concluded
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SEQ & PHOTC & MAG & KEMARKS & & & GET & BY & DIST & AZLM & A2 \\
\hline 582 & 48-7143 & X & PAN 21 & & 134 & 39 & LHP & 113.8 & 95.1 & 25 - 3 \\
\hline 583 & 48-7144 & X & \[
\begin{aligned}
& \text { PANORAMA } \\
& \text { C:R }
\end{aligned}
\] & 22, NFAR BLПCK & 134 & & LMP & 109.8 & 94.7 & 173.2 \\
\hline 584 & 48-7145 & \(x\) & PAN 22 & & 134 & & LMP & 109.8 & 34.7 & 193.5 \\
\hline 58.5 & 48-7146 & x & PAN 22 & & 134 & 39 & LMP & 109.8 & 94.7 & 217.0 \\
\hline \(58 \%\) & 48-7147 & X & PAV 22 & & 134 & 39 & LMP & 109.8 & 94.7 & 244. 2 \\
\hline \(5: 7\) & 48-7148 & x & N RIM OF LRL SPL FLD SPL & \[
\begin{aligned}
& =\text { BLOCK CTR } \\
& 12045, \\
& 150
\end{aligned}
\] & 134 & 40 & LMP & & & \\
\hline 588 & \(4 \cdot 7149\) & \(x\) & \begin{tabular}{l}
is RIM OF \\
LRL SPL \\
FLD SPL
\end{tabular} & \[
\begin{aligned}
& \text { FLDCK CTD } \\
& 12045, \\
& 150
\end{aligned}
\] & 134 & & L.MP & & & \\
\hline 580 & \(48-7150\) & \(x\) & : R RIM JF LRL SPL © 12047, & \[
\begin{aligned}
& \text { BLJCK CTD } \\
& 12045,12045 \\
& \text { FLD SPL } 15 \text { I }
\end{aligned}
\] & 134 & & LMP & & & \\
\hline 5¢) & 48-7151 & \(x\) & N RIM OF & SURVEYOR CTr & 134 & 43 & LMP & 116.4 & 141.5 & \(2 \in ? .0\) \\
\hline 501 & 48-715? & \(x\) & N RIM OF & SURVEYJD CTV & 134 & 43 & LMP & 116.4 & 141.5 & ? 68.0 \\
\hline \(50 ?\) & 48-7153 & \(x\) & panorama & 33, L WINDJ & & & CDP & 1.6 & 266.4 & 231.0 \\
\hline 503 & 48-7154 & \(x\) & PAN 23 & & & & C.DR & 1.6 & 266.4 & 243.? \\
\hline 594 & 48-7155 & X & PAN 23 & & & & CDR & 1.6 & 266.4 & 283.5 \\
\hline 595 & 48-7156 & X & PAN 23 & & & & CDR & 1.6 & 266.4 & 252.0 \\
\hline 506 & 48-7157 & X & PAN 23 & & & & CDR & 1.6 & 260.4 & 273.0 \\
\hline 507 & 48-7158 & X & PAV 23 & & & & CDR & 1.6 & 260.4 & 25\%.0 \\
\hline 598 & 48-7159 & X & PAVJRAMA & 23, R WIND3. & & & \(\operatorname{LMP}\) & 1.8 & 20c. 3 & 303.5 \\
\hline 599 & 48-7160 & \(x\) & PAN 23 & & & & LMP & 1.8 & 200.3 & 337.5 \\
\hline 600 & 48-7161 & X & PAN 23 & & & & LMP & 1.8 & 200.3 & 308.0 \\
\hline 601 & 48-7162 & \(x\) & PAN 23 & & & & LMP & 1.8 & 290.3 & 1.5 \\
\hline 602 & 48-7163 & X & PAN 23 & & & & LMP & 1.8 & ? 99.3 & 235.0 \\
\hline 503 & 48-7164 & \(x\) & DAN 2.3 & & & & LMP & 1.8 & 299.2 & 4.5 \\
\hline 604 & 48-7165 & X & PAV 23 & & & & LMP & 1.8 & 290. 2 & 7.5 \\
\hline 605 & 48-716 & X & -AN 23 & & & & LMP & 1.8 & 290.3 & 347.3 \\
\hline 606 & 48-7167 & \(x\) & PAV 23 & & & & LMP & 1.8 & 200.3 & 329. \(=\) \\
\hline 607 & 48-7168 & X & PAN 23 & & & & LM' & 1.8 & 299.3 & ? 15.3 \\
\hline 508 & 48-7169 & X & PAV 23 & & & & LHP & 1.8 & 29\%.3 & 302.0 \\
\hline 609 & 48-7170 & X & PAN 23 & & & & Lia, & 1.8 & 299.? & 291.6 \\
\hline 610 & 48-7:71 & X & PAN ? 3 & & & & LMP & 1.8 & 295.3 & \\
\hline
\end{tabular}

\section*{PHOTOGRAPHIC INDICES BY SAMPLE AND PHOTOGRAPH NUMBERS}

The index of photographs by sample number (table D-III) is designed to help locate photographs that show part or all of any specific Apollo 12 lunar sample. Conversely, the index of samples by photograph number (table D-IV) is designed to help locate photographs that are not listed by sample number. The latter index is more complete and contains more explanatory information.

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX
BY SAMPLE NUMBER
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{33}{*}{12002} & S-69-60369 to S-69-60377 & \multirow[t]{22}{*}{\[
\begin{aligned}
& 12004 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-70-30240 \\
\hline & S-69-64082 & & S-70-30245 \\
\hline & S-69-64107 & & S-70-30259 \\
\hline & S-70-25874 & & S-70-30272 \\
\hline & S-70-25885 & & S-70-30960 and S-70-30961 \\
\hline & S-70-27988 and S-70-27989 & & S-70-31569 \\
\hline & S-70-28219 to S-70-28222 & & S-70-31582 \\
\hline & S-70-30217 & & S-70-32739 to S-70-32746 \\
\hline & S-70-30227 & & S-70-36455 \\
\hline & S-70-30231 & & S-70-40688 to S-70-40706 \\
\hline & S-70-30238 and S-70-30239 & & S-70-41199 \\
\hline & S-70-30241 & & S-70-41216 \\
\hline & S-70-30243 & & S-70-42738 \\
\hline & S-70-30248 & & S-70-42740 and S-70-42741 \\
\hline & S-70-30268 & & S-70-42744 \\
\hline & S-70-309.56 & & S-70-43440 \\
\hline & S-70-31571 to S-70-31578 & & S-70-43444 \\
\hline & S-70-31581 & & S-70-43458 and S-70-43459 \\
\hline & S-70-31644 to S-70-31651 & & S-70-43461 \\
\hline & S-70-33504 to S-70-33549 & & S-70-44112 \\
\hline & S-70-36450 to S-70-36453 & & S-70-44121 \\
\hline & S-70-36457 to S-70-36464 & & \\
\hline & S-70-36471 & \multirow[t]{5}{*}{12005} & S-69-62294 and S-69-62295 \\
\hline & S-70-36477 & & S-69-62297 and S-69-62298 \\
\hline & S-70-37687 and S-70-37688 & & S-69-64089 \\
\hline & S-70-38313 to S-70-38525 & & S-69-64114 \\
\hline & S-70-40707 to S-70-40710 & & \\
\hline & S-70-40838 & \multirow[t]{5}{*}{12006} & S-69-61907 to S-69-61929 \\
\hline & S-70-40842 & & S-69-62330 to S-69-62353 \\
\hline & S-70-44103 & & S-69-63086 to S-69-63109 \\
\hline & S-70-44107 to S-70-44109 & & S-69-63853 to S-69-63858 \\
\hline & S-70-44114 and S-70-44115 & & S-70-22504 to S-70-22507 \\
\hline & & \multirow[t]{3}{*}{12007} & S-69-61788 to S-69-61810 \\
\hline \multirow[t]{8}{*}{12004} & S-69-62008 to S-69-62034 & & S-69-63134 to S-69-63157 \\
\hline & S-69-62735 and S--69-62736 & & \\
\hline & S-69-64087 and S.-69-64088 & \multirow[t]{6}{*}{12008} & S-69-61668 to S-69-61691 \\
\hline & S-69-64112 and S-69-64113 & & S-69-62651 to S-69-62674 \\
\hline & S-70-27987 & & S-69-63190 to S-69-63213 \\
\hline & S-70-28678 & & S-70-44088 to S-70-44093 \\
\hline & S-70-28685 & & S-70-44529 \\
\hline & S-70-30228 & & S-70-44557 \\
\hline
\end{tabular}

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX
BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 12008 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-70-44561 & \multirow[t]{4}{*}{\[
\begin{aligned}
& 12010 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-70-27977 \\
\hline & S-70-44567 & & S-70-27979 \\
\hline & S-70-44572 & & S-70-28677 \\
\hline & S-70-44574 & & S-70-28682 \\
\hline & S-69-62296 & & \[
\begin{aligned}
& S-70-43800 \text { to } S-70-43805 \\
& S-70-44542 \text { and } S-70-44543
\end{aligned}
\] \\
\hline \multirow{26}{*}{12009} & S-69-62299 to S-69-62307 & & S-70-44556 \\
\hline & S-69-62739 and S-69-62740 & & S-70-44566 \\
\hline & S-69-62743 & & S-70-44570 \\
\hline & S-69-64090 and S-69-64091 & & S-70-45621 \\
\hline & S-69-64115 and S-69-64116 & & S-70-45625 \\
\hline & S-70-25412 & & S-70-45628 \\
\hline & S-70-25427 & & S-70-45634 \\
\hline & S-70-25872 & & S-70-45636 \\
\hline & S-70-30242 & & S-70-45644 \\
\hline & S-70-30246 & & \\
\hline & S-70-31563 S-70-31568 & 12011 & S-69-63369 to S-69-63377 \\
\hline & S-70-31567 and S-70-31568 & & S-69-63388 to S-69-63395 \\
\hline & S-70-31570 & & S-69-64096 and S-69-64097 \\
\hline & \[
\begin{aligned}
& \text { S-70-31654 to S-70-31661 } \\
& \text { S-70-33325 to S-70-33342 }
\end{aligned}
\] & & S-69-64121 and S-69-64122 \\
\hline & S-70-36454 & 12012 & S-69-24214 \\
\hline & S-70-36456 & & S-69-24220 \\
\hline & S-70-36472 & & S-69-63333 to S-69-63341 \\
\hline & S-70-36478 & & S-69-63396 to S-69-63399 \\
\hline & S-70-37689 & & S-69-63417 to S-69-63421 \\
\hline & S-70-37694 & & S-69-64098 and S-69-64099 \\
\hline & S-70-40822 & & S-69-64123 and S-69-64124 \\
\hline & S-70-43342 & & S-70-20747 \\
\hline & S-70-43347 & & S-70-20961 \\
\hline & S-70-43827 & & S-70-25405 \\
\hline & S-70-43834 & & S-70-25419 and S-70-25420 \\
\hline & S-70-44102 & & \[
\begin{aligned}
& S-70-25429 \text { to } S-70-25432 \\
& S-70-25888
\end{aligned}
\] \\
\hline \multirow[t]{7}{*}{12010} & S-69-62308 to S-69-62316 & \multirow{7}{*}{12013} & \\
\hline & S-69-62737 and S-69-62738 & & S-69-24217 \\
\hline & S-69-64092 & & S-69-24223 \\
\hline & S-69-64117 & & S-69-63360 to S-69-63368 \\
\hline & S-70-25877 & & S-69-63655 to S-69-63663 \\
\hline & S-70-25881 & & S-69-64100 \\
\hline & S-70-27975 & & S-69-64125 \\
\hline
\end{tabular}

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX
BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{18}{*}{\[
\begin{aligned}
& 12013 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-70-25407 & \multirow[t]{7}{*}{12017} & \multirow[t]{7}{*}{\[
\begin{aligned}
& S-69-63230 \text { to } S-69-63240 \\
& S-69-64093 \text { to } S-69-64095 \\
& S-69-64118 \text { to } S-69-64120 \\
& S-70-44096 \text { and } S-70-44099 \\
& S-70-44098 \text { to } \\
& S-70-45306 \text { to } S-70-45312
\end{aligned}
\]} \\
\hline & S-70-25410 & & \\
\hline & S-70-25423 & & \\
\hline & S-70-25426 & & \\
\hline & S-70-27993 & & \\
\hline & S-70-28211 & & \\
\hline & S-70-28228 & & \\
\hline & S-70-33434 to S-70-33453 & \multirow[t]{11}{*}{12018} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S-69-61967 to S-69-61984 } \\
& \text { S-69-62741 and S-69-62742 }
\end{aligned}
\]} \\
\hline & S-70-40348 and S-70-40349 & & \\
\hline & S-70-40673 to S-70-40687 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S-69-64085 and S-69-64086 } \\
& \text { S-69-64110 and S-69-64111 }
\end{aligned}
\]} \\
\hline & S-70-40833 and S-'70-40834 & & \\
\hline & S-70-41.204 and S-70-41205 & & \[
\begin{aligned}
& \text { S-69-64110 and S-69-64111 } \\
& \text { S-70-27973 }
\end{aligned}
\] \\
\hline & S-70-41211 & & S-70-27978 \\
\hline & S-70-41390 & & S-70-27994 \\
\hline & S-70-41407 to S-70-41410 & & S-70-28212
S-70-28674 \\
\hline & S-70-43632 to S-70-43637 & & S-70-28674 \\
\hline & S-70-43641 & & S-70-28681 \\
\hline & & & S-70-28688 and S-70-28689 \\
\hline \multirow[t]{13}{*}{12014} & S-69-24210 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S-70-30223 and S-70-30224 } \\
& \text { S-70-30226 }
\end{aligned}
\]} \\
\hline & S-69-24215 & & \\
\hline & S-69-63351 to S-69-63359 & & S-70-30237 \\
\hline & S-69-63378 to S-69-63386 & & S-70-30244 \\
\hline & S-69-64101 and S-69-64102 & & S-70-30249 \\
\hline & S-69-64126 and S-69-64127 & & S-70-37692 \\
\hline & S-70-20964 & & S-70-37700 \\
\hline & S-70-25403 and S-70-25404 & & S-70-40736 to S-70-40739 \\
\hline & S-70-25883 & & S-70-43445 and S-70-43446 \\
\hline & S-70-28216 & & S-70-43526 \\
\hline & S-70-28218 & & S-70-43537 \\
\hline & S-70-30247 & & S-70-43833 \\
\hline & & & \[
\begin{aligned}
& \text { S-70-43836 and S-70-43837 } \\
& \text { S-70-43840 }
\end{aligned}
\] \\
\hline \multirow{5}{*}{12015} & S-69-62872 and S-69-62873 & & S-70-44544 \\
\hline & S-69-63342 to S-69-63350 & & S-70-44547 \\
\hline & S-69-64103 & & S-70-44564 \\
\hline & S-69-64128 & & S-70-44568 \\
\hline & S-70-24713 to S-70-24721 & \multirow[t]{4}{*}{12019} & \multirow[t]{2}{*}{S-69-63315 tc S-69-63323} \\
\hline \multirow[t]{3}{*}{12016} & S-69-60718 to S-699-60726 & & \\
\hline & S-69-64081 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S-69-64104 } \\
& \text { S-69-64129 }
\end{aligned}
\]} \\
\hline & S-69-64106 & & \\
\hline
\end{tabular}

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX
BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{31}{*}{12020} & S-69-24213 & \multirow[t]{27}{*}{\[
\begin{aligned}
& 12021 \\
& \left(\text { Cont' }^{\prime}\right)
\end{aligned}
\]} & S-70-20749 \\
\hline & S-69-24225 & & S-70-20751 to S-70-20754 \\
\hline & S-69-63324 to S-69-63332 & & S-70-20957 to S-70-20960 \\
\hline & S-69-64105 & & S-70-25401 and S-70-25402 \\
\hline & S-69-64109 & & S-70-25878 \\
\hline & S-69-64130 & & S-70-25886 \\
\hline & S-70-25406 & & S-70-39758 to S-70-39798 \\
\hline & S-70-25408 & & S-70-42736 \\
\hline & S-70-25421 and S-70-25422 & & S-70-42742 and S-70-42743 \\
\hline & S-70-25424 & & S-70-43349 \\
\hline & S-70-25873 & & S-70-43351 \\
\hline & S-70-25882 & & S-70-43353 and S-70-43354 \\
\hline & S-70-25890 and S-70-25891 & & S-70-43356 and S-70-43357 \\
\hline & S-70-27983 & & S-70-43359 \\
\hline & S-70-27991 & & S-70-43362 \\
\hline & S-70-30229 & & S-70-43365 \\
\hline & S-70-30235 & & S-70-43421 \\
\hline & S-70-30251 to S-70-30254 & & S-70-43431 to S-70-43434 \\
\hline & S-70-30266 & & S-70-43517 \\
\hline & S-70-30957 & & S-70-43528 to S-70-43535 \\
\hline & S-70-31559 & & S-70-43828 \\
\hline & S-70-31566 & & S-70-43830 \\
\hline & S-70-31579 & & S-70-43838 and S-70-43839 \\
\hline & S-70-31652 and S-70-31653 & & S-70-44116 \\
\hline & S-70-32727 to S-70-32732 & & S-70-44122 \\
\hline & S-70-32734 & & S-70-45640 \\
\hline & S-70-43638 to S-70-43640 & & S-70-45642 and S-70-45643 \\
\hline & S-70-44540 & \multirow[t]{13}{*}{12022} & S-69-23349 \\
\hline & S-70-44558 & & S-69-23369 \\
\hline & S-70-44573 & & S-69-24202 \\
\hline & & & S-69-24204 \\
\hline \multirow[t]{9}{*}{12021} & S-69-23364 and S-69-23365 & & S-69-24208 \\
\hline & S-69-23372 and S-69-23373 & & S-69-24212 \\
\hline & S-69-24205 and S-69-24206 & & S-69-61999 to S-69-62007 \\
\hline & S-69-24219 & & S-69-63470 to S-69-63476 \\
\hline & S-69-61985 to S-69-61998 & & S-69-64083 \\
\hline & S-69-63464 to S-69-63469 & & S-69-64108 \\
\hline & S-69-64084 & & S-70-20739 and S-70-20740 \\
\hline & S-70-20741 & & S-70-20745 \\
\hline & S-70-20743 & & S-70-20755 \\
\hline
\end{tabular}

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX
BY SAMPLE NUMBER - Continued

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline 12036 & \(S-69-61586\) to \(\mathrm{S}-69-61609\)
\(\mathrm{~S}-69-62318\) to \(\mathrm{S}-69-62329\)
\(\mathrm{~S}-69-63847\) to \(\mathrm{S}-69-63852\) & \[
\begin{aligned}
& 12040 \\
& \text { (Cont'd) }
\end{aligned}
\] & \[
\begin{aligned}
& S-70-44551 \text { and } S-70-44552 \\
& S-70-44555 \\
& S-70-44569
\end{aligned}
\] \\
\hline \multirow[t]{15}{*}{12038} & \[
\begin{aligned}
& \text { S-69-24203 } \\
& \text { S-69-60367 } \\
& \text { S-69-61538 to S-69-61561 } \\
& \text { S-69-62699 to S-69-62710 }
\end{aligned}
\] & 12043 & \begin{tabular}{l}
S-69-61562 to S-69-61585 \\
S-69-63823 to S-69-63826 \\
S-70-22460 to S-70-22467
\end{tabular} \\
\hline & S-69-63819 to S-69-63822 & 12044 & S-69-24207 \\
\hline & S-70-20968 & & S-69-61233 to S-69-61240 \\
\hline & S-70-22428 to S-70-22439 & & S-69-63241 to S-69-63288 \\
\hline & S-70-24343 to S-70-24365 & & S-70-25884 \\
\hline & S-70-25425 & & S-70-27992 \\
\hline & S-70-25887 & & S-70-28215 \\
\hline & S-70-28679 & & \\
\hline & S-70-28683 & 12046 & S-69-60486 and S-69-60487 \\
\hline & S-70-30215 & & S-69-61883 to S-69-61906 \\
\hline & S-70-44525 & & S-69-63166 to S-69-63189 \\
\hline & S-70-44550 & & \\
\hline & S-70-44553 and S-70-44554 & 12047 & S-69-61764 to S-69-61787 \\
\hline & S-70-44562 & & S-69-62711 to S-69-62734 \\
\hline & & & S-69-63110 to S-69-63133 \\
\hline \multirow[t]{4}{*}{12039} & S-69-61466 to S-69-61489 & & \\
\hline & S-69-63859 to S-69-63861 & 12051 & S-69-61514 to S-69-61537 \\
\hline & S-70-22440 to S-70-22451 & & S-69-62675 to S-69-62686 \\
\hline & & & S-69-63827 to S-69-63830 \\
\hline \multirow[t]{15}{*}{12040} & S-69-24211 & & S-70-22468 to S-70-22475 \\
\hline & S-69-24218 & & S-70-22938 to S-70-22983 \\
\hline & S-69-24222 & & S-70-36904 to S-70-36917 \\
\hline & S-69-60987 to S-69-61010 & & S-70-36944 to S-70-36946 \\
\hline & S-69-62317 & & S-70-36987 to S-70-36992 \\
\hline & S-69-63843 to S-69-63846 & & S-70-40807 and S-70-40808 \\
\hline & S-69-64822 & & S-70-40811 and S-70-40812 \\
\hline & S-69-64824 and S-69-64825 & & S-70-40818 \\
\hline & S-69-64829 & & S-70-40820 \\
\hline & S-70-20742 & & S-70-40827 and S-70-40828 \\
\hline & S-70-20750 & & S-70-40835 and S-70-40836 \\
\hline & S-70-20962 & & S-70-40844 and S-70-40845 \\
\hline & S-70-22452 to S-70-22459 & & S-70-41403 \\
\hline & S-70-44524 & & S-70-41405 and S-70-41406 \\
\hline & S-70-44548 & & S-70-41197 and S-70-41198 \\
\hline
\end{tabular}

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX
BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{15}{*}{\[
\begin{aligned}
& 12051 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-70-41203 & \multirow[t]{36}{*}{12053} & S-69-60621 to S-69-60642 \\
\hline & S-70-41215 & & S-69-60956 to S-69-60958 \\
\hline & S-70-41217 & & S-70-23019 to S-70-23048 \\
\hline & S-70-42732 & & S-70-36468 to S-70-36470 \\
\hline & S-70-42734 & & S-70-36473 and S-70-36474 \\
\hline & S-70-42751 to S-70-42753 & & S-70-36479 to S-70-36483 \\
\hline & S-70-43341 & & S-70-36864 to S-70-36903 \\
\hline & S-70-43352 & & S-70-36918 to S-70-36943 \\
\hline & S-70-43360 and S-70-43361 & & S-70-36947 to S-70-36986 \\
\hline & S-70-43363 & & S-70-37690 and S-70-37691 \\
\hline & S-70-43435 to S-70-43439 & & S-70-37693 \\
\hline & S-70-43441 to S-70-43443 & & S-70-37696 \\
\hline & S-70-44100 & & S-70-37702 \\
\hline & S-70-44119 & & S-70-40809 and S-70-40810 \\
\hline & & & S-70-40813 and S-70-40814 \\
\hline \multirow[t]{26}{*}{12052} & S-69-24216 & & S-70-40816 and S-70-40817 \\
\hline & S-69-24224 & & S-70-40821 \\
\hline & S-69-60908 to S-69-60931 & & S-70-40825 and S-70-40826 \\
\hline & S-69-61241 to S-69-61248 & & S-70-40831 and S-70-40832 \\
\hline & S-69-61859 to S-69-61882 & & S-70-40843 \\
\hline & S-69-62354 to S-69-62376 & & S-70-41393 \\
\hline & S-69-62796 to S-69-62819 & & S-70-41395 and S-70-41396 \\
\hline & S-69-63831 to S-69-63834 & & S-70-41398 \\
\hline & S-70-20401 to S-70-20403 & & S-70-41200 and S-70-41201 \\
\hline & S-70-21310 to S-70-21320 & & S-70-41208 \\
\hline & S-70-22476 to S-70-22487 & & S-70-41210 \\
\hline & S-70-22670 to S-70-22689 & & S-70-41213 and S-70-41214 \\
\hline & S-70-24375 to S-70-24424 & & S-70-43344 and S-70-43345 \\
\hline & S-70-25409 & & S-70-43350 \\
\hline & S-70-25411 & & S-70-43364 \\
\hline & S-70-25417 and S-'70-25418 & & S-70-43422 to S-70-43426 \\
\hline & S-70-27985 and S-'70-27986 & & S-70-43522 \\
\hline & S-70-28227 & & S-70-43540 to S-70-43542 \\
\hline & S-70-30232 & & S-70-44101 \\
\hline & S-70-30250 & & S-70-44117 \\
\hline & S-70-31583 & & S-70-44126 \\
\hline & \[
\begin{aligned}
& S-70-44630 \text { to } S-70-44639 \\
& S-70-44847 \text { and } S-70-44848
\end{aligned}
\] & 12054 & \\
\hline & S-70-44847 and S-70-44848 & 12054 & \[
\begin{aligned}
& \text { S-69-60354 and S-69-60355 } \\
& \text { S-69-6096 to S-69-60986 }
\end{aligned}
\] \\
\hline & & & S-69-62772 to S-69-62795 \\
\hline & & & S-70-22690 to S-70-22704 \\
\hline & & & S-70-22984 to S-70-23018 \\
\hline
\end{tabular}

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPEIC INDEX
BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{7}{*}{12055} & S-69-23394 and S-69-23395 & \multirow[t]{13}{*}{\[
\begin{aligned}
& 12057-7 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-69-23368 \\
\hline & S-69-61011 to S-69-61034 & & S-69-63405 \\
\hline & S-69-62690 to S-69-62698 & & S-69-63411 \\
\hline & S-69-63835 to S-69-63838 & & S-69-63414 \\
\hline & S-70-22488 to S-70-22499 & & S-69-63440 to S-69-63445 \\
\hline & S-70-23123 to S-70-23155 & & S-69-63451 to S-69-63453 \\
\hline & & & S-69-63495 \\
\hline \multirow[t]{6}{*}{12056} & S-69-61035 to S-69-61058 & & S-69-64823 \\
\hline & S-69-63839 to S-69-63842 & & S-69-64828 \\
\hline & S-70-22500 to S-70-22503 & & S-69-64830 \\
\hline & S-70-22508 to S-70-22511 & & S-69-64886 \\
\hline & S-70-23112 to S-70-23122 & & S-70-20746 \\
\hline & & & S-70-20758 \\
\hline \multirow[t]{5}{*}{12057} & S-69-60959 to S-69-60962 & & \\
\hline & S-69-61387 to S-69-61390 & \multirow[t]{4}{*}{12057-8} & S-69-24221 \\
\hline & S-69-61403 to S-69-61408 & & S-69-63490 and S-69-63491 \\
\hline & S-69-61411 and S-69-61412 & & S-69-64827 \\
\hline & & & S-70-20954 and S-70-20955 \\
\hline \multirow[t]{7}{*}{12057-4} & S-69-23354 & & \\
\hline & S-69-23356 & \multirow[t]{6}{*}{12057-9} & S-69-23358 \\
\hline & S-69-23366 & & S-69-23367 \\
\hline & S-69-63415 & & S-69-23371 \\
\hline & S-69-63427 & & S-69-24226 \\
\hline & S-69-63454 to S-69-63463 & & S-69-63406 \\
\hline & S-69-64831 & & \[
\begin{aligned}
& S-69-63409 \text { and S-69-63410 } \\
& \text { S-69-63428 to S-69-63430 }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{12057-5} & S-69-63492 to S-69-63494 & & S-69-64740 and S-69-64741 \\
\hline & & & S-69-64832 \\
\hline \multirow[t]{11}{*}{12057-6} & S-69-23374 and S-69-23375 & & S-70-20738 \\
\hline & S-69-24201 & & S-70-20966 \\
\hline & S-69-63403 & & \\
\hline & S-69-63408 & \multirow[t]{8}{*}{12057-11} & S-69-24209 \\
\hline & S-69-63412 & & S-69-63404 \\
\hline & S-69-63416 & & S-69-63407 \\
\hline & S-69-63449 and S-69-63450 & & S-69-63413 \\
\hline & S-69-64882 & & S-69-63446 to S-69-63448 \\
\hline & S-69-64884 & & S-69-64826 \\
\hline & S-70-20967 & & S-69-64881 \\
\hline & & & S-69-64883 - \\
\hline 12057-7 & \[
\begin{array}{r}
\text { S-69-23352 } \\
\text { S-69-23357 } \\
\hline
\end{array}
\] & & S-70-30221 and S-70-30222 \\
\hline
\end{tabular}

TABLE D-III.- LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY SAMPLE NUMBER - Continued

TABLE D-III. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY SAMPLE NUMBER - Continued
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \multirow[t]{40}{*}{\begin{tabular}{l}
12064 \\
(Cont'd) \\
12065
\end{tabular}} & S-70-31580 & \multirow[t]{10}{*}{\[
\begin{aligned}
& 12065 \\
& \text { (Cont'd) }
\end{aligned}
\]} & S-70-43340 \\
\hline & \multirow[t]{2}{*}{S-70-44450 to S-70-44459} & & S-70-43343 \\
\hline & & & S-70-43427 to S-70-43430 \\
\hline & S-69-23361 & & S-70-43447 to S-70-43457 \\
\hline & S-69-23363 & & S-70-44105 \\
\hline & S-69-23370 & & S-70-44111 \\
\hline & S-69-23376 & & S-70-44113 \\
\hline & S-69-23378 & & S-70-44127 \\
\hline & S-69-60573 to S-69-60596 & & S-70-44559 and S-70-44560 \\
\hline & S-69-61409 and S-69-61410 & & \\
\hline & S-69-61665 to S-69-61667 & 12071 & S-69-61218 to S-69-61222 \\
\hline & S-69-63431 to S-69-63439 & & \\
\hline & S-69-63630 & 12072 & S-69-61740 to S-69-61763 \\
\hline & S-69-64880 & & \\
\hline & S-70-20737 & 12073 & S-69-60368 \\
\hline & S-70-20963 & & S-69-61059 to S-69-61082 \\
\hline & S-70-25489 to S-70-25554 & & S-69-61413 to S-69-61415 \\
\hline & S-70-26630 to S-70-26650 & & S-69-64885 \\
\hline & S-70-26672 to S-70-26689 & & S-70-20744 \\
\hline & S-70-26701 to S-70-26721 & & S-70-20748 \\
\hline & S-70-37257 to S-70-37274 & & S-70-24687 to S-70-24698 \\
\hline & S-70-40815 & & S-70-25414 and S-70-25415 \\
\hline & S-70-40819 & & S-70-25879 and S-70-25880 \\
\hline & S-70-40823 and S-70-40824 & & S-70-31565 \\
\hline & S-70-40829 and S-70-40830 & & S-70-31662 and S-70-31663 \\
\hline & S-70-40840 & & S-70-32735 \\
\hline & S-70-41196 & & S-70-32737 and S-70-32738 \\
\hline & S-70-41202 & & S-70-36465 and S-70-36466 \\
\hline & S-70-41206 and S-70-41207 & & S-70-36476 \\
\hline & S-70-41209 & & S-70-37697 and S-70-37698 \\
\hline & S-70-41212 & & S-70-37701 \\
\hline & S-70-41218 & & S-70-40837 \\
\hline & S-70-41389 & & S-70-40841 \\
\hline & S-70-41391 and S-70-41392 & & S-70-42733 \\
\hline & S-70-41394 & & S-70-42739 \\
\hline & S-70-41397 & & S-70-42746 \\
\hline & S-70-41399 to S-70-41402 & & S-70-42754 \\
\hline & S-70-41404 & & S-70-43527 \\
\hline & S-70-42735 & & S-70-43536 \\
\hline & \[
\begin{aligned}
& \text { S-70-42745 } \\
& \text { S-70-42747 to S-70-42749 }
\end{aligned}
\] & & S-70-44094 and S-70-44095 \\
\hline
\end{tabular}

TABLE D-III. - L.UNAR-SAMPLE PHOTOGRAPHIC INDEX BY SAMPLE NUMBER - Concluded
\begin{tabular}{|c|c|c|c|}
\hline Sample number & NASA photograph number & Sample number & NASA photograph number \\
\hline \begin{tabular}{l}
12073 \\
(Cont'd) \\
12075
\end{tabular} & \[
\begin{aligned}
& S-70-44097 \\
& S-70-44330 \text { to } S-70-44336 \\
& \text { S-69-61490 to } S-69-61513 \\
& S-69-63477 \text { to } S-69-63483 \\
& S-70-33797 \text { to } S-70-33841 \\
& S-70-44014 \text { to } S-70-44023 \\
& S-70-44546 \\
& S-70-44549 \\
& S-70-44563
\end{aligned}
\] & \begin{tabular}{l}
12075 \\
(Cont'd) \\
12076 \\
12077
\end{tabular} & \begin{tabular}{l}
S-70-44571 \\
S-70-45622 \\
S-70-45629 \\
S-70-45632 \\
S-70-45638 \\
S-69-61692 to S-69-61739 \\
S-69-61835 to S-69-61838
\end{tabular} \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTCGRAPH NUMBER
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-69-23349 & 12022 & Chip in thin-section laboratory & \[
\begin{gathered}
S-69-23379 \\
\text { to }
\end{gathered}
\] & 12030 & Record and stereoscopic photographs in the nitrogen process- \\
\hline \[
\begin{gathered}
\mathrm{S}-69-23350 \\
\text { and }
\end{gathered}
\] & 12063-9 & Thin sections & S-69-23390 & & ing laboratory \\
\hline S-69-23351 & & & \[
\begin{gathered}
\mathrm{S}-69-23391 \\
\text { and }
\end{gathered}
\] & 12015 & Photographs in the PCTL \\
\hline S-69-23352 & 12057-33 & Thin section & S-69-23392 & & \\
\hline S-69-23353 & 12063-6 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-23394 \\
\text { and }
\end{gathered}
\] & 12055 & Photographs in the nitrogen processing laboratory \\
\hline S-69-23354 & 12057-31 & Thin section & S-69-23395 & & \\
\hline S-69-23355 & 12063-5 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-23396 \\
\text { to }
\end{gathered}
\] & 12028 & Bottom of double core tube \\
\hline \[
\mathrm{S}-69-23356
\] & 12057-31 & Thin section & S-69-23412 & & \\
\hline S-69-23357 & 12057-33 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-23722 \\
\text { to }
\end{gathered}
\] & 12025 & Color negatives \\
\hline S-69-23358 & 12057-35 & Thin section & S-69-23733 & & \\
\hline \[
\begin{aligned}
& \mathrm{S}-69-23359 \\
& \text { and } \\
& \mathrm{S}-69-23360
\end{aligned}
\] & 12063-5 & Thin sections & \[
\begin{gathered}
S-69-23734 \\
\text { to } \\
S-69-23757
\end{gathered}
\] & 12028 & Color negatives \\
\hline S-69-23361 & 12065-8 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-23803 \\
\text { to }
\end{gathered}
\] & 12025 & Color negative of the top of the double core tube \\
\hline S-69-23362 & 12063-6 & Thin section & S-69-23818 & & \\
\hline S-69-23363 & 12065-6 & Thin section & S-69-24201 & 12057-38 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-69-23364 \\
\text { and }
\end{gathered}
\] & 12021 & Chips in thin-section laboratory & S-69-24202 & 12022-10 & Thin section \\
\hline S-69-23365 & & & S-69-24203 & 12038-2 & Thin section \\
\hline S-69-23366 & 12057-32 & Thin section & S-69-24204 & 12022-10 & Thin section \\
\hline S-69-23367 & 12057-35 & Thin section & S-69-24205 & 12021-4 & Thin section \\
\hline S-69-23368 & 12057-34 & Thin section & S-69-24206 & 12021-5 & Thin section \\
\hline S-69-23369 & 12022 & Chip in thin-section laboratory & S-69-24207 & 12044-2 & Thin section \\
\hline S-69-23370 & 12065-6 & Thin section (closeup) & S-69-24208 & 12022-10 & Thin section \\
\hline S-69-23371 & 12057-36 & Thin section & S-69-24209 & 12057-40 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-69-23372 \\
\text { and }
\end{gathered}
\] & 12021 & Chips in thin-section laboratory & S-69-24210 & 12014 & Thin section \\
\hline S-69-23373 & & & S-69-24211 & 12040-3 & Thin section \\
\hline S-69-23374 & 12057-37 & Thin section & S-69-24212 & 12022-7 & Thin section \\
\hline S-69-23375 & 12057-39 & Thin section & S-69-24213 & 12020-1 & One view only \\
\hline S-69-23376 & 12065-8 & Thin section & S-69-24214 & 12012-1 & One view only \\
\hline S-69-23377 & 12063-9 & Thin section & S-69-24215 & 12014-1 & One view only \\
\hline S-69-23378 & 12065-6 & Thin section & S-69-24216 & 12052 & One view only \\
\hline & & & S-69-24217 & 12013-1 & One view only \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\left\lvert\, \begin{gathered}
S-69-60860 \\
\text { to } \\
S-69-60883
\end{gathered}\right.
\] & 12062 & Record and stereoscopic photographs in PCTL & \[
\begin{gathered}
\mathrm{S}-69-61245 \\
\text { to } \\
\mathrm{S}-69-61248
\end{gathered}
\] & 12052-2 & Record photographs \\
\hline \[
\left|\begin{array}{c}
S-69-60884 \\
\text { to } \\
S-69-60907
\end{array}\right|
\] & 12064 & Record and stereoscopic photographs in PCTL & \[
\left|\begin{array}{c}
\mathrm{S}-69-61249 \\
\text { to } \\
\mathrm{S}-69-61256
\end{array}\right|
\] & 12035 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
S-69-60908 \\
\text { to } \\
S-69-60931
\end{gathered}
\] & 12052 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-61387 \\
\text { to } \\
\mathrm{S}-69-61390
\end{gathered}\right.
\] & 12057 & Various views in the thin-section laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-60932 \\
\text { to }
\end{gathered}
\] & 12034 & Record and stereoscopic photographs in the nitrogen process- & S-69-61391 & 12063-1 & View in the thin-section laboratory \\
\hline S-69-60955 & & ing laboratory & \[
\begin{gathered}
\mathrm{S}-69-61392 \\
\text { to }
\end{gathered}
\] & 12057 & Various views in the thin-section laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-60956 \\
\text { to }
\end{gathered}
\] & 12053 & Oblique views in the nitrogen processing laboratory & S-69-61401 & & \\
\hline S-69-60958 & & & S-69-61402 & 12063-1 & View in the thin-section laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-60959 \\
\text { to } \\
\mathrm{S}-69-60962
\end{gathered}
\] & 12057 & Chips and coarse fines on \(1-\mathrm{mm}\) sieve from bottom of D-ALSRC & \[
\begin{gathered}
S-69-61403 \\
\text { to } \\
S-69-61408
\end{gathered}
\] & 12057 & Various views in the thin-section laboratory \\
\hline \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-60963 \\
\text { to } \\
\mathrm{S}-69-60986
\end{gathered}\right.
\] & 12054 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-61409 \\
\text { and } \\
\mathrm{S}-69-61410
\end{gathered}\right.
\] & 12065-1 & Views in the thin-section laboratory \\
\hline \[
\left|\begin{array}{c}
S-69-60987 \\
\text { to } \\
S-69-61010
\end{array}\right|
\] & 12040 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-61411 \\
\text { and } \\
\mathrm{S}-69-61412
\end{gathered}\right.
\] & 12057 & Various views in the thin-section laboratory \\
\hline \[
\left|\begin{array}{c}
\mathrm{S}-69-61011 \\
\text { to } \\
\mathrm{S}-69-61034
\end{array}\right|
\] & 12055 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left|\begin{array}{c}
\mathrm{S}-69-61413 \\
\text { to } \\
\mathrm{S}-69-61415
\end{array}\right|
\] & 12073-1 & Views in the thin-section laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61035 \\
\text { to } \\
\mathrm{S}-69-61058
\end{gathered}
\] & 12056 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left|\begin{array}{c}
S-69-61466 \\
\text { to } \\
S-69-61489
\end{array}\right|
\] & 12039 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\left\lvert\, \begin{gathered}
S-69-61059 \\
\text { to } \\
S-69-61082
\end{gathered}\right.
\] & 12073 & Record and stereoscopic photographs in the PCTL & \[
\left\lvert\, \begin{gathered}
S-69-61490 \\
\text { to } \\
S-69-61513
\end{gathered}\right.
\] & 12075 & Record and stereoscopic photographs in the PCTL \\
\hline \[
\left|\begin{array}{c}
\mathrm{S}-69-61191 \\
\text { to } \\
\mathrm{S}-69-61194
\end{array}\right|
\] & 12026 & Color views of core tube 2013 & \[
\left\lvert\, \begin{gathered}
S-69-61514 \\
\text { to } \\
S-69-61537
\end{gathered}\right.
\] & 12051 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\left.\begin{gathered}
\mathrm{S}-69-61218 \\
\text { to } \\
\mathrm{S}-69-61222
\end{gathered} \right\rvert\,
\] & 12071 & Record photographs of chips from contingency sample & \[
\left|\begin{array}{c}
S-69-61538 \\
\text { to } \\
S-69-61561
\end{array}\right|
\] & 12038 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61233 \\
\text { to } \\
\mathrm{S}-69-61240
\end{gathered}
\] & 12044 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\begin{gathered}
\mathrm{S}-69-61562 \\
\text { to } \\
\mathrm{S}-69-61585
\end{gathered}
\] & 12043 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{array}{|c}
\mathrm{S}-69-61241 \\
\text { to } \\
\mathrm{S}-69-61244
\end{array}
\] & 12052-1 & Record photographs & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-61586 \\
\text { to } \\
\mathrm{S}-69-61609
\end{gathered}\right.
\] & 12036 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61659 \\
\mathrm{~S}-69-61660 \\
\text { to }
\end{gathered}
\] & 12061 & Chips in the PCTL
Three views in the PCTL & \[
\left|\begin{array}{c}
S-69-61999 \\
\text { to } \\
S-69-62007
\end{array}\right|
\] & 12022 & Record and stereoscopic photographs in F201 chamber \\
\hline S-69-61662 & & & \[
\left\lvert\, \begin{gathered}
S-69-62008 \\
\text { to }
\end{gathered}\right.
\] & 12004 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{aligned}
& \mathrm{S}-69-61663 \\
& \text { and }
\end{aligned}
\] & 12063 & Two views in the PCTL & S-69-62034 & & \\
\hline S-69-61664 & & & \[
\left\lvert\, \begin{gathered}
S-69-62287 \\
\text { to }
\end{gathered}\right.
\] & & In CRA; color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61665 \\
\text { to }
\end{gathered}
\] & 12065 & Three views in the PCTL & S-69-62293 & & \\
\hline S-69-61667 & & & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-62294 \\
\text { and }
\end{gathered}\right.
\] & 12005 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-61668 \\
\text { to }
\end{gathered}
\] & 12008 & Record and stereoscopic photo~ graphs in the nitrogen process- & S-69-62295 & & \\
\hline S-69-61691 & & ng laboratory & S-69-62296 & 12009 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-61692 \\
\text { to }
\end{gathered}
\] & 12076 & Record and stereoscopic photographs in the PC'TL & S-69-62297 & 12005 & \\
\hline S-69-61739 & & & \[
\left\lvert\, \begin{gathered}
\text { and } \\
\mathrm{S}-69-62298
\end{gathered}\right.
\] & 12005 & graphs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-61740 \\
\text { to }
\end{gathered}
\] & 12072 & Record and stereoscopic photographs in the PCTL & S-69-62299 & 12009 & Record and stereoscopic ph \\
\hline S-69-61763 & & & \[
\left\lvert\, \begin{gathered}
\text { to } \\
\mathrm{S}-69-62307
\end{gathered}\right.
\] & & graphs in F201 chamber \\
\hline S-69-61764
to & 12047 & View in the nitrogen processing laboratory & S-69-62308 & 12010 & Record and stereoscopic ph \\
\hline S-69-61787 & & & \[
\begin{array}{|c|}
\text { to } \\
S-69-62316
\end{array}
\] & . & graphs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-61788 \\
\text { to } \\
S-69-61810
\end{gathered}
\] & 12007 & Record and stereoscopic photographs in the nitrogen processing laboratory & S-69-62317 & 12040 & One view \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61811 \\
\text { to } \\
\mathrm{S}-69-61834
\end{gathered}
\] & 12031 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-62318 \\
\text { to } \\
\mathrm{S}-69-62329
\end{gathered}\right.
\] & 12036 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61835 \\
\text { to } \\
\mathrm{S}-69-61858
\end{gathered}
\] & 12077 & Record and stereoscopic photographs in the PCTL & \[
\left|\begin{array}{c}
\mathrm{S}-69-62330 \\
\text { to } \\
\mathrm{S}-69-62353
\end{array}\right|
\] & 12006 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61859 \\
\text { to } \\
\mathrm{S}-69-61882
\end{gathered}
\] & 12052 & Recordand stereoscopic photographs in the nitrogen processing laboratory & \[
\left|\begin{array}{c}
S-69-62354 \\
\text { to } \\
S-69-62376
\end{array}\right|
\] & 12052-1 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61883 \\
\text { to } \\
\mathrm{S}-69-61906
\end{gathered}
\] & 12046 & Record and stereosicopic photographs in the nitrogen processing laboratory & \[
\left\lvert\, \begin{gathered}
S-69-62651 \\
\text { to } \\
S-69-62674
\end{gathered}\right.
\] & 12008 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61907 \\
\text { to } \\
\mathrm{S}-69-61929
\end{gathered}
\] & 12006 & Record and stereosscopic photographs in the nitrogen processing laboratory & \[
\left|\begin{array}{c}
\mathrm{S}-69-62675 \\
\text { to } \\
\mathrm{S}-69-62686
\end{array}\right|
\] & 12051 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-61967 \\
\text { to } \\
\mathrm{S}-69-61984
\end{gathered}\right.
\] & 12018 & Record and stereoscopic photographs; presplit: and postsplit in F201 chamber & \[
\left\lvert\, \begin{gathered}
S-69-62690 \\
\text { to } \\
S-69-62698
\end{gathered}\right.
\] & 12055 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline \[
\begin{gathered}
\mathrm{S}-69-61985 \\
\text { to } \\
\mathrm{S}-69-61998
\end{gathered}
\] & 12021 & Record and stereoscopic photographs in F201 chamber (Note: One record for each camera as the sample was turned \(180^{\circ}\)) & \[
\left\lvert\, \begin{gathered}
S-69-62699 \\
\text { to } \\
S-69-62710
\end{gathered}\right.
\] & 12038 & Record and stereoscopic photographs in the nitrogen processing laboratory \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{array}{|c}
\mathrm{S}-69-62711 \\
\text { to } \\
\mathrm{S}-69-62734
\end{array}
\] & 12047 & Record and stereoscopic photographs in the nitrogen processing laboratory & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-69-63134 \\
\text { to } \\
\mathrm{S}-69-63157
\end{gathered}\right.
\] & 12007 & Color negatives \\
\hline \[
\begin{gathered}
\text { S-69-62735 } \\
\text { and } \\
\mathrm{S}-69-62736
\end{gathered}
\] & 12004 & Two views in panorama & \[
\begin{gathered}
\mathrm{S}-69-63158 \\
\text { to } \\
\mathrm{S}-69-63165
\end{gathered}
\] & 12035 & Color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-62737 \\
\text { and } \\
\mathrm{S}-69-62738
\end{gathered}
\] & 12010 & Two views in panorama & \[
\left\{\begin{array}{c}
S-69-63166 \\
\text { to } \\
S-69-63189
\end{array}\right.
\] & 12046 & Color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-62739 \\
\text { and } \\
\mathrm{S}-69-62740
\end{gathered}
\] & 12009 & Two views in panorama & \[
\begin{gathered}
S-69-63190 \\
\text { to } \\
S-69-63213
\end{gathered}
\] & 12008 & Color negatives \\
\hline \[
\begin{gathered}
\text { S-69-62741 } \\
\text { and } \\
\text { S-69-62742 }
\end{gathered}
\] & 12018 & Two views in panorama & \[
\begin{gathered}
\mathrm{S}-69-63230 \\
\text { to } \\
\mathrm{S}-69-63240
\end{gathered}
\] & 12017 & Record and stereoscopic photographs in F201 chamber \\
\hline S-69-62743 & 12009 & One view, black and white & \[
\begin{gathered}
\mathrm{S}-69-63241 \\
\text { to }
\end{gathered}
\] & 12044-2 & Record and stereoscopic photographs in the nitrogen process- \\
\hline \[
\begin{gathered}
\mathrm{S}-69-62744 \\
\text { to }
\end{gathered}
\] & 12026 & Color negatives & S-69-63264 & & ing laboratory \\
\hline S-69-62762 & & & \[
\begin{gathered}
\mathrm{S}-69-63265 \\
\text { to }
\end{gathered}
\] & 12044-1 & Record and stereoscopic photographs in the nitrogen process- \\
\hline \[
\begin{gathered}
\mathrm{S}-69-62763 \\
\text { to }
\end{gathered}
\] & 12028 & Color negatives & S-69-63288 & & ing laboratory \\
\hline S-69-62765 & & & \[
\begin{gathered}
\mathrm{S}-69-63315 \\
\text { to }
\end{gathered}
\] & 12019 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
\mathrm{S}-69-62766 \\
\text { to }
\end{gathered}
\] & 12058 & Color negatives & S-69-63323 & & \\
\hline S-69-62771 & & & \[
\begin{gathered}
\mathrm{S}-69-63324 \\
\text { to }
\end{gathered}
\] & 12020 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-62772 \\
\text { to } \\
S-69795
\end{gathered}
\] & 12054 & | Color negatives & S-69-63332 & & \\
\hline S-69-62795 & & & \[
\begin{gathered}
\mathrm{S}-69-63333 \\
\text { to }
\end{gathered}
\] & 12012 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
\mathrm{S}-69-62796 \\
\text { to }
\end{gathered}
\] & 12052 & Color negatives & S-69-63341 & & \\
\hline S-69-62819 & & & \[
\begin{gathered}
\mathrm{S}-69-63342 \\
\text { to }
\end{gathered}
\] & 12015 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-62820 \\
\text { to }
\end{gathered}
\] & 12034 & Color negatives & S-69-63350 & & \\
\hline S-69-62843 & & & \[
\begin{gathered}
\mathrm{S}-69-63351 \\
\text { to }
\end{gathered}
\] & 12014 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
\text { S-69-62872 } \\
\text { and }
\end{gathered}
\] & 12015 & Two views in F201 chamber & S-69-63359 & & \\
\hline S-69-62873 & & & \[
\begin{gathered}
S-69-63360 \\
\text { to }
\end{gathered}
\] & 12013 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-63062 \\
\text { to } \\
S-69-63085
\end{gathered}
\] & 12031 & Color negatives & S-69-63368 & & \\
\hline S-69-63085 & & & \[
\begin{gathered}
\mathrm{S}-69-63369 \\
\text { to }
\end{gathered}
\] & 12011 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-63086 \\
\text { to } \\
S-69-63109
\end{gathered}
\] & 12006 & Color negatives & \[
\begin{aligned}
& \mathrm{S}-69-63377 \\
& \mathrm{~S}-69-63378
\end{aligned}
\] & & Record and stereoscopic photo- \\
\hline \[
\begin{gathered}
S-69-63110 \\
\text { to } \\
S-69-63133
\end{gathered}
\] & 12047 & Color negatives & \[
\left|\begin{array}{c}
\mathrm{S}-69-63378 \\
\text { to } \\
\mathrm{S}-69-63386
\end{array}\right|
\] & 12014 & Record and stereoscopic photographs in F201 chamber \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\left\lvert\, \begin{gathered}
S-69-63388 \\
\text { to } \\
S-69-63395
\end{gathered}\right.
\] & 12011 & Record and stereoscopic photographs in F201 chamber & \[
\left|\begin{array}{c}
S-69-63451 \\
\text { to } \\
S-69-63453
\end{array}\right|
\] & 12057-19 & Photomicrographs; color positives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63396 \\
\text { to } \\
\mathrm{S}-69-63399
\end{gathered}
\] & 12012 & Record and stereoscopic photographs in F201 shamber & \[
\left|\begin{array}{c}
\mathrm{S}-69-63454 \\
\text { to } \\
\mathrm{S}-69-63463
\end{array}\right|
\] & 12057-14 & Photomicrographs; color positives \\
\hline S-69-63403 & 12057-39 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-63464 \\
\text { to }
\end{gathered}
\] & 12021 & Photomicrographs; color positives \\
\hline S-69-63404 & 12057-22 & Thin section & S-69-63469 & & \\
\hline S-69-63405 & 12057-7 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-63470 \\
\text { to }
\end{gathered}
\] & 12022 & Photomicrographs; color positives \\
\hline S-69-63406 & 12057-20 & Thin section & S-69-63476 & & \\
\hline S-69-63407 & 12057-23 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-63477 \\
\text { to }
\end{gathered}
\] & 12075 & Photomicrographs; color positives \\
\hline S-69-63408 & 12057-17 & Thin section & S-69-63483 & & \\
\hline \[
\begin{gathered}
S-69-63409 \\
\text { and } \\
S-69-63410
\end{gathered}
\] & 12057-21 & Thin sections & \[
\begin{array}{|c}
\mathrm{S}-69-63484 \\
\text { to } \\
\mathrm{S}-69-63487
\end{array}
\] & 12064-a & Photomicrographs; color positives \\
\hline S-69-63411 & 12057-18 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-63488 \\
\text { and }
\end{gathered}
\] & 12062-1 & Photomicrographs; color positives \\
\hline S-69-63412 & 12057-39 & Thin section & S-69-63489 & & \\
\hline S-69-63413 & 12057-22 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-63490 \\
\text { and }
\end{gathered}
\] & 12057-8 & Photomicrographs; color positives \\
\hline S-69-63414 & 12057-19 & Thin section & S-69-63491 & & \\
\hline S-69-63415 & 12057-14 & Thin section & \[
\begin{gathered}
\mathrm{S}-69-63492 \\
\text { to }
\end{gathered}
\] & 12057-5 & Photomicrographs; color positives \\
\hline S-69-63416 & 12057-15 & Thin section & S-69-63494 & & \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63417 \\
\text { to }
\end{gathered}
\] & 12012 & Record and stereoscopic photographs in F201 chamber & S-69-63495 & 12057-13 & Photomicrograph; color positive \\
\hline S-69-63421 & & & S-69-63630 & 12065 & One view only \\
\hline S-69-63427 & 12057-15 & Photomicrograph; color positive & \[
\begin{gathered}
\mathrm{S}-69-63631 \\
\text { to }
\end{gathered}
\] & 12031 & Recordand stereoscopic photo- \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63428 \\
\text { to }
\end{gathered}
\] & 12057-21 & Photomicrographs; color positives & S-69-63654 & & graphs in the nitrogen processing laboratory \\
\hline S-69-63430 & & & \[
\begin{gathered}
\mathrm{S}-69-63655 \\
\text { to }
\end{gathered}
\] & 12013 & Record and stereoscopic photographs in F201 chamber \\
\hline \[
\begin{gathered}
S-69-63431 \\
\text { to }
\end{gathered}
\] & 12065-7 & Photomicrographs; color positives & S-69-63663 & & \\
\hline S-69-63439 & & & \[
\begin{gathered}
\mathrm{S}-69-63819 \\
\text { to }
\end{gathered}
\] & 12038 & Color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63440 \\
\text { to }
\end{gathered}
\] & 12057-18 & Photomicrographs; color positives & S-69-63822 & & \\
\hline S-69-63445 & & & \[
\begin{gathered}
\mathrm{S}-69-63823 \\
\text { to }
\end{gathered}
\] & 12043 & Color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63446 \\
\text { to }
\end{gathered}
\] & 12057-23 & Photomicrographs; color positives & S-69-63826 & & \\
\hline S-69-63448 & & & \[
\begin{gathered}
\mathrm{S}-69-63827 \\
\text { to }
\end{gathered}
\] & 12051 & Color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63449 \\
\text { and } \\
\mathrm{S}-69-63450
\end{gathered}
\] & 12057-17 & Photomicrographs; color positives & S-69-63830 & & \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63831 \\
\text { to } \\
\mathrm{S}-69-63834
\end{gathered}
\] & 12052 & Color negatives & \[
\begin{gathered}
\mathrm{S}-69-64098 \\
\text { and } \\
\mathrm{S}-69-64099
\end{gathered}
\] & 12012 & Color positives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63835 \\
\text { to }
\end{gathered}
\] & 12055 & Color negatives & S-69-64100 & 12013 & Color positive \\
\hline S-69-63838 & & & \[
\begin{gathered}
S-69-64101 \\
\text { and }
\end{gathered}
\] & 12014 & Color positives \\
\hline \[
\begin{gathered}
S-69-63839 \\
\text { to }
\end{gathered}
\] & 12056 & Color negatives & S-69-64102 & & \\
\hline S-69-63842 & & & S-69-64103 & 12015 & Color positive \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63843 \\
\text { to }
\end{gathered}
\] & 12040 & Color negatives & S-69-64104 & 12019 & Color positive \\
\hline S-69-63846 & & & S-69-64105 & 12020 & Color positive \\
\hline \[
\begin{gathered}
\mathrm{S}-69-63847 \\
\text { to }
\end{gathered}
\] & 12036 & Color negatives & S-69-64106 & 12016 & Color positive \\
\hline S-69-63852 & & & S-69-64107 & 12002 & Color positive \\
\hline \[
\begin{gathered}
S-69-63853 \\
\text { to }
\end{gathered}
\] & 12006 & Color negatives & S-69-64108 & 12022 & Color positive \\
\hline S-69-63858 & & & S-69-64109 & 12021 & Color positive \\
\hline \[
\left\{\begin{array}{l}
\mathrm{S}-69-63859 \\
\text { to } \\
\mathrm{S}-69-63861
\end{array}\right.
\] & 12039 & Color negatives & \[
\begin{aligned}
& S-69-64110 \\
& \text { and } \\
& S-69-64111
\end{aligned}
\] & 12018 & Color positives \\
\hline S-69-64081 & 12016 & Color positive & \[
\begin{gathered}
S-69-64112 \\
\text { and }
\end{gathered}
\] & 12004 & Color positives \\
\hline S-69-64082 & 12002 & Color positive & S-69-64113 & & \\
\hline S-69-64083 & 12022 & Color positive & S-69-64114 & 12005 & Color positive \\
\hline S-69-64084 & 12021 & Color positive & \[
\begin{gathered}
S-69-64115 \\
\text { and }
\end{gathered}
\] & 12009 & Color positives \\
\hline \[
\begin{gathered}
S-69-64085 \\
\text { and }
\end{gathered}
\] & 12018 & Color positives & S-69-64116 & & \\
\hline S-69-64086 & & & S-69-64117 & 12010 & Color positive \\
\hline \[
\begin{aligned}
& S-69-64087 \\
& \text { and } \\
& S-69-64088
\end{aligned}
\] & 12004 & Color positives & \[
\begin{gathered}
\mathrm{S}-69-64118 \\
\text { to } \\
\mathrm{S}-69-64120
\end{gathered}
\] & 12017 & Color positives \\
\hline S-69-64098 & 12005 & Color positive & \[
\begin{gathered}
\mathrm{S}-69-64121 \\
\text { and }
\end{gathered}
\] & 12011 & Color positives \\
\hline \[
\begin{gathered}
S-69-64090 \\
\text { and }
\end{gathered}
\] & 12009 & Color positives & S-69-64122 & & \\
\hline S-69-64091 & & & \[
\begin{gathered}
\mathrm{S}-69-64123 \\
\text { and }
\end{gathered}
\] & 12012 & Color positives \\
\hline S-69-64092 & 12010 & Color positive & S-69-64124 & & \\
\hline \[
\begin{gathered}
S-69-64093 \\
\text { to }
\end{gathered}
\] & 12017 & Color positives & S-69-64125 & 12013 & Color positive \\
\hline S-69-64095 & & & \[
\begin{gathered}
\mathrm{S}-69-64126 \\
\text { and }
\end{gathered}
\] & 12014 & Color positives \\
\hline \[
\begin{gathered}
\mathrm{S}-69-64096 \\
\text { and } \\
\mathrm{S}-69-64097
\end{gathered}
\] & 12011 & Color positives & \[
\left\lvert\, \begin{aligned}
& S-69-64127 \\
& S-69-64128
\end{aligned}\right.
\] & 12015 & Color positive \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-69-64129 & 12019 & Color positive & S-70-20737 & 12065-12 & Thin section \\
\hline S-69-64130 & 12020 & Color positive & S-70-20738 & 12057-42 & Thin section \\
\hline \[
\begin{gathered}
S-69-64182 \\
\text { to }
\end{gathered}
\] & 12030 & Color negatives & S-70-20739. & 12022-6 & Thin section \\
\hline S-69-64186 & & & S-70-20740 & 12022-9 & Thin section \\
\hline S-69-64424 & 12028 & Bottom of double core & S-70-20741 & 12021-4 & Thin section \\
\hline \[
\begin{aligned}
& S-69-64740 \\
& \text { and }
\end{aligned}
\] & 12057-28 & Thin sections & S-70-20742 & 12040-2 & Thin section \\
\hline S-69-64741 & & & S-70-20743 & 12021-4 & Thin section \\
\hline S-69-64821 & 12040-2 & Thin section & S-70-20744 & 12073-5 & Thin section \\
\hline S-69-64822 & 12041-2 & Thin section & S-70-20745 & 12022-6 & Thin section \\
\hline S-69-64823 & 12057-25 & Thin section & S-70-20746 & 12057-41 & Thin section \\
\hline S-69-64824 & 12040-2 & Chip in thin-section laboratory & S-70-20747 & 12012-6 & Thin section \\
\hline S-69-64825 & 12040 & Chip in thin-section laboratory & S-70-20748 & 12073-5 & Thin section \\
\hline S-69-64826 & 12057-29 & Thin section & S-70-20749 & 12021-4 & Thin section \\
\hline S-69-64827 & 12057-27 & Thin section & S-70-20750 & 12040-2 & Thin section \\
\hline S-69-64828 & 12057-25 & Thin section & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-70-20751 \\
\text { to }
\end{gathered}\right.
\] & 12021-4 & Thin sections \\
\hline S-69-64829 & 12040-2 & Chip in thin-section laboratory & S-70-20754 & & \\
\hline S-69-64830 & 12057-19 & Thin section & S-70-20755 & 12022-12 & Thin section \\
\hline S-69-64831 & 12057-14 & Thin section & S-70-20756 & 12063-11 & Thin section \\
\hline S-69-64832 & 12057-28 & Thin section & S-70-20757 & 12022-6 & Thin section \\
\hline S-69-64880 & 12065-7 & Thin section & S-70-20758 & 12057-41 & Thin section \\
\hline S-69-64881 & 12057-30 & Thin section & \[
\left\lvert\, \begin{gathered}
S-70-20954 \\
\text { and }
\end{gathered}\right.
\] & 12057-27 & Color thin sections \\
\hline S-69-64882 & 12057-24 & Thin section & S-70-20955 & & \\
\hline S-69-64883 & 12057-29 & Thin section & S-70-20956 & 12022-6 & Color thin section \\
\hline S-69-64884 & 12057-38 & Thin section & \[
\left\lvert\, \begin{gathered}
S-70-20957 \\
\text { to }
\end{gathered}\right.
\] & 12021-4 & Color thin sections \\
\hline S-69-64885 & 12073-7 & Thin section & S-70-20960 & & \\
\hline S-69-64886 & 12057-26 & Thin section & S-70-20961 & 12012-6 & Color thin section \\
\hline S-70-20400 & 12025 & Core sample after splitting; color negative & S-70-20962 & 12040-2 & Color thin section \\
\hline S-70-20401 & 12052 & Closeups; color negatives & S-70-20963 & 12065-12 & Color thin section \\
\hline \[
\left[\begin{array}{c}
\text { to } \\
s-70-20403
\end{array}\right.
\] & & ups, color ne:gatives & S-70-20964 & 12014-5 & Color thin section \\
\hline S-70-20736 & 12063-11 & Thin section & S-70-20965 & 12063-6 & Color thin section \\
\hline & & & S-70-20966 & 12057-35 & Color thin section \\
\hline
\end{tabular}

TABLE D-IV.- LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-20967 & 12057-17 & Color thin section & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-70-22938 \\
\text { to } \\
\mathrm{S}-70-22983
\end{gathered}\right.
\] & 12051 & Surface closeups; color negatives \\
\hline \[
\left|\begin{array}{c}
s-70-21302 \\
\text { to } \\
s-70-21300
\end{array}\right|
\] & 12025 & Lump in core tube & \[
\left|\begin{array}{c}
\mathrm{S}-70-22984 \\
\text { to } \\
\mathrm{S}-70-23018
\end{array}\right|
\] & 12054 & Surface closeups; color negatives \\
\hline \[
\left|\begin{array}{c}
S-70-21310 \\
\text { to } \\
S-70-21320
\end{array}\right|
\] & 12052 & Surface closeups & \[
\left|\begin{array}{c}
S-70-23019 \\
\text { to } \\
S-70-23048
\end{array}\right|
\] & 12053 & Surface closeups; color negatives \\
\hline \[
\left|\begin{array}{c}
\mathrm{S}-70-22428 \\
\text { to } \\
\mathrm{S}-70-22439
\end{array}\right|
\] & 12038 & Color negatives & \[
\left\lvert\, \begin{gathered}
S-70-23112 \\
\text { to } \\
S-70-23122
\end{gathered}\right.
\] & 12056 & Surface closeups; color negatives \\
\hline \[
\left|\begin{array}{c}
S-70-22440 \\
\text { to } \\
S-70-22451
\end{array}\right|
\] & 12039 & Color negatives & \[
\left|\begin{array}{c}
s-70-23123 \\
\text { to } \\
S-70-23155
\end{array}\right|
\] & 12055 & Surface closeups; color negatives \\
\hline \[
\begin{gathered}
\mathrm{S}-70-22452 \\
\text { to } \\
\mathrm{S}-70-22459
\end{gathered}
\] & 12040 & Color negatives & \[
\left\lvert\, \begin{gathered}
\mathrm{S}-70-24343 \\
\text { to } \\
\mathrm{S}-70-24365
\end{gathered}\right.
\] & 12038 & Surface closeups; color negatives \\
\hline \[
\left\lvert\, \begin{gathered}
\mathrm{S}-70-22460 \\
\text { to } \\
\mathrm{S}-70-22467
\end{gathered}\right.
\] & 12043 & Color negatives & \[
\left|\begin{array}{c}
S-70-24366 \\
\text { to } \\
S-70-24374
\end{array}\right|
\] & 12031 & Surface closeups; color negatives \\
\hline \[
\begin{gathered}
s-70-22468 \\
\text { to } \\
s-70-22475
\end{gathered}
\] & 12051 & Color negatives & \[
\left|\begin{array}{c}
S-70-24375 \\
\text { to } \\
S-70-24424
\end{array}\right|
\] & 12052 & Surface closeups; color negatives \\
\hline \[
\left|\begin{array}{c}
S-70-22476 \\
\text { to } \\
S-70-22487
\end{array}\right|
\] & 12052 & Color negatives & \[
\left\lvert\, \begin{gathered}
S-70-24687 \\
\text { to } \\
S-70-24698
\end{gathered}\right.
\] & 12073 & Stereopair; color \\
\hline \[
\begin{gathered}
\mathrm{S}-70-22488 \\
\text { to } \\
\mathrm{S}-70-22499
\end{gathered}
\] & 12055 & Color negatives & \[
\left\lvert\, \begin{gathered}
S-70-24699 \\
\text { to } \\
S-70-24712
\end{gathered}\right.
\] & 12062 & Stereopair; color \\
\hline \[
\left\lvert\, \begin{gathered}
\mathrm{S}-70-22500 \\
\text { to } \\
\mathrm{S}-70-22503
\end{gathered}\right.
\] & 12056 & Color negatives & \[
\left\lvert\, \begin{gathered}
S-70-24713 \\
\text { to } \\
S-70-24721
\end{gathered}\right.
\] & 12015 & Stereopair; color \\
\hline \[
\left|\begin{array}{c}
\mathrm{S}-70-22504 \\
\text { to } \\
\mathrm{S}-70-22507
\end{array}\right|
\] & 12006 & Color negatives & \[
\left|\begin{array}{c}
S-70-24722 \\
\text { to } \\
S-70-24736
\end{array}\right|
\] & 12064 & Stereopair; color \\
\hline \[
\left|\begin{array}{c}
s-70-22508 \\
\text { to } \\
s-70-22511
\end{array}\right|
\] & 12056 & Color negatives & \[
\begin{gathered}
S-70-24741 \\
\text { and } \\
S-70-24742
\end{gathered}
\] & 12022-10 & Enlargement of skeletal ilmenite in thin sections \\
\hline S-70-22669 & 12028 & Core-tube diagram & S-70-25401 & 12021-3 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-22670 \\
\text { to }
\end{gathered}
\] & 12052 & Surface simulations & S-70-25402 & 12021-6 & Thin section \\
\hline S-70-22689 & & & S-70-25403 & 12014-7 & Thin section \\
\hline \[
\left|\begin{array}{c}
s-70-22690 \\
\text { to } \\
S-70-22704
\end{array}\right|
\] & 12054 & Surface simulations & \(\left\lvert\, \begin{aligned} & \text { S-70-25404 } \\ & \mathrm{S}-70-25405\end{aligned}\right.\) & 12014-6 & Thin section Thin section \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-25406 & 12020-6 & Thin section & S-70-25874 & 12002-2 & Thin section; black and white \\
\hline S-70-25407 & 12013-5 & Thin section & S-70-25875 & 12022-8 & Thin section; black and white \\
\hline S-70-25408 & 12020-8 & Thin section & S-70-25876 & 12022-11 & Thin section; black and white \\
\hline S-70-25409 & 12052-6 & Thin section & S-70-25877 & 12010-4 & Thin section; black and white \\
\hline S-70-25410 & 12013-6 & Thin section & S-70-25878 & 12021-7 & Thin section; black and white \\
\hline S-70-25411 & 12052-5 & Thin section & \[
\begin{gathered}
S-70-25879 \\
\text { and }
\end{gathered}
\] & 12073-8 & Thin sections; black and white \\
\hline S-70-25412 & 12009-6 & Thin section & S-70-25880 & & \\
\hline S-70-25413 & 12034-2 & Thin section & S-70-25881 & 12010-4 & Thin section; black and white \\
\hline \[
\begin{gathered}
\mathrm{S}-70-25414 \\
\text { and }
\end{gathered}
\] & 12073-6 & Thin sections & S-70-25882 & 12020-12 & Thin section; black and white \\
\hline S-70-25415 & & & S-70-25883 & 12014-9 & Thin section; black and white \\
\hline S-70-25416 & 12034-2 & Thin section & S-70-25884 & 12044-3 & Thin section; black and white \\
\hline S-70-25417 & 12052-6 & Thin section & S-70-25885 & 12002-2 & Thin section; black and white \\
\hline S-70-25418 & 12052-5 & Thin section & S-70-25886 & 12021-7 & Thin section; black and white \\
\hline \[
\begin{gathered}
\mathrm{S}-70-25419 \\
\text { and }
\end{gathered}
\] & 12012-7 & Thin sections & S-70-25887 & 12038-3 & Thin section; black and white \\
\hline S-70-25420 & & & S-70-25888 & 12012-8 & Thin section; black and white \\
\hline \[
\begin{gathered}
S-70-25421 \\
\text { and }
\end{gathered}
\] & 12020-8 & Thin sections & S-70-25889 & 12022-8 & Thin section; black and white \\
\hline S-70-25422 & & & S-70-25890 & 12020-11 & Thin section; black and white \\
\hline S-70-25423 & 12013-6 & Thin section & S-70-25891 & 12020-10 & Thin section; black and white \\
\hline S-70-25424 & 12020-8 & Thin section & S-70-26176 & & Apollo 11 and Apollo 12 modes \\
\hline S-70-25425 & 12038-3 & Thin section & S-70-26177 & & Apollo 12 size graph; black and white \\
\hline S-70-25426 & 12013-5 & Thin section & & & \\
\hline & 12009-7 & & S-70-26178 & & Apollo 12 chemistry \\
\hline \[
\left|\begin{array}{c}
S-70-25427 \\
\text { and } \\
S-70-25428
\end{array}\right|
\] & 12009-7 & Thin sections & \[
\begin{gathered}
s-70-26415 \\
\text { to } \\
S-70-26436
\end{gathered}
\] & 12063 & Surface closeups; color negatives \\
\hline \begin{tabular}{l}
S-70-25429 \\
to
\end{tabular} & 12012-8 & Thin sections & & & \\
\hline \[
\begin{gathered}
\text { to } \\
\mathrm{S}-70-25432 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
S-70-26591 \\
\text { to } \\
S-70-26629
\end{gathered}
\] & 12063 & Surface closeups; black and white \\
\hline \begin{tabular}{l}
S-70-25489 \\
to
\end{tabular} & 12065 & Surface closeups; color & |S-70-26630 & & \\
\hline S-70-25554 & & & \[
\begin{gathered}
S-70-26630 \\
\text { to } \\
S-70-26650
\end{gathered}
\] & 12065 & Surface closeups; black and white \\
\hline \[
\begin{array}{|c|}
S-70-25555 \\
\text { to } \\
S-70-25597
\end{array}
\] & 12063 & Surface closeups; color & \[
\left\{\begin{array}{c}
S-70-26651 \\
\text { to } \\
S-70-26671
\end{array}\right.
\] & 12063 & Surface closeups; black and white \\
\hline S-70-25872 & 12009-7 & Thin section; black and white & S-70-26672 & 12065 & Surface closeups: black and white \\
\hline S-70-25873 & 12020-10 & Thin section; black and white & \[
\begin{gathered}
\text { to } \\
S-70-26689
\end{gathered}
\] & 12065 & Surface closeups, black and white \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{gathered}
S-70-26690 \\
\text { to }
\end{gathered}
\] & 12063 & Surface closeups; black and white & S-70-28216 & 12014-9 & Thin section; black and white \\
\hline S-70-26700 & & & S-70-28217 & 12034-3 & Thin section; black and white \\
\hline \[
\begin{gathered}
S-70-26701 \\
\text { to }
\end{gathered}
\] & 12065 & Surface closeups; black and white & S-70-28218 & 12014-9 & Thin section; black and white \\
\hline S-70-26721 & & & \[
\begin{gathered}
S-70-28219 \\
\text { and }
\end{gathered}
\] & 12002-4 & Thin sections; black and white \\
\hline S-70-27973 & 12018-6 & Thin section; black and white & S-70-28220 & & \\
\hline S-70-27974 & 12063-14 & Thin section; black and white & \[
\begin{gathered}
\mathrm{S}-70-28221 \\
\text { and }
\end{gathered}
\] & 12002-5 & Thin sections; black and white \\
\hline S-70-27975 & 12010-5 & Thin section; black and white & S-70-28222 & & \\
\hline S-70-27976 & 12062-7 & Thin section; black and white & \[
\begin{gathered}
\mathrm{S}-70-28223 \\
\text { and }
\end{gathered}
\] & 12062-7 & Thin sections; black and white \\
\hline S-70-27977 & 12010-6 & Thin section; black and white & S-70-28224 & & \\
\hline S-70-27978 & 12018-6 & Thin section; black and white & S-70-28225 & 12063-16 & Thin section; black and white \\
\hline S-70-27979 & 12010-6 & Thin section; black and white & S-70-28226 & 12022-11 & Thin section; biack and white \\
\hline \[
\begin{gathered}
S-70-27980 \\
\text { and }
\end{gathered}
\] & 12063-14 & Thin sections; black and white & S-70-28227 & 12052-7 & Thin section; black and white \\
\hline S-70-27981 & & & S-70-28228 & 12013-7 & Thin section; black and white \\
\hline S-70-27982 & 12063-15 & Thin section; black and white & S-70-28674 & 12018-10 & Thin section; black and white \\
\hline S-70-27983 & 12020-11 & Thin section; black and white & S-70-28675 & 12063-21 & Thin section; black and white \\
\hline S-70-27984 & 12063-16 & Thin section; black and white & S-70-28676 & 12034-4 & Thin section; black and white \\
\hline S-70-27985 & 12052-7 & Thin section; black and white & S-70-28677 & 12010-5 & Thin section; black and white \\
\hline S-70-27986 & 12052-8 & Thin section; black and white & S-70-28678 & 12004-8 & Thin section; black and white \\
\hline S-70-27987 & 12004-8 & Thin section; black and white & S-70-28679 & 12038-4 & Thin section; black and white \\
\hline S-70-27988 & 12002-4 & Thin section; black and white & S-70-28680 & 12063-21 & Thin section; black and white \\
\hline S-70-27989 & 12002-5 & Thin section; black and white & S-70-28681 & 12018-10 & Thin section; black and white \\
\hline S-70-27990 & 12034-3 & Thin section; black and white & S-70-28682 & 12010-5 & Thin section; black and white \\
\hline S-70-27991 & 12020-9 & Thin section; black and white & S-70-28683 & 12038-4 & Thin section; black and white \\
\hline S-70-27992 & 12044-4 & Thin section; black and white & S-70-28684 & 12034-4 & Thin section; black and white \\
\hline S-70-27993 & 12013-7 & Thin section; black and white & S-70-28685 & 12004-8 & Thin section; black and white \\
\hline S-70-27994 & 12018-8 & Thin section; black and white & \[
\begin{gathered}
S-70-28686 \\
\text { and }
\end{gathered}
\] & 12022-12 & Thin sections; black and white \\
\hline S-70-28211 & 12013-7 & Thin section; black and white & S-70-28687 & & \\
\hline S-70-28212 & 12018-8 & Thin section; black and white & \[
\begin{gathered}
\mathrm{S}-70-28688 \\
\text { and }
\end{gathered}
\] & 12018-7 & Thin sections; black and white \\
\hline \[
\begin{gathered}
\mathrm{S}-70-28213 \\
\text { and }
\end{gathered}
\] & 12022-11 & Thin sections; black and white & S-70-28689 & & \\
\hline S-70-28214 & & & S-70-30213 & 12062-9 & Thin section \\
\hline S-70-28215 & 12044-4 & Thin section; black and white & S-70-30214 & 12063-25 & Thin section \\
\hline
\end{tabular}

316

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-30215 & 12038-4 & Thin section & S-70-30246 & 12009-9 & Thin section \\
\hline S-70-30216 & 12062-8 & Thin section & S-70-30247 & 12014-8 & Thin section \\
\hline S-70-30217 & 12002-8 & Thin section & S-70-30248 & 12002-6 & Thin section \\
\hline S-70-30218 & 12063-19 & Thin section & S-70-30249 & 12018-11 & Thin section \\
\hline S-70-30219 & 12064-6 & Thin section & S-70-30250 & 12052-9 & Thin section \\
\hline S-70-30220 & 12063-19 & Thin section & S-70-30251 & 12020-14 & Thin section \\
\hline S-70-30221 & 12057-23 & Thin section & S-70-30252 & 12020-11 & Thin section \\
\hline S-70-30222 & 12057-30 & Thin section & S-70-30253 & 12020-9 & Thin section \\
\hline \[
\begin{aligned}
& S-70-30223 \\
& \text { and }
\end{aligned}
\] & 12018-10 & Thin sections & S-70-30254 & 12020-13 & Thin section \\
\hline S-70-30224 & & & S-70-30255 & 12062-9 & Thin section \\
\hline S-70-30225 & 12063-15 & Thin section & S-70-30256 & 12062-18 & Thin section \\
\hline S-70-30226 & 12018-9 & Thin section & S-70-30257 & 12064-6 & Thin section \\
\hline S-70-30227 & 12002-10 & Thin section & S-70-30258 & 12064-9 & Thin section \\
\hline S-70-30228 & 12004-9 & Thin section & S-70-30259 & 12004-11 & Thin section \\
\hline S-70-30229 & 12020-13 & Thin section & S-70-30260 & 12064-7 & Thin section \\
\hline S-70-30230 & 12063-24 & Thin section & S-70-30261 & 12064-8 & Thin section \\
\hline S-70-30231 & 12002-9 & Thin section & S-70-30262 & 12063-22 & Thin section \\
\hline S-70-30232 & 12052-9 & Thin section & S-70-30263 & 12063-24 & Thin section \\
\hline \[
\begin{gathered}
S-70-30233 \\
\text { and }
\end{gathered}
\] & 12063-22 & Thin sections & S-70-30264 & 12064-9 & Thin section \\
\hline S-70-30234 & & & S-70-30265 & 12063-20 & Thin section \\
\hline S-70-30235 & 12020-14 & Thin section & S-70-30266 & 12020-13 & Thin section \\
\hline S-70-30236 & 12063-17 & Thin section & S-70-30267 & 12063-19 & Thin section \\
\hline S-70-30237 & 12018-11 & Thin section & S-70-30268 & 12002-6 & Thin section \\
\hline S-70-30238 & 12002-10 & Thin section & S-70-30269 & 12064-8 & Thin section \\
\hline S-70-30239 & 12002-9 & Thin section & S-70-30270 & 12063-17 & Thin section \\
\hline S-70-30240 & 12004-9 & Thin section & S-70-30271 & 12063-18 & Thin section \\
\hline S-70-30241 & 12002-8 & Thin section & S-70-30272 & 12004-11 & Thin section \\
\hline S-70-30242 & 12009-8 & Thin section & \[
\begin{gathered}
S-70-30273 \\
\text { and }
\end{gathered}
\] & 12063-25 & Thin sections \\
\hline S-70-30243 & 12002-7 & Thin section & S-70-30274 & & \\
\hline S-70-30244 & \(12018-9\)
\(12004-10\) & Thin section
Thin section & \[
\begin{gathered}
\mathrm{S}-70-30954 \\
\text { and } \\
\mathrm{S}-70-30955
\end{gathered}
\] & 12063-19 & Thin sections \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-30956 & \(12002-9\)
\(12020-4\) & Thin section
Thin section & \[
\begin{gathered}
S-70-31644 \\
\text { and } \\
S-70-31645
\end{gathered}
\] & 12002-158 & Thin sections \\
\hline \[
\begin{aligned}
& S-70-30958 \\
& \text { and } \\
& S-70-30959
\end{aligned}
\] & 12063-19 & Thin sections & \(\left\lvert\, \begin{aligned} & \text { S-70-31646 } \\ & S-70-31647\end{aligned}\right.\) & 12002-157 & Thin section
Thin section \\
\hline \[
\begin{gathered}
S-70-30960 \\
\text { and } \\
S-70-30961
\end{gathered}
\] & 12004-11 & Thin sections & S-70-31648 & 12002-159 & Thin section
Thin section \\
\hline S-70-31559 & 12020-16 & Thin section
Thin section & \[
\begin{aligned}
& S-70-31650 \\
& \text { and } \\
& \mathrm{S}-70-31651
\end{aligned}
\] & 12002-159 & Thin sections \\
\hline S-70-31561
\(S-70-31562\) & \(12063-23\)
\(12064-7\) & Thin section
Thin section & \[
\begin{gathered}
S-70-31652 \\
\text { and } \\
S-70-31653
\end{gathered}
\] & 12020-15 & Thin sections \\
\hline S-70-31563 & 12009-10 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-31654 \\
\text { and }
\end{gathered}
\] & 12009-10 & Thin sections \\
\hline S-70-31564 & 12063-15 & Thin section & S-70-31655 & & \\
\hline S-70-31565 & 12073-10 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-31656 \\
\text { and }
\end{gathered}
\] & 12009-8 & Thin sections \\
\hline S-70-31566 & 12020-15 & Thin section & S-70-31657 & & \\
\hline S-70-31567 & 12009-9 & Thin section & \[
\begin{gathered}
S-70-31658 \\
\text { and }
\end{gathered}
\] & 12009-9 & Thin sections \\
\hline S-70-31568 & 12009-8 & Thin section & S-70-31659 & & \\
\hline S-70-31569 & 12004-10 & Thin section & \[
\begin{gathered}
S-70-31660 \\
\text { and }
\end{gathered}
\] & 12009-11 & Thin sections \\
\hline S-70-31570 & 12009-11 & Thin section & S-70-31661 & & \\
\hline S-70-31571 & 12002-157 & Thin section & \[
\begin{gathered}
S-70-31662 \\
\text { and }
\end{gathered}
\] & 12073-10 & Thin sections \\
\hline S-70-31572 & 12002-159 & Thin section & S-70-31663 & & \\
\hline S-70-31573 & 12002-156 & Thin section & \[
\begin{gathered}
S-70-31664 \\
\text { and }
\end{gathered}
\] & 12063-15 & Thin sections \\
\hline S-70-31574 & 12002-158 & Thin section & S-70-31665 & & \\
\hline S-70-31575 & 12002-156 & Thin section & \[
\begin{gathered}
S-70-31666 \\
\text { and }
\end{gathered}
\] & 12063-23 & Thin sections \\
\hline S-70-31576 & 12002-7 & Thin section & S-70-31667 & & \\
\hline \[
\begin{gathered}
\mathrm{S}-70-31577 \\
\text { and } \\
\mathrm{S}-70-31578
\end{gathered}
\] & 12002-156 & Thin sections & \[
\begin{gathered}
\mathrm{S}-70-31668 \\
\text { and } \\
\mathrm{S}-70-31669
\end{gathered}
\] & 12063-20 & Thin sections \\
\hline S-70-31579 & 12020-16 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-32727 \\
\text { to }
\end{gathered}
\] & 12020-9 & Thin sections \\
\hline S-70-31580 & 12064-7 & Thin section & S-70-32730 & & \\
\hline S-70-31581 & 12002-7 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-32731 \\
\text { and }
\end{gathered}
\] & 12020-11 & Thin sections \\
\hline S-70-31582 & 12004-10 & Thin section & S-70-32732 & & \\
\hline S-70-31583 & 12052-8 & Thin section & S-70-32733 & 12063-18 & Thin section \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-32734
S-70-32735 & \(12020-11\)
\(12073-10\) & Thin section
Thin section & \[
\begin{gathered}
S-70-36459 \\
\text { and } \\
S-70-36460
\end{gathered}
\] & 12002-161 & Thin sections \\
\hline S-70-32736 & 12063-18 & Thin section & \[
\begin{gathered}
S-70-36461 \\
\text { and }
\end{gathered}
\] & 12002-165 & Thin sections \\
\hline \[
\begin{gathered}
S-70-32737 \\
\text { and }
\end{gathered}
\] & 12073-10 & Thin sections & S-70-36462 & & \\
\hline S-70-32738 & & & \[
\begin{gathered}
S-70-36463 \\
\text { and }
\end{gathered}
\] & 12002-164 & Thin sections \\
\hline \[
\begin{gathered}
\mathrm{S}-70-32739 \\
\text { to }
\end{gathered}
\] & 12004-2 & Surface closeups: bilack and white & S-70-36464 & & \\
\hline S-70-32746 & & & \[
\begin{gathered}
S-70-36465 \\
\text { and }
\end{gathered}
\] & 12073-12 & Thin sections \\
\hline \[
\begin{gathered}
S-70-33325 \\
\text { to }
\end{gathered}
\] & 12009 & Surface closeups by diagrams; black and white & S-70-36466 & & \\
\hline S-70-33342 & & & S-70-36467 & 12062-10 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-33355 \\
\text { to } \\
\mathrm{S}-70-33368
\end{gathered}
\] & 12010 & Surface closeups by diagrams; black and white & \[
\begin{gathered}
S-70-36468 \\
\text { to } \\
S-70-36470
\end{gathered}
\] & 12053-76 & Thin sections \\
\hline \[
\begin{gathered}
\mathrm{S}-70-33434 \\
\text { to }
\end{gathered}
\] & 12013-7 & Thin sections & S-70-36471 & 12002-166 & Thin section \\
\hline S-70-33453 & & & S-70-36472 & 12009-15 & Thin section \\
\hline \[
\begin{gathered}
S-70-33460 \\
\text { to }
\end{gathered}
\] & 12019 & 1: 1 closeups & S-70-36473 & 12053-75 & Thin section \\
\hline S-70-33503 & & & S-70-36474 & 12053-76 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-33504 \\
\text { to }
\end{gathered}
\] & 12002 & 1:1 closeups & S-70-36475 & 12062-10 & Thin section \\
\hline S-70-33549 & & & S-70-36476 & 12073-12 & Thin section \\
\hline \[
\begin{gathered}
S-70-33797 \\
\text { to }
\end{gathered}
\] & 12075 & 1:1 closeups & S-70-36477 & 12002-166 & Tlin section \\
\hline S-70-33841 & & & S-70-36478 & 12009-15 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-33842 \\
\text { to } \\
\mathrm{S}-70-33877
\end{gathered}
\] & 12034 & 1:1 closeups & \[
\begin{gathered}
S-70-36479 \\
\text { and } \\
S-70-36480
\end{gathered}
\] & 12053-75 & Thin sections \\
\hline S-70-36450 & 12002-161 & Thin section & S-70-36481 & 12053-76 & Thin section \\
\hline S-70-36451 & 12002-164 & Thin section & \[
\begin{gathered}
S-70-36482 \\
\text { and }
\end{gathered}
\] & 12053-75 & Thin sections \\
\hline S-70-36452 & 12002-160 & Thin section & S-70-36483 & & \\
\hline S-70-36453 & 12002-165 & Thin section & \[
\begin{gathered}
S-70-36864 \\
\text { to }
\end{gathered}
\] & 12053 & Sample-cutting photographs \\
\hline S-70-36454 & 12009-12 & Thin section & S-70-36903 & & \\
\hline S-70-36455 & 12004-48 & Thin section & \[
\begin{gathered}
S-70-36904 \\
\text { to }
\end{gathered}
\] & 12051 & Sample-cutting photographs \\
\hline S-70-36456 & 12009-12 & Thin section & S-70-36917 & & \\
\hline \[
\begin{gathered}
S-70-36457 \\
\text { and } \\
S-70-36458
\end{gathered}
\] & 12002-160 & Thin sections & \[
\begin{gathered}
\mathrm{S}-70-36918 \\
\text { to } \\
\mathrm{S}-70-36943
\end{gathered}
\] & 12053 & Sample-cutting photographs \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{gathered}
S-70-36944 \\
\text { to } \\
\mathrm{S}-70-36946
\end{gathered}
\] & 12051 & Sample-cutting photographs & \[
\begin{gathered}
\mathrm{S}-70-39830 \\
\text { to } \\
\mathrm{S}-70-39849
\end{gathered}
\] & 12063 & Sample-cutting photographs \\
\hline \[
\begin{gathered}
\mathrm{S}-70-36947 \\
\text { to } \\
\mathrm{S}-70-36986
\end{gathered}
\] & 12053 & Sample-cutting photographs & \[
\begin{aligned}
& S-70-39850 \\
& \text { and } \\
& S-70-39851
\end{aligned}
\] & 12022 & Sample-cutting photographs \\
\hline \[
\begin{gathered}
\mathrm{S}-70-36987 \\
\text { to } \\
\mathrm{S}-70-36992
\end{gathered}
\] & 12051 & Sample-cutting photographs & \[
\left\{\begin{array}{c}
S-70-39852 \\
\text { to } \\
S-70-39865
\end{array}\right.
\] & 12063 & Sample-cutting photographs \\
\hline \[
\begin{gathered}
\mathrm{S}-70-37257 \\
\text { to } \\
\mathrm{S}-70-37274
\end{gathered}
\] & 12065 & Sample-cutting photographs & \[
\begin{aligned}
& \mathrm{S}-70-40348 \\
& \text { and } \\
& \mathrm{S}-70-40349
\end{aligned}
\] & 12013 & Sample-cutting photographs \\
\hline \[
\begin{gathered}
S-70-37687 \\
\text { and } \\
S-70-37688
\end{gathered}
\] & 12002-162 & Thin sections & \[
\begin{gathered}
S-70-40673 \\
\text { to } \\
S-70-40687
\end{gathered}
\] & 12013 & Sample-cutting photographs \\
\hline S-70-37689 & 12009-13 & Thin section & \[
\begin{gathered}
S-70-40688 \\
\text { to }
\end{gathered}
\] & 12004 & Sample-cutting photographs \\
\hline \[
\begin{gathered}
S-70-37690 \\
\text { and }
\end{gathered}
\] & 12053-77 & Thin sections & S-70-40706 & & \\
\hline S-70-37691 & & & \[
\begin{gathered}
\mathrm{S}-70-40707 \\
\text { to }
\end{gathered}
\] & 12002 & Sample-cutting photographs \\
\hline S-70-37692 & 12018-12 & Thin section & S-70-40710 & & \\
\hline S-70-37693 & 12053-77 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-40711 \\
\text { to }
\end{gathered}
\] & 12034 & Sample-cutting photographs \\
\hline S-70-37694 & 12009-13 & Thin section & S-70-40725 & & \\
\hline S-70-37695 & 12063-11 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-40726 \\
\text { to }
\end{gathered}
\] & 12022 & Sample-cutting photographs \\
\hline S-70-37696 & 12053-77 & Thin section & S-70-40735 & & \\
\hline \[
\begin{gathered}
\mathrm{S}-70-37697 \\
\text { and } \\
\mathrm{S}-70-37698
\end{gathered}
\] & 12073-11 & Thin sections & \[
\begin{gathered}
S-70-40736 \\
\text { to } \\
\mathrm{S}-70-40739
\end{gathered}
\] & 12018 & Sample-cutting photographs \\
\hline S-70-37699 & 12062-11 & Thin section & \[
\begin{gathered}
S-70-40807 \\
\text { and }
\end{gathered}
\] & 12051-53 & Thin sections \\
\hline S-70-37700 & 12018-12 & Thin section & S-70-40808 & & \\
\hline S-70-37701 & 12073-11 & Thin section & S-70-40809 & 12053-84 & Thin section \\
\hline S-70-37702 & 12053-77 & Thin section & S-70-40810 & 12053-54 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-38313 \\
\text { to }
\end{gathered}
\] & 12002 & Sample-cutting photographs & S-70-40811 & 12051-55 & Thin section \\
\hline S-70-38525 & & & S-70-40812 & 12051-54 & Thin section \\
\hline \[
\left\lvert\, \begin{gathered}
\mathrm{S}-70-39758 \\
\text { to } \\
\mathrm{S}-70-39798
\end{gathered}\right.
\] & 12021 & Sample-cutting photographs & \[
\begin{aligned}
& S-70-40813 \\
& \text { and } \\
& S-70-40814
\end{aligned}
\] & 12053-54 & Thin sections \\
\hline \[
\begin{gathered}
S-70-39799 \\
\text { to }
\end{gathered}
\] & 12022 & Sample-cutting photographs & S-70-40815 & 12065-93 & Thin section \\
\hline S-70-39829 & & & \[
\begin{aligned}
& S-70-40816 \\
& \text { and } \\
& S-70-40817
\end{aligned}
\] & 12053-54 & Thin sections \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-40818 & 12051-55 & Thin section & S-70-41199 & 12004-50 & Thin section \\
\hline S-70-40819 & 12065-93 & Thin section & S-70-41200 & 12053-85 & Thin section \\
\hline S-70-40820 & 12051-53 & Thin section & S-70-41201 & 12053-83 & Thin section \\
\hline S-70-40821 & 12053-84 & Thin section & S-70-41202 & 12065-95 & Thin section \\
\hline S-70-40822 & 12009-13 & Thin section & S-70-41203 & 12051-58 & Thin section \\
\hline \[
\begin{gathered}
S-70-40823 \\
\text { and } \\
S-70-40824
\end{gathered}
\] & 12065-92 & Thin sections & \[
\begin{aligned}
& S-70-41204 \\
& \text { and } \\
& S-70-41205
\end{aligned}
\] & 12013-15 & Thin sections \\
\hline S-70-40825 & 12053-84 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-41206 \\
\text { and }
\end{gathered}
\] & 12065-95 & Thin sections \\
\hline S-70-40826 & 12053-78 & Thin section & S-70-41207 & & \\
\hline S-70-40827 & 12051-53 & Thin section & S-70-41208 & 12053-85 & Thin section \\
\hline S-70-40828 & 12051-55 & Thin section & S-70-41209 & 12065-95 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-40829 \\
\text { and }
\end{gathered}
\] & 12065-92 & Thin sections & S-70-41210 & 12053-85 & Thin section \\
\hline S-70-4083C & & & S-70-41211 & 12013-15 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-40831 \\
\text { and }
\end{gathered}
\] & 12053-84 & Thin sections & S-70-41212 & 12065-94 & Thin section \\
\hline S-70-40832 & & & \[
\begin{gathered}
\mathrm{S}-70-41213 \\
\text { and }
\end{gathered}
\] & 12053-85 & Thin sections \\
\hline \[
\begin{gathered}
\mathrm{S}-70-40833 \\
\text { and }
\end{gathered}
\] & 12013-9 & Thin sections & S-70-41214 & & \\
\hline S-70-40834 & & & S-70-41215 & 12051-59 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-40835 \\
\text { and }
\end{gathered}
\] & 12051-55 & Thin sections & S-70-41216 & 12004-50 & Thin section \\
\hline S-70-40836 & & & S-70-41217 & 12051-59 & Thin section \\
\hline S-70-40837 & 12073-14 & Thin section & S-70-4 1218 & 12065-96 & Thin section \\
\hline S-70-40838 & 12002-167 & Thin section & S-70-41389 & 12065-93 & Thin section \\
\hline S-70-40839 & 12063-12 & Thin section & S-70-41390 & 12013-14 & Thin section \\
\hline S-70-40840 & 12065-92 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-41391 \\
\text { and }
\end{gathered}
\] & 12065-93 & Thin sections \\
\hline S-70-40841 & 12073-14 & Thin section & S-70-41392 & & \\
\hline S-70-40842 & 12002-162 & Thin section & S-70-41393 & 12053-83 & Thin section \\
\hline S-70-40843 & 12053-54 & Thin section & S-70-41394 & 12065-93 & Thin section \\
\hline S-70-40844 & 12051-55 & Thin section & \[
\begin{gathered}
S-70-41395 \\
\text { and }
\end{gathered}
\] & 12053-83 & Thin sections \\
\hline S-70-40845 & 12051-53 & Thin section & S-70-41396 & & \\
\hline S-70-41196 & 12065-95 & Thin section & S-70-41397 & 12065-94 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-41197 \\
\text { and } \\
\mathrm{S}-70-41198
\end{gathered}
\] & 12051-59 & Thin sections & S-70-41398 & 12053-83 & Thin section \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{aligned}
& \mathrm{S}-70-41399 \\
& \text { and } \\
& \mathrm{S}-70-41400
\end{aligned}
\] & 12065-94 & Thin sections & \(S-70-42754\)
\(S-70-42755\) & 12073-15 & Thin section
Thin section \\
\hline S-70-41401 & 12065-96 & Thin section & S-70-43340 & 12065-109 & Thin section \\
\hline S-70-41402 & 12065-94 & Thin section & S-70-43341 & 12051-60 & Thin section \\
\hline S-70-41403 & 12051-58 & Thin section & S-70-43342 & 12009-14 & Thin section \\
\hline S-70-41404 & 12065-96 & Thin section & S-70-43343 & 12065-108 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-41405 \\
\text { and } \\
\mathrm{S}-70-41406
\end{gathered}
\] & 12051-58 & Thin sections & \[
\begin{aligned}
& \mathrm{S}-70-43344 \\
& \text { and } \\
& \mathrm{S}-70-43345
\end{aligned}
\] & 12053-86 & Thin sections \\
\hline S-70-41407 & 12013-13 & Thin section & S-70-43346 & 12063-110 & Thin section \\
\hline S-70-41408 & 12013-14 & Thin section & S-70-43347 & 12009-14 & Thin section \\
\hline \[
\begin{gathered}
S-70-41409 \\
\text { and }
\end{gathered}
\] & 12013-13 & Thin sections & \(S-70-43348\)
\(S-70-43349\) & 12034-37 & Thin section
Thin section \\
\hline S-70-41410 & & & S-70-43349 & 12021-136 & Thin section \\
\hline S-70-42732 & 12051-57 & Thin section & S-70-43350 & 12053-86 & Thin section \\
\hline S-70-42733 & 12073-15 & Thin section & S-70-43351 & 12021-135 & Thin section \\
\hline S-70-42734 & 12051-56 & Thin section & S-70-43352 & 12051-62 & Thin section \\
\hline S-70-42735 & 12065-97 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-43353 \\
\text { and }
\end{gathered}
\] & 12021-141 & Thin sections \\
\hline S-70-42736 & 12021-124 & Thin section & S-70-43354 & & \\
\hline S-70-42737 & 12034-32 & Thin section & S-70-43355 & 12034-37 & Thin section \\
\hline S-70-42738 & 12004-51 & Thin section & S-70-43356 & 12021-136 & Thin section \\
\hline S-70-42739 & 12073-13 & Thin section & S-70-43357 & 12021-141 & Thin section \\
\hline S-70-42740 & 12004-55 & Thin section & S-70-43358 & 12063-110 & Thin section \\
\hline S-70-42741 & 12004-51 & Thin section & S-70-43359 & 12021-136 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-42742 \\
\text { and } \\
\mathrm{S}-70-42743
\end{gathered}
\] & 12021-132 & Thin sections & \[
\begin{gathered}
S-70-43360 \\
\text { and } \\
S-70-43361
\end{gathered}
\] & 1205 1-62 & Thin sections \\
\hline S-70-42744 & 12004-55 & Thin section & S-70-43362 & 12021-135 & Thin section \\
\hline S-70-42745 & 12065-107 & Thin section & S-70-43363 & 12051-62 & Thin section \\
\hline S-70-42746 & 12073-13 & Thin section & S-70-43364 & 12053-86 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-42747 \\
\text { to }
\end{gathered}
\] & 12065-107 & Thin sections & S-70-43365 & 12021-135 & Thin section \\
\hline S-70-42749 & & & S-70-43421 & 12021-125 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-42751 \\
\text { to } \\
\mathrm{S}-70-42753
\end{gathered}
\] & 12051-61 & Thin sections & \[
\begin{gathered}
\mathrm{S}-70-43422 \\
\text { to } \\
\mathrm{S}-70-43426
\end{gathered}
\] & 12053-87 & Thin sections \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline \[
\begin{gathered}
S-70-43427 \\
\text { to } \\
S-70-43430
\end{gathered}
\] & 12065-97 & Thin sections & \(S-70-43524\)
\(S-70-43525\) & \(12034-34\)
\(12034-33\) & Thin section
Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-43431 \\
\text { and } \\
\mathrm{S}-70-43432
\end{gathered}
\] & 12021-125 & Thin sections & S-70-43526 & 12018-76 & Thin section
Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-43433 \\
\text { and } \\
\mathrm{S}-70-43434
\end{gathered}
\] & 12021-124 & Thin sections & S-70-43528 & 12021-137 & Thin section
Thin section \\
\hline \[
\begin{gathered}
S-70-43435 \\
\text { to } \\
S-70-43439
\end{gathered}
\] & 12051-56 & Thin sections & \[
\begin{gathered}
\mathrm{S}-70-43530 \\
\text { and } \\
\mathrm{S}-70-43531
\end{gathered}
\] & 12021-139 & Thin sections \\
\hline S-70-43440 & 12004-57 & Thin section & \[
\begin{gathered}
\mathrm{S}-70-43532 \\
\text { and }
\end{gathered}
\] & 12021-137 & Thin sections \\
\hline \[
\begin{gathered}
\mathrm{S}-70-43441 \\
\text { to }
\end{gathered}
\] & 12051-60 & Thin sections & S-70-43533 & & \\
\hline S-70-43443 & & & \[
\begin{gathered}
\mathrm{S}-70-43534 \\
\text { and }
\end{gathered}
\] & 12021-134 & Thin sections \\
\hline S-70-43444 & 12004-57 & Thin section & S-70-43535 & & \\
\hline \[
\begin{array}{|l|}
\hline S-70-43445 \\
\text { and }
\end{array}
\] & 12018-74 & Thin sections & S-70-43536 & 12073-16 & Thin section \\
\hline S-70-43446 & & & S-70-43537 & 12018-76 & Thin section \\
\hline \[
\begin{gathered}
\mathrm{S}-70-43447 \\
\text { to }
\end{gathered}
\] & 12065-109 & Thin sections & S-70-43538 & 12034-33 & Thin section \\
\hline S-70-43450 & & & S-70-43539 & 12034-34 & Thin section \\
\hline \[
\begin{gathered}
S-70-43451 \\
\text { to } \\
S-70-43454
\end{gathered}
\] & 12065-106 & Thin sections & \[
\begin{gathered}
S-70-43540 \\
\text { to } \\
S-70-43542
\end{gathered}
\] & 12053-90 & Thin sections \\
\hline \[
\begin{gathered}
S-70-43455 \\
\text { to } \\
S-70-43457
\end{gathered}
\] & 12065-108 & Thin sections & \[
\begin{gathered}
\mathrm{S}-70-43543 \\
\text { and } \\
\mathrm{S}-70-43544
\end{gathered}
\] & 12022-113 & Thin sections \\
\hline \[
\begin{gathered}
S-70-43458 \\
\text { and } \\
S-70-43459
\end{gathered}
\] & 12004-56 & Thin sections & \[
\begin{gathered}
\mathrm{S}-70-43545 \\
\text { and } \\
\mathrm{S}-70-43546
\end{gathered}
\] & 12022-111 & Thin sections \\
\hline S-70-43460 & 12034-36 & Thin section & \[
\begin{gathered}
S-70-43632 \\
\text { and }
\end{gathered}
\] & 12013-8 & Color closeups \\
\hline S-70-43461 & 12004-58 & Thin section & S-70-43633 & & \\
\hline S-70-43517 & 12021-139 & Thin section & \[
\begin{gathered}
S-70-43634 \\
\text { to }
\end{gathered}
\] & 12013-11 & Color closeups \\
\hline \[
\begin{gathered}
S-70-43518 \\
\text { and }
\end{gathered}
\] & 12022-110 & Thin sections & S-70-43637 & & \\
\hline S-70-43519 & & & \[
\begin{gathered}
S-70-43638 \\
\text { to }
\end{gathered}
\] & 12020 & Color closeups \\
\hline S-70-43520 & 12022-111 & Thin section & S-70-43640 & & \\
\hline S-70-43521 & 12022-110 & Thin section & S-70-43641 & 12013 & Color closeup \\
\hline S-70-43522 & 12053-90 & Thin section & \[
\begin{gathered}
S-70-43800 \\
\text { to }
\end{gathered}
\] & 12010-0 & Color closeups \\
\hline S-70-43523 & 12022-113 & Thin section & S-70-43805 & & \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-43827 & 12009-16 & Thin section & S-70-44105 & 12065 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-43828 & 12021-142 & Thin section & S-70-44106 & 12022-13 & \\
\hline S-70-43829 & 12034-35 & Thin section & & & genealogy \\
\hline S-70-43830 & 12021-140 & Thin section & S-70-44107 & 12002-27 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-43831 & 12022-116 & Thin section & S-70-44108 & 120 & \\
\hline S-70-43832 & 12022-115 & Thin section & & & genealogy \\
\hline S-70-43833 & 12018-75 & Thin section & S-70-44109 & 12002-48 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-43834 & 12009-16 & Thin section & S-70-44110 & 12063 & \\
\hline S-70-43835 & 12034-35 & Thin section & \(5-70-44110\) & 12063 & genealogy \\
\hline S-70-43836 & 12018-77 & Thin section & S-70-44111 & 12065-21 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-43837 & 12018-75 & Thin section & & & \\
\hline \[
\begin{gathered}
S-70-43838 \\
\text { and }
\end{gathered}
\] & 12021-142 & Thin sections & S-70-44112 & 12004-2 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-43839 & & & S-70-44113 & 12065-16 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-43840 & 12018-77 & Thin section & S-70-44114 & 12002 & \\
\hline \[
\begin{gathered}
\mathrm{S}-70-44014 \\
\text { to }
\end{gathered}
\] & 12075-4 & Full-view color photographs & S-70-44114 & 12002 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44023 & & & S-70-44115 & \[
\begin{gathered}
12002-26 \\
\text { and }-28
\end{gathered}
\] & Artist's drawing of rock-cutting genealogy \\
\hline \[
\begin{gathered}
S-70-44088 \\
\text { to } \\
S-70-44093
\end{gathered}
\] & 12008 & Color closeups & S-70-44116 & 12021-33 & Artist's drawing of rock-cutting genealogy \\
\hline \[
\begin{aligned}
& \mathrm{S}-70-44094 \\
& \text { and } \\
& \mathrm{S}-70-44095
\end{aligned}
\] & 12073-17 & Color closeups & S-70-44117 & 12053-4 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44096 & 12017 & Color closeup & S-70-44118 & 12002-21 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44097 & 12073-17 & Color closeup & S-70-44119 & 12051-2 & Artist's drawing of rock-cutting genealogy \\
\hline \[
\begin{aligned}
& S-70-44098 \\
& \text { and } \\
& S-70-44099
\end{aligned}
\] & 12017 & Color closeups & S-70-44120 & 12022-0 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44100 & 12051 & Artist's drawing of rock-cutting genealogy & S-70-44121 & 12004-15 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44101 & 12053 & Artist's drawing of rock-cutting genealogy & S-70-44122 & 12021 & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44102 & 12009 & Artist's drawing of rock-cutting genealogy & S-70-44123 & \[
\begin{aligned}
& \text { 12063-31. } \\
& -32 . \\
& \text { and }-33
\end{aligned}
\] & Artist's drawing of rock-cutting genealogy \\
\hline S-70-44103 & 12002-33 & Artist's drawing of rock-cutting genealogy & S-70-44124 & 12063-28. & Artist's drawing of rock-cutting \\
\hline S-70-44104 & 12022-14 & Artist's drawing of rock-cutting genealogy & & \begin{tabular}{l}
-30. \\
and -34
\end{tabular} & genealogy \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photogr2ph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-44125 & 12034 & Artist's drawing of rock-cutting genealogy & S-70-44553 & 12038-67 & Thin section \\
\hline & & & S-70-44554 & 12038-66 & Thin section \\
\hline S-70-44126 & 12053-6 & Artist's drawing of rock-cutting genealogy & S-70-44555 & 12040-46 & Thin section \\
\hline S-70-44127 & 12065-20 & Artist's drawing of rock-cutting genealogy & S-70-44556 & 12010-29 & Thin section \\
\hline & & & S-70-44557 & 12008-14 & Thin section \\
\hline \[
\begin{gathered}
S-70-44174 \\
\text { to } \\
\text { S-70-44179 }
\end{gathered}
\] & 12035-9 & Color closeups & S-70-44558 & 12020-57 & Thin section \\
\hline \[
\begin{aligned}
& S-70-44328 \\
& \text { and } \\
& s-70-44329
\end{aligned}
\] & 12035-7 & Color closeups & \[
\begin{gathered}
S-70-44559 \\
\text { and } \\
S-70-44560
\end{gathered}
\] & 12065-112 & Thin sections \\
\hline & 12073-17 & C & S-70-44561 & 12008-14 & Thin section \\
\hline \[
\begin{gathered}
\text { to } \\
\mathrm{S}-70-44336
\end{gathered}
\] & & & S-70-44562 & 12038-67 & Thin section \\
\hline & & & S-70-44563 & 12075-22 & Thin section \\
\hline \[
\left\lvert\, \begin{gathered}
s-70-44450 \\
\text { to } \\
s-70-44459
\end{gathered}\right.
\] & 12064-11 & Color closeups & S-70-44564 & 12018-79 & Thin section \\
\hline S-70-44524 & 12040-46 & Thin section & S-70-44565 & 12022-119 & Thin section \\
\hline & & & S-70-44566 & 12010-30 & Thin section \\
\hline S-70-44525 & 12038-68 & Thin section & S-70-44567 & 12008-19 & Thin section \\
\hline S-70-44526 & 12063-113 & Thin section & & & \\
\hline S-70-44527 & 12022-118 & Thin section & S-70-44568 & 12018-80 & Thin section \\
\hline & & & S-70-44569 & 12040-43 & Thin section \\
\hline S-70-44528 & 12020-57 & Thin section & S-70-44570 & 12010-28 & Thin section \\
\hline S-70-44529. & 12008-19 & Thin section & & & \\
\hline S-70-44540 & 12020-28 & Thin section & S-70-44571 & 12075-23 & Thin section \\
\hline S-70-44540 & 12020-28 & Thin section & S-70-44572 & 12008-15 & Thin section \\
\hline S-70-44541 & 12022-119 & Thin section & & & \\
\hline S-70-44542 & 12010-29 & Thin section & S-70-44573 & 12020-56 & Thin section \\
\hline & & & S-70-44574 & 12008-15 & Thin section \\
\hline S-70-44543 & 12010-30 & Thin section & S-70-44630 & 12052-10 & Color closeups \\
\hline S-70-44544 & 12018-80 & Thin section & \[
\begin{gathered}
\text { to } \\
S-70-44639
\end{gathered}
\] & & \\
\hline S-70-44545 & 12022-118 & Thin section & & & \\
\hline S-70-44546 & 12075-23 & Thin section & S-70-44847
and & 12052-1 & Color closeups \\
\hline & & & S-70-44848 & & \\
\hline S-70-44547 & 12018-79 & Thin section & S-70-45306 & 12017 & Color closeups \\
\hline S-70-44548 & 12040-43 & Thin section & s-70-45312 & & \\
\hline S-70-44549 & 12075-22 & Thin section & & & \\
\hline S-70-44550 & 12038-68 & Thin section & S-70-45621 & 12010-31 & Thin section \\
\hline & & & S-70-45622 & 12075-27 & Thin section \\
\hline \[
\begin{gathered}
S-70-44551 \\
\text { and } \\
S-70-44552
\end{gathered}
\] & 12040-44 & Thin sections & S-70-45623 & 12063-115 & Thin section \\
\hline
\end{tabular}

TABLE D-IV. - LUNAR-SAMPLE PHOTOGRAPHIC INDEX BY NASA PHOTOGRAPH NUMBER - Concluded
\begin{tabular}{|c|c|c|c|c|c|}
\hline NASA photograph number & Sample number & Description & NASA photograph number & Sample number & Description \\
\hline S-70-45624 & 12062-13 & Thin section & S-70-45635 & 12035-22 & Thin section \\
\hline S-70-45625 & 12010-31 & Thin section & S-70-45636 & 12010-33 & Thin section \\
\hline S-70-45626 & 12035-21 & Thin section & S-70-45637 & 12035-21 & Thin section \\
\hline S-70-45627 & 12035-24 & Thin section & S-70-45638 & 12075-26 & Thin section \\
\hline S-70-45628 & 12010-32 & Thin section & S-70-45639 & 12035-25 & Thin section \\
\hline S-70-45629 & 12075-27 & Thin section & S-70-45640 & 12021-145 & Thin section \\
\hline S-70-45630 & 12035-24 & Thin section & S-70-45641 & 12063-115 & Thin section \\
\hline S-70-45631 & 12062-13 & Thin section & \[
\begin{gathered}
S-70-45642 \\
\text { and }
\end{gathered}
\] & 12021-145 & Thin sections \\
\hline S-70-45632 & 12075-26 & Thin section & S-70-45643 & & \\
\hline S-70-45633 & 12035-22 & Thin section & S-70-45644 & 12010-33 & Thin section \\
\hline S-70-45634 & 12010-32 & Thin section & & & \\
\hline
\end{tabular}

\section*{SAMPLE CROSS-REFERENCE}

The third index (table D-V) is a cross-reference of all samples collected during the EVA traverses with (1) the tentative lunar-surface locations, (2) the lunar-surface photographs in which the samples are shown, and (3) the chronological sequence (in ground-elapsed time) in which the samples were collected. The tentative identification of the samples is based on a combination of the astronauts' descriptions and a correlation of the sample characteristics as seen in the NASA and the surface photographs. Samples indicated in the first column of table D-V as "(?)" have notbeen identified; however, where the sample number is given with the " (?)," the reference to an actual sample is strongly suggested. Further study of the surface photographs may permit additional identification and orientation of the samples.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, g & Location and comments & Lunar-burface photographs & \[
\begin{aligned}
& \text { g.e.t., } \\
& \text { day:hr:mln }
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Contingency sample} \\
\hline \begin{tabular}{l}
12070 to 12077 \\
12070 \\
12071 \\
12072 \\
12073 \\
12074 \\
12075 \\
12076 \\
12077
\end{tabular} & \begin{tabular}{l}
Total contingency sample \\
D - fines \\
E - chips \\
A - basalt \\
C - breccia \\
(Broken from sample 12073) \\
A - basalt \\
A - basalt \\
A - basalt
\end{tabular} & \begin{tabular}{l}
1102 \\
9. 16 \\
103.6 \\
407.6 \\
46.6 \\
232.5 \\
54.55 \\
22. 63
\end{tabular} & \begin{tabular}{l}
All collected from the rim of a small crater 15 m northwest of LM. \\
Identified and tentatively oriented in presampling photographs. \\
Identified and tentatively oriented in presampling photographs.
\end{tabular} & \begin{tabular}{l}
AS12-48-7029 to AS12-48-7033 (8ample area before sampling) (panorama 1 , right-hand LM window) \\
16-mm sequencecamera photographs show sample area before and during sampling \\
AS12-46-6719 to AS12-46-6723 (postsample photographs showing scoop marks)
\end{tabular} & \begin{tabular}{l}
04:19:26 to 04:19:28 (8ampling) \\
04:19:39 \\
04:19:43
\end{tabular} & \begin{tabular}{l}
CDR '... I'm going over to get my contingency sample, and I'll get one of the rocks - in the sample. And yes, as a matter of fact, it is built up on the side that the LM landed on. Let me get it. Well, there's one scoop. \\
There's another with some more rocks in it . . . here's another good-looking rock . . there's another rock I want to get in it. " \\
'I think that's about enough, don't you? Except there's one big rock that's too pretty to pass up . . . It won't fit. I'll go over and get this other one, though." \\
CDR "One of the first things that I can see, by golly, is little glass beads. I got a plece about a quarter of an inch in sight, and I'm going to put it in the contingency sample bag, if I can get it. I got it ...' \\
CDR "... I got the contingency sample in the bag." (Equipment transfer bag) \\
CDR "That contingency sample is black." \\
LMP 'You'd better belleve it."
\end{tabular} \\
\hline \multicolumn{7}{|c|}{Selected samples} \\
\hline \[
\begin{aligned}
& 12017 \\
& { }_{(1)}^{12017}
\end{aligned}
\] & \[
\underset{\text { basalt }}{\text { AB - glass-coated }}
\] & & Near the small mound. It is not clear whether the sample was picked up from the mound or from the debris apron nearby; however, the sample ls probably associated with mound material. Identification is from the description only. Rock 12017 is the only selected sample that has a shiny glass coating. The sample is not identified in surface photographs, and the lunar orientation is not known; the glassy side was probably up, thus attracting attention as a specimen. & AS12-46-6822 to AS12-46-6825 (small mound photographs; sample not located) & 04:22:02 & LMP "Hey, here's a rock they'll be glad to see in Houston... It's an interesting one \({ }^{\text {b }}\). It looks like a solid glass chunk. It's real shiny black ..." \\
\hline
\end{tabular}
\({ }^{a}\) A total of 20 rocks is included in the selected sample. The numbers in parentheses indicate the sequence of rocks picked up, as inferred from a study of the mission transcript and the lunar-surface photographs.
\({ }^{\mathrm{b}}\) The Public Affalrs Office (PAO) transcript has the remark here, 'It's rather soft --'; however, this remark is not found in other transcripts.

TABLE D-V.- CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
and ground-elapsed times - Contirued

\title{
TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
}

AND GROUND-ELAPSED TIMES - Continued

table d.v. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TTMES - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, B & Location and comments & Lunar-surface photographs & \[
\begin{aligned}
& \text { g.e.t., } \\
& \text { day:hr: } \mathrm{min}
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Selected samples - Continued} \\
\hline \[
12013 \mathrm{~T}
\]
(8) & A - anorthosite breccia & 82.3 & \multirow[t]{3}{*}{\begin{tabular}{l}
Near rim of Middle Crescent Crater. Precise location not known. Sample identified and tentatively oriented from photographic interpretation only. Right-hand rock in foreground group. \\
Tentatively Identified and oriented from photographic interpretation only. Center rock in foreground group. \\
Tentatively identified and oriented from photographic interpretation oniy. Shown in center foreground of lunarsurface photograph.
\end{tabular}} & AS12-46-6833 & 04: 22: 16 & \multirow[t]{2}{*}{\begin{tabular}{l}
(Crew comments at this time are shown above) \\
(Crew comments at this time are shown above)
\end{tabular}} \\
\hline \[
\underset{(9)}{12019 \mathrm{~T}}
\] & A - basalt & 462.4 & & AS12-46-6833 & 04: 22: 16 & \\
\hline \[
\begin{gathered}
12010 \mathrm{~T} \\
(10)
\end{gathered}
\] & A-microbreccia & 360.0 & & AS12-46-6835 & \[
\text { 04: 22: } 17
\] & \begin{tabular}{l}
CDR "There - there's a rock for you." \\
LMP "Okay." \\
CDR "Listen, we need to find a grapefruit, too, you know. \({ }^{n}\) \\
LMP \({ }^{\text {n }}\) Yes. There's a bunch around. \({ }^{n}\)
\end{tabular} \\
\hline \[
\begin{gathered}
12015(?) \\
(11)
\end{gathered}
\] & A - olivine vitrophyre & \multirow[t]{5}{*}{191.2} & \multirow[t]{2}{*}{\begin{tabular}{l}
Near the rim of Middle Crescent Crater. Sample not recognized in lunar- surface photographs. Questioned identification is based on the "dent"; rock 12015 has a spherical cavity approximately 3 cm in diameter. \\
On rim of Middle Crescent Crater. No comment about actually picking up a sample.
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { AS12-46-6833 to } \\
\text { AS12-46-6835 }
\end{gathered}
\]} & 04: 22: 17 & CDR "Made a dent in this rock. Whoops. Wait a minute; I dropped it. Hold it, move on a little bit ..." \\
\hline Rock (?) & Probably not sampled & & & & 04: 22: 17 & \begin{tabular}{l}
CDR "... Look at there; that crater's spectacular, isn't it? Wow, what a monsterl L.ook at that rock! l'd like to ..." \\
LMP "Oh, ... get some of this bedrock - -"
\end{tabular} \\
\hline & & & (Panorama 6 taken at this time.) & \[
\begin{array}{r}
\text { AS12-46-6836 to } \\
\text { AS12-46-6844 }
\end{array}
\] & 04: 22: 18 & \\
\hline \[
\underset{(12)}{\text { Rock }(?)}
\] & Unidentified & & Near site of panorama 6 (not recognized in lunar-surface photographs). & & 04:22:19 & \begin{tabular}{l}
LMP "Got it. I was just looking over this rock down here. Looks like it came - - \\
CDR "Just a minute. Okay. Now, let me go over here, and l'll get one in stereo of this baby." (Stereopanorama of Middle Crescent Crater)
\end{tabular} \\
\hline & & & (Panorama 7 taken at this time.) & \[
\begin{array}{r}
\text { AS12-46-6845 to } \\
\text { AS12-46-6852 }
\end{array}
\] & 04:22:19 & \\
\hline
\end{tabular}

\section*{TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,}
and ground elapsed times - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, B & Location and comments & Lunar-surface photographs & \[
\begin{aligned}
& \text { g.e.t., } \\
& \text { day: hr: } \min
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Selected samples - Continued} \\
\hline \multirow[t]{10}{*}{Rock (13)} & \multirow[t]{10}{*}{UnIdentified} & & \multirow[t]{10}{*}{Near site of panorama 7 (not recognized in lunar-surface photographs).} & & \multirow[t]{10}{*}{04: 22: 20} & LMP "We're picking up a couple right now, and we're on our way back. Just a minute. Boy, there's a big block over there." \\
\hline & & & & & & CDR "Why don't you get it? Got it? I can't get it with the tongs." \\
\hline & & & & & & LMP "Move ahead and 1'll pick it up. \({ }^{\text {a }}\) \\
\hline & & & & & & CDR "Hey, walt a minute. How about this?" \\
\hline & & & & & & LMP "Get It? \({ }^{\text {a }}\) \\
\hline & & & & & & CDR "Push it over here and I'll get it." \\
\hline & & & & & & LMP "Push her over here." \\
\hline & & & & & & CDR \({ }^{\text {ºkay, } . . .}\) \\
\hline & & & & & & LMP "Drop it in my bag. \({ }^{\text {n }}\) \\
\hline & & & & & & CDR "Okay, ..." \\
\hline \multirow[t]{7}{*}{Rock (?)} & \multirow[t]{7}{*}{Unidentified - probably not a sample} & & \multirow[t]{7}{*}{Near site of panorama 7 (not recognized in lunar-surface photographs).} & & \multirow[t]{7}{*}{04: 22: 21} & CDR "Okay. You got anything else you want to put in your bag? Got to push another one over here." \\
\hline & & & & & & LMP "Okay, in just a minute." \\
\hline & & & & & & CDR "Okay." \\
\hline & & & & & & LMP "A couple of big ones. Oh, 1 wish 1 could get this inside of that. 1 can't. " \\
\hline & & & & & & CDR "Try that one." \\
\hline & & & & & & LMP "That's a good one." \\
\hline & & & & & & CDR "Huh?" \\
\hline \multirow[t]{3}{*}{Rock (14)} & \multirow[t]{3}{*}{Unidentified} & & \multirow[t]{3}{*}{Southeast rim of Middle Crescent Crater.} & & \multirow[t]{3}{*}{04: 22: 21} & LMP "A couple of nice ones right here. Wait a minute. Get my ..." \\
\hline & & & & & & CDR "There you go. Oops." \\
\hline & & & & & & LMP "Okay, ..." \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TIMES - Continued

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TTMES - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, g & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g. e.t., } \\
\text { day: hr: min }
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Selected samples - Continued} \\
\hline Rock (18) & Unidentified rock & & Near ALSEP. & No photograph & 04:22:24 & \begin{tabular}{l}
CDR "All right. Here's one right here." \\
LMP "Okay. Let me get a photogiaph of it. Hurry. We're on our way." \\
LMP "Okay. There's a good one. Wait a minute. Eight. Step in and get the picture. \({ }^{\text {n }}\) \\
CDR "Got it?" \\
LMP "Gotit. There you go." \\
CDR "Good boy. Okay." \\
LMP "Get another good one. Forget the picture." \\
CDR "Okay. You're in the shadow. Step back just a little. " \\
LMP "I said forget the picture - -" \\
CDR "Okay."
\end{tabular} \\
\hline \[
\begin{gathered}
12020(?) \\
\text { (or) } \\
12006(?) \\
(19)
\end{gathered}
\] & \begin{tabular}{l}
A - olivine basalt \\
AB - olivine basalt
\end{tabular} & \[
\begin{aligned}
& 312.0 \\
& 206.4
\end{aligned}
\] & Between ALSEP and the LM. Using the "grinning" face as a clue to identity, rocks 12020 and 12006 both are vuggy and could have "faces" at certain orientations. & No photograph & 04:22:25 & \begin{tabular}{l}
CDR "Okay, We're within about 300 feet of the LM now, Houston." \\
"There's a good rock. " \\
LMP "Halt, halt, halt." \\
CDR "Look at that!" \\
LMP "I swear there's a - -" \\
CDR "Never saw one like that before. Look at thatl ... That green, what is it?" \\
LMP "- - see it." \\
CDR "No, it was grinning at me. That's why I stopped. " \\
LMP "Okay." \\
CDR "The heck with it. Put it in the bag."
\end{tabular} \\
\hline Rock (20) & Unidentifted rock & & Between ALSEP and the LM. LMP reference to "gabbro" suggests relatively coarse texture of this sample. & & 04:22:26 & \begin{tabular}{l}
LMP "Here, let's pick up a couple of these." \\
CDR "Okay."
\end{tabular} \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TIMES - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample
type & Sample weight, g & Location and comments & Lunar-surface photographs & \[
\begin{aligned}
& \text { g.e.t. , } \\
& \text { day: hr: min }
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Selected samples - Continued} \\
\hline \multirow{8}{*}{1200t} & \multirow{8}{*}{\[
\equiv \frac{\text { fines }(<1 \mathrm{~cm})}{\text { (glass bead) }}
\]} & \multirow{8}{*}{221¢. 0} & \multirow{8}{*}{Near the LM on return from first EVA sample traverse. This glass bead is probably included in the sample of fines from the selected sample.} & \multirow{8}{*}{No photograph} & \multirow[b]{5}{*}{\[
\begin{gathered}
04: 22: 26 \\
10 \\
04: 22: 27
\end{gathered}
\]} & LMP "Hey, they're good. They're a little different. They're more the gabbro type. Yes - Wait a second..." \\
\hline & & & & & & CDR "Get it in?" (One sample) \\
\hline & & & & & & LMP "Good show." \\
\hline & & & & & & CDR "Let's go." \\
\hline & & & & & & \begin{tabular}{l}
CDR ". . . look at that, a pure bead of glass! ..." \\
LMP "Let's grab it. Oh, come on. Hold my hand." \\
CDR "Okay."
\end{tabular} \\
\hline & & & & & & LMP "Oh, I'm losing it. Got it ... it's one of those black beads, only this one's - about --" \\
\hline & & & & & & CDR "All look green to me. Okay." \\
\hline & & & & & & LMP " - - three-eighths of an inch in diameter. And they're all --" \\
\hline \multirow[t]{3}{*}{12026} & \multirow[t]{3}{*}{Core 2013 (No. 1)} & \multirow[t]{3}{*}{101. 4} & \multirow[t]{3}{*}{Approximately 4 m east of television camera.} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { AS12-47-7007 and } \\
\text { AS12-47-7008 }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 04: } 22: 35 \\
\text { to } \\
04: 22: 36
\end{gathered}
\]} & LMP "Adios. I'll go for the core tube ... over near the TV, and I'd come back by it." ..., okay. l'm core-tubing it right now." \\
\hline & & & & & & CDR \\
\hline & & & & & & LMP "Houston, we're getting the core tube in real good. It's down almost full length now. it's a little harder to drive in; you have to auger it a bit and then pound it, but now it's full length, and let me take a picture of it and that will be it. " \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
12001 \\
\text { and } \\
12003
\end{gathered}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
D - ifines \\
D - fines and chips
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{array}{r}
2216.0 \\
300.0
\end{array}
\]} & \multirow[t]{3}{*}{Near the LM. Filling SRC at end of the first EVA.} & \multirow[t]{3}{*}{No photograph} & \multirow[t]{3}{*}{04: 22: 35} & CDR "You know, I wish we had more rocks." \\
\hline & & & & & & \(\mathrm{CC}^{\mathrm{c}}{ }^{\text {n Pete, you can go ahead and fill up the temain- }}\) der with the fines from that area." \\
\hline & & & & & & CDR "Okay, ... Let's see. Scoop material. That a boy." \\
\hline
\end{tabular}
\({ }^{\text {C }}\) Capsule communicator.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, g & Location and comments & Lunar-surface photographs & \[
\begin{aligned}
& \text { g. e.t., } \\
& \text { day:hr: } \mathrm{min}
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Selected samples - Concluded} \\
\hline & & & & & 04: 22:44 & ```
CDR "... dump some dirt in this bag."
LMP "How much? When you say stop?"
CDR "All right. ... Boy, that's dirt ... that's a
 good bag full."
``` \\
\hline \multicolumn{7}{|c|}{Documented samples} \\
\hline Rock & Not sampled & & Between ALSEP and north rim of Head Crater. CDR apparently rolled this rock into Head Crater. & None & 05: 12:03
05: 12:04 & \begin{tabular}{l}
CDH "Oh, boy, is ... like I want that rock. Here's a dandy extra grapefruit-sized-type goody. Find a crater with a shadow in it first; there's one." \\
CDR "Man, have I got the grapefruit rock of all grapefruit rocks. It's got to come home in the spacecraft; it'll never fit in the rock box. Okay, Houston, I'll tell you what I'm going to do. 1'm going to wind up at the right place at Head Crater; and, while I'm waiting for AI, I'll roll a boulder for you. Okay, Houston?"
\end{tabular} \\
\hline & No sample here & & As LMP crosses area between LM and Head Crater. Description of rocks as given at the time by LMP. & None & 05: 12: 11 & LMP "I can see anything - everything from finegrain basalt as 1 come running across the area here, to - coarse - coarse-grain ones; 1 see some - sort of light reddish-gray colored rock that 1 would call-I don't know really what I would call it - it looks almost like a granite, but of course it probably isn't, but it has the same sort of texture. The individual components - constituents, so to speak, are crystals but it still has that same appearance." \\
\hline 12030 & D-fines (from bag 1-D) & 75.0 & Near northeast rim of Head Crater. Exact location not known. & AS12-48-7043, AS12-48-7044 (before collection), and AS12-48-7045 (after collection) & 05:12:13 & \begin{tabular}{l}
LMP "Okay, let me take something out of this crater hole, Pete. It's sort of unusual; it's got a lot of those little droplets on it, those blips. But ... the fragments in this crater look different from - the others. Take a couple of quick pictures, then I'll be right with you. \({ }^{n}\) \\
"... this is a very small crater, Houston, probably about 3 feet in diameter and looks like It was made at - not very fast moving or energetlc or heavy projectile. Yet, right in the middle of the hole is some of these glasscovered rock fragments. And, on some of the other rocks that seemed to be rested in the hole, I'm putting them all in a - sample bag 1 here, I mean - some of the others don't have any coating on them at all. I'm picking them up with the tongs, but . . . they don't seem to hold together too well; they seem kind of weak.
\end{tabular} \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
and ground-Elapsed times - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, B & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g.e.t., } \\
\text { day:hr: } \min
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline \multirow{3}{*}{12031} & \multirow{3}{*}{B-olivine diabase (from bag 3-D)} & \multirow{3}{*}{185.0} & \multirow{3}{*}{Northwest rim of Head Crater; about 15 m inside the rim crest. Adjacent to the site where a trench was dug following collection of this sample.} & \multirow[b]{3}{*}{AS12-48-7048, AS12-49-7189, AS12-49-7190 (before collection), and AS12-40-7ces (after collection)} & 05: 12:17 & LMP "And, Houston, that sample bag that I put the fragments in that I mentioned earlier, that 1 found in the bottom of that small crater? That's sample bag 1-D. " \\
\hline & & & & & 05: 12:20 & LMP "Let me get over here and get the gnomon and - let's... over this rock right here; this rock is very typical of all the fragments around here." \\
\hline & & & & & 06:12:2! & LMP "OKay, [ jug put it into 3-D." \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& 12032 \\
& 12033
\end{aligned}
\]} & \multirow{7}{*}{\[
\begin{gathered}
D-\text { fines from } \\
\text { bag } 5-D
\end{gathered}
\]} & \multirow{7}{*}{450.0} & \multirow[t]{7}{*}{\begin{tabular}{l}
See entry for sample 12032 at 05:12:40. Sample from bag 4-D (apparently collected after bag \(6-\mathrm{D}\) ). \\
Trench 15 cm deep, approximately 15 m inside northwest rim of Head Crater.
\end{tabular}} & \multirow{7}{*}{\[
\begin{array}{r}
\text { AS12-49-7191 to } \\
\text { AS12-49-7196, } \\
\text { AS12-48-7049, } \\
\text { AS12-48-7051, } \\
\text { AS12-48-7052 }
\end{array}
\]} & & \\
\hline & & & & & 05:12:21 & LMP n... Houston, kind of interesting here. Pete walked across one edge of the rim here. We're about - oh, 50 feet inside the upper rim and he happened to scrape an area there with his foot. It's a much lighter colored soil - -" \\
\hline & & & & & & CDR "Like cement." \\
\hline & & & & & 05: 12:24 & CDR "There you go. Now let me trench it." \\
\hline & & & & & & LMP "... Okay. Where Pete digs up - sure enough, right underneath the surface, you find some much lighter gray - Boy, I don't exactly know what at this point, and you can look around now and see several places where we've walked. If the same thing's occurred, we never have seen this at all - Boy, that's going to make a good picture, Pete. Never seen this at all on the area we were before. Hey, that looks nice." \\
\hline & & & & & & CC "Roger, AI. We copy that; you think it could be the sun angle?" \\
\hline & & & & & & LMP "Listen. No, not at all. This is definitely a change to a light gray as you go down, and the deeper Pete goes - he's down about 4 inches now - it still remains this light gray. It's this soil must be of a different makeup than that we were on outside the crater, because we have to - -" \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,


TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TIMES - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, B & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g.e.t., } \\
\text { day:hr: } \mathrm{min}
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline \multirow{15}{*}{12052} & \multirow{15}{*}{A - ollvine basait} & \multirow{15}{*}{1866.0} & \multirow{15}{*}{Site of panorama 13, west rim of Head Crater. Sample identified in photographs; apparently rolled into position before photography.} & \multirow{15}{*}{\[
\begin{gathered}
\text { ASIZ - } 49-7 \bar{T} 1 \bar{T} \text { and } \\
\text { AS12-49-7218; } \\
\text { AS12-48-7059 }
\end{gathered}
\]} & \multirow{15}{*}{\[
\begin{gathered}
\text { c5: i2: } 32 \\
\text { to } \\
\text { 05: } 12: 34
\end{gathered}
\]} & LMP "Yes. I do. I'll take another one. Pete, maybe you want it." \\
\hline & & & & & & CDR "Even these rocks out in here - even the ones that are almost completely covered with the soil, if I look at them, I can see glints of crystals or something. \({ }^{\text {n }}\) \\
\hline & & & & & & LMP "Yes, every one of them. \({ }^{\text {\% }}\) \\
\hline & & & & & & CDR "All right, let me have that. \({ }^{\text {n }}\) \\
\hline & & & & & & LMP "I'm kind of wondering, we're passing up these here - and they got to be bedrock from somewhere; we need to get a pretty large-sized one here, before we leave this area, Pete." \\
\hline & & & & & & "Because these rocks obviously came out of the crater, because they're scattered more uniformly around it. There's a bunch of them on the rim and there's not many far away. We probably ought to grab a big one of them." \\
\hline & & & & & & "There's an interesting rock; let's - Hey, that's all right; let's get it." \\
\hline & & & & & & CDR "... All right, Al, where do you want to grab the sample hare ? \({ }^{\text {n }}\) \\
\hline & & & & & & LMP "Right here, I'd like to grab that rock right there, because it's got kind of a sharp edge on it and all the rest of them are - I don't know, it's got kind of a - an oblique edge on it, and you don't see many like that around here. " \\
\hline & & & & & & CDR "Which one you mean?" \\
\hline & & & & & & \begin{tabular}{l}
LMP "This one right here, this gray one. It looks \\
a little bit different than the rest."
\end{tabular} \\
\hline & & & & & & CDR "This one?" \\
\hline & & & & & & LMP "No, right there, a little bit further - that one right there. I'll just grab it and put it in the box, if we can pick it up." \\
\hline & & & & & & CDR "This one, the big one?" \\
\hline & & & & & & LMP "The big one." \\
\hline
\end{tabular}


TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
and ground-elapsed times - Continued


table d-v. - Cross-reference of lunar samples with locations, photographs,
AND GROUND-ELAPSED TIMES - Continued

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & \[
\begin{gathered}
\text { Sample } \\
\text { type }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Sample } \\
\text { weight, } \\
\mathbf{g}
\end{array} \\
\hline
\end{array}
\] & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g.e.t., } \\
\text { day:hr:min }
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline Rock (?) & Unidentified large rock & & The large rock sample would probably be one of the following four: 12056, 12062, 12063, or 12065. Sample 12083 is the only one with a large. glass spot on it. & & & \begin{tabular}{l}
LMP "Okay." \\
CDR "Looks a lot like the fragments we've been seeing laying all over the place, but this stuff obviously - Ill bet you we have a total of about 3 pounds of rocks right now." \\
LMP "Okay. I'm with you." \\
CDR "Okay. We're going to have to grab some bigger ..." \\
"Got to dip down in the side of the crater there see how it is going up and down - Boy, this is interesting. I want to get this area right here and see if I can't sample it - if I don't fall down in the crater. Go. That's a boy. Well, this is different: look at this, Al? This is different, we'll get some of this. \({ }^{*}\) \\
LMP n... Look at the glass all over those rocks. \({ }^{\text {n }}\) \\
CDR "Yes. I need to - " \\
LMP "I want to bring this back; look at it." \\
"Here, let me put this - put that in there." \\
CDR "... It's going to fall." \\
LMP "There you go." \\
"Hold it..." \\
CDR "Let me get up here. Okay?n \\
LMP "Watch it - it - You're going to -" \\
CDR "Okay. Now you're going to help me get a bunch of these." \\
LMP "Let's do; let's get a bunch of them and then they'll - have any rocks to bring back. There you go; there's a good one. Put that thing in here." \\
CDR "I had to take that big piece right there. Look at it; it's got spattered glass or something all
over it." over it.
\end{tabular} \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
and ground elapsed times - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, B & Location and comments & Lunar-burface photographs & \[
\begin{aligned}
& \text { g. e.t., } \\
& \text { day:hr: } \mathrm{min}
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline & & & & & & \begin{tabular}{l}
LMP "Let's take it. Why don't we take a big piece of it? And - sample bag. " \\
CDR " 1 'm ... these sample bags, whether they're the - the round ones, or the square ones - or the flat ones, they're all the same type. What you need are sample bags - little ones for these and some big ones for the bigger rocks. Okay; 9 -B is the sample we just picked up and described, Houston."
\end{tabular} \\
\hline \[
\begin{gathered}
12039 \\
\text { and } \\
12040
\end{gathered}
\] & \begin{tabular}{l}
B - olivine diabase or gabbro \\
B - olivine diabase or gabbro (Both from bag 10-D)
\end{tabular} & \[
\text { 255. } 0
\]
\[
319.0
\] & \begin{tabular}{l}
Inside west rim of Bench Crater. Samples not identified in photographs. \\
AS12-49-7240 and AS12-49-7241; both samples have been moved into position for photography in AS12-49-7242 and AS12-49-7243.
\end{tabular} & AS12-49-7240 and AS12-49-7241, AS12-49-7242 and AS12-49-7243 (Samples beside tool carrier) & 05: 12: 49 & \begin{tabular}{l}
LMP "Okay. Put this right in here, Feie." \\
CDR "No. Wait a minute; here's a better one." \\
LMP "Okay. Now we are working on sample bag - 10-B."
CDR "- 10-B. " \\
"Okay. That's a good rock, and that one fills that one up."
\end{tabular} \\
\hline 12023 & D - fines (from Lesc) & 289. 3 & Trench site on east rim of Sharp Crater. & AS12-49-7276, AS12-49-7277, AS12-48-7068, and AS12-49-7278 (Shows LMP holding container) & 05: 12: 58 to 05: 13: 01 & \begin{tabular}{l}
CDR "Dig in that stuff." \\
LMP "Wow!" \\
CDR "You could drive three core tubes down there." \\
LMP "You sure could. 1t's soft." \\
CDR "Yes. Got down about 8 inches." \\
LMP "Yes. Pete, you're digging ... a nice clean trench. " \\
n. . . fine gray. Very fine soil here. " \\
CDR "Fill the big container with dirt." \\
LMP "Well, you still need some more, although one more scoop ought to do it though. " \\
"Okay, that's it. Bag's full. And now let me put the lid on. " \\
n. . . Houston, this dirt came from about 8 inches down.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, g & . Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g. e.t., } \\
\text { day: hr: } \min
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline \[
12027
\] & Core 2011 (Core no. 2) & \[
80.0
\] & Bottom of \(20-\mathrm{cm}\) trench on east rim of Sharp Crater. & AS12-48-7068, AS12-48-7069, AS12-49-7279, AS12-49-7280 (core tube in trench), and AS12-48-7070 (trench after core no. 2 taken) & \[
\begin{gathered}
05: 13: 03 \\
\text { to } \\
\text { to } 13: 04
\end{gathered}
\] & \begin{tabular}{l}
CDR "Okay. Now you need a core tube in the bottom of that trench. Is that right, Houston?" \\
"... and this is core tube number 2." \\
LMP "... Ought to be a good place, Pete. Relatively fresh stuff here. ... you could almost drive it without a hammer; but, if you'll hand it to me, I'll get - -" \\
CDR "It's driving in real easy, Houston." \\
LMP "Go on... all the way. ... we're driving it all the way in pretty easy." \\
CDR "That a boy. Wait I. Stop. That's it."
\end{tabular} \\
\hline 12024 & D - fines (from GASC) & 56.5 & Near trench site, east rim of Sharp Crater. Surface photograph shows area of glassy material included in the gas-analysis sample. & AS12-48-7070 & \[
\begin{gathered}
05: 13: 06 \\
\text { to } \\
05: 13: 09
\end{gathered}
\] & \begin{tabular}{l}
LMP "Okay. We need some little rock fragments from here, Pete. ... hold on - -" \\
CC "Roger. .That's surface rock fragments. " \\
CDR "Okay. Just a second. Yes. We're going to get it ; hold the phone. \({ }^{\text {r }}\) \\
"Some little rocks in here - ." \\
LMP "Okay, little rocks ..." \\
CDR "We got the environmental sample, we got ... core tube, and I'm trying to find a little rock. Little rock? There - there's a lot --" \\
LMP "There's a neat one. There it is right there." \\
CDR "Ho-ho, just right for that little can." \\
LMP "Give me a few. ... See those bright shiny ones there \({ }^{\text {n" }}\) \\
CDR "Yes, yes, yes, yes." \\
LMP "Wait. Let's get a shot of them. Just move Just a second, Pete." \\
CDR "Okay."
\end{tabular} \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WJTH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TIMES - Continued



TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TIMES - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & \[
\begin{gathered}
\text { Sample } \\
\text { type }
\end{gathered}
\] & Sample weight, g & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g.e.t., } \\
\text { day:hr: } \min
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline \[
\begin{gathered}
12025 \\
\text { and } \\
12028
\end{gathered}
\] & \begin{tabular}{l}
Double core, no. 1 over no. 3 \\
Core 2010 (no. 1) \\
Core 2012 (no. 3)
\end{tabular} & \[
\begin{array}{r}
56.1 \\
189.6
\end{array}
\] & North rim of \(10-\mathrm{m}\) crater approximately 25 m south of Halo Crater. & \[
\begin{gathered}
\text { AS12-49-7285 to } \\
\text { AS12-49-7288, } \\
\text { AS12-48-7077 }
\end{gathered}
\] &  & \begin{tabular}{l}
CDR "Except it looks almost finer." \\
LMP "Yes." \\
CDR "Watt a minute and I'll get you another bag \\
LMP "It's funny though. If you saw this on Earth, you would think it was a - a real soft dirt that it had just been rained on recently. ... Not hard rain, but just a sprinkle, so that the droplets --" \\
CDR "There you go." \\
LMP "Now, that's a good sample bag full. That's 12-D, Houston, the sample bag number - -" \\
CDR "... I think this is Halo Crater right here. \\
... We've actually got the soil sample from part of it. \({ }^{\text {. }}\) \\
CDR "Double core tube. You can drive it. Give it ago." \\
LMP "I'm going to hand you the hammer. I'm not sure that double core tube screws on as far as it should. Try It again. Okay. The lower core tube is number 3, I think. Yes." \\
CDR "Three?" \\
LMP "Three, and the upper one's \(1 .{ }^{\text {" }}\) \\
CDR "Ready to pound it." \\
LMP "Where are you going to drive it?" \\
CDR "Where would you recommend?" \\
LMP "Well, let's go over to this crater right here. Where It's soft around those little ... craters. About right here." \\
II can shove it in that little - I hope this is a good soft place. It seems to be. Oh, I hit something solld there. Well, 1 shoved it in I used all my weight, Houston, and shoved it in about 11 inches. Now, I'll just pound on it a while and see what we can do. It ... be going in okay. Yes. It's going in down. "
\end{tabular} \\
\hline
\end{tabular}


TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
and ground-Elapsed times - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, B & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g. e.t., } \\
\text { day:hr: } \mathrm{min}
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline \multirow{11}{*}{(Rock)} & \multirow{11}{*}{Bag 13-D (Not returned)} & \multirow[t]{11}{*}{} & \multirow{11}{*}{At site of panorama 19, Halo Crater.} & \multirow{11}{*}{AS12-49-7312} & \multirow{11}{*}{\[
\begin{gathered}
05: 13: 38 \\
\text { to } \\
05: 13: 39
\end{gathered}
\]} & \multirow[t]{11}{*}{\begin{tabular}{l}
"Well, see the - Here, wait a minute. Reach inside the core tube. Wait. Which goes which - There you go. Beautiful. Right down in there. You got it? You got that one? Okay? Boy, I drove a nice core tube in there. \({ }^{n}\) \\
CDR 'Well, it doesn't look any different, though, from the eye - halfway down. \({ }^{\text {" }}\) \\
LMP "Loan me the tweezers a moment. See that cap right there? The cap right there. Okay. Is this on there fight enough?" \\
CDR "Yes." \\
"Yes, sir. We got a double core tube, and all put together correctly." \\
LMP "That's it, Pete. PAN's complete. Probably ought to get rocks - one of these rocks here just throw it in the bag - - \\
CDR "Yes. I think we ought to." \\
LMP "How about - You want to get this one? Let's sample a couple of these laying right over here. \({ }^{\text {" }}\) \\
CDR "Goodidea. That a boy." \\
LMP "Okay. Here, take one quick picture so we can save some film. " \\
CDR "All right. Here it goes." \\
LMP *- - where it came from." \\
CDR "Okay. Just a second." \\
LMP "Those little holders for this - for these sample bags are ridiculous, you know. In this light gravity up here, if you put anything in the holder and move, it flips it right out of it. Come out of there, sample bag. There you go. Funny how this one - Go in there. Go in - That a boy. Give me some of that dirt around there too, Pete. Drop it right in. This is going in sample bag 13-D, Houston. \({ }^{n}\)
\end{tabular}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & \[
\underset{\text { type }}{\text { Sample }}
\] & \begin{tabular}{l}
Sample
weight, \\
E
\end{tabular} & Location and comments & Lunar-surface photographs & \[
\begin{aligned}
& \text { g.e.t., } \\
& \text { day:hr: min }
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline 12054 & B - shocked diabase with glass spatter & 687.0 & South rim of Surveyor Crater. Sample is definitely identified and oriented from lunar-surface photographs. & AS12-49-7313 AS12-49-7314, AS12-49-7315 & \[
\begin{gathered}
\text { 05: } 13: 41 \\
\text { to } \\
05: 13: 42
\end{gathered}
\] & \begin{tabular}{l}
CDR 'Al, look at these rocks; they look a little bit different. Let's grab some. \({ }^{n}\) \\
LMP "Yes, sir." \\
CDR "Look at that glass in the bottom of that one. They look like granites, don't they ?" \\
LMP "They do; they look just like granite. Here's a beauty over - Here's a beauty." \\
CDR "Where?" \\
LMP "Right here. That is a nice rock. ... Let's get this one for sure. Right there. \({ }^{\text {a }}\) \\
CDR "Okay." \\
LMP \(n \ldots\) in the bag, but it is sure different. It seems to have some - -" \\
CDR "Got a big glass splotch on it." \\
LMP 'Yes. That's a good one. That's a real good rock. Get some pictures - -" \\
CDR "- - Wait. Wait. Wait. Wait. Okay. ..." \\
LMP "That's a beauty. ... Let me get the crosssuns too. Oops, got to get over where you are. " \\
"Okay. Okay. We will just put that in; that's a beautiful rock." \\
CDR "Okay. You able to scoop it up? You know you need some tongs that will get bigger samples than we have got." \\
LMP "All right. Watch that." \\
CDR "You know seeing that, 1 just thought -" \\
LMP "Hey, that's beautiful. It's got a lot of -" \\
CDR "Don't drop it." \\
LMP "Nearly dropped it. Tough to hold it."
\end{tabular} \\
\hline
\end{tabular}

TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
AND GROUND-ELAPSED TIMES - Continued

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g. e.t., } \\
\text { day: hr: } \mathbf{m i n}
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline &  & & & . & & \begin{tabular}{l}
LMP "Okay. Set her up." \\
CDR "Better take that." \\
LMP "There you are in here. Okay. I got it, Pete." \\
CDR "Gother?" \\
LMP "Yes. Got a lot of those we've - Got too many of them. " \\
CDR "Oh, you did get a lot of these?" \\
LMP "Yes. Why don't youget that? Pick it up - -" \\
CDR " - could get the rock with ic. Look." \\
LMP "Okay. Get some rocks with it. That's a good id - Hey, here's some rocks right here. \\
There's a good rock. You know, we keep collecting a lot of the same type of rucks, because there just doesn't seem to be any other kinds around. 1 haven't seen any microbreccia the whole day; I've looked around for it. All I have seen is some basalt; I've seen nothing that looked vesicular at all, except on the surface. \({ }^{\text {" }}\) \\
CDR "I haven't either." \\
LMP "You know, that's real strange; it's - It's nut at all like Neil's rocks. Why don't you give me a rock or two, Pete? And I will stick in there. Got any spares? There you go. Good rock. Good rock." \\
"We just made a sample of - glass bead and some local rock on the south edge of the Surveyor Crater, Houston. And they are going into bag 14-D."
\end{tabular} \\
\hline \[
\begin{gathered}
12060 \\
\text { and } \\
12066
\end{gathered}
\] & \[
\begin{aligned}
& \text { D - - fines (from tote bag) } \\
& \text { E - chips (from tote bag) }
\end{aligned}
\] & 20.7
9.5 & Surveyor Ill scoop. & None & 05: 14:29 & \begin{tabular}{l}
LMP "One scoop." \\
CDR "That's dandy! it's even got dirt in it. Bring back some of the original dirt. Okay. (jot an extra sample for you, Houston. The scoop's got dirt in it."
\end{tabular} \\
\hline
\end{tabular}

\title{
TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
}

AND GROUND-ELAPSED TIMES - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & \begin{tabular}{l}
Sample weight, \\
B
\end{tabular} & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g. e.t., } \\
\text { day:hr: } \min
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline Rock Rock & Unidentified large rock Unidentified large rock B - diabase (from tote bag) & 1214.3 & Surveyor III site. Comments by the crew indicate three large rock samples from this location. Description of the brick-like square rock fits the shape of sample 12064. Others are not identified, but are probably two of the following: 12056, 12062, 12063, or 12065. & None & \[
\begin{gathered}
05: 14: 30 \\
\text { to } \\
05: 14: 34
\end{gathered}
\] & \begin{tabular}{l}
CC "Okay, Pete. Now, before you leave there, also, would you get some of those geosamples which we've discussed, as well as some of the loose soll from that area?" \\
CDR "Will do. We'll do it right now." \\
LMP "Here's this rock right here. Let me give the Surveyor tool a heave. " \\
CDR "You've got you . . . rock rlght here. Okay. Let me go get the sample bags. \({ }^{n}\) \\
LMP "Hey, that's a good one." \\
CDR "I don't think the TV could see that one, though, 1 figure it was too close. How about this one?" \\
LMP ". .. down with you." \\
CDR "Okay. All right, now. Tiying to remember where that - they got a . . . one. \({ }^{n}\) \\
LMP "Here's a square one. I see one up there, right now. " \\
CDR "Where's the one that had the lines in it?" \\
LMP "I think it's right over - right up here on the - There's a crater, right up - I'll show you. Looks like - -" \\
CDR "Wait, wait! Let meget this in the bag, too." \\
LMP "Sorry. Didn't know you had it, Pete." (Sample?) \\
CDR "Look, is that the rock right there? You know, these rocks, as they showed in the Surveyor pictures, all have this soil built up around them. \({ }^{\text {a }}\) \\
LMP "Yes, they all have fillets around them." \\
CDR "I'm trying to remember where - I can't orient myself to the pictures, can you ?" \\
LMP "No, there's - I think it's about - -" \\
CDR "Should we nab this one :ight here ?"
\end{tabular} \\
\hline
\end{tabular}


TABLE D-V. - CROSS-REFERENCE OF LUNAR SAMPLES WITH LOCATIONS, PHOTOGRAPHS,
and Ground-Elapsed times - Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & \[
\begin{gathered}
\text { Sample } \\
\text { type }
\end{gathered}
\] & Sample welght, g & Location and comments & Lunar-surface photographs & \[
\begin{aligned}
& \text { g.e.t., } \\
& \text { day:hr: min }
\end{aligned}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Continued} \\
\hline & & & & & \(\cdots\) & \begin{tabular}{l}
LMP "Very angular. Very sharp." \\
CDR "- - and get a sample of the double craters on the side of the Surveyor Crater, and then my recommendation is, we've got so much gear and so many rocks, that we head for the LM and start packing it all up. \({ }^{\text {n }}\) \\
"I'm beginning to think that these rocks that look red, if we'd just crack them open, we'd find they're plain old basalt rock on the inside. We fust don't ever have any cracked. We ought to pound one of those things with a hammer in a minute." \\
LMP "... This is probably the most spectacuiar crater we've come to, I think. The original craters took it down to bedrock and then, I guess, more recently then, this one, came in here and really banged it out. These blocks are a lot more sharp cornered than any we've seen anywhere else. I guess this must be the most recent one we've been around. n \\
CDR \({ }^{n}\) No. I got the idea that the bedrock's not too deep, and that this was a big crater but it's very, very, very, very old. And then this thing came along and hit it - -n \\
LMP "That's right." \\
CDR "- - and broke into the side of the bedrock that's been sticking out into this ... - - " \\
LMP "Yes, and then threw it all out again." \\
CDR "I think - Let's get a sample of that rock. " \\
LMP "Yes. Let's do. I think it's going to be the same - - \({ }^{-1}\) \\
CDR "And then let's get out of here." \\
LMP "Okay. Want to get a docu - we document and a couple of the big pieces. How's that?" \\
CDR "Yes."
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample number & Sample type & Sample weight, g & Location and comments & Lunar-surface photographs & \[
\begin{gathered}
\text { g.e.t. } \\
\text { day:hr: }
\end{gathered}
\] & Crew comments relating to samples \\
\hline \multicolumn{7}{|c|}{Documented samples - Concluded} \\
\hline &  & & & & & \begin{tabular}{l}
LMP "That's a good idea. Let's see. What looks like all the same. Right here?" \\
"Yes. Let meget a shot at it, Pete, crossSun. \({ }^{n}\) \\
CDR "Okay. Get a stereopair right here. We don't need the gnomon; I'll put the - Get further back, Bean." \\
LMP "Okay. Let me get some rocks. Okay. This is going to be sample bag number - number 15-D, Houston. \({ }^{n}\) \\
CC "15-D, Al." \\
LMP "Okay. Pete, you ought to put two or three rocks in here, just generally; and I'll photograph them, and we can see what you took. Couple of more. Those are good. Okay. Yuu know, most of the rocks we've seen today is exactly like this. Going to pound one of these with a hammer in a minute. \({ }^{\text {n }}\)
\end{tabular} \\
\hline Rock & Unidentified large rock & & Rim of Bench Crater. Sample not identified by description or in lunar-surface photographs. Apparently one of the following rocks: 12056, 12062, 12063, or 12065. & Not photographed for documentation. May be present in AS12-48-7148 to AS12-48-7150 & 05:14:43 & \begin{tabular}{l}
CDR "Hey, there's some of that light-colored undersoil." \\
LMP "You're right. Okay. You want me to get another sample bag?" \\
CDR "No. I want to start moving out." \\
LMP "Okay. Go." \\
CDR "All right." \\
LMP "I'll just pick up this one big rock here, Pete, and stick it in the bag." (Loose in tote bag?) \\
CDR "Okay." \\
LMP "Good. That's a good rock."
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIXE \\ MAJOR UPDATES AS OF JULY 31, 1970}

The data contained in this appendix are considered to be of major significance in the preliminary description of the Apollo 12 lunar samples. The data are both new data and corrections and modifications of earlier data. No attempt has been made to update the main part of this document completely; rather, this appendix is included to correct only the most serious problems. The following five changes have been made to this document.
1. The photomicrographs of thin sections (figs. A-64 to A-95) have been expanded to include at least one photomicrograph of each sample that was sectioned.
2. Many photographs of the rocks have been replaced with more recent photographs that show greater detail.
3. Tables D-I and D-II have been recast.
4. The LRL photographic indices (tables D-III and D-IV) have been updated.
5. The cross-reference among the sample numbers, the lunar-surface photograph numbers, and the mission transcript (table \(D-V\) ) has been updated.

The first part of this appendix is a list of errata that references the number of the page that is affected by more recent data. The second part is an Apollo 12 rock classification. The last two parts consist of a current list of the various samples that have lunar orientation or location data associated with them and a supplementary list of the sample locations and orientations.

\section*{ERRATA}

Pages 1, 43, Samples 12010, 12013, 12034, and 12073 are microbreccias. and 57:

Pages 75, 76, Samples 12008, 12009, and 12015 are modally and texturally the and 86: same; slightly devitrified glass with approximately 10 percent olivine phenocrysts (some skeletal) and approximately 5 percent small skeletal trains of olivine.

Pages 47 and 82: Sample 12013 is considerably more complex texturally than was previously thought. It consists of a mixture of at least four types of matrices and a wide variety of fragments. This sample is not a 'late-stage differentiate."

Sample 12003-36, a polished thin section that contains three fragments of the coarse fines from this sample, was studied. The first fragment is a 5 -millimeter porphyritic olivine basalt. The second fragment is a 4 -millimeter breccia. The third fragment is a recrystallized anorthosite, perhaps containing a new mineral. The recrystallized anorthosite consists of a meshlike intergrowth of plagioclase microlites, including minor amounts of olivine, opaques, and the unidentified mineral.

The unidentified mineral (found by A. Ried of MSC) is a single, highly reflecting grain 0.2 by 0.1 millimeter. Other physical properties are high relief and medium birefringence, and the mineral is apparently pleochroic in yellow-green and brown. The outer margin of the mineral appears to be in reaction relation with the plagioclase groundmass.

Page 117: Sample 12035 is not a troctolite. It is a granular basalt containing less than 10 percent olivine and several percent of cristobalite.

\section*{APOLLO 12 ROCK CLASSIFICATION}

As of July 31, 1970, thin sections are available for 36 of the 45 returned rocks. Also, there are thin sections of five large chips from sample 12057, which consists of a variety of rock fragments. Study of these thin sections provided the data for the following textural classification. The photographs of one unsectioned sample were clear encugh to enable that sample to be classified.

This classification is not intended to be final. First, there are 9 rocks (approximately one-quarter of the collection) that have not been sectioned. Second, mineralogical and chemical data on all rocks are far from complete. A complete classification of any rocks demands a melding of textural, chemical, and mineralogical information.

The Apollo 12 rocks are broadly classified as crystalline rocks and microbreccias. The crystalline rocks are further classified as variolitic basalts, porphyritic olivine basalts, olivine vitrophyre, granular basalts and gabbros, ophitic and subophitic basalts, and porphyritic ophitic basalts. The granular basalts are similar to the Apollo 11 type B rocks, and the ophitic and subophitic basalts are similar to the Apollo 11 type A rocks.

In reading the following descriptions, the reader should refer to the photomicrographs of the various thin sections (figs. A-64 to A-95). An asterisk next to a sample number indicates that a thin section of that sample is not presently available.

\section*{Variolitic Basalts \\ Samples 12004, 12019, 12052, 12053, and 12065}

The pyroxene in these rocks displays well-developed variolitic texture; that is, random pyroxene phenocrysts as long as 3 millimeters in a matrix consisting of a feathery intergrowth of pyroxene and plagioclase crystals. These rocks typically contain euhedral to rounded olivine phenocrysts and platelike ilmenite. A generalized mode of these rocks is as follows.
\begin{tabular}{lr} 
Plagioclase & 15 to 25 percent \\
Pyroxene & 55 to 70 percent \\
Olivine & 5 to 15 percent \\
Opaques & 5 to 10 percent \\
Silica & 0 to 2 percent
\end{tabular}

Samples exist that fall between the variolitic basalts and the porphyritic olivine basalts.

> Porphyritic Olivine Basalts and Peridotite Samples \(12002,12012,12014,12018,12020,12022\), 12045,12075 , and 12076

The olivine in these rocks forms euhedral to rounded phenocrysts as long as 1.5 millimeters across. The remainder of the rocks are similar to the variolitic basalts. Pyroxene phenocrysts are present. The matrix consists of lath-shaped plagioclase crystals in a more-or-less ophitic relation to matrix pyroxene prisms. The opaque phase forms as equant grains. In addition, platelike ilmenite crystals are found in some samples (especially well developed in samples 12022 and 12045). Unlike the variolitic rocks, matrix pyroxene does not form feathery masses. A generalized mode for these rocks is as follows.
\begin{tabular}{lr} 
Plagioclase & 10 to 20 percent \\
Pyroxene & 35 to 50 percent \\
Olivine & 25 to 40 percent \\
Opaques & 5 to 15 percent
\end{tabular}

Samples exist that fall between the variolitic basalts and the porphyritic olivine basalts.

\section*{Olivine Vitrophyre \\ Samples 12008, 12009, and 12015*}

The matrix of these rocks consists of black glass and small ( 0.01 millimeter) crystals of silicates and opaques. Olivine phenocrysts form as euhedral, subhedral, and skeletal crystals as long as 1 millimeter across. A second generation of olivine forms stringers of optically continuous skeletal crystals that are 0.05 millimeter across. Modally, olivine comprises approximately 20 percent of these rocks, about equally divided between the phenocrysts and the stringers.

Granular Basalts and Gabbros
Samples l2035\#, l2036\#, 12039\#, 12040\#, l2044, 12056, 12057-4, 12057-9\#, and 12064

The pyroxene and olivine in these rocks form subhedral crystals. The pyroxenes are 0.5 to 1 millimeter in size in the basalts and range to 5 millimeters in the gabbros. The gabbros are indicated by a "\#." Pyrox-ferrite forms as separate crystals in at least one rock (12039). Plagioclase, opaques, and cristobalite form as anhedral crystals. In some rocks, tridymite forms as lathlike crystals as long as 1.5 millimeters. In most of these rocks, the pyroxene and olivine form with many pyroxene-pyroxene and pyroxene-olivine contacts, and plagioclase fills the interstices. This is interpreted as a cumulate texture. A generalized mode of these rocks is as follows.
\begin{tabular}{lr} 
Plagioclase & 20 to 40 percent \\
Pyroxene & 45 to 55 percent \\
Olivine & 5 to 20 percent \\
Opaques & 5 to 15 percent \\
Silica & 0 to 10 percent
\end{tabular}

Samples exist that fall between the granular basalts and the ophitic basalts. These rocks are similar to the Apollo 11 type B rocks.

Ophitic and Subophitic Basalts
Samples 12006, 12038, 12046, 12047, 12051, 12057-6, 12057-7S, 12062, and 12063S

The plagioclase laths forming the ophitic texture in these rocks are as long as 2 millimeters. Ilmenite forms as platelike crystals that are slightly shorter than the plagioclase laths. Pyroxene forms as equant crystals and cristobalite fills the
interstices. The samples marked with an ' S ' ' in the heading of this section have less well-defined ophitic texture and are considered subophitic. A generalized mode for these rocks is as follows.
\begin{tabular}{lr} 
Plagioclase & 30 to 45 percent \\
Pyroxene & 40 to 55 percent \\
Olivine & 0 to 5 percent \\
Opaques & 5 to 10 percent \\
Silica & 0 to 5 percent
\end{tabular}

Samples exist that fall between the ophitic basalts and the granular basalts. These rocks are similar to the Apollo 11 type A rocks.

> Porphyritic Ophitic Basalts
> Samples 12017, 12021, and 12031*

The most distinguishing feature of these rocks is the pyroxene phenocrysts that are as long as 2.5 centimeters. The matrix of these rocks is similar to that of the ophitic or subophitic basalts. In sample 12017, there are small ( 0.5 millimeter) patches of matrix that are similar to the matrix of the variolitic basalts. A generalized mode for these rocks is as follows.
\begin{tabular}{lc} 
Plagioclase & 30 to 35 percent \\
Pyroxene & 55 to 60 percent \\
Opaques & 5 to 7 percent \\
Silica & 3 to 5 percent \\
Microbreccias \\
Samples 12010, 12013, \(12034,12057-11\), and 12073
\end{tabular}

The microbreccias are a shock-lithified mixture of glass, mineral, and rock fragments. Glass spherules are commonly found. Fragments of breccia are found as components of these samples. These rocks are similar to the Apollo 11 type C rocks. Sample 12013 has many special features that will not be described here.

\section*{LOCATION AND ORIENTATION OF SAMPLES}

The location of lunar rocks is determined by the Field Geology Team (FGT) on the basis of two types of primary information: the transcript of the astronauts' comments during the EVA traverses and the LRL and lunar-surface photographs.

The orientation of the lunar samples is derived from one or more of the following experiments.
1. Lunar-surface photographs - As described in the sample location and sample identification and orientation sections of this document, the lunar-surface photographs show the orientation of the sample when it was picked up by the astronaut. This orientation experiment is performed by the FGT and is the only orientation experiment that provides north-south-east-west data. The other experiments yield only "top" and "bottom" data.
2. Pit counting - Pit counting is performed by F. Horz at MSC. A 'top" is obtained that is an integration of the entire lifetime of the rock on the lunar surface.
3. Gamma-ray counting - Gamma-ray counting is performed by E. Schonfeld at MSC and by R. W. Perkins at the Battelle Memorial Institute, Richland, Washington. Three types of "top" may be obtained from this work. Each type is derived by counting a different isotope and is thus an integration over a length of time that is dependent on the half life of the counted isotope. The three types are as follows.
\begin{tabular}{lc} 
Isotope & Approximate time of integration \\
\(\mathrm{Al}^{26}\) & \(10^{6}\) years \\
\(\mathrm{Na}^{22}\) & 10 years \\
\(\mathrm{Co}^{56}\) & 2 months
\end{tabular}

Those samples that have had orientation work performed on them are listed in table E-I. Most of the location results are given in figure 3 and in table D-V. Most of the orientation data of the FGT are given in the sample location section of this document; the rest of this information will be published later.

TABLE E-I. - ORIENTATION WORK PERFORMED ON THE
APOL.LO 12 LUNAR SAMPLES
\begin{tabular}{|c|c|c|c|}
\hline Sample number & Method & Investigator & Status of orientation \\
\hline 12002 & Gamma-ray counting & Schonfeld & Known \\
\hline 12004 & Photographs & FGT & Tentative \\
\hline 12005 & Gamma-ray counting & Perkins & In progress \\
\hline 12006 & Pit counting & Horz & Inconclusive \\
\hline 12008 & Photographs & FGT & Tentative \\
\hline 12010 & Photographs & FGT & Tentative \\
\hline 12013 & Photographs & FGT & Tentative \\
\hline 12014 & Photographs & FGT & Tentative \\
\hline 12016 & Photographs Gamma-ray counting & \begin{tabular}{l}
FGT \\
Perkins
\end{tabular} & Tentative In progress \\
\hline 12017 & Pit counting & Horz & Known \\
\hline 12019 & Photographs & FGT & Tentative \\
\hline 12021 & Photographs Pit counting Gamma-ray counting & \begin{tabular}{l}
FGT \\
Horz Schonfeld
\end{tabular} & Known Known Known \\
\hline 12022 & Photographs & FGT & Tentative \\
\hline 12031 & Photographs & FGT & Known \\
\hline 12038 & Pit counting & Horz & Known \\
\hline 12043 & Photographs & FGT & Tentative \\
\hline 12044 & Photographs & FGT & Known for glass dumbbell \\
\hline
\end{tabular}

TABLE E-I. - ORIENTATION WORK PERFORMED ON THE APOLLO 12 LUNAR SAMPLES - Concluded


\section*{SUPPLEMENTARY LIST OF APOLLO 12 SAMPLE LOCATIONS AND ORIENTATIONS}

The following sections describe the Apollo 12 lunar samples that have been identified and oriented with various degrees of confidence between January 31 and July 31, 1970. The current status of all samples is summarized in table E-II.

All rock identifications from the selected sample are considered to be tentative, based solely on an LRL correlation of sample shapes, sizes, and shadow characteristics with photographs of rocks taken on the lunar surface by the astronauts. The status is considered tentative because, during the selected-sample traverse (the first EVA), the individual samples were not bagged and no specific indication was made of which samples were photographed before collection. Most lunar-surface photographs taken of rocks during this traverse show several fragments, any one or several (or none) of which may have been picked up. There was not a one-to-one relation between the lunarsurface photographs and the samples. Furthermore, no postsampling photographs were taken to indicate which rocks had been picked up.

Confidence in the identification and orientation of rocks in the documented sample is higher than for those in the selected sample for several reasons. Many of the samples were put into prenumbered bags indicating the locations of specific samples. Samples were, for the most part, photographed on the lunar surface together with a tripod gnomon, which, in addition to showing scale on a vertical-seeking weighted bar, pointed out the particular rock to be picked up.

Sample 12006
See the discussion for sample 12020.

\section*{Sample 12007}

Sample 12007 has not been recognized in surface photographs; however, the small, angular, apparently freshly fractured piece of rock may have been taken from the large mound. At 04:22:10 \(\xi\). e.t., the LMP made a comment about chipping off a fragment of a larger rock. The lack of surface pits in sample 12007 may be because this sample was embedded in the large mound.

Sample 12008
Sample 12008 has been tentatively identified on the southeast side of the large mound in Hasselblad photographs AS12-46-6831 and AS12-46-6832 (fig. E-1). The rock is seen on the side of the mound near the left edge of the photograph in figure E-l. Sample 12008 is shown in figure E-2 in the LRL with an approximate reconstruction of the lunar lighting.

TABLE E-II. - CURRENT STATUS OF THE DENTIFICATION AND
LOCATION OF THE APOLLO 12 SAMPLES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Samples identified in lunar-surface photographs} & Samp on & ated based iptions \({ }^{\text {a }}\) & \multirow[t]{2}{*}{Samples not located} \\
\hline Definite & Tentative & Known & Tentative & \\
\hline \multicolumn{5}{|c|}{Selected samples} \\
\hline None & \[
\begin{aligned}
& 12004 \\
& 12008 \\
& 12010 \\
& 12013 \\
& 12014 \\
& 12016 \\
& 12019 \\
& 12021 \\
& 12022
\end{aligned}
\] & None & \(\mathrm{b}_{12001}\)
\(\mathrm{~b}_{12003}\)
12007
12015
12017
\(\mathrm{c}_{12020 \text { or } 12006}\) & \[
\begin{gathered}
12002 \\
12005 \\
12009 \\
12011 \\
12012 \\
12018 \\
\mathrm{c}_{12020} \text { or } 12006
\end{gathered}
\] \\
\hline \multicolumn{5}{|c|}{Documented samples} \\
\hline \[
\begin{array}{r}
12031 \\
\mathrm{~b}_{12033} \\
\mathrm{e}, \mathrm{f}_{12034} \\
\mathrm{~b}_{12037} \\
\mathrm{~b}_{12042} \\
12047 \\
12051 \\
\mathrm{e}_{12052} \\
\mathrm{e}_{12053} \\
12054 \\
12055
\end{array}
\] & \[
\begin{array}{r}
12036 \\
\mathrm{e}_{12039} \\
\mathrm{e}_{12040} \\
12043 \\
12046
\end{array}
\] & \[
\begin{aligned}
& 12035 \\
& 12038 \\
& 12045
\end{aligned}
\] & \[
\begin{aligned}
& \hline b_{12030} \\
& b_{12032} \\
& b_{12037} \\
& b_{12041} \\
& b_{12042} \\
& b_{12044} \\
& g_{12063} \\
& h_{12064}
\end{aligned}
\] & \[
\begin{gathered}
d_{12056} \\
12062 \\
12065
\end{gathered}
\] \\
\hline
\end{tabular}
\({ }^{\mathrm{a}}\) Location of the documented samples was also based on the bag numbers.
\({ }^{\mathrm{b}}\) Soil.
C One of these samples is the "grinning" rock described by the CDR; the location of the other sample is not known.
\(\mathrm{d}_{\text {Two of }}\) the documented samples not located are probably from the Surveyor III site; the third one is probably from Block Crater.
\({ }^{\mathrm{e}}\) Sample was moved before lunar-surface photography.
\({ }^{f}\) From trench.
\(\mathrm{g}_{\text {Bench crater }}\).
h Surveyor III site.


Figure E-1. - Photograph showing tentative identification of sample 12008 on the southeast side of the large mound (AS12-46-6832).


Figure E-2.- Approximate lunar orientation of sample 12008 in the LRL.

\section*{Sample 12010}

Sample 12010 has been tentatively identified in Hasselblad photo-
graph AS12-46-6835 (fig. E-3). This photograph was taken near the rim of Middle Crescent Crater. Figure E-4 shows sample 12010 in the LRL with an approximate reconstruction of the lunar lighting. The reconstructed orientation can be correlated most nearly with LRL photographs S-69-62309 and S-69-62310.


Figure E-3. - Enlargement of a portion of Hasselblad photograph AS12-46-6835 showing the tentative identification of sample 12010.


Figure E-4. - Approximate lunar orientation of sample 12010 in the LRL as correlater with Hasselblad photograph Aß12-46-6835.

\section*{Sample 12013}

Sample 12013 is tentatively identified in Hasselblad photograph AS12-46-6833 as the right-hand fragment in a group of three. This photograph was taken near or on the rim of Middle Crescent Crater. Sample 12013 is shown in figure E-5 before it was picked up. Sample 12013 is shown in figure E-6 in the LRL with an approximate reconstruction of the lunar lighting. The lunar orientation can be correlated most nearly with LRL photograph S-69-63360. In the Has selblad photograph, the sample can be seen on the rim of a small crater from which it may have been recently ejected along with the other fragments in the field of view. The fragment lying in the center of the group of three shown in figure E-5 has been identified tentatively as sample 12019.


Figure E-5. - Enlargement of a portion of Hasselblad photograph AS12-46-6833 showing the tentative identification of samples 12013 and 12019 near the rim of Middle Crescent Crater.


Figure E-6. - Approximate lunar orientation of sample 12013 in the LRL. (Note that a slice has been removed for thin sections.)

\section*{Sample 12014}

Sample 12014 is tentatively identified in Hasselblad photograph AS12-47-6940, taken by the LMP on the return trip to the LM from Middle Crescent Crater. Figure E-7 shows sample 12014 on the lunar surface before it was collected. Figure E-8 shows sample 12014 in the LRL in an approximate lunar orientation without a reconstruction of the details of lunar lighting.


Figure E-7. - Photograph showing tentative identification of sample 12014 before it was picked up (AS12-47-6940).


Figure E-8. - Approximate lunar orientation of sample 12014 in the LRL without reconstructed lunar lighting (NASA-S-69-63353).

\section*{Sample 12015}

Sample 12015 has not been recognized in any lunar-surface photograph; however, a comment made by the CDR at 04:22:17 g. e.t. suggests that he picked up a rock that had a "dent" in it. Sample 12015 does have a large, single, nearly spherical cavity on one side. The location of sampling was on the rim of Middle Crescent Crater.

\section*{Sample 12016}

Sample 12016 is tentatively identified in Hasselblad photograph AS12-47-6939, taken on the rim of Middle Crescent Crater by the LMP. Figure E-9, an enlargement of part of the Hasselblad photograph, shows sample 12016 half embedded in the ejecta on the rim of a 2 -meter-diameter crater. Figure E-10 is an approximate reconstruction of the lunar orientation using an LRL model of sample 12016. It is interesting to note that approximately half of sample 12016 appears to be buried by other ejecta from the small crater in a manner similar to the burial of documented sample 12051.


Figure E-9. - Enlargement of a portion of Hasselblad photograph AS12-47-6939 showing the tentative identification of sample 12016 embedded in the rim of a 2 -meterdiameter crater.


Figure E-10. - Photograph of an LRL model of sample 12016 showing the approximate lunar orientation and lighting. The fine details of the surface of the rock are lost on the model. The holes are bubbles formed when the model was made.

\section*{Sample 12017}

Sample 12017 has not been identified in any lunar-surface photograph; however, it is the only rock in the selected sample that had a significant coating of black glass. It is probable that sample 12017 came from the vicinity of the small mound that was the starting point for the selected-sample traverse. Although the sample was not specifically photographed and its lunar orientation at the time of sampling is unknown, it seems likely that the glassy side was up and exposed on the lunar surface so that it attracted
attention and elicited the following comment from the LMP (04:22:02 g.e.t.): ''Hey, here's a rock they 'll be glad to see in Houston. "

Sample 12019
Sample 12019 is tentatively identified in Hasselblad photograph AS12-46-6833 as the center fragment in a group of three resting on the rim of a small secondary crater. The photograph was taken on or near the rim of Middle Crescent Crater; the exact location is not known because the lunar horizon is not shown in the photograph. Figure E-5 is an enlargement of part of Hasselblad photograph AS12-46-6833 and shows sample 12019 before it was picked up. In the same field of view, sample 12013 is also tentatively identified. Figure \(\mathrm{E}-11\) shows an approximate reconstruction of the lunar orientation of sample 12019 in the LRL.


Figure E-11. - Approximate lunar orientation of sample 12019 in the LRL as correlated with Hasselblad photograph AS12-46-6833.

\section*{Sample 12020}

Sample 12020 has not been identified in the lunar-surface photographs; however, the sample is one of two rocks likely to be the 'grinning' rock mentioned by the CDR at 04:22:25 g.e.t. on the return trip to the LM from Middle Crescent Crater during the selected-sample traverse. The other possible contender for the 'grinning'" rock is sample 12006. Samples 12020 and 12006 both have vugs and vesicles that, at the proper lunar orientation and lighting, could have faces. Sample 12006 is shown in figure E-12 in the LRL in an orientation that includes a face. Figure E-13 shows sample 12020 in the LRL held in such a way that the shadows cast by the vugs and fractures produce a face.


Figure E-12. - Photograph of sample 12006 at an angle in which the vugs suggest a face, possibly the "grinning" rock sampled at 04:22:25 g.e.t. (NASA-S-69-61912).


Figure E-13. - Photograph of sample 12020 held in an orientation such that the vugs and fractures suggest a face, possibly the 'grinning' rock.

Sample 12046
Sample 12046 is from the documented sample and was one of three fragments collected on the north rim of Block Crater and put into bag 15-D. Sample 12046 is tentatively identified with moderate assurance in Hasselblad photographs AS12-48-7148, AS12-48-7149, and AS12-48-7150. Figure E-14 is an enlargement of a portion of Hasselblad photograph AS12-48-7149 that shows samples 12046 and 12047 before they were picked up. Figure E-15 shows sample 12046 in the LRL with an approximate reconstruction of lunar lighting.


Figure E-14. - Enlargement of a portion of Hasselblad photograph AS12-48-7149 showing samples 12046 and 12047 before they were picked up and put into bag 15-D. Sample 12045, also included in bag \(15-\mathrm{D}\), has not been identified in the lunar-surface photograph.


Figure E-15. - Approximate lunar orientation of sample 12046 in the LRL.```


[^0]:    ${ }^{2}$ Weight of sample counted.

