# LM/AGS OPERATING MANUAL FLI GHT PRO GRAM 6 

## April 1969

Revised July 1969

## LM/AGS OPERATING MANUAL FLIGHT PRO GRAM 6

## , <br> April 1969 <br> Revised July 1969

Prepared by:
R. L. Mendelsberg

Prepared for:
National Aeronautics and Space Administration Manned Spacecraft Center, Houston, Texas Under Contract No. NAS 9-8166

Approved by: F. Betticz
T. S. Bettwy, Assistant Manager
System Design and
Analysis Department

## ACKNOW LEDGEMENT

This operating manual is the result of the efforts of many TRW Systems personnel and others. In particular, the following individuals (TRW) have made significant contribution in the development of this document: K. L. Baker, T. S. Bettwy, R. L. Eshbaugh, F. A. Evans, D. M. Field, H. V. Kienberger, H. G. King, C. J. Mabee, T. O. Owens, T. L. Rodrick, J. L. Thomas, C. L. Whitman and the AGS Software Design Review Board. Special acknowledgement is extended to the Apollo Astronauts whose comments on this document are greatly appreciated.

## FOREWORD

These operating procedures apply to Flight Program 6 (FP6). As written they are applicable to an earth or lunar manned mission. Some of the procedures were written for the lunar mission only, however, they can be extended to earth missions where necessary.

The following is a list of significant changes between FP5 and FP6:

- Radar range rate data is entered in a slightly modified way.
o Horizontal orbit injection velocity is computed as a function of the central angle between the LM and CSM, LM altitude at time of injection, and semi-major axis of the predicted orbit.
- CDH maneuver occurs one-half or three-halves LM orbital periods after CSI.
- Only the time to next maneuver ( $t_{i g}$ ) is now available. However, the nomenclature of $t_{i g A}, t_{i g B}$ and $t_{i g C}$ (time of CSI, time of CDH and time of PPI , respectively) has been retained for clarity.
- The radar filter has been improved and is effective for ranges up to $400 \mathrm{n} . \mathrm{mi}$.
- The CSI solution is now found within 2 seconds and is no longer an iterative process.
- Certain DEDA locations have been changed due to reassembling the program.
- Accelerometer bias compensations are now decimal DEDA quantities rather than octal.
- The ullage counter, 1 K 9 , is now a decimal, DEDA accessible quantity.
- On LM-5 and subsequent, a hardware change has been installed which enables the ABORT STAGE pushbutton signal to bypass the Engine Stop pushbutton switch. This change affects the RCS translation procedures and the APS engine operation procedures.
[Note: The following symbol is used to denote changes between FP5 and FP6 - ]


## FOREWORD (Cont)

Revision 1 to this document incorporates the following major changes:

- New recommended radar updating schedule
- Added discussion on aborf in very early powered descent
[Note: The following symbol is used to denote changes between FP6 and FP6, Revision 1 -


## CONTENTS

SECTION ..... PAGE
1.0 INTRODUCTION ..... 1-1
PART I-AGS EQUIPMENT DESCRIPTION \& GENERAL OPERATION ..... 2.-1
2. 0 GENERAL OPERATION OF THE AGS ..... 2-1
2. 1 Control LM by AGS ..... 2-1
2. 2 AEA Automatic Function Switching ..... 2-9
2. 3 System Limitations and Constraints ..... 2-11
3. 0 DEDA OPERATION, CONTROLS AND DISPLAYS ..... 3-1
3.1 DEDA Operation ..... 3-1
3.2 Operator Error ..... 3-3
3.3 Controls and Displays ..... 3-5
4.0 AGS INPUTS ..... 4-1
4. 1 Hardwired Inputs ..... 4-1
4.2 DEDA Inputs ..... 4-4
5.0 AGS OUTPUTS ..... 5-1
5. 1 Hardwired Outputs ..... 5-1
5.2 AGS Telemetry Data ..... 5-4
5. 3 AGS Output Telemetry Data Format ..... 5-4
5.4 DEDA Outputs ..... 5-4
5. 5 DEDA Word Format ..... 5-4
6.0 DEDA INPUTS AND OUTPUTS ..... 6-1
6.1 DEDA Display or Entry Data Conversion ..... 6-1
6.2 DEDA Accessible Quantities ..... 6-3
PART II- AGS UTILIZATION \& FUNCTIONAL CAPABILITIES ..... 7-1
7. 0 POWER TURN ON ..... 7-1
7. 1 Power Interrupt ..... 7-4
7.2 Power Turn-Off ..... 7-4
8.0 SELF-TEST ROUTINE ..... 8-1
9.0 AGS COMPUTER TIME, TIME TO EVENTS AND TIMING ERRORS ..... 9-1
9.1 AGS Computer Time ..... 9-1
9.2 Time to Events ..... 9-1
9.3 Timing Errors ..... 9-5

## CONTENTS (Continued)

SECTION ..... PAGE
9.4 DEDA Time Display Quantization ..... 9-4
10.0 AGS STEERING MODES ..... 10-1
10.1 Attitude Hold ..... 10-1
10.? Guidance Steering ..... 10-2
10.3 Z-Body Axis Steering ..... 10-4
10.4 Pre-Thrust Steering ..... 10-4
10.5 Orbital Rate Pitch Steering ..... 10-5
10.6 Open Steering Channels ..... 10-5
11.0 RESCALING FROM LUNAR TO EARTH MISSION ..... 11-1
12.0 GROUND CHECKOUT PROCEDURES PRIOR TO EARTH LAUNCH ..... 12-1
PART III - FROCEDURES FOR AGS FUNCTIONS ..... 13-1
13.0 SYSTEM TURN ON ..... 13-1
13.1 System Turn-Off ..... 13-2
14.0 COMPUTER READINESS AND AGS TIME INITIALIZATION ..... 14-1
14.1 Computer Readiness ..... 14-1
14.2 AGS Computer Time Initialization ..... 14-4
15.0 NAVIGATION INITIALIZATION PROCEDURES ..... 15-1
15.1 Procedures for LM, CSM Navigation Update Via PGNCS Downlink ..... 15-1
15.2 Procedures for LM Initialization Via DEDA ..... 15-3
15.3 Procedures for CSM Initialization Via DEDA ..... 15-4
15.4 Discussion of AGS Navigation for Information Purposes ..... 15-5
16.0 ALIGNMENT ..... 16-1
16.1 AGS Alignment with PGNCS Operative ..... 16-1
16.2 AGS Alignment with PGNCS Inoperative ..... 16-3
17.0 CALIBRATION ..... 17-1
17.1 Lunar Surface Gyro Calibration ..... 17-1
17.2 Inflight Gyro and Accelerometer Calibration ..... 17-1
17.3 Inflight Accelerometer Calibration Only ..... 17-3
17.4 Discussion ..... 17-3
18.0 RENDEZVOUS RADAR NAVIGATION UPDATING ..... 18-1
18. 1 Procedure for Rendezvous Radar Updating ..... 18-2

## CONTENTS (Continued)

SECTION PAGE
19.0 LUNAR SURFACE OPERATIONS ..... 19-1
19.1 Operations Prior to AEA Shutdown ..... 19-1
19.2 Operations Prior to Lunar Liftoff ..... 19-2
20.0 ENGINE IGNITION ..... 20-1
20.1 DPS, RCS or APS Engine Selection ..... 20-1
20.2 Required Control Panel and DEDA Selection for Engine Ignition ..... 20-3
20.3 Velocity-to-be-Gained Checks ..... 20-3
20.4 Ullage for DPS or APS Ignition ..... 20-4
20.5 Sufficient Conditions for DPS or APS Ignition ..... 20-5
20.6 DPS Variable Thrust ..... 20-5
20.7 RCS Translation; AGS Steering Control ..... 20-6
20.8 Lunar Surface Liftoff ..... 20-6
20.9 Manual Engine Operation ..... 20-7
20.10 Satisfaction of Ullage Condition Due to Angular Accelerations ..... 20-7
21.0 THRUST TERMINATION ..... 21-1
21.1 ASP or DPS Engines ..... 21-1
21.2 Follow-Up and Attitude Hold ..... 21-1
21.3 RCS Engines ..... 21-2
PART IV - PROCEDURES FOR MANEUVERS ..... 22-1
22.0 ORBIT INSERTION ..... 22-1
22.1 Procedures for Using Orbit Insertion Routine ..... 22-1
22.2 Altitude Update During Powered Descent ..... 22-3
22.3 Discussion ..... 22-3
22. 4 Abort in Very Early Powered Descent ..... 22-5
22.5 Switch-Over to AGS in Very Late Powered Ascent ..... 22-6
22.6 Steering ..... 22-7
22.7 Pitch Profile ..... 22-7
22.8 Plots of the AGS Ascent Trajectory ..... 22-8
23.0 CSI ..... 23-1
23.1 Procedures for Using CSI Routine ..... 23-1
23.2 In the Event of an Unsatisfactory Solution ..... 23-5
23.3 Discussion ..... ? 3. 5

## CONTENTS (Continued)

SEC TION ..... PAGE
23.4 Reasonableness of Solutions ..... 23-6
23.5 Plane Change Maneuver ..... 23-7
24. 0 CDH ..... 24-1
24.1 Procedures for Using CDH Routine ..... 24-1
24.2 Discussion ..... 24-4
25.0 TPI ..... 25-1
25.1 Procedures for Using TPI Routines ..... 25-1
25.2 Discussion ..... 25-5
25.3 Constraints on TPI Transfer Time ..... 25-9
26.0 MIDCOURSE CORRECTION ..... 26-1
26. 1 Retarget the Entire Rendezvous Problem ..... 26-1
26. 2 Maintain the Same Rendezvous Time, Inflight Targeting of New Midcourse Maneuver Time ..... 26-1
26.3 Maintain the Original TPI Rendezvous Problem ..... 26-2
26.4 Approaching the Node ..... 26-2
27.0 EXTERNAL $\Delta V$ ..... 27-1
27. 1 Procedures for Using the External $\Delta V$ Routine ..... 27-1
27. 2 Using External $\Delta V$ Routine for Orbital Rate Pitch Steering ..... 27-4
28.0 AXIS BY AXIS TRIM ..... 28-1
28.1 Procedure ..... 28-1
28. 2 Notes ..... 28-2
APPENDIX A - DEDA ACCESSIBLE QUANTITIES - LUNAR/ EARTH MISSIONS ..... A-1
REFERENCES ..... R-1
2. 1 AGS Logic Flow Diagram ..... 2-8
3.1 DEDA and Bottom Side Panel ..... 3-2
3.2 Center Console, Commander ..... 3-6
3. 3 Center Console, Systems Engineer ..... 3-7
3.4 Lower Center Panel ..... 3-8
3.5 Bottom Panel ..... 3-9
3.6 Bottom Center Panel (DSKY) ..... 3-9
3.7 Bottom Right Panel, DEDA ..... 3-10
20.1 Canted Thrust Selection Logic ..... 22-2
22. 1 Desired Final Altitude Rate Versus Final Altitude ..... 22.5
22. 2 Altitude Versus Time for Lunar Surface Abort ..... 22-9
22.3 Altitude Rate Versus Time for Lunar Surface Abort ..... 22-10
22.4 Out-of-Plane Position Versus Time for Lunar Surface Abort ..... 22-10
22.5 Out-of-Plane Velocity Versus Time for Lunar Surface Abort ..... 22-11
22.6 Pitch Angle Versus Time for Lunar Surface Abort ..... 22-12
22. 7 Yaw Angle Versus Time for Lunar Surface Abort ..... 22-12
26.1 Out-of-Plane Angle at switchover to Node at ..... 26-3Rendezvous Versus Wedge Angle for Lunar andEarth Mission
2. 1 AGS Control of LM ..... 2-2
2. 2 Submodes of Inertial Reference Mode ..... 2-4
2. 3 Submodes of Align and Calibrate Mode ..... 2-5
2.4 AGS Guidance Routines ..... 2-6
5-1 A Conditions for Engine-On Command ..... 5-1
5-1 B Conditions for Engine-On Command ..... 5-2
5-2. Telemetry List ..... 5-6
5-3 Bit Pattern, Guidance Selector $\mathrm{S}_{10}$ (Word 15) ..... 5-8
5.4 Bit Pattern, Self Test Indicator $\mathrm{S}_{12}$ (Word 38) ..... 5-8
5.5 Bit Pattern, Mode Word $\mathrm{S}_{00}$ (Word 44) ..... 5-8
5. 6 Bit Pattern, Discrete Input Word Number One (Word 45) ..... 5-9
6.1 AGS Selector Logic ..... 6-4
6. 2 DEDA Inputs - Lunar Mission ..... 6-6
6.3 DEDA Outputs - Lunar Mission ..... 6-9
6. 4 DEDA Inputs - Earth Mission ..... 6-14
6.5 DEDA Outputs - Earth Mission ..... 6-17
9.1 Time Quantities Available in CSI Mode ..... 9-2
9.2 Time Quantities Available in CDH Mode ..... 9-3
9. 3 Times of Interest with Guidance Selector in the TPI Search Routine ( $\mathrm{S}_{10}=3$ ) ..... $9-3$
9.4 Times of Interest with Guidance Selector in the TPI Execute Routine ( $\mathrm{S}_{10}=4$ ) ..... 9-4

### 1.0 INTRODUCTION

The LM Abort Guidance Section (AGS) is a strapped-down inertial navigation and guidance system used primarily to effect rendezvous of the LM with the CSM in the event of a Primary Guidance and Navigation Con trol System (PGNCS) failure. The AGS consists of the following three assemblies:
a) Abort Electronics Assembly (AEA)
b) Data Entry and Display Assembly (DEDA)
c) Abort Sensor Assembly (ASA)

The AEA is a general purpose digital computer located in the LM aft equipment compartment used for the data processing function of the AGS. It is a fixed point, 18 -bit machine with 17 value bits and a sign bit using 2's complement arithmetic. The AEA memory is of conventional ferrite core construction with a 4096 word capacity.

The DEDA is a general purpose astronaut input-output device for the AGS located on the right-hand side of the LM cockpit. It consists of a keyboard, electroluminescent address and digital data displays. Operation of the DEDA is described in Section 3.1 of this report.

The ASA consists of three strapped-down pendulous accelerometers, three strapped-down gyros and associated electronic circuitry. It is located on the LM navigation base above the flight crew. The ASA provides the AEA with incremental angular rotation information about the vehicle $X$, Y , and Z axes and incremental velocity changes along the vehicle $\mathrm{X}, \mathrm{Y}$, and $Z$ axes. These incremental data are in the form of pulses and are utilized in the AEA to maintain knowledge of the LM vehicle attitude, position, and velocity.

The equations programmed in the AEA for FP6 are defined in the LM/AGS FP6 Programmed Equations Document (Reference 1). A narrative description and derivation of most of the equations are presented in Reference (2).

The purpose of this document is to present the functional capabilities of the system along with a description of how the system is to be utilized. Where applicable, limitations of the system are presented and cautions issued about operating the system in other than the specified manner.

This document is separated into four parts. Part I discusses the system in general along with external interfaces. Part II contains more specific details about AGS utilization and functional capabilities. The actual operating procedures are contained in Parts III and IV. Part III contains the procedures to perform various functions, whereas Part IV contains the procedures to perform the various maneuvers.

The operating procedures discussed herein apply to both lunar missions and earth missions unless otherwise noted. Of course, the lunar surface procedures discussed are not relevant to the earth missions. The actual programmed equations for these two missions are identical except for the rescaling of many quantities. The DEDA input and output quantities required during a mission are presented in Section 6.0 and the complete list of DEDA accessible quantities is found in Appendix A. The Appendix A list does not contain time shared quantities nor does it contain quantities that have been judged of no value in monitoring AGS operation. Section 11 contains a discussion of the conversion of the lunar program to the earth program via the DEDA. This procedure is desirable if a lunar mission is modified to an earth mission after the lunar program has been stored in the AGS computer.

# PART I - AGS EQUIPMENT DESCRIPTION \& GENERAL OPERATION 

### 2.0 GENERAL OPERATION OF THE AGS <br> 2. 1 Control of LM by AGS

Control of the LM by the AGS depends on the settings of certain guidance selectors on the LM instrument panel and the DEDA function selections*. The Guidance Control Switch (PGNS, AGS) must be in the AGS position, the AGS Mode Control Switch ${ }^{* * *}$ (Off, Attitude Hold, Auto) must be in either the Attitude Hold or Auto position (if in OFF, RCS thrusting is inhibited). The AGS continuously computes steering and engine control quantities regardless of the position of the Guidance Control Switch. For the AGS to exert guidance steering (not merely attitude hold) and engine control, the AGS Mode Control Switch must be in the Auto position. In addition, RCS attitude control must be under Mode Control direction. This is accomplished by setting the Roll, Pitch and Yaw Attitude Control switches (MODE CONT, PULSE, DIR) to the MODE CONT position.

A tabulation of LM attitude control and main engine commands for combinations of switch settings is presented in Table 2.1. The OFF position of the Mode Control switch is not listed since no attitude control is possible for this condition. Settings of $S_{00} \geq+30000$ (address 400) are not listed since they result in zero attitude error signals and issuance of the E/OFF command regardless of the setting of the Guidance Control and Mode Control switches. Table 2.1 assumes that the lunar surface flag in the AEA is not set, i.e., address 604 is a positive number, and that the three Attitude Control switches are in the MODE CONT position. Placement of these three switches in the PULSE or DIR positions results in inhibiting the AGS from LM attitude control. The functioning of the ABORT and ABORT STAGE with respect to the AGS is also shown in Table 2. 1.

[^0]Table 2. 1. AGS Control of LM


Placement of only one of the Attitude Control switches in the PULSE or DIR position during AGS attitude control causes loss of AGS attitude control in that channel. A detailed discussion of the limitations of this procedure is contained in Section 10.6.

When the PGNCS controls the LM (Guidance Control Switch in the PGNS position), the AGS is in the Follow-up Mode. Manual control of the LM by the flight crew (Mode Control Switch in Attitude Hold, Hand Control out of detent) also causes the follow-up signal to be transmitted to the AGS. In follow-up, the AGS "follows' the PGNCS by transmitting Engine On or Off commands in accordance with the existing DPS or APS engine operation and the attitude control error signals are inhibited from controlling LM attitude.

The AGS outputs attitude error signals corresponding to the setting of address 400 for FDAI display when the PGNCS is in control and the Mode Control Switch is in AUTO. A setting of address 400 to +00000 results in a display of zero attitude error signals on the FDAI, a setting of $400+10000$ results in guidance steering error signals, and a setting of $400+20000$ results in $Z$ body axis steering error signals. A setting of address 400 to $\geq+30000$ resuits in zero error signals displayed.

AGS operations are selected mainly through two DEDA selectors: $S_{00}$ and $S_{10}$ (denoted here by equation symbols). $S_{00}$ (DEDA address 400) is the AGS Submode Selector and $S_{10}$ (DEDA Address 410) is the Guidance Routine Selector.

Eight states are possible for the AGS Submode Selector, $\mathrm{S}_{00}$. These eight states can be grouped into two distinct modes with various submodes as follows:

Inertial Reference Mode - Table 2.2 contains the submodes of the inertial reference mode. The attitude error commands are computed and issued every 40 msec .

Align and Calibrate Mode - AGS outputs zero attitude error and E/OFF engine commands every 40 msec. If the AGS is in control of the LM, the vehicle attitude rate is damped only by the autopilot rate gyro feedback signals. Various submodes of the align and calibrate mode are presented in Table 2.3.

Table 2. 2 Submode of Inertial Reference Mode

| $\mathrm{S}_{00}$ | Subrnode | Function |
| :---: | :---: | :---: |
| 0 | Attitude Hold | AGS attitude error commands cause the LM to maintain the same inertial attitude that existed when the submode was entered if the follow-up signal is absent or when the follow-up signal is removed (if the submode was previously entered) |
| 1 | Guidance Steering | AGS attitude error commands cause the thrust axis (X-body axis) of the LM to orient to the desired direction as computed by the selected guidance routine. Yaw steering (rotation about the X body axis) is as follows: If |
|  |  | $S_{623} \begin{cases}0 & \begin{array}{l} \text { Z body axis is oriented parallel } \\ \text { to the CSM or bit plane } \end{array} \\ 1 & \begin{array}{l} \text { Z body axis is oriented parallel } \\ \text { to the plane defined by the unit } \\ \text { vector } \underline{W}_{b} \end{array} \\ \text { See Section 10.2 }\end{cases}$ |
| 2 | Z Body Axis Steering | AGS attitude error commands cause the LM Xbody axis to be parallel to the CSM orbit plane and the LM $Z$ body axis to be oriented as follows: If |
|  |  | $\mathrm{S}_{507} \begin{cases}0 & \begin{array}{l} \text { The LM Z body axis is directed } \\ \text { toward the AGS indicated position } \\ \text { of the CSM } \end{array} \\ 1 & \begin{array}{l} \text { The LM Z body axis is oriented } \\ \text { to the desired thrust direction } \end{array}\end{cases}$ |

$S_{10}$ always selects one of the six possible guidance routines presented in Table 2.4. Guidance calculations associated with the selected routine are completed every two seconds regardless of the $\mathrm{S}_{00}$ selection.

Before commencing guidance operations, it is imperative that the AGS be aligned, time initialized, and LM and CSM ephemeris data initialized. The necessity for alignment is obvious. The entry of LM and CSM ephemeris data is required because every guidance selection (every $S_{10}$ selection) uses both the LM and CSM ephemerides in the guidance and steering computations. Performing navigation updates throughout the mission (by either PGNCS downlink, DEDA entry, or rendezvous radar) is also recommended. Navigation updates prior to the CSI and TPI phases are highly desirable because total propellant expenditure to rendezvous is highly dependent upon the accuracy of these maneuvers.

Table 2.3. Submodes of Align and Calibrate Mode

| $\mathrm{S}_{00}$ | Submode | Function |
| :---: | :---: | :---: |
| 3 | AGS to PGNCS Align | AGS is aligned to the IMU stable member. This submode should only be entered when the PGNCS is operative and properly aligned. |
| 4 | Lunar Align | AGS is aligned to the desired inertial coordinate system (depends upon the nominal launch site). This submode is to be used only on the lunar surface. |
| 5 | Body Axis Align | AGS inertial reference frame is caused to be coincident with the LM body axes. |
| 6 | Gyro and Accelerometer Calibration | In coasting flight, gyro and accelerometer bias calibration is accomplished. Accelerometer calibration is completed in 32 seconds; gyro calibration is completed in 302 seconds. The gyros are calibrated against the PGNCS IMU. Thus this mode should not be entered if the PGNCS is inoperative. On the lunar surface, only gyro calibration is accomplished when this mode is entered provided $\mathrm{S}_{13}$ has been entered (lunar surface flag set). PGNCS need not be operative. |
| 7 | Accelerometer Only Calibration | In this mode only accelerometer calibration is accomplished. This mode should be entered only when in free flight and never on the lunar surface. |

When the LM is under full AGS control (i.e., having engine control as well as attitude control), the Engine ON signal cannot be generated unless the AGS Submode selector is in the guidance steering selection $\left(\mathrm{S}_{00}=1\right)$. Engine ON is automatically generated after ullage has been sensed for a specified number of consecutive computer cycles (2 sec per cycle). The AGS recognizes ullage to have occurred when the average acceleration in the $+X$ body direction exceeds $0.1 \mathrm{fps}^{2}$.

Table 2.4. AGS Guidance Routines

| $S_{10}$ | Mode | Function |
| :---: | :---: | :---: |
| 0 | Orbit Insertion | Guidance solutions are generated to drive the LM to specified orbit injec. tion conditions. |
| 1 | CSI | Guidance solutions are computed to establish appropriate LM/CSM phasing at TPI time. Thrusting is not performed with this selection. |
| 2 | CDH | Guidance solutions are computed to place the LM into an orbit that is coelliptic with the CSM orbit. Thrusting is not performed with this selection. |
| 3 | TPI Search | AGS evaluates various direct transfer rendezvous solutions. Flight crew selects desired solution. Thrusting is not performed with this selection. |
| 4 | TPI Execute | Guidance solutions are computed to cause the LM to be on a CSM intercept trajectory or for the LM to intersect the CSM orbit plane at a specified time prior to nominal rendezvous time. Thrusting is not performed with this selection. |
| 5 | External $\Delta V$ | Guidance solutions are generated to perform a specified thrust maneuver. All thrusting, except orbit insertion, is done in this mode. |

When the LM is not under full AGS control, i.e.,
a) When neither the "ABORT" nor "ABORT STAGE" button is depressed, or
b) When the Mode Control switch is not in the AUTO position and $\mathrm{S}_{00}<3$, or
c) When the Guidance Control switch is not in the AGS position,
the AGS will issue engine commands (ON or OFF) that correspond to actual engine operation as determined by the state of the Descent Engine ON and Ascent Engine ON discretes.

Under full AGS control, the LM engine (APS or DPS) is automatically commanded OFF when the velocity to be gained in the $+X$-body direction is less than the nominal ascent engine thrust decay velocity and if the total velocity to be gained is less than a prescribed threshold (a DEDA accessible constant currently set at 100 fps$)$. This dual check serves the purpose of maintaining the engine $O N$ if an Abort occurs during powered flight with the LM poorly oriented for the abort maneuver and the velocity to be gained is large (greater than the 100 fps threshold).

When the velocity to be gained (LM under full AGS control) is less than 15 fps and the sensed thrust acceleration level in the +X -body axis direction is greater than $0.1 \mathrm{fps}^{2}$, the desired thrust direction is fixed in inertial space (a form of attitude hold). If this were not done, the LM desired attitude might go through an undesirably wide excursion in an attempt to achieve perfect velocity cutoff conditions. Large attitude variations near the end of a maneuver are undesirable. The velocity cutoff errors incurred by fixing the desired attitude prior to engine cutoff are small. After the maneuver is completed, small cutoff errors can be removed (if desired) by the axis by axis velocity trim capability of the AGS (see Section 28).

Staging of the LM descent section is executed by depressing the "ABORT STAGE" button on the instrument panel. The staging sequence begins only when Engine ON commands are issued. During a thrusting maneuver, the staging sequence will begin immediately upon depression of the "ABORT STAGE" button \{assuming all panel controls which transfer control of the IM to the AGS have been set properlyl. The AGS must sense sufficient average thrust acceleration throughout the staging maneuver so that ullage is maintained (unless the ullage counter threshold, 1K9, has been set to 0). When the AGS receives verification from the CES that the Ascent Engine is ON, the system automatically enters the Attitude Hold submode. After a prescribed time interval between 0 and 10 seconds (presently set at 1 second), the AGS automatically enters the normal guidance steering submode.

A functional flow chart (Figure 2.1) of the AGS control logic is presented below. This logic shows how the external discrete signals

( $\beta_{1}$ thru $\beta_{6}$ ), the AGS submode selector ( $S_{0}$ ), and the DEDA engine select $\left(S_{11}\right)$ command AGS attitude error and Engine ON/OFF signals. The lunar surface flag $\delta_{21}$ (indicated on the flow chart) is set to 1 (lunar surface) when any value is entered into the store landing azimuth DEDA selector $\left(S_{13}\right) . \delta_{21}$ is set to 0 at the first APS engine ignition. The $\delta_{21}$ lunar sur face flag MUST be set to 1 after the LM lands on the moon in order that the LM position and velocity can be properly reinitialized and updated on the lunar surface.

## 2. 2 AEA Automatic Function Switching

In this section a discussion is given of the automatic function switching that is performed by the AGS.

## 1) AGS Guidance Engine OFF

At the time the AGS completes a maneuver by issuing Engine OFF three things occur:
a) $\mathrm{S}_{00}$ is set to zero thus putting the AGS in the attitude hold submode.
b) $S_{11}$ is set to zero. This selection is set to 1 when the ascent engine is employed. This enables the AGS to recognize that the LM thrust direction is not along the +X - body axis but rather displaced by the cant of the APS engine.
c) The ullage counter will be reset to zero within 2 sec when the average sensed acceleration drops below $0.1 \mathrm{fps}^{2}$ for a $2-\mathrm{sec}$ period.

## 2) AGS to PGNCS Align

AGS to PGNCS align is selected by setting the submode selector $S_{00}=3$. Two seconds later, AGS to PGNCS align is completed and $\mathrm{S}_{00}$ is set to 0 (attitude hold) automatically.

## 3) Calibration

Calibration is selected by setting the submode selector to $S_{00}=6$. If in orbit, an AGS to PGNCS alignment is done automatically and the ASA gyros are then calibrated against the PGNCS IMU and the ASA accelerometers are calibrated in the "zero sensed acceleration" condition of free fall. The accelerometer calibration is completed in 32 seconds, and the gyro calibration is completed in 302 seconds. If on the lunar surface, only the gyros are calibrated. The AGS submode selector switches to $S_{00}=0$ automatically to end the calibration.

Accelerometer calibration only (during free fall) is commanded by setting $\mathrm{S}_{00}=7$. Calibration is complete in 32 sec . The AEA automatically resets $\mathrm{S}_{00}$ to 0 after 302 sec ; it may be manually reset after 35 sec .
4) Ephemeris'Data

Ephemeris data are entered into the AEA by setting $S_{14}$.

| $\frac{\mathrm{S}_{14}}{1}$ | Function <br> Initialize LM and CSM state vectors via <br> PGNCS downlink |
| :--- | :--- |
| 3 | Initialize LM ephemeris with manual entry <br> (DEDA) of externally supplied data |
| 3 | Initialize CSM ephemeris with manual entry <br> (DEDA) of externally supplied data |

When initialization is completed, $\mathrm{S}_{14}$ is automatically set equal to zero.
5) Lunar Surface Stored Azimuth

The LM azimuth orientation is stored by any DEDA entry into $S_{13}$. $S_{13}$ does not reset. However, a new entry into $S_{13}$ will cause the AEA to store a new azimuth orientation. The entry for $\mathrm{S}_{13}$ also causes the lunar surface flag $\left(\delta_{21}\right)$ to be set to 1.
6) Radar Directed $+Z$-Body Axis Direction Cosines

The radar directed $+Z$-body axis direction cosines (corrected for boresight misalignment) are saved in the AEA within 0.5 seconds after setting $S_{15}=1$. Two seconds later, $S_{15}$ is automatically reset to 0 .
7) External $\Delta V$ Reference

The External $\Delta V$ Mode $\left(S_{10}=5\right)$ requires that the external $\Delta V$ vector be frozen in inertial space at the beginning of the burn. When in the external $\Delta V$ mode the $\Delta V$ vector may be frozen manually be setting $S_{07}$ to 1 . $S_{07}$ is automatically set to 1 by thrusting in the plus $X$ direction, activating the ullage counter. $S_{07}$ is reset to 0 by switching out of the external $\Delta V$ guidance mode into CSI, CDH or TPI. It can also be manually reset to zero.

## 2. 3 System Limitations and Constraints

Constraints imposed on system operation are indicated where appropriate throughout this report. In this section several items are discussed that do not readily fit in other sections but are important to system operation.

### 2.3.1 Sensor Capability

The maximum capability of the AGS gyro/electronics subsystem is $25 \mathrm{deg} / \mathrm{sec}$ around each axis. Maximum capability of each AGS accelerometer is $96 \mathrm{ft} / \mathrm{sec}^{2}$.

## 2. 3.2 DEDA Processing in Octal

Those regions of AEA memory which are not selected for DEDA processing in decimal format are processed in octal. Since the DEDA readout or entry consists of a sign plus five digits, only 16 bits (sign plus 5 octal digits) can be transferred as an octal value. Thus, when outputting from an octal processed memory address, the two least significant bits of the internal computer word are ignored. When an entry is made into an octal processed memory address, the two least significant bits are automatically set to zero. The result is that any value input in octal is quantized at four times its internal computer quantization.

## 2. 3. 3 DEDA Entries and Readouts

The following two rules should be observed to preclude any DEDA operation problem due to computer timing.
A) DO NOT DEPRESS ANY TWO DEDA CONTROL PUSHBUTTONS (CLEAR, ENTER, READOUT OR HOLD) WITHIN . 6 SECONDS OF EACH OTHER EXCEPT WHEN DEPRESSING CLEAR TO ERASE THE PREVIOUS OPERATION.
B) AFTER A DEDA ENTRY, DO NOT COMPLETE ANOTHER ENTER OR READOUT SEQUENCE (DEPRESS ENTER OR READOUT) WITHIN 1.5 SECONDS OF THE TIME THE DEDA DISPLAY HAS GONE BLANK FOLLOWING THE DEPRESSION OF ENTER.

## 2. 3. 4 Readout of Perifocus Altitude, Apofocus Altitude, and Time to Perifocus

Perifocus altitude, apofocus altitude and time to perifocus can be read out via DEDA address 403, 315, and 313, respectively. For orbits
whose eccentricity exceeds 0.125 the perifocus altitude and apofocus altitude quantities are meaningless. Perifocus altitude will read out as the negative value ( 2 K 3 minus 5 J ) in this situation. If the LM orbit is nearly circular the concept of time to perifocus losesits significance and in this situation the quantity read out of DEDA address 313 will be very noisy.

## 2. 3.5 Overflow of Accumulated Velocity Counter

$\mathrm{V}_{\mathrm{dX}}$ is the accumulated thrust velocity in the X body axis direction. This term also contains the effect of uncompensated accelerometer bias. If this quantity overflows during coasting flight no deleterious effects will result. However, it is undesirable to have an overflow during powered flight. For this reason, if more than 4 hours are spent in orbit with the AGS operating and no thrust along the $+X$ axis occurs, one of the following entries should be made via DEDA:

| If vehicle is unstaged enter | $404-12356$ |
| :--- | :--- |
| If vehicle is staged enter | $404+00000$ |

## 2. 3. 6 Detection of Computer Restart

Power transients, under certain conditions, have been known to cause the computer to restart. It is important that a computer restart be recognized when it occurs. When a computer startup or restart takes place, the computer sequences through the power turn-on routine given in Section 7. 0.

Briefly, this routine resets some flags and discretes, commands attitude hold submode ( $S_{00}$ is set to 0 ), switches $S_{10}$ to $S_{17}$ are set to 0 , $V_{D X}$ and $V_{d X}$ are set to 4 K 27 , and the test mode fail discrete is momentarily sent. An Engine off signal is a result of the power turn-on sequence.

When start-up or restart occurs, the AGS caution and warning lamp is lit and the master alarm is activated. This is the only immediate indication that a computer restart has taken place.

When a computer restart has occured, the AGS should be reinitialized as soon as possible, per Section 13.

### 3.0 DEDA OPERATION, CONTROLS, AND DISPLAYS

### 3.1 DEDA Operation

As shown on Figure 3.1, the face of the DEDA contains the following:
a) Ten pushbuttons marked zero through nine
b) A pushbutton marked plus ( + )
c) A pushbutton marked minus (-)
d) A pushbutton marked "CLR"
e) A pushbutton marked "ENTR"
f) A pushbutton marked "READOUT"
g) A pushbutton marked "HOLD"
h) Two electro-luminescent display windows; the top one for the "address" and the bottom one for the value for the desired word
i) An operator error light

### 3.1.1 Data Insertion

The sequence of operations necessary to insert data into the AEA via the DEDA is as follows:
a) DEPRESS the "CLR" pushbutton - this operation initializes (clears) the DEDA system and blanks all lighted characters. The "CLR" button must always be depressed prior to any DEDA entry.
b) DEPRESS three consecutive digits - this operation identifies the address of the AEA memory core location into which the data is to be inserted. The address is in octal form and the number must be 704 or smaller. This is because the Flight Program will not process data with an octal address larger than 704 . Also, octal addresses less than 26 will not be processed.
c) DEPRESS the pushbutton corresponding to the sign (plus ( + ) or minus ( -1 ) of the data to be inserted.

WHEN KE YING THE DEDA, EACH PUSHBUTTON SHOULD BE DEPRESSED TO THE LIMIT OF TRAVEL TO INSURE MAKING SWITCH CONTACTS .


Figure 3.1. DEDA and Bottom Side Panel (Panel 6)
d) DEPRESS five consecutive digits corresponding to the numerical value of the data to be inserted_decimal or octal, as appropriate for the entry).
e) Verify the entry by comparing the illuminated display with the desired address and desired numerical value
f) DEPRESS the "ENTR" pushbutton - at this time the word is entered into the AEA and the address and data displays are extinguished.

### 3.1.2 Data Readout

The sequence of operations necessary to read the contents of a memory cell within the AEA is as follows:
a) DEPRESS the "CLR" pushbutton - this operation initializes (clears) the DEDA system and blanks all lighted characters. The "CLR" button must always be depressed prior to any readout.
b) DEPRESS three consecutive digits - this operation identifies the address of the AEA memory core location from which data is to be extracted. The address is in octal form and must be no larger than the number 704 . If a number larger than 704 is entered into the address, the address display will be extinguished when the "READOU'T" pushbutton is depressed: Octal addresses less than 26 are treated in the same way as addresses greater than 704.
c) Verify the entry by comparing the illuminated address with the desired address.
d) DEPRESS the "READOUT" pushbutton - after the "READOUT" pushbutton has been depressed, the value of the displayed quantity and its address will be updated twice per second. The operator can maintain (or hold) a value on the display by depressing the "HOLD" button. This value is maintained on the display until either the "READOUT" button is depressed (at which time the displayed quantity is updated twice per second) or until the "CLR" pushbutton is depressed (at which time the DEDA system is initialized for the next command and the displays are blanked).

### 3.1.3 Decimal Point Location

There is no decimal point indication on the DEDA. To use the AGS correctly the flight crew must have knowledge of the quantization of the decimal quantity being entered or read out. This information is contained in Section 6.0 of this report. If a position variable has a quantization of 100 ft , then $42,300 \mathrm{ft}$ is entered or displayed as +00423 .

Interpretation of octal quantities on the DEDA is considerably more complex than decimal. Conversion from scaled 2 's complement binary form to decimal form for readout or the reverse for entry is required. Examples are given in Section 6.0 of this document.

## 3. 2 Operator Error

The DEDA is capable of detecting certain operator errors and indicating this by illuminating the "operator error" indicator on the face of the DEDA. The operator error indicator remains illuminated until the "CLR" pushbutton is depressed. The DEDA is then ready for a new instruction. The following errors will cause the illumination of the operator error signal:
a) The "ENTR" pushbutton is depressed before nine keys have been depressed following the last depression of the "CLR" pushbutton.
b) More than nine keys have been depressed since the last depression of the "CLR" button.
c) If a plus or minus is entered in other than the fourth position.
d) If a plus or minus is not entered in the fourth position.
e) If the "READOUT" button is depressed before three digits have been entered since the last depression of the "CLR" pushbutton.
f) If the "READOUT" button is depressed after more than three digits have been entered since the last depression of the "CLR" pushbutton.
g) If an 8 or 9 is entered as one of the first three digits.
h) If a quantity is being read out and the "ENTR" button depressed.

Several operator errors can occur that do not cause the illumination of the operator error signal.
a) If any number greater than 704 or lessthan 26 is entered into the address portion of the display along with other numbers to be entered, the DEDA will exhibit an odd display when the "ENTR" button is depressed. The numbers will shift and several entry slots will be blanked.
b) If any number greater than 704 or less than 26 is entered into the address portion of the DEDA and the "READOUT" button depressed the DEDA will be blanked.

Address values greater than 704 or less than 26 are used for program instructions and are protected from DEDA entry. If such entries are attempted, the symptoms described above will occur. Normal operation will be restored by simply depressing the "CLR" pushbutton.

> IF AN OCTAL QUANTITY IS ENTERED WITH A DIGIT GREATER THAN 7 OR IF A NUMBER GREATER THAN ITS ALLOWABLE RANGE IS ENTERED VIA THE DEDA, C COMPUTER PROCESSING ERROR WILL RE SULT. IF THE ADDRESS IS READ OUT, THE DISPLAY WILL BE DIFFERENT THAN WHAT WAS ENTERED.

### 3.3 Controls and Displays

This section contains a description of the controls and displays utilized in AGS operations. Reference is made to Figures 3.1 through 3.7 which were obtained from Reference 6.


Figure 3. 2. Center Console, Commander (Panel 1)


Figure 3. 3. Center Console, Systems Engineer (Panel 2)


Figure 3.4. Lower Center Panel (Panel 3)


Figure 3.6. Bottom Center Panel (DSKY) (Panel 4)


Figure 3. 5. Bottom Panel
(Panel 5)


Figure 3.7. Bottom Right Panel, DEDA (Panel 6)

### 3.3.1 Instrument Panel Guidance and Control Select Switches

| Switch | Position | Function |
| :---: | :---: | :---: |
| AGS Status Switch | OFF | Applies inhibit standby signal to ASA and applies standby signal to AEA |
|  | STANDBY | Removes inhibit standby signal to ASA and applies standby signal to AEA |
|  | OPERATE | Removes standby signal to AEA, AEA enters flight program |
| Guidance Control Switch | PGNS | Applies follow-up signal to AEA, engine commands and attitude error signals issued by AGS are not used to control L.M |
|  | AGS | Removes follow-up signal |
| AGS Mode Control Switch | AUTO | Applies automatic signal to AEA and inhibits follow-up discrete when Guidance Control Switch is in "AGS" position |
|  | ATT HOLD | Removes automatic signal: AGS in Attitude Hold. The AGS goes into follow-up if the attitude controller (hand controller) is out of its detent even if AGS is selected on Guidance Control Switch |
|  | OFF | Inhibits AGS RCS firing. <br> Automatic signal removed from AGS, as in A/H |
| Attitude Control Switches <br> (Roll, Pitch, and Yaw) | MODE CONT | Controlled by Mode Control Switch |
|  | PULSE | Manual pulse control on per axis basis |
|  | DIR | Manual direct control on per axis basis |

3.3.2 Radar Controls and Displays

| Instrument | Function |
| :---: | :---: |
| RANGE DISPLAY | Tape meter used to display radat range (scaled in ft when $<60,500 \mathrm{ft}$, n. mi. when $>60,500 \mathrm{ft}$ ) |
| RANGE RATE DISPLAY | Tape meter used to display radar range rate (scaled to $\pm 700 \mathrm{fps}$ ) |
| SLEW SWITCHES | Used for manual driving of rendezvous radar antenna |
| SIGNAL STRENGTH METER | Used for indicating and locking on to the strongest radar lobe |
| RENDEZVOUS RADAR MODE SELECT SWITCH | Selects either automatic or manual drive of the antenna |
| SHFT/TRUN ANGLE | Selects $\pm 5^{\circ}$ or $\pm 50^{\circ}$ scaling for rendezvous radar gimbal display |

3. 3. 3 Additional Astronaut Controls and Displays for AGS Operation

| Instrument | Function |
| :---: | :---: |
| Abort Button | Applies abort signal to AEA and arms the descent engine. A second depression of the button removes the abort signal. |
| Abort Stage Button | Applies the abort stage signal to AEA and arms the ascent engine. Initiates staging sequence if vehicle is unstaged and $E / O N$ is commanded. A second depression of the button removes the abort stage signal. |
| Engine Stop Button | Used to shut off descent engine and to inhibit "Engine ON" command. A second depression of this button releases it. (Note: The engine stop button will not shut off ascent engine if the Abort Stage button is set). |
| Attitude Controller | The hand controller used for manually orienting the LM |
| DSKY | Used here for AGS state vector initialization via PGNCS downlink and for AGS computer time initialization. |
| Event Timer | Used here for countdown to AGS burns |
| Flight Director Attitude <br> Indicator (FDAI) | Instrument used to display vehicle attitude, attitude rates, attitude errors, or rendezvous radar shaft and trunnion angles |
| Altitude Tape Meter | Tape meter used to display altitude (same display as used for radar range) Not valid above 76840 ft . |
| Altitude Rate Tape Meter | Tape Meter used to display altitude rate (same display as used for radar range rate) |
| X-Pointer | Instrument used to display component of inertial velocity normal to CSM plane, $\mathrm{V}_{\mathrm{y} 0}( \pm 200 \mathrm{fps})$ |
| RNG/ALT MON | Used for selecting radar range and radar range rate or altitude and altitude rate on the tape meters. |


| Instrument | Function |
| :---: | :---: |
| Mode Sel | Used for selecting source of input to tape meters and cross pointer. |
| Rate Error Monitor Switch | Used for selecting rendezvous radar gimbal angles, or attitude errors to be displayed on the FDAI and information to cross pointer. |
| Attitude Monitor Select Switches | Select PGNCS or AGS inputs to FDAI |
| AEA Circuit Breaker | Closing circuit breaker causes power to be applied to AEA and sends the clock signal to the ASA. |
| ASA Circuit Breaker | Applies 28 V DC and heater power to ASA |
| AGS Circuit Breaker | Applies $115 \mathrm{~V}, 400 \mathrm{cps}$ for Digital to Analog converters in AEA |
| AGS Caution and Warning Lamp | Indicates AGS status (See Section 5.1.8) |
| Thrust/ Translation Controller | Used for throttling of descent engine, plus $Y$ and $Z$ translation with RCS or provide all axis RCS translation. |
| Attitude/Translation Switch | Used for selecting 2 or 4 jet operation for X translation or pitch and roll attitude maneuver |
| + X Translation Button | Can be used for creating ullage |
| Manual Throttle | Selects translation controller from which |
| Selection Switch | throttle signals are accepted |
| Deadband Switch | Selects narrow or wide deadband if guidance control switch is set to AGS and changes the error needle scaling. During main engine firing the system automatically goes to the narrow deadband regardless of the switch setting. |
| Balanced Couple Switch | Used for selecting "unbalanced couple" during AGS ascent engine (main) burn. This inhibits firing of RCS jets opposite to main engine thrust when in the "OFF" position |


| Instrument | Function |
| :---: | :---: |
| Thrust Control Switch | Provides capability of switching from automatic control and display to manual throttle control and display (PGNCS control) |
| Throttle/Jet Control Select Lever | Used to select the throttle capability of the related thrust/translation controller, or X axis RCS translation. Note the RCS Y and Z axis translation capability remains with either switch setting |
| DES QTY Warning Light | Indicates a low quantity of propellant remaining for the descent engine |
| ASC QTY Caution Light | Indicates a low quantity of propellant remaining in ascent engine (approximately 10 seconds of propellant) |
| Main Propulsion Quantity | Indicates quantities of oxidizer and fuel in the selected propulsion system |

## 4. 0 AGS INPUTS

This section contains a description of all inputs to the AEA.

### 4.1 Hardwired Inputs

4.1.1 Accelerometer Inputs $\left(\Delta V_{x i}, \Delta V_{y i}, \Delta V_{z i}\right)$

The accelerometer data input to the AEA is in the form of pulses. For each accelerometer, an accumulation of 640 pulses per 20 mseconds (an intentional bias) indicates no acceleration. The equations subtract 640 pulses ( $K_{7}^{1}$ ) from the number of pulses accumulated in 20 msec onds. The difference is the net number of sensed pulses with respect to zero acceleration. The net number of pulses is then multiplied by the appropriate scale factor $\left(K_{18}^{1}, K_{20}^{1}, K_{22}^{1}\right)$ to convert pulses to feet per second per 20 mseconds. The values of the three constants just discussed $\left(K_{18}^{1}, K_{20}^{1}, K_{22}^{1}\right)$ are obtained from bench test calibrations on the ASA prior to launch. If necessary, the se constants can be modified via the DEDA as explained in Section 6. 1 below. Accelerometer biases are compensated by the constants $\left(K_{19}^{1}, K_{21}^{1}, K_{23}^{1}\right)$ and are also DEDA accessible (see Section 6.0).

The accelerometers on the AGS are always in use when the system is operating. Every two seconds the accumulated sensed velocity is used to update the estimated position and velocity of the LM. Because of the accelerometer biases, the accelerometers can indicate non-zero outputs when the vehicle is not thrusting. If these non-zero outputs were used, the estimated LM position and velocity would gradually increase in error. To avoid this situation, a threshold of 0.25 ft per $2 \sec \left(\mathrm{~K}_{35}^{1}\right)$ is placed on the total sensed velocity. If total sensed velocity is less than this threshold, the thrust acceleration used in the navigation equations is set to zero.
4.1.2 Gyro Inputs $\left(\Delta o_{x i}{ }^{\Delta} \alpha_{y i}, \Delta \alpha_{z i}\right)$

The gyro data inputs to the AEA are in the form of pulses. An accumulation of 640 pulses per 20 msec indicates no change in vehicle attitude. The equations subtract 640 pulses ( $\mathrm{K}_{7}^{\mathrm{l}}$ ) from the number of pulses accumulated and the difference is the net number of sensed pulses of attitude change. The net number of pulses is multiplied by the nominal
scale factor $\left(K_{2}^{1}\right)$ to convert the pulse count to radians. A fine correction to the scale factor is afforded by the constants $K_{3}^{1}, K_{8}^{1}, K_{13}^{1}$. The correction constants are DEDA accessible. Gyro biases are compensated by constants $K_{1}^{1}, K_{6}^{1}, K_{11}^{1}$ ) which are DEDA accessible. In addition, an $X$ axis gyro correction term is available for the gyro spin axis mass unbalance error. This correction is available by the DEDA accessible constant $\mathrm{K}_{14}^{1}$.
4. 1. 3 IMU Gimbal Angles $(\Delta \theta, \Delta \psi, \Delta \phi)$

Gimbal angle increments are obtained by the AEA in the form of pulses continuously. The pulses are accumulated and used during AGS-to-PGNCS align and during inflight gyro calibration.

### 4.1.4 CDU Zero

The CDU zero signal is a short duration signal ( 300 mseconds ) from the PGNCS that is used to clear the AEA gimbal angle registers. The AEA gimbal angle registers then count up pulses to obtain the gimbal angles. AGS to PGNCS align should not be performed any sooner than 20 seconds after the CDU zero is issued in order to allow time for the gimbal angles to achieve the correct value.

### 4.1.5 PGNCS Downlink Data

State vectors of the LM and CSM are transmitted to the AEA on the PGNCS digital downlink upon DSKY co:nmand. Epoch times associated with the state vectors are also received. These times are received in AGS computer time (see Section 9.1).

### 4.1.6 Telemetry Control Signals

The AEA receives several signals from the Instrumentation Subsystem to control the telemetry output data. The AGS downlink "STOP" pulse indicates that the previous telemetry word has been transmitted and the AGS downlink bit sync pulses are the clocking signals to shift the bits out of the register.

## 4. 1. 7 Downlink Control Signals

The AEA receives signals from the Instrumentation Subsystem to control the reception of downlink data from the PGNCS. The PGNCS downlink "STOP" pulse indicates to the AEA that a complete word has been entered into the register. The PGNCS Downlink Bit Sync Pulses are the clocking signals used to shift the bits into the register.

### 4.1.8 DEDA Discretes

Four discretes are received by the AEA from the DEDA. These discretes control the DEDA operation and are:
a) DEDA 'CLR" DISCRETE
b) DEDA "HOLD" DISCRETE
c) DEDA 'ENTR" DISCRETE
d) DEDA "READOUT" DISCRETE

The effect of these discretes are discussed in Section 3.1.

### 4.1.9 GSE Discretes 1 and 2

Two input discretes are received from the Ground Service Equipment (GSE) when the AEA is receiving the program. GSE 1 is set by the test equipment to notify the computer that a word has been transmitted. GSE 2 is used in conjunction with GSE 1 to denote the end of the block of words transmitted.

### 4.1.10 Control Electronic Section (CES) Inputs

Six discretes are received from the Control Electronic Section. These discretes, designated with the symbol $\beta$ and explained below, are automatically received by the AGS when the appropriate circumstances exist.
4.1.10.1 Engine Discretes ( $\beta_{1}, \beta_{2}$ ). The following two discretes are received from the CES:
a) DESCENT ENGINE DISCRETE ( $\beta_{1}$ ) - this discrete has the logic value of 0 if the descent engine is off and the logic value 1 if the descent engine is on.
b) ASCENT ENGINE DISCRETE $\left(\beta_{2}\right)$ - this discrete has the logic value 0 if the ascent engine is off and the logic value of $l$ if the ascent engine is on.
4.1.10.2 Follow Up Discrete ( $\beta_{3}$ ). - The follow-up discrete is transmitted to the AGS under either of the following conditions:
a) Guidance Control Switch in the "PGNS" position.
b) Mode Control Switch in "ATT HOLD" and Attitude Controller out of the detent position.

When the follow-up discrete is present ( $\beta_{3}=1$ ), all engine commands and attitude error signals issued by the AGS to the CES are inhibited from controlling the main engines or RCS thrusters. With the Guidance Control Switch in the "AGS" position, the follow up discrete is removed from the AEA ( $\beta_{3}=0$ ) unless ATT HOLD is selected on the Mode Control Switch and the Attitude Controller is out of its detent position.
4.1.10.3 Automatic Discrete ( $\beta_{4}$ ). - The presence of the automatic discrete in the AEA is completely controlled by the Mode Control Switch.

| Mode Control <br> Switch Positions | Automatic <br> Discrete |
| :---: | :---: |
| OFF | Absent $\left(\beta_{4}=0\right)$ |
| ATT HOLD | Absent $\left(\beta_{4}=0\right)$ |
| AUTO | Present $\left(\beta_{4}=1\right)$ |

The presence of the automatic discrete is one of the necessary conditions for the AGS to exert guidance steering (not merely attitude hold) and engine control.
4. 1. 10.4 Abort Discrete ( $\beta_{6}$ ). - Depression of the Abort button on the instrument panel applies the "Abort" signal ( $\beta_{6}=1$ ) to the AEA. A second depression of the Abort button removes the "Abort" signal ( $\beta_{6}=0$ ). 4.1.10.5 Abort Stage Discrete $\left(\beta_{5}\right)$. - Depression of the Abort Stage button on instrument panel applies the "Abort Stage" signal ( $\beta_{5}=1$ ) to the AEA. A second depression of the Abort Stage button removes the "Abort Stage" signal ( $\beta_{5}=0$ ).

## 4. 2 DEDA Inputs

Many quantities can be input via the DEDA. The quantities most likely to be used during a mission are presented in Section 6. 0 for both the lunar and earth missions. Appendix A contains a more complete list of DEDA accessible quantities.

### 5.0 AGS OUTPUTS

### 5.1 Hardwired Outputs

## 5. 1. 1 Attitude Error Commands

Sign and magnitude of the limited angular errors ( $E_{X}, E_{Y}, E_{Z}$ ) about the three vehicle body axes are updated every 40 msec and output to the CES and to the displays. These error signals drive the vehicle attitude to the desired attitude as discussed in Section 10.0.

## 5. 1.2 Engine ON Command

Each 40 msec , the Engine ON command is updated and sent to the CES if the conditions given in Tables 5.1-A or 5.1-B are satisfied.

Table 5.1-A. Conditions for Engine-On Command

| Status | Comment |
| :---: | :---: |
| a) $\mathrm{S}_{00}<3$ | Any time $S_{00} \geq 3$, the AGS issues the Engine OFF command |
| b) Either Guidance Control Switch is in PGNS position <br> or | If Mode Control Switch is in AUTO, then the condition in Table 5. 1-B below must be satisfied for the Engine ON discrete to be commanded |
| Guidance Control Switch is in AGS position and Mode Control Switch is in A/H and | If neither the Descent nor the Ascent Engine ON discrete is present, the Engine OFF discrete will be commanded |
| c) Either Descent or Ascent Engine ON discrete present |  |

Table 5.1-B. Conditions for Engine-On Command

| Status | Comment |
| :---: | :---: |
| a) Guidance Control Switch is in AGS position and | If Guidance Control Switch is in PGNCS position, then the situation in Table 5.1-A above exists |
| b) $\mathrm{S}_{00}=1$ (guidance steering mode selected <br> and | With all other conditions in Table 5.1-B satisfied, any other setting of $S_{00}$ will cause the Engine OFF command to be sent |
| c) Mode Control Switch in AUTO and | If Mode Control Switch is not in AUTO, then the situation in Table 5.1-A above exists |
| d) Either ABORT or ABORT STAGE button depressed <br> and | Depressing the ABORT and ABORT STAGE button arms the descent and ascent engines, respectively, in addition to allowing the Engine ON command to be sent |
| e) Ullage condition is satisfied (average thrust acceleration exceeds $0.1 \mathrm{fps}^{2}$ for 1 K 9 consecutive $2-s e c$ compute cycles) and |  |
| f) Either velocity-to-be-gained in the +X body axis exceeds the nominal ascent engine tailoff velocity impulse (constant 4 K 25 ), or the total velocity-to-be-gained magnitude exceeds a threshold (constant 4K26) |  |

(See Section 20.2 for further explanation of Engine-On logic.)

### 5.1.3 Engine OFF Command

In all situations other than those listed in Section 5. 1. 2 the Engine OFF command is sent to the CES every 40 msec.
5. 1. $4 \operatorname{Sin} \alpha, \operatorname{Cos} \alpha, \operatorname{Sin} \beta, \operatorname{Cos} B, \operatorname{Sin} \gamma, \operatorname{Cos}{ }^{v}$

Every 40 msec , these quantities are updated. They are output continuously to the FDAI to drive the attitude ball.
5.1.5 Altitude (h)

Every 200 msec the altitude above the launch site is output to the altitude display. This output is not valid in earth orbit or above 76840 ft in lunar orbit due to the display tape meter limitations (see page 3-10).
5.1.6 Altitude Rate ( $\dot{\mathrm{h}}$ )

Every 200 msec altitude rate is output to the altitude rate display.

### 5.1.7 Velocity Normal to the CSM Plane $\left(\mathrm{V}_{\mathrm{y} 0}\right)$

Every 200 msec the inertial velocity component normal to the CSM plane is output to the X -pointer on the Lateral Velocity display.

### 5.1.8 AGS Caution and Warning Lamp

This lamp is lit when:
a) Inflight self test indicates an AEA malfunction
b) The AEA fails to complete a minor cycle within 20 msec
c) ASA voltages ( $+12 \mathrm{vdc},+28 \mathrm{vdc},+29 \mathrm{v} 400 \mathrm{cps}$ ) are not within tolerances
d) The thermal switch in series with the 12 vdc line is activated. This switch is activated at a temperature of $150 \pm 5^{\circ} \mathrm{F}$.
e) Going from OFF-to-STANDBY and from STANDBY-to-OPERATE.

### 5.1.9 GSE Discrete 5

After a word has been input to the computer via the GSE the computer responds with GSE discrete 5 which is used by the test equipment to initiate transfer of the next word.

## 5. 2 AGS Telemetry Data

The data provided on the AGS downlink (telemetry) comprises a 50 word block of computer memory. All 50 words are repeated every second. The telemetry list is in Table 5. 1. The scaling associated with each quantity appears in the FP6 Programmed Equation Document. Some quantities telemetered depend on the guidance routine selected, e. g. : see words 37, and 46 in Table 5. 2.

### 5.3 AGS Output Telemetry Data Format

The 24-bit telemetry output word assembled in the Output Telemetry Register consists of a 6-bit ID code and 18 bits of information from a particular AEA memory cell. The ID codes range sequentiall from octal 01 to octal 62 with the ID code octal 01 being used to designate the first word of the 50 -word block. The ID codes occupy the first 6 most significant bits of the register. The remaining 18 bits, the computer word, represent either codes or numerical data. For numerical data, the 18 bits shall consist of one sign bit followed by 17 value bits, the most significant bit first. The sign bit is 0 for positive data and 1 for negative data. The value bits are in two's complement binary format.

### 5.4 DEDA Outputs

Many quantities can be output via the DEDA. These quantities are presented in Section 6.0 and Appendix A for both lunar and earth missions.

### 5.5 DEDA Word Format

A complete DEDA word contains 36 bits consisting of nine 4-bit groups. Each 4-bit group is associated with one of the DEDA display devices. There are three 4-bit groups for the address, one 4-bit group for the data sign, and five 4-bit groups for the data.

## DEDA Word Format

Total Bits $=36$

| 0 XXX | 0 XXX | 0 XXX | 000 X | * X XX | * XXX | * X X X | * X X X | $\therefore \mathrm{XXXX}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 bits Address |  | 4 bits Sign | 20 bits Data |  |  |  |  |

## Code

$$
\begin{aligned}
& 0-\text { Zero } \\
& \mathbf{x} \text { - Either One or Zero } \\
& * \quad\left\{\begin{array}{l}
\text { Either One or Zero for binary-coded-decimal data } \\
\text { Zero for octal data }
\end{array}\right.
\end{aligned}
$$

In the 4-bit sign group, the three most significant bits are zeros. A zero in the least significant bit will indicate a positive sign, while a one in that location will indicate a negative sign.

Table 5.2. Telemetry List


Table 5. 2. Telemetry List (Continued)


Table 5. 3. Bit Pattern, Guidance Selector $S_{10}$ (Word 15)

| Mode | AEA Bit Pattern |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4-17 |
| Orbit Insertion (OI) | 0 | 0 | 0 | 0 | 0 |
| Coelliptic Sequence Initiate (CSI) | 0 | 0 | 0 | 1 | 0 |
| Constant Differential <br> Altitude (CDH) | 0 | 0 | 1 | 0 | 0 |
| Direct Transfer Search <br> (TPI Search) | 0 | 0 | 1 | 1 | 0 |
| Direct Transfer Execute (TPI Execute) | 0 | 1 | 0 | 0 | 0 |
| External $\triangle$ V (XDV) | 0 | 1 | 0 | 1 | 0 |

Table 5.4. Bit Pattern, Self Test Indicator $\mathrm{S}_{12}$ (Word 31)

| Mode | AEA Bit Pattern |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | $4-17$ |
| Test Not Complete | 0 | 0 | 0 | 0 | 0 |
| Test Successfully Completed | 0 | 0 | 0 | 1 | 0 |
| Logic Test Failure | 0 | 0 | 1 | 1 | 0 |
| Memory Test Failure | 0 | 1 | 0 | 0 | 0 |
| Logic and Memory Test Failure | 0 | 1 | 1 | 1 | 0 |

Table 5. 5. Bit Pattern, Mode Word S ${ }_{00}$ (Word 44)

| Mode | AEA Bit Pattern |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | $4-17$ |
| Attitude Hold | 0 | 0 | 0 | 0 | 0 |
| Guidance Steering | 0 | 0 | 0 | 1 | 0 |
| Z Body Axis Steering | 0 | 0 | 1 | 0 | 0 |
| PGNCS to AGS Align | 0 | 0 | 1 | 1 | 0 |
| Lunar Align | 0 | 1 | 0 | 0 | 0 |
| Body Axis Align | 0 | 1 | 0 | 1 | 0 |
| Calibrate | 0 | 1 | 1 | 0 | 0 |
| Accelerometer Calibrate | 0 | 1 | 1 | 1 | 0 |

Table 5. 6. Bit Pattern, Discrete Input Word Number One (Word 45)

| Bit No.* | Discrete |
| :---: | :--- |
| 1 | Downlink Telemetry Stop |
| 2 | Output Telemetry Stop |
| 3 | Follow-up $\left(\beta_{3}\right)$ |
| 4 | Automatic $\left(\beta_{4}\right)$ |
| 5 | Descent Engine ON $\left(\beta_{1}\right)$ |
| 6 | Ascent Engine ON $\left(\beta_{2}\right)$ |
| 7 | Abort $\left(\beta_{6}\right)$ |
| 8 | Abort Stage $\left(\beta_{5}\right)$ |

*A zero in designated bit indicates ON condition.

## 6. 0 DEDA INPUTS AND OUTPUTS

This section contains a list of DEDA inputs and outputs for the AEA that would most likely be utilized on a flight. Other DEDA inputs and outputs are contained in Appendix A. To make the lists as useful as possible, the symbol of the quantity as used in the guidance equations is presented along with the memory address, the quantization and the allowable range of the word. Also presented are the units of the word as well as a definition or description of the entry. The entries for the selection logic are presented in Table 6.1. Table 6.2 contains the inputs for lunar missions, and Table 6.3 contains the outputs for lunar missions. Table 6.4 contains the input list for earth missions and Table 6.5 the output list for earth missions.

### 6.1 DEDA Display or Entry Data Conversion

When entering or displaying data through the DEDA, the numbers and their placement in the five-digit data word determine the decimal or binary point, since the point is not displayed. For the data which is in decimal form, the quantization is given in the accompanying tables. As an example consider the readout of inertial velocity for the lunar mission. The DEDA address 433 would be inserted into the DEDA by the flight crew after depressing the "CLR" button. Depressing the "READ@UT" button would cause a number to appear such as +53210 . Since inertial velocity is quantized at 0.1 fps , the inertial velocity should be interpreted as 5321 fps .

The data which must be entered or displayed in octal form requires considerably more manual conversion to interpret in decimal form. These variables are identified in the tables by listing their binary scaling as opposed to the quantization for decimal variables. Octal data which is displayed may be converted to the decimal system by first converting to the DEDA binary word form, next taking the $2^{\prime} s$ complement if the data has a negative sign, then entering the binary point as specified by the scaling, and finally converting the data from binary to decimal. This
procedure is reversed to convert data from decimal to DEDA octal form for entry via the DEDA.

The binary scaling which determines the placement of the binary point specifies the range of a variable. For example, a variable whose maximum value is 0.01 which is less than $0.015625=2^{-6}$ may be scaled at binary -6 which is designated B-6. The most significant bit of the variable is then equal to $2^{-7}=0.0078125$ and the range is actually $\pm\left(2^{-6}-1\right.$ LSB $)$, where LSB indicates "least significant bit." This scaling definition is applied to the DEDA conversions in the following examples.

Example 1. Decimal-to-DEDA octal conversion
Given $\sin \delta_{L}=-0.5625$
Conversion to binary gives $-\left.0.5625\right|_{10} \rightarrow-\left.0.100100\right|_{2}$ exactly
Shift the binary point one place to the left, since $\sin \delta_{L}$ is scaled at $B I$, to get the scaled binary number

$$
-\left.0.0100100\right|_{2}
$$

If the number to be input is negative, the scaled binary number must be converted to the 2 's complement number. This may be done by inverting all bits to the left of the least significant bit which is a one resulting in

$$
-\left.0.1011100\right|_{2}
$$

The 2's complement number is now converted to octal form.

$$
-\left.0.1011100\right|_{2} \rightarrow-\left.0.56000\right|_{8} \text { exactly }
$$

The number -56000 is then the DEDA octal equivalent of $-\left.0.5625\right|_{10}$ for $\sin \delta_{L}$.

Example 2. Decimal-to-DEDA Octal Conversion
Given that $1 \mathrm{~K} 22=\left.0.00354\right|_{10}$
Conversion to binary gives

$$
\left.\left.0.00354\right|_{10} \rightarrow .000000001110011111111111010\right|_{2}
$$

Next shift the binary point 8 places to the right since 1 K 22 is scaled at B-8.
$\left..1110011111111111010\right|_{2}$

The binary number is truncated at 15 bits since the DEDA only displays 5 octal digits.

$$
.111001111111111
$$

Converting to octal for DEDA

$$
+\left..1110011111111111\right|_{2}-+\left.71777\right|_{8}
$$

The number +71777 is then the DEDA octal of $+\left..00354\right|_{10}$ for 1 K 22.

Example 3. DEDA Octal-to-Decimal Conversion
When converting an octal DEDA readout, the procedure is the reverse of what it is for converting to a DEDA input. Given the DEDA readout of $1 \mathrm{Kl3}=+\left.00200\right|_{8}$
Converting to binary

$$
+\left.00200\right|_{8} \rightarrow+\left..000000010000000\right|_{2}
$$

Since 1 Kl 3 is scaled at binary -7, shift the point 7 bits to the left to get

$$
+\left.\left..000000000000001000000\right|_{2} \rightarrow 2^{-15}\right|_{10}
$$

Hence, a DEDA readout of +00200 for 1 Kl 3 is equivalent to

$$
+\left..00003052\right|_{10}
$$

### 6.2 DEDA Accessible Quantities

In this section the DEDA accessible variables most likely to be utilized on a mission are presented.

Table 6-1. AGS Selector Logic

| Equation Symbol | Address | Value | Description |
| :---: | :---: | :---: | :---: |
| $s_{00}$ | 400 | +00000 | AGS Submode Selector is in Attitude Hold. If the AGS is in control, the 1.M maintains the inertial a.titude it had when this snode was entered. The program automatically enters this mode upon AGS engine cutoff, PCNCS to ACS align completion and calibration completion. |
| $s_{00}$ | 400 | $+10000$ | AGS Submode Selector is in Guidance Steering Mode. If the AGS is in control, the attitude error signals will orient the LM to the desired thrust direction. |
| $S_{00}$ | 400 | +20000 | ACS Submode Selector is in Z-body Axis Stecring Mode. It the AGS is in control, the attifude errore signais will drive the +7 -body axis in the estimated direction of the $\operatorname{CSM}$ if $S_{507}$ is zero or in the desired thrust direction if $\mathrm{S}_{507}$ is one. |
| $\mathrm{S}_{00}$ | 400 | +30000 | AGS Submode Selector is in PGNCS to AGS Align. The system is in this mode for 2 seconds during which time the AGS stable member coordinate Irame is aligined to the PGNCS stable member frame. Upon completion of this operation. the ACS Submode Setector is automatically returned to the "attitisde hold" mode. |
| $\mathrm{s}_{00}$ | 400 | +40000 | AGS Submode Selector is in the Lunar Align mode. See Section 16. 2. |
| $\mathrm{S}_{00}$ | 400 | +50000 | AGS Submode Selector is in the Body Axis Align mode. See Section 16.2 |
| $\mathrm{S}_{00}$ | 400 | +60000 | AGS Submode Selector is in the Gyro and Accelerometer Calibrate mode. See Section 17. Gyro caiibration time is 302 sec and accelerometer calibration time is 32 gec. Upon completion of the calibrations. the AGS Submode Selector returns to the Attitude Hold mode $\left\{S_{6}=+00000\right.$. |
| $S_{00}$ | 400 | +70000 | AGS Submode Selector is in the inflight Accelerometer Calibrate mode The Submode Selector should NEVER be in this mode on the lunar surface Completion of the calihration requires 32 sec ; the AGS Submode Selector returns to the Attitude Hoid mode after 302 sec. |
| $S_{07}$ | 407 | +00000 | This ie the normal value prior to froezing the external $\Delta v$ velocity-to-begained in inertial space. |
| $S_{07}$ | 407 | +10000 | If in the external $\Delta V$ mode of guidance, and the initiation of thrust is not to be along the positive X -body dirention, then this entry must be made prior to the time of thrust initfation. If thrusting is initially along the positive X-body axis direcition, this selection will automatically be set upon the detection of ullage. The purpose of this entry is to freeze the external $\Delta V$ velocity-to-be-gained vector in inertlal space. The tme to sec $\mathrm{S}_{0}$ is apecified by Mission Control so as to be consistent with the targeted $\Delta V$ values, alao oupplied by Mission Control. |
| $S_{10}$ | 410 | +00000 | ACS Guidance Routine Selector is in the "Orbit Insertion" mode. See Section 22.0. The purpose of this mode is to guide the LM vehicle to a prescribed orbital trajectory. Targeting constants for this trajeclory are altitude, altitude rate and eemi-major axio limite. |
| $S_{10}$ | 410 | $+10000$ | AGS Guidance Routine Selectoris in the "Coelliptic Sequence Initiate" (CSI) mode. See Section 23.0. Three targeting constantare required for thio mode: the time of the CSImaneuver, the nominal time of the TPI maneuver (DEDA entry 1J), and the desired cotangent of the line-of-sight angle between the LM and CSM at the time of the TPI maneuver (DEDA entry 2J). |
| $\mathrm{S}_{10}$ | 410 | +20000 | AGS Guidance Routline Sclector is in the "Corstant Delta h" (CDH) mode. Targeting required io CDH tinle. See Section 24.0. The purpose of the maneuver is to make the LM orbit "coelliptic" with the CSM orbit. |
| $S_{10}$ | 410 | +30000 | AGS Guidance Routine Selector is in a TPI Search Mode. See Section 25. 0. This mode is used prior to the TPI maneuver to determine when the direct transfer (TPI) maneuver is to be performed. Targeting inputs necesisary for this mode are a time increment ( $T \Delta$ ) necessary for the search and the desired time increment from TPl to rendezvous (DEDA entry 6J). |
| $\mathrm{S}_{10}$ | 410 | +40000 | AGS Guldance Routlne Selector is in the TPI Execute mode. See Section 25.0. This mode is used to actually performany direct transfer maneuvers. Targeting for thla mode is the AGS time of the maneuver and the time from the beginning of the maneuver to rendezvous ( 6 J ), An additional DEDA entry can be made to force the node: to occur 4 J minutes prior to normal rendezvoue tlme. |
| $S_{10}$ | 410 | +50000 | AGS Guidance Routine Selector is in the "External $\Delta V$ " mode. See Section 27. O. This mode is ueed to perform maneuvers based upon externally supplied velocity-to-be-gained components. Targeting inpute necessary for this mode are three components of velocity-te-begained in local vertical coordinates. The time when the burn commences must be known but is not an entry into the AEA. If otiver than $+X$ tbrusting ia plannedas the first burn maneuver, the time when the external $\Delta V$ input is "frozen" must aiso be known (i. e.. time when $\mathrm{S}_{07}$ is set to +10000 ). |

Table 6-1. AGS Selector Logic (Continued)

| Equation Symbol | Addreas | Value | Description |
| :---: | :---: | :---: | :---: |
| $S_{11}$ | 411 | $+10000$ | The actual thruat direction of the LM depends upon the engine being used. The DPS and RCS engines are assumed to thrust along the $X$-body axis and the APS engine is assumed canted through nominal angles. If the APS engirie is being used, this address and value should be entered. If an abort stage occurs during a burn, it is not necessary to enter $S_{1!}=+10000$ because the appropriate action is taken in the computer. |
| $S_{12}$ | 412 | +00000 | This entry resets the equation self-test error indicator and re-initiates testing. In general, this is the only entry that ever need be made in this address The remaisder of the valid states $\{+10000$-test successfully completed, $+30000-\operatorname{logic}$ test failure, $\mathbf{4 0 0 0 0}$ memory test failire, +70000 nlogic and memory test failure) are for readout purposes only. |
| $S_{13}$ | 413 | $+10000$ | Any entry in this cell $\{+10000$ is auggested) causes the lunar surface flag to be set and the lunar azimuth stored. The valise of +00000 for $S_{13}$ is reset only by the computer power turn-on sequence. However, lunar azimuth is stored each time $\mathrm{S}_{13}$ is setto +10000 , whether or not $\mathrm{S}_{13}$ was previously +00000 . |
| $S_{14}$ | 414 | +00000 | Following completion of any navigation initialization, the program automatically establishes this value in the cell. It is used only to indicate completion of initialization. Do not enter +00000 since it will be treated as a +10000 entry. See Section 15.1. |
| $S_{14}$ | 414 | $+10000$ | This entry commands a LM and CSM navigation initialization via the PGNCS downlink. |
| $S_{14}$ | 414 | +20000 | This entry commands a LM navigation initialization via the OEDA The ephemeris data are first entered and then this entry made |
| $S_{14}$ | 414 | $+30000$ | This entry commands a CSM navigation initialization via the EDA. The ephemeris data arefirst entered and then this entry made. |
| $S_{15}$ | 415 |  | Any entry in this cell causes the Z -body axis direction cosines, the time since the last range input, and the last computed range and range rate to be stored in the appropriate cells for use in the radar filter. The entry +10000 is suggested. |
| ${ }^{5} 16$ | 416 | +10000 | This entry causes the CSI calculations to compute the CSI maneuver with the CDH maneuver occurring at one-half orbital period following CSI |
| $5_{16}$ | 416 | +30000 | This entry causes the CSI calculations to compute the CSl maneuver with the CDH maneuver occurring at three-halves orbital periods following CSI. |
| ${ }^{5} 17$ | 417 | +00000 | This is thenormal value of the 'radar filter initialization" command. This entry need never be made by the astronaut since the program resets the value automatically to +00000 after the command to initialize the radar filter, |
| $S_{17}$ | 417 | +10000 | This entry causes the radar filter to be initialized. The entry +10000 is requtred. The entry in this address is then set back to the nominal value ( +00000 ). |
| $S_{507}$ | 507 | +00000 | Orient Z-body to direction of CSM when Z-body steering is commanded $(400+20000)$. |
| $S_{507}$ | 507 | $+10000$ | Orient Z-body to desired thrust direction when Z -body steering is commanded $(400+20000)$. |
| $5_{623}$ | 623 | +00000 | Orient Z-body axis parallel to CSM orbit plane when guidance steering is commanded ( $400+10000$ ). |
| $S_{623}$ | 623 | $+10000$ | Orient Z-body axis parallel to plane defined by $\underline{W}$ b when guidance steering is commanded $(400+10000)$. |

Table 6. 2. DEDA Inputs - Lunar Mission

| Equation Symbol | Address | Units | Value | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $W_{\text {bx }}$ | 514 | octal |  | B1 | - | Unit vector in AGS inertial coordinates, |
| $\mathrm{w}_{\text {by }}$ | 515 | octal |  | B1 | - | normal to the plane in which the $Z \mathrm{Z}$ body axis is commanded during guidance |
| $\mathrm{W}_{\mathrm{b}_{2}}$ | 516 | octal |  | Bl | - | steering when $S_{62.3}=1$ |
| 1J1 | 240 | ft |  | $\pm 8,388,600$ | $10^{2}$ | X component of LM position used in LM initialization via the DEDA |
| 152 | 241 | ft |  | $\pm 8.388,600$ | $10^{2}$ | $Y$ component of LM position used in LM initialization via the DEDA |
| 153 | 242 | ft |  | $\pm 8.388,600$ | $10^{2}$ | $Z$ component of LM position used in LM initialization via the DEDA |
| 154 | 260 | $\mathrm{ft} / \mathrm{sec}$ |  | \$8191 | 0.1 | $X$ component of $L M$ velocity used in $L M$ initialization via the DEDA |
| 1.35 | 261 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0.1 | Y component of LM velocity used in LM initialization via the DEDA |
| 156 | 262 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0.1 | $Z$ component of LM velocity used in LM initialization via the DEDA |
| 1 J 7 | 254 | min |  | 0 to 4369 | 0.1 | Epoch time of LM ephemeris data used in LM navigation initialization via the DEDA. This time must be expressed in AGS computer time (see Section 9.1) |
| 2 J 1 | 244 | ft |  | $\pm 8,388,600$ | $10^{2}$ | X component of CSM position used in CSM initialization via the DEDA |
| 2 J 2 | 245 | ft |  | $\pm 8,388,600$ | $10^{2}$ | $Y$ component of CSM position used in CSM initialization via the DEDA |
| 2 J 3 | 246 | ft |  | $\pm 8,388,600$ | $10^{2}$ | 2 component of CSM position used in CSM initialization via the DEDA |
| 2 J 4 | 264 | ft/sec |  | $\pm 8191$ | 0.1 | $X$ component of CSM velocity used in CSM initialization via the DEDA |
| 2 J 5 | 265 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0. 1 | Y component of CSM velocity used in CSM initialization via the DEDA |
| 336 | 266 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0. 1 | 2 component of CSM velocity used in CSM initialization via the DEDA |
| 2 J 7 | 272 | min |  | 0 to 4369 | 0. 1 | Epoch time of CSM ephemeris data used in CSM navigation initialization via the DEDA. This time must be expressed in AGS computer time \{sec Section 9. 1) |
| t | 377 | $\min$ |  | 0 to 4369 | 0.1 | AGS computer time (see Section 9.1) |
| 28 J 1 | 450 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0.1 | Component of External $\Delta V$ input in the direction parallel to the CSM orbit plane. A positive value indicates a velocity-to-be-added in the posigrade direction. |
| 28.52 | 451 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0.1 | Component of External $\Delta V$ input in the direction perpendicular to the CSM orbit plane. A positive value indicates a velocity-to-be-added opposite to the LM angular momentum vector. |
| 28 J 3 | 452 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8192$ | 0. 1 | Component of External $\Delta V$ input in the radial direction. A positive value indicates a velocity-to-be-added toward the Moon |

Table 6. 2. DEDA Inputs - Lunar Miasion (Continued)

| Equation <br> Symbol | Address | Unile | Value | Range | Quantization | Descriplion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta \delta$ | 547 | $\begin{aligned} & \text { octal } \\ & \text { rad } \end{aligned}$ |  | B0 |  | Lurar Align Azimuth Correction (sue Section 16.2) |
| 1 J | 275 | min |  | 0104369 | 0. 1 | Desiran time of TPI maneuver as utilized in the CSI calculations. This $t$ unemust be input in AGS computer time |
| 2 J | 605 | octal |  | B7 |  | ```Desired cotangent uf line-of - вight r.nelf: between LM and CSM at desired TPI time as used in the CSI computations``` |
| 3 J | 312 | $\min$ |  | $\pm 136$ | 0.01 | This entry is a TPI rendezvous offext lime as used in the stable orbit rendezvous technique |
| $4 J$ | 306 | min |  | $\pm 136$ | 0. 01 | Time increment of node prior to nomsinat rendezvous |
| 5.J | 231 | ft |  |  | $10^{2}$ | Radial distance of danding site from the center of the altracting body |
| $6 J$ | 307 | $\min$ | - | 0 to 136 | 0. 01 | Transfer tinnc fromit beginning of di ra.el transfer nzaneuver to rendezvous |
| 7 J | 224 | ft |  | $\pm 8,388,600$ | $10^{2}$ | Term in semi-major axis computation, $\alpha_{L}$ (OI) |
| 8 J | 225 | ft |  | $\pm 8,388.600$ | $10^{2}$ | ${ }^{\circ} \mathrm{L}$ lower limit (01) |
| 9 J | 226 | ft |  | $\pm \$, 388,600$ | $10^{2}$ | $\alpha_{\text {L }}$ upper limit (OI) |
| 16 J | 232 | ft |  | 0 to $10^{5}$ | $10^{2}$ | Targeted injection allitude at orbit insertion |
| 17 J | 503 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 8191$ | 0.1 | Radar range rate |
| 18 J | 316 |  |  | 0 to 1379.6 | 0. 1 | Radar range |
| 215 | 233 | feet |  | 0 to $10^{5}$ | $10^{2}$ | Vertical pitch steering altitucle thesteotal |
| $22 J$ | 46.4 | fl/sec |  | $\pm 1000$ | 0. 1 | Vertical mitch steering altitude $r$ ate threshold |
| 23J | 46.5 | fl/yec |  | $\pm 1000$ | 0. 1 | Target radial rate at orbit insurtion |
| 25 J | 223 | ft |  |  | $10^{2}$ | DEDA altitude update during descent phase |
| 29 J | 274 | min |  | $\begin{aligned} & -4369 \\ & \text { to } 0 \end{aligned}$ |  | Initial ristar filter value for $t_{1}$ |
| $\mathrm{T}_{\Delta}$ | 310 | $\min$ |  | 010136 | 0. 01 | Time increment until TPI used in guidance TPl search routine |
| $t_{i g} \mathrm{~A}$ | 373 | $\min$ |  | 0 to 4369 | 0. I | Absolute: Eime of CSI manduvery in AGS gomputer time |
| $t_{i g B}$ | 373 | min |  | 0 to 4369 | 0. 1 | AGS absolute time of CDH maneuver |
| $t_{i g C}$ | 373 | min |  | 0 to 4369 | 0. 1 | Absolute time of TPI or nidcourse maneuver in AGS conputer time' |
| $\sin ^{5} \mathrm{~L}$ | 047 |  |  | B 1 |  | Sine of the Landing Azimuth Angle (sec: Section 16, 2) |
| $\cos ^{\delta} \mathrm{L}$ | 053 |  |  | B1 |  | Cosine of the L, anding Agimuth Angle (see Section 16, 2) |

Table 6-2. DEDA Inputs - Lunar Mission (Continued)

| Equation Symbol | Address | Units | Value | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {dx }}$ | 404 | fe/sec- |  | B13* |  | Accumulated $\Delta V$ in $X$-bedy dizection minus descent engine capability lupdated every 40 mseconsi. |
| 1 KI | 544 | $\mathrm{deg} / \mathrm{hr}$ |  | $\pm 10$ | 0.01 | X-gyro drift compensation constant |
| 1K6 | 545 | $\mathrm{deg} / \mathrm{hr}$ |  | $\pm 10$ | 0.01 | Y-gyrodrift compensation constant |
| 1K11 | 546 | $\mathrm{deg} / \mathrm{hr}$ |  | $\pm 10$ | 0.01 | R-gyro drift compensation constant |
| 1K19 | 540 | $f t / \sec ^{2}$ |  | $\pm 0.064$ | 0.001 | Compensation for X -axis accelerometer bias |
| 1K21 | 541 | ft/ $\mathrm{sec}^{2}$ |  | $\pm 0.064$ | 0.001 | Compensation for Y -axis accelerometer bias |
| 1K23 | 542 | $\mathrm{ft} / \sec ^{2}$ |  | $\pm 0.064$ | 0.001 | Compensation for 7.-axis accelerometer bias |
| IK18 | 534 | ft/sec/ pulse |  | B-8 |  | X-Accelerometer Scale Factor |
| $1 \mathrm{~K}>0$ | 535 | ft/sec/ pulse |  | B. 8 |  | Y -Accelerometer Scale Factor |
| 1 K 22 | 536 | ft/sec/ pulse |  | B-8 |  | Z.Accelerometer Scale Factor |
| 3 K 4 | 613 |  |  | BI |  | Sine of TPI interdict region |
| K55 | 607 |  |  | B0 |  | h display scate factor |

*Because $\mathrm{V}_{\mathrm{dX}}$ was not intendod for DE:DA processing but is on the downlink, it is in a region of memory for which a non-applicable DEDA processing scale factor is selected. The only access to this cell via DEDA should be as described in Section 2. 3. 5

Table 6.3. DEDA Outputs - Lunar Mission

| Equation Symbol | Addres s | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{r}_{\mathrm{x}}$ | 340 | ft | $\pm 8,388,600$ | $10^{2}$ | X component of LM position |
| ${ }^{5}$ | 341 | ft | $\pm 8,388,600$ | $10^{2}$ | Y component of LM position |
| $\mathrm{r}_{\mathrm{z}}$ | 342 | ft | $\pm 8,388,600$ | $10^{2}$ | $Z$ component of LM position |
| $\mathrm{V}_{\mathrm{x}}$ | 360 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | X component of LM velocity |
| $\mathrm{V}_{\mathrm{y}}$ | 361 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Y component of LM velocity |
| $\mathrm{V}_{\mathrm{z}}$ | 362 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Z component of LM velocity |
| V | 433 | ft/sec | +8191 | 0.1 | LM velocity magnitude |
| $\mathrm{r}_{\mathrm{cx}}$ | 344 | ft | $\pm 8,388,600$ | $10^{2}$ | X component of CSM position |
| $\mathbf{r}_{\text {cy }}$ | 345 | ft | $\pm 8,388,600$ | $10^{2}$ | Y component of CSM position |
| $\mathrm{r}_{\mathrm{cz}}$ | 346 | ft | $\pm 8,388,600$ | $10^{2}$ | Z component of CSM position |
| $\mathrm{V}_{\mathrm{cx}}$ | 364 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | X component of CSM velocity |
| $\mathrm{V}_{\mathrm{cy}}$ | 365 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Y component of CSM velocity |
| $\mathrm{v}_{\mathrm{cz}}$ | 366 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Z component of CSM velocity |
| t | 377 | min | 0 to 4369 | 0.1 | AGS computer time |
| ${ }^{q}{ }_{L T}$ | 403 | nmi | $\pm 1379.6$ | 0.1 | Perifocus altitude of LM trajectory |
| $\mathrm{q}_{1 D}$ | 402 | nmi | $\pm 1379.6$ | 0.1 | Perifocus altitude of predicted LM trajectory (TPI only) |
| $\mathrm{q}_{\mathrm{a}}$ | 315 | nmi | $\pm 1379.6$ | 0.1 | Apofocus altitude of LM trajectory |
| $\Delta V_{g X}$ | 500 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Velocity-to-begained in X -body direction |

Table 6.3. DEDA Outputs - Lunar Mission (Continued)

| Equation <br> Symbol | Address | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta V_{g Y}$ | 501 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Velocity-to-begained in Y -body direction |
| $\Delta V_{g Z}$ | 502 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Velocity-to-begained in Z-body direction |
| ${ }^{\text {D }}$ D | 470 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0. 1 | $\Delta V$ expended in X -body direction minus descent capability (updated every 2 seconds) |
| $\mathrm{V}_{\text {DY }}$ | 471 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0. 1 | ```\|V expended in Y-body direction (updated every 2 seconds)``` |
| $\mathrm{v}_{\mathrm{DZ}}$ | 472 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | $\Delta V$ expended in Z-body direction (updated every 2 seconds) |
| $\dot{\mathbf{r}}_{\mathrm{A}}$ | 477 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Predicted altitude rate of LM at CSI, CDH, or TPI time. |
| $\mathrm{V}_{\mathrm{p} 0}$ | 371 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | $\Delta V$ for $C D H$ maneuver (valid when in CSI guidance mode) |
| $\Delta \mathrm{r}$ | 402 | nmi | $\pm 1379.6$ | 0.1 | Differential altitude in coelliptic orbit (valid in CSI or CDH only) |
| $\xi$ | 277 | deg | 0 to 360 | 0.01 | In plane angle between Z body axis and local horizontal |
| $\mathrm{T}_{\text {A } 0}$ | 372 | min | 0 to 4369 | 0. 1 | Time from CSI to CDH (valid in CSI only) |
| $\delta \mathrm{r}$ | 314 | nmi | $\pm 1379.6$ | 0.1 | Differential orbital altitude along LM radial at CSI time |

Table 6. 3. DEDA Outputs - Lunar Mission (Continued)

| Equation Symbol | Address | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R | 317 | nmi | 0 to 1379. 6 | 0.1 | Range from LM to CSM |
| $\dot{\mathrm{R}}$ | 440 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Range rate between LM and CSM (negative sign indicates LM closing on CSM) |
| $\dot{\mathrm{r}}$ | 367 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | LM altitude rate |
| h | 337 | nmi | 0 to 1379.6 | 0.1 | LM altitude |
| $\theta_{\mathrm{f}}$ | 303 | deg | 0 to 360 | 0.01 | LM to CSM Phase Angle (in OI at present; CSI or CDH modes at $\mathrm{t}_{\mathrm{ig}}$ ). |
| $\Delta V_{G}$ | 267 | $\mathrm{ft} / \mathrm{sec}$ | 0 to 8191 | 0.1 | Magnitude of LM velocity to-be gained (Not valid in CDH mode) |
| ${ }^{\text {L }}$ LOS | 303 | deg | 0 to 360 | 0.01 | Predicted line-ofsight angle at TPI time (TPI mode. only) |
| $\mathrm{V}_{\mathrm{T}}$ | 371 | $\mathrm{ft} / \mathrm{sec}$ | 0 to 8191 | 0.1 | Total velocity to rendezvous <br> (TPI Mode Only) |
| $\mathrm{V}_{\mathrm{py}}$ | 263 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Predicted LM out-of-plane velocity at $\mathrm{t}_{\mathrm{ig}}$ in CSI, CDH, or TPI; present LM out-of-plane velocity in OI. Has no meaning in XDV. |
| $\mathrm{V}_{\mathrm{y} 0}$ | 270 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Present LM out-of-plane velocity |
| y | 211 | ft | $\pm 8,388,600$ | $10^{2}$ | Present LM out-of-plane distance |

Table 6-3. DEDA Outputs - Lunar Mission (Continued)

| Equation <br> Symbol | Address | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {ig }}$ | 373 | min | 0 to 4369 | 0. 1 | AGS absolute time of next maneuver |
| $\mathrm{T}_{\Delta}$ | 310 | min | 0 to 136 | 0. 01 | Time to go until CSI maneuver when in CSI mode, CDH maneuver when in CDH, and TPI maneuver when in TPI |
| T perg | 313 | min | 0 to 136 | 0. 01 | Time to go until perifocus of LM orbit |
| 1 J | 275 | min | 0 to 4369 | 0.1 | Nominal time of TPI maneuver |
| 3 J | 312 | $\min$ | 0 to 136 | 0.1 | TPI Rendezvous offset time |
| 4 J | 306 | min | 0 to 136 | 0.1 | Time of node prior to nominal rendezvous time |
| 6 J | 307 | min | 0 to 136 | 0.01 | Time from TPI to rendezvous |
| $\mathrm{T}_{\mathrm{r}}$ | 311 | min | 0 to 136 | 0.01 | Time to go until rendezvous in TPI mode |
| ${ }^{2} 88$ | 574 |  |  |  | Descent section staging flag |
| ${ }^{*}{ }^{2} 21$ | 604 |  |  |  | Lunar surface flag |

*These are internal computer flags. Only the sign of the quantity has significance.

Table 6-3. DEDA Outputs - Lunar Mission (Continued)

| Equation Symbol | Address | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu_{6}$ | 612 | 40 msec counts | B 17 |  | Staging sequence counter |
| $\mu_{8}$ | 614 | $\left\|\begin{array}{l} 2-\sec \text { in }- \\ \text { crements } \end{array}\right\|$ | $\begin{aligned} & 0 \text { to } \\ & 131,072 \end{aligned}$ | 1.0 | Ullage counter (Decimal) |
| $\dot{\mathbf{r}}_{\mathrm{f}}$ | 423 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 8191$ | 0.1 | Desired final value of altitude rate |
| 1 K 19 | 540 | $\mathrm{ft} / \mathrm{sec}^{2}$ | 0. 064 | 0.001 | X-accelerometer <br> bias compensa- <br> tion (Decimal) |
| 1 K 21 | 541 | $\mathrm{ft} / \mathrm{sec}^{2}$ | 0. 064 | 0.001 | Y-accelerometer bias compensation(Decimal) |
| 1 K 23 | 542 | $\mathrm{ft} / \mathrm{sec}^{2}$ | 0.064 | 0.001 | Z-accelerometer bias compensation (Decimal) |
| 1 K 18 | 534 | $\mathrm{ft} / \mathrm{sec} /$ pulse | B-8 |  | X-accelerometer scale factor |
| 1 K 20 | 535 | ft/sec/ pulse | B-8 |  | Y-accelerometer scale factor |
| 1 K 22 | 536 | $\mathrm{ft} / \mathrm{sec} /$ <br> pulse | B-8 |  | Z-accelerometer scale factor |
| 1 Kl | 544 | $\mathrm{deg} / \mathrm{hr}$ | 10.0 | 0.01 | X-gyro drift compensation |
| 1K6 | 545 | $\mathrm{deg} / \mathrm{hr}$ | 10.0 | 0.01 | Y-gyro drift compensation |
| 1 K 11 | 546 | $\mathrm{deg} / \mathrm{hr}$ | 10.0 | 0.01 | Z-gyro drift compensation |
| 1K9 | 616 | 2-sec increment | $\begin{aligned} & 0 \text { to } \\ & 131,072 \end{aligned}$ | 1.0 | Ullage counter value for ullage completion |

Table 6-4. DEDA Inputs - Earth Mission

| Equation Symbol | Address | Units | Value | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{W}_{\mathrm{bx}}$ | 514 | Octal |  | B1 | - | Unit vector in AGS inertial coordinates, normal to the plane in which |
| $\mathrm{w}_{\text {by }}$ | 515 | Octal |  | B1 | - | $\left\{\begin{array}{l}\text { the } \mathrm{Z} \text {-body axis is commanded during } \\ \text { guidance steering when } \mathrm{S}_{623}=1\end{array}\right.$ |
| $\mathrm{w}_{\mathrm{bz}}$ | 516 | Octal |  | Bl | - |  |
| $1 J \mid$ | 240 | ft |  | $\pm 33,554, n 00$ | $10^{3}$ | X component of $L M$ position used in LM initiatization via the DEDA |
| 132 | 241 | $f t$ |  | $\pm 33.554 .000$ | $10^{3}$ | $Y$ component of LM position used in LM initialization via the DEDA |
| 1 J 3 | 242 | ft |  | $\pm 33,554,000$ | $10^{3}$ | 2 component of LM position used in LM initialization via the DEDA |
| 134 | 260 | rt/sec |  | $\pm 32767$ | 1 | X component of LM velocity used in LM initialization via the DEDA |
| 155 | 261 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 32767$ | 1 | $Y$ component of $L M$ velocity used in $L M$ initialization via the DEDA |
| 156 | 262 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 32767$ | 1 | $Z$ component of $L M$ velocity used in LM initialization via the DEDA |
| 157 | 254 | mirs |  | 0 to 4369 | 0. 1 | Epoch time of LM ephemeris data used in LM navigation initialization via the DEDA. This time must be expressed in AGS computer time (see Section 9.1) |
| 2 JI | 244 | it |  | $\pm 33,554,000$ | $10^{3}$ | $X$ component of CSM pesition used in CSM initialization via the DEDA |
| 232 | 245 | $f t$ |  | $\pm 33.554 .000$ | $10^{3}$ | Y component of CSM position used in CSM initialization via the DEDA |
| 2 J 3 | 240 | ft |  | $\pm 33,554,000$ | $10^{3}$ | Z component of CSM position used in CSM initialization via the DEDA |
| $2 J 4$ | 264 | ft/sec |  | $\pm 32767$ | 1 | X component of CSM velocity used in CSM initialization via the DEDA |
| 2 J 5 | 265 | ft/sec |  | $\pm 32767$ | 1 | $Y$ component of CSM velocity used in CSM initialization via the DED-A |
| 236 | 266 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 32767$ | 1 | Z component of CSM velocity used in CSM initialization via the DEDA |
| 2 J 7 | 272 | $\min$ |  | 0 to 4369 | 0.1 | Epoch time of CSM ephemeris data used in CSM navigation initialization via the DEDA This time must be expressed in AGS computer time (see Section 9.1) |
| t | 377 | $m i n$ |  | 0 104369 | 0. 1 | AGS computer time (see Section 9.1 ) |
| 28 JI | 450 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 32767$ | 1 | Component of External $\Delta V$ input in the direction parallel to the CSM orbit plane. A positive value indicater a velpcily-to-be-added in the posigrade direction |
| 2852 | 451 | $\mathrm{ft} / \mathrm{sec}$ |  | $\pm 32767$ | 1 | Component of External $\Delta V$ input in the direction perpendicular to the CSM orbit plane. A positive value indicates a velocity-to-be-added opposite to the LM angular momentum vector |
| 28.33 | 452 | $\mathrm{ft} / \mathrm{sec}$ |  | *37767 | 1 | Component of External $\Delta V$ input in the radial direction. A positive value indicates a velocity-to-be-added toward the Earth |

Table 6－4．DEDA Inputs－Earth Mission（Continued）

| Equation 5ymbol | Address | Units | Value | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta{ }_{0}$ | 547 | $\begin{aligned} & \text { octal } \\ & \text { rad } \end{aligned}$ |  | B0 |  | Lunar Align Azimuth Correction（see Section 16,21 |
| IJ | 275 | min |  | 0 to 4369 | 01 | nasired time of TPI maneuver as uttiz．ed in the CSI calculations This time must be input in AGS somputer time |
| 23 | 605 | octal |  | B7 |  | Drgires cotangent of line－of－sight angle between LM and CSM at desired TPI time af uned in the CSI computetione |
| 35 | 312 | min |  | $\pm 136$ | 0.01 | This entry is TPl sendezveus offiet time as used in the stable orbit render vous iechnique |
| 45 | 306 | min |  | ＊136 | 0.01 | Ilme increment rode prior to nominal senservous |
| 51 | 231 | ft |  |  | $10^{3}$ | Ruclial pliktance if launth tite from the center ot the attrartink body（Earth） |
| 65 | 307 | min |  | 080136 | 001 | Transler time from teginning of direct transfer nameuver los rentez：vilus |
| 79 | 224 | ft |  | ＊33，554， 000 | $10^{3}$ | Term in senil－mater axis computation， $0_{2}(01)$ |
| 81 | 225 | ft |  | 土 33，554，000 | $10^{3}$ | ${ }^{\circ} \mathrm{L}$ lower Jimit loth |
| 41 | 226 | ft |  | $\pm 33.554 .000$ | $10^{3}$ | ${ }^{\circ} \mathrm{L}$ Inwer limat toll |
| ｜as | 232 | ft |  | $\begin{aligned} & 0 \mathrm{ln} \\ & 33.554 .0 n 7 \end{aligned}$ | $10^{3}$ | Targeted injection difitude at wrbit invertion |
| 173 | 503 | gelsee |  | ＊32767 | 1 | Riwler rangie rate |
| ［8］ | 316 | nmi |  | 0 t： 55518.4 | ） 1 | Ravelat r range． |
| 215 | 234 | ft |  | $\begin{aligned} & 0 \text { to } \\ & 33,554,000 \end{aligned}$ | 103 | Vr．pthal pitch tepering sititude thresholel |
| 225 | 404 | It／sec |  | $\pm 127 \pm 7$ | 1 | Vartical pitch stepting ．．tellude rate thresholet |
| 23.3 | 465 | ritsec |  | $\pm 32767$ | 1 | Tarket mastat rith ．．．．erbot insertion |
| 25 J | 223 | It |  |  | $10^{3}$ |  |
| 23） | 274 | min |  | $\begin{aligned} & -4369 \\ & 100 \end{aligned}$ |  | Initial endinfitilier value「or $t_{1}$ |
| $\tau_{\Delta}$ | 310 | min |  | 0ta 136 | ก．$n 1$ |  guidnace rautine |
| ${ }^{\prime}$ ira | 373 | min |  | $0 \ln 436$ | 01 | Ahsiluile firme af CSi maneuvar in AGS <br> －msmputer I fire |
| ＇18日 | 373 | min |  | 0104300 | 01 |  |
| ${ }^{\text {ig C }}$ | 323 | min |  | Q 10 \＄369 | 01 | Abeolute time mi Tjli is mbis oussie mane uver in $A G S$ eomputer time |
| $\sin ^{5} \mathrm{c}$ | 047 |  |  | B1 |  | Sine of the l．anding Az：mith Angle Iste Sertion th． l |
| $\cos 4$ | 053 |  |  | B1 | ， | Cosiae of the 1 ，amstnk Aztmath Angle I vee Section 16 21 |
| $v^{v} d x$ | 40.4 | fifsec |  | В15＊ |  | Acrumulated $\Delta V$ in $X$－bnciy direction minus descent ensine capability iupriaged every tn msecondss |
| IK | 544 | der／hr |  | $\pm 10$ | 13． 01 | X－ryrodelft rompensation constist |
| 1K6 | 545 | deg／hr |  | $\pm 10$ | 0 0！ | Y－byrodrilt compensation constant |
| 1 KII | 540 | deg／tir |  | $\pm 10$ | 0.01 | z．gyeo draft compengation constant |
| 1K19 | 540 | fe／rec ${ }^{2}$ |  | $\pm .06$ | 0． 01 | Compensation for $X$－axis accelerometer bias |
| 1 K 21 | 541 | G／bec ${ }^{2}$ |  | ＊． 06 | 0，0） | Compensation for Y．axls accelerometer bias |
| 1 K 23 | 542 | $\mathrm{stascc}^{2}$ |  | ＊． 06 | 0.11 | Compensation for 7－axiy a．ccelerometer bias |

[^1]Table 6-4. DEDA Inputs - Earth Mission (Continued)

| Equation Symbol | Address | Uniṫ | Value | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 KI 8 | 534 | $\mathrm{ft} / \mathrm{sec} /$ pulse |  | B-6 |  | X-arcelerometer scale factor |
| 1 K20 | 535 | $\mathrm{ft} / \mathrm{sec} /$ pulse |  | B-6 |  | Y-acceleroneter scale factor |
| 1 K 22 | 536 | [t/sec/ pulse |  | B-6 |  | Z-accelerometer scale factor |
| 3 K 4 | 613 | - |  | $\pm 1.0 \mathrm{Bl}$ |  | Sine of TPI interdict region |
| K55 | 607 | - |  | B0 |  | h display scale factor |

* Because $V$ was not intended for DEDA processing, but is on the AGS downlink, it is in a region of mernory ior which a nonapplicable DEDA processing scale facior is selected. The only access to this cell via DEDA should be as described in Section 2.. 3. 5.

11176-6033-T000
Page 6-17
Revision 1
Table 6-5. DEDA Outputs - Earth Mission

| Equation Symbol | Addre:ss | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\mathrm{r}} \times$ | 340 | t | $\pm 33.554,000$ | $10^{3}$ | X-tomponent of LM pesition |
| ${ }^{\text {r }} \mathrm{y}$ | 341 | $\mathrm{ft}^{\text {t }}$ | $\pm 33,554,000$ | $10^{3}$ | Y-component of LM position |
| ${ }^{5} 7$ | 342 | ft | \# 33.554 .000 | $10^{3}$ | 7.-component or L.M position |
| $v_{x}$ | 360 | $\mathrm{ft} / \mathrm{sec}$ | -32767 | 1 | X -component of LM velocity |
| $v_{y}$ | 361 | ft/sec | $\pm 32767$ | 1 | Y.e.omponent or LM velocity |
| $v^{2}$ | 362 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 32767$ | 1 | 2.component of $L M$ velocity |
| $v$ | 433 | fl/sec | +32767 | 1 | LM velecits magnitude |
| ${ }^{5}$ c\% | 344 | ft | $\pm 33.554,000$ | $10^{3}$ | X-component of CSM position |
| ${ }^{5} \mathrm{cy}$ | 345 | ft | $\pm 33.554 .000$ | $10^{3}$ | Y-component of CSM position |
| ${ }^{5} \mathrm{cz}$ \% | 346 | $f \mathrm{ft}$ | $\pm 33,554,000$ | $10^{3}$ | \%ramsponent af CSM pusition |
| $v_{\text {cx }}$ | 364 | $\mathrm{ft} / \mathrm{sec}$ | \$ 32767 | 1 | $x$-component of CSM velocity |
| $v_{\text {cy }}$ | 365 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 32767$ | 1 | Y-compenent of CSM velocity |
| $\mathrm{v}_{\mathrm{c} / \mathrm{o}}$ | 366 | it/see | $\pm 32767$ | 1 | Z.acomponent of CSM velocity |
| t | 377 | min | 0 to 4369 | 0.1 | AGS computer time |
| ${ }^{q}$ LT | 403 | nmi | $\pm 5518.4$ | 0.1 | Perigec altilucide of L.M trajestory. |
| $\mathrm{q}_{1 \mathrm{~d}}$ | 402 | $n m i$ | $\pm 5518.4$ | 0.1 | Perigee altitude of predicted C . M irajectory (Disect Intercept Only) |
| $9{ }_{\text {a }}$ | 315 | nmi | $\pm 5518.4$ | 0. 1 | Aprifocus: Altitude of t.M irajectory |
| $\Delta V_{g} x$ | 500 | rt/sec | $\pm 32767$ | 1 | Velacity-tonbe-gained in $X$-direction |
| $\Delta V_{g} Y$ | 501 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 32.767$ | 1 | Velacity-to-be-gained in Y-direction |
| $\Delta V_{g Z}$ | 502 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 32767$ | 1 | Velucity-to-bengained in \%.direstion |
| ${ }^{\text {V }}$ DX | 470 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 32767$ | 1 | $\Delta V$ expended in $X$-body direction ininue descent capability \{updated every 2 seconds) |
| $\mathrm{V}_{\text {DY }}$ | 471 | ft/sec | $\pm 32767$ | 1 | $\Delta V$ expended in $Y$-body direction (updared every 2 seconds; |
| $\mathrm{v}_{\mathrm{DZ}}$ | 472 | f1/sec | $\pm 32367$ | 1 | $\Delta V$ expended in $\%$-body dirertion (updated every 2 seconds) |
| $\stackrel{F}{*}^{\text {A }}$ | 477 | It/bec | $\pm 32767$ | 1 | Predicted. altitude rate of L.Mat CSI. CDH or TPI time. |
| $V_{p 0}$ | 371 | $\mathrm{ft} / \mathrm{sec}$ | $\pm 32767$ | 1 | $\Delta V$ (or Cob maneuver (valid when in CSI Buidance mode) |
| $\Delta_{r}$ | 402 | nmi | 5518.4 | 01 | Differentjal altitude in coelliptic oribt fCSI/ CDH onty) |
| $\xi$ | 277 | dez | 0 to 360 | 0.01 | In plane angle lletween Z-body axis and local herizontal |
| $\mathrm{T}_{\mathrm{AO}}$ | 312 | min | 0 to 4369 | 01 | Time from CSl to CDH |
| R | 317 | nmi | 0105518.4 | 0.1 | Range from LM $\uparrow$ CSM |
| R | 440 | fe/bec | $\pm 32767$ | 1 | WanRe rate between L.M and CSM \{nefintive sirn indicates $\mathrm{L}, \mathrm{M}$ closing on GSM) |
| $r$ | 36.7 | $\mathrm{Ft} / \mathrm{sec}$ | $\pm 32767$ | 1 | T.M altitudt: rate |
| h | 337 | nmi | 0 to 5518.4 | 0. 1 | LM a lritude |
| $\boldsymbol{\theta}_{\text {f }}$ | 303 | ठeg | 0 to 3ヶ0 | 0. 01 | LM to CSM phase ankle (in of life.at: wi CSI or CDIt mixdissa: '1, |
| $\Delta V_{C}$ | 267 | ft/sec | 01032767 | 1 | Magnitude of $1 M$ velocity-to-be-gained (Not valid in COH mode) |
| ${ }^{\theta}$ LOS | 3113 | deg | 0 to 36n | 0.01 | Peedlcted line-ni-sight angle a: TPJ time (TPlonly) |
| $v_{\text {I }}$ | 331 | $\mathrm{ft} / \mathrm{sec}$ | 0 te 32767 | 1 | Toval velocity to rendezvous IIPI Mode -n(y) |
| ir | 314 | nmi | $\pm 5518.4$ | 0.1 | Differential orbital altifude alonk LM radial at CSi time. |

Table 6-5. DEDA Outputs - Earth Mission (Continued)

| Equation Symbol | Address | Units | Range | Quantization | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{v}_{\mathrm{py}}$ | 263 | ftoec | $\pm 32767$ | 1 | Predicted LMout-of-plane velocity at $t$. in CSI, CDH, or TPI; present LM out-of-plane veloctry in OI. Has no meaning in XDV. |
| $\mathrm{V}_{\mathrm{yo}}$ | 270 | ft/sec | $\pm 32767$ | 1 | Present LM out-of-plane velocity |
| $y$ | 211 | $f t$ | $\pm 33,554,000$ | $10^{3}$ | Present LiM out-of-plane distance |
| ${ }^{\text {ig }}$ | 373 | min | 0 とо 4369 | 0.1 | AGS absolute time of noxt maneuver |
| $\mathrm{T}_{\Delta}$ | 310 | min | 080136 | 0.01 | Time to go until CSI maneuver when in CSI mode, CDH maneuver when in the CDH mode, and TPI maneuver when in direct transfer |
| Tperg | 313 | min | 0 to 136 | 0.01 | Time to go until perifocus of LM orbit |
| 1 J | 275 | min | 0 to 4369 | 0.1 | Normal time of TPI maneuver |
| 3 J | 312 | min | 0 to 136 | 0.1 | JPPI Rendervous offset time |
| 4 J | 306 | min | 0 to 136 | 0.1 | Time of node prior to nominal rendezvous time |
| 63 | 307 | min | 0 to 136 | 0.01 | Timefrom TPI to rendesvous in TPI mode |
| $\mathrm{T}_{r}$ | 311 | min | 0 to \$36 | 0.01 | Time to go until rendezvous in TPI mode |
| ${ }^{*} \mathrm{~S}_{2}$ | 574 |  |  |  | Descent section staging flag |
| ${ }^{*} 8_{21}$ | 604 |  |  |  | Lunar surface flag |
| ${ }_{6}$ | 612 | 40 mbec counte | B17 |  | Staging sequence counter |
| $\mu_{8}$ | 614 | 2-secincremento | Oto 131,072 | 1.0 | Ullage counter (decimal) |
| $\dot{r}_{\text {f }}$ | 423 | ft/sec | $\pm 32767$ | 1 | Desired final value of altitude rate |
| 1 Kl | 544 | deg/hr | $\pm 10.0$ | 0.01 | X-gyro drift compensation |
| $11<6$ | 545 | deg/hr | $\pm 10.0$ | 0.01 | Y-gyro drift compensation |
| 1 Kll | 546 | deg/hr | $\pm 10.0$ | 0.01 | Z-gyro drift compensation |
| $11<9$ | 616 | 2 eec | 0 to 131,072 | 1.0 | Ullage counter value for ullage completion |
| 1 K 19 | 540 | ${\mathrm{ft} / \mathrm{sec}^{2}}$ | $\pm 0.06$ | 0.01 | X -accelerameter bias compensation (decimal) |
| 1K21 | 541 | $\mathrm{ft} / \mathrm{sec}^{2}$ | *0. 06 | 0.01 | Y-accelerometer bias compensation (decimal) |
| 1K23 | 542 | ft/ $\sec ^{2}$ | $\pm 0.06$ | 0. 01 | Z-ascelerometer bias compensation(decimal) |
| 11518 | 534 | ft/bec/ pulae | B-6 |  | X-accelerometer scale factor |
| 1K20 | 535 | ft/sec/ pulse | B-6 |  | $Y$-accelerometer scale factor |
| 1322 | 536 | ft/sec/ pulse | B-6 |  | Z.accelerometer scale factor |

[^2]
## PART II - AGS UTILIZATION AND FUNCTIONAL CAPABILITIES

### 7.0 POWER TURN ON

The AGS is in an unpowered mode when the ASA, AEA, and AGS circuit breakers are open. Closing the ASA circuit breaker causes the ASA to be in a temperature controlled condition. Closing the AEA and AGS circuit breakers cause power to be applied to the AEA. With the circuit breakers closed the AGS status switch controls the condition of the ASA and AEA as follows:

| AGS <br> Status <br> Switch | ASA <br> Condition | AEA <br> Condition |
| :---: | :--- | :--- |
| OFF | Warm up, temperature <br> controlled condition | STANDBY |
| STANDBY | OPERATE <br> (temperature controlled <br> condition and gyro <br> motors operating) | STANDBY |
| OPERATE | OPERATE <br> (temperature controlled <br> condition and gyro <br> motors operating) | OPERATE |

To use the AGS the AGS status switch must be in the operate position. The ASA should have been in a temperature controlled condition (OFF, STANDBY, OPERATE) for 40 minutes and in a condition with the gyro motors operating (STANDBY, OPERATE) for 25 minutes. This situation can be achieved by closing the circuit breakers and setting the AGS status switch to OPERATE. After 40 minutes the system would be ready for use. This procedure is not recommended, however, since it is better to have the ASA in its temperature controlled state only, prior to operating the gyro motors. Thus the recommended procedure is to close the ASA circuit
breaker and keep the AGS Status Switch in OFF for 15 minutes. Then place the AGS Status Switch in the STANDBY position, close the AEA circuit breaker and allow 25 additional minutes prior to system utilization (OPERATE). Degraded system performance is available 10 minutes after closing the circuit breakers, if at least the last 5 minutes of this period were spent in the STANDBY or Operate Mode.

When the AGS STATUS SWITCH is in the OFF position the AEA has no functional capability, except it can accept the CDU zero signal and accumulate the PGNCS Euler Angle Increments if the AEA circuit breaker is closed. Full AEA capability is afforded when the system is switched to OPERATE and all circuit breakers are closed.

When the AGS circuit breaker is closed and the AGS status switch is turned to the OPERATE position, the AEA enters a core priming routine that insures that the computer memory is magnetized properly. Moreover, various "computer operation" discretes are initialized so that correct sequencing of the "computation subcycles" results. The state of the computer when the system is turned to OPERATE is the same as the previous turn off state except that the following quantities are reinitialized:

1) Engine ON
2) $S_{00}$ is set to 0
3) $\mathrm{S}_{10}$ is set to 0
4) $S_{11}$ is set to 0
5) $\mathrm{S}_{12}$ is set to 0
6) $\mathrm{S}_{13}$ is set to 0
7) $\mathrm{S}_{14}$ is set to 0
signal is set to OFF.
this places the AGS in the attitude hold submode.
this places the AGS in the "orbit insertion" guidance routine.
cant angle correction to guidance steering attitude errors are not computed.
this resets the self test error indicator and re-initilizes computer self-test.
performs no function.
this setting means that no navigation initialization is to be performed this computer cycle.


| DEDA <br> Address | Description of Variable |
| :--- | :--- |
| 574 | Internal AEA staging recognition signal $\left(\delta_{2}\right)$ |
| 604 | Internal AEA lunar surface recognition flag $\left(\delta_{21}\right)$ |
| 612 | Internal AEA staging sequence counter $\left(\mu_{6}\right)$ |
| 412 | Self test indicator |

Procedures for performing the readiness checks are contained in Section 14. 1.

## 7. 1 Power Interrupt

Certain power transients can cause the AEA to shutdown (the AEA will function as if the AGS' Status Switch has been turned off). Upon return of normal power, the AGS will return to the operate state. When the AEA returns to the operate state, various quantities are reinitialized as described in the preceding paragraphs.

## 7. 2 Power Turn-Off

The recommended procedure for turning off the AGS is to open the AEA circuit breaker, turn the AGS Status Switch to OFF, and open the AGS circuit breaker. The ASA circuit breaker should be left closed (ASA in temperature controlled condition) until the AGS will no longer be used on a mission.

## 8. 0 SELF-TEST ROUTINE

The inflight self-test routine checks on a continuous basis that the computer logic and memory are functioning properly. DEDA address 412 is used in conjunction with the test to indicate test results to the astronaut and to allow resetting of error indicators. If a readout of address 412 on the DEDA is performed the following outputs are possible.

$$
\begin{aligned}
& +00000 \text { test not completed } \\
& +10000 \text { test successfully completed } \\
& +30000 \text { logic test failure } \\
& +40000 \text { memory test failure } \\
& +70000 \text { logic and memory test failure }
\end{aligned}
$$

An input of +00000 is used to allow the astronaut to reinitiate testing and reset the AGS Caution and Warning Lamp after any error is detected. Whenever an error is encountered during a pass through the test, the value in memory location 412 and the AGS Caution and Warning Lamp are set accordingly and future tests are inhibited until astronaut reinitiation. Reinitiation is accomplished by entering +00000 in address 412. There is no need for the astronaut to monitor DEDA address 412 periodically since a visual indication of an error is available on the AGS Caution and Warning Lamp. However, as part of the AGS turn on procedure the DEDA check should be made as a partial check on the operation of the AGS Caution and Warning Lamp and the computer.

### 9.0 AGS COMPUTER TIME, TIME TO EVENTS AND TIMING ERRORS

## 9. 1 AGS Computer Time

Ground elapsed time is defined as the time difference between current Greenwich Mean Time and Greenwich Mean Time of Apollo liftoff from the Earth. Because of the AGS computer word size, Ground Elapsed Time cannot be used for AGS time. Instead, a time bias (K-factor) is subtracted from Ground Elapsed Time and the resulting time used as AGS time. The bias used equals the Ground Elapsed Time when the AGS computer time is initialized at AGS time zero.

## 9. 2 Time to Events

In general it is assumed that the astronaut will utilize the "events timer" on the instrument panel to know when to perform the next maneuver. However, in all AGS guidance routines except "orbit insertion" and "external $\Delta V$ " the capability exists of either setting the events timer with a DEDA output quantity or comparing the time to go as depicted on the events timer with that in the guidance computer. This section contains a discussion of these DEDA output quantities.

### 9.2.1 CSI

One of the targeting parameters for the CSI maneuver is the AGS time of the CSI maneuver ( $\mathrm{i}_{\mathrm{igA}}$ ) ${ }^{*}$. This entry is made via DEDA address 373. Time to go until the CSI maneuver can be obtained by reading out address 310 on the DEDA. This is called $T_{\Delta}$ in the guidance equations.

After the CSI solution is obtained, the time from the CSI maneuver to the CDH maneuver can be read out. This is accomplished by reading out address 372 on the DEDA which corresponds to the symbol $T_{A 0}$ of the guidance equations.

Several other times of interest are also available. These are presented in Table 9.1 below.

[^3]Table 9. 1. Time Quantities Available in CSI Mode

| Address | Quantization | Units | Equation <br> Symbol | Description |
| :---: | :---: | :---: | :---: | :--- |
| 373 | 0.1 | $\min$ | $\mathrm{t}_{\text {igA }}$ | Targeted AGS time of <br> CSI maneuver |
| 372 | 0.01 | $\min$ | $\mathrm{~T}_{\Delta}$ | Time to go until CSI <br> maneuver |
| 275 | 0.1 | $\min$ | $\mathrm{~T}_{\text {A0 }}$ | Time from CSI to CDH <br> maneuver |
| 313 | 0.1 | $\min$ | $\mathrm{~J}^{\mathrm{l}}$ | Nominal AGS time of <br> TPI maneuver (target- <br> ing quantity) |
| 377 | 0.1 | $\min$ | $\mathrm{~T}_{\text {perg }}$ | Time to perifocus of <br> present LM orbit |
| AGS computer time |  |  |  |  |

## 9.2 .2 CDH

In a nominal mission the CDH maneuver is assumed to occur after the CSI maneuver. If this is the situation in flight, targeting is accomplished automatically for the CDH maneuver by the CSI computations. Moreover, the "events timer" can be set by utilizing the quantity $\mathrm{T}_{\Delta}$ (after the CDH routine is entered) which is the time to go until the CDH maneuver, if $\mathrm{T}_{\Delta}$ is no greater than 136 minutes.

If the CDH maneuver does not follow the CSI maneuver, then the AGS absolute time of the CDH maneuver $t_{i g B}$ must be input as a targeting constant. This is done with DEDA address 373. In Table 9. 2 the times of interest during the CDH phase are presented.

Table 9.2. Time Quantities Available in CDH Mode

| Address | Quantization | Units | Equation <br> Symbol | Description |
| :---: | :---: | :---: | :---: | :---: |
| 310 | 0.01 | $\min$ | $T_{\Delta}$ | Time to go until CDH <br> maneuver |
| 373 | 0.1 | $\min$ | $\mathrm{t}_{\text {igB }}$ | AGS predicted absolute <br> time of CDH |
| 313 | 0.01 | $\min$ | $\mathrm{~T}_{\text {perg }}$ | Time to perifocus of <br> present LM orbit |
| 377 | 0.1 | $\min$ | t | AGS computer time |

### 9.2.3 TPI

There are two modes that can be used for the TPI maneuver and are discussed in Section 25.0. Tables 9.3 and 9.4 define the time quantities of interest in each mode.

Table 9.3. Times of Interest with Guidance Selector in the TPI Search Routine ( $\mathrm{S}_{10}=3$ )

| Address | Quantization | Unit | Equation <br> Symbol | Description |
| :---: | :---: | :---: | :---: | :---: |
| 310 | 0.01 | $\min$ | $\mathrm{~T}_{\Delta}$ | Input quantity. TPI <br> search assumes TPI to <br> occur in T $\Delta$ minutes. |
| 373 | 0.1 | $\min$ | $\mathrm{t}_{\text {igC }}$ | AGS computer time of <br> TPI maneuver; output <br> quantity. |
| 307 | 0.01 | min | $\mathrm{J}^{6}$ | Input quantity. Time <br> from TPI to intercept <br> (assuming no burns <br> after TPI). |

Table 9. 3. Times of Interest with Guidance Selector in the TPI Search Routine ( $\mathrm{S}_{10}=3$ ) \{Continued)

| Address | Quantization | Unit | Equation <br> Symbol | De scription |
| :---: | :---: | :---: | :---: | :---: |
| 311 | 0.01 | $\min$ | $\mathrm{~T}_{\mathbf{r}}$ | Time to go until inter - <br> cept; output quantity |
| 313 | 0.01 | $\min$ | $\mathrm{~T}_{\text {perg }}$ | Time to perifocus of <br> present LM orbit |
| 377 | 0.1 | $\min$ | t | AGS computer time <br> Time increment prior <br> to rendezvous at which <br> node is created |
| 312 | 0.01 | $\min$ | $\mathrm{~J}^{4}$ | min |

Table 9.4. Times of Interest with Guidance Selector in the TPI Execute Routine ( $\mathrm{S}_{10}=4$ )

| Address | Quantization | Unit | Equation <br> Symbol | Description |
| :---: | :---: | :---: | :---: | :---: |
| 373 | 0.1 | min | ${ }^{\text {tigC }}$ | Either input quantity or quantity obtained from TPI search mode ( $S_{10}=3$ ). This is AGS computer time of the TPI maneuver. |
| 310 | 0.01 | min | $\mathrm{T}_{\Delta}$ | Time to go until TPI maneuver; output quantity. |
| 307 | 0. 01 | min | $J^{6}$ | Input quantity. Time from TPI to intercept (assuming no burns after TPI). |
| 311 | 0.01 | min | $\mathrm{T}_{\mathrm{r}}$ | Time to go until intercept; output quantity. |
| 313 | 0.01 | min | $\mathrm{T}_{\text {perg }}$ | Time to perifocus of present LM orbit |

Table 9.4. Time of Interest with Guidance Selector in the TPI Execute Routine ( $\mathrm{S}_{10}=4$ )(Continued)

| Address | Quantization | Unit | Equation <br> Symbol | Description |
| :---: | :---: | :---: | :---: | :--- |
| 377 | 0.1 | $\min$ | t | AGS computer time |
| 306 | 0.01 | $\min$ | $\mathrm{~J}^{4}$ | Time increment prior <br> to rendezvous at which <br> node is created |
| 312 | 0.01 | $\min$ | $\mathrm{~J}^{3}$ | Stable orbit offset |

## 9. 3 Timing Errors

Two types of timing errors are considered; DEDA time entry errors and maneuver initiation time errors. The DEDA time entry errors consist of absolute time and epoch errors introduced at entry into the AEA via the DEDA.

## 9. 3. 1 DEDA Time Entry Errors

AGS absolute time is initialized at 0 or a multiple of $6 \mathrm{sec}(0.1 \mathrm{~min})$ by entering the value into address 377 via DEDA. The DEDA Enter button is depressed at the initial AGS absolute time. Since the DEDA routine is exercised only every 0.48 or 0.56 sec , there is a maximum possible error in absolute time of 0.56 sec . A bias of 0.25 sec . (approximately half the interval between DEDA branches) is subtracted from computed time to reduce the maximum error to $\pm 0.31 \mathrm{sec}$

Mission Control can determine this error in AGS absolute time by monitoring $t_{1}$ and $t_{2}$ on the AGS telemetry. Since this time error results in LM and CSM state errors in the AGS during state initialization, it may be used to improve initialization accuracy. For example, the PGNCS time downlink word used for Downlink Initialization (Section 15.1) can be modified by altering the PGNCS to AGS absolute time bias. For DEDA Initialization of LM and CSM states, the states themselves may be biased to correct for the AGS absolute time error.

Epoch times downlinked from the PGNCS are quantized at less than a millisecond.

## 9. 3. 2 Maneuver Initiation Time Errors

In this section consideration is given to the effect of performing maneuvers either earlier or later than the targeted times. The various maneuvers are considered in turn.

Orbit Insertion. Orbit insertion times are not targeted in the AEA. However, the effect of initiating the orbit insertion maneuver at different times (either early or late) is to change the phasing of the LM with respect to the CSM.

CSI, CDH, TPI. The philosophy used for the CSI, CDH and TPI guidance routines is to compute the predicted maneuvers prior to the nominal maneuver time and then perform thrusting in the external $\Delta V$ mode based upon the computed nominal maneuver time. Because these maneuvers are performed in the external $\Delta V$ mode, refer to the next paragraph for a discussion of timing errors.

External $\Delta V$. The effect of initiating the external $\Delta V$ maneuver either early or late is simply one of not achieving the desired orbit at cutoff. Large timing errors would result in large differences between the actual orbit obtained and the orbit desired.

### 9.4 DEDA Time Display Quantization

This AGS computer time (DEDA Address 377) is updated every 0.1 $\min (6 \mathrm{sec})$ for display. Internal to the computer, the AGS time is updated every 2 seconds. Because of computer round-off, the displayed AGS computer time is updated by 0.1 min at the $4 \mathrm{sec}(0.1 \mathrm{~min}), 10 \mathrm{sec}$ ( 0.2 min ), $16 \mathrm{sec}(0.3 \mathrm{~min})$, etc. time intervals. (Therefore, the AGS displayed time is updated 2 seconds prior to reaching the corresponding AGS absolute time).

### 10.0 AGS STEERING MODES

This section contains a discussion of the various steering modes mechanized in the AGS. All "active" steering modes output attitude errors about the LM body axes to the autopilot (CES). The magnitudes of the angular errors are limited to $\pm 15 \mathrm{deg}$. It is currently understood that the autopilot attitude turning rates are limited to $\pm 10 \mathrm{deg} / \mathrm{sec}$ about the Y body axis and $\pm 5 \mathrm{deg} / \mathrm{sec}$ about the X and Z -body axes except after staging with the DEADBAND switch in "MAX" at which time no rate limiting exists. AGS steering in no way protects the PGNCS platform against gimbal lock. The following discussions assume Guidance Control in AGS, the LM in orbit (lunar surface flag not set) and the Attitude Control Switches in the "MODE" position.

### 10.1 Attitude Hold

The object of the "attitude hold" mode is to generate steering commands such that the vehicle maintains the inertial attitude existing when the attitude hold mode is first entered. Attitude hold can be entered by either setting the Mode Control switch on the lower center instrument panel to the A/H position or by utilizing address 400 on the DEDA and entering the value +00000 . Once the attitude hold mode is established it can be released by either causing the followup signal to be issued (Guidance Control Switch to PGNS) or with the Mode Control Switch in A/H, moving the "stick" out of detent. The preferred method for reorientation of the LM is to put the Mode Control Switch to $A / H$ and orient the vehicle to the desired attitude utilizing the attitude controller. Reentering the "attitude hold" mode (returning "stick" to detent) will cause the vehicle to maintain the attitude that exists when the mode is reentered.

If the AGS is in the "guidance steering" mode, i. e., DEDA Address 400 is +10000 and the Mode Control Switch is set to $A / H$, the AGS will issue E/ON or E/OFF commands that agree with the existing status of the main engine. If the AGS is issuing E/ON commands and the Mode Control Switch is in AUTO then entering "attitude hold" by setting DEDA Address 400 to +00000 will cause E/OFF commands to be sent.

### 10.2 Guidance Steering

The address for ordering Guidance Steering is 400; the entry is +10000 . The object of the Guidance Steering selection of attitude control is to orient the LM so that the LM thrust vector points in the desired direction for achieving the objective of the selected guidance routine. The LM X-body axis orientation also depends upon which engine is used. The RCS engines are assumed to thrust along the body axes. If the DPS engine is used, the thrust vector is assumed to be along the positive X -body axis. If the APS engine is used, the thrust vector is assumed to be displaced from the LM positive X -body axis by an amount equal to the nominal cant of the APS engine.

Because of thrust alignment errors, the actual thrust vector will not lie exactly along the nominal direction. Small velocity errors at engine cutoff may result. The cutoff errors are sensed by the AGS, however. If desired, sensed velocity errors at cutoff can be removed through axis-by-axis thrusting ( $\Delta V$ residual removal, see Section 28.0).

When the ascent engine is used, the equations that compensate for the canted engine should also be used. This is accomplished via the DEDA. The address 411 should be entered with a value of +10000 . This should be done prior to active AGS guidance steering in order to achive desired orientation of the thrust axis before thrusting starts. When the APS is ignited, the canted thrust direction is selected by the AEA, regardless of the value of the address 411 entry (see Section 20.1).

The AEA correction for the canted engine is adjusted by two octal constants, one for pitch and one for roll. The constants are preprogrammed into the computer but are DEDA accessible so that they can be changed during the mission. The pitch constant is entered with the address 566. The value of the constant is entered in octal in units of radians and should be positive if the canted engine causes a thrust acceleration component along the $+Z$-body axis. Similarly the roll component is entered in octal in units of radians via DEDA address 602. The sign of the value entered should be positive if the cant of the engine causes a thrust acceleration component along the $+Y$ axis direction.

As mentioned, the AGS aligns the LM thrust vector along the desired thrust vector. The LM Z-body axis can be controlled in any of the following ways.
a) DEDA Address $623+00000$

The LM Z-body axis is driven parallel to the CSM orbit plane. If the positive X -body axis points ahead of the local vertical (posigrade) the $Z$ axis lies below the local horizontal. If the positive X -body axis is behind the local vertical the Z axis lies above the local horizontal. If the X -body axis is vertically upward, the Z-body axis will be pointed horizontally forward whereas if the X -body axis is pointed vertically downward the Z-body axis will be directed horizontally opposite to the direction of motion.
b) DEDA Address $623+10000$

The LM Z-body axis is driven parallel to a plane determined by its normal unit vector $W_{b}$ (DEDA entries 514, 515, 516). This mode is normally employed to maintain S-band communication during lunar orbit insertion. The unit vector $\underline{W}_{b}$ is entered in octal and is nominally defined prior to the mission.
c) X Axis Override

The Z-body axis can be oriented to any desired position about the thrust axis by setting the Yaw Attitude Control Switch to either "PULSE" or "DIRECT" position and by means of the hand controller orienting the axis to the desired attitude.

In either situation (a) or (b) above the desired + Z-body axis orientation is a continuous function of the X -body axis orientation. The gain in the $E_{x}$ channel decreases toward zero as the $+X$-body axis approaches a perpendicular orientation with respect to the specified plane. Thus, if DEDA Address 623 is +00000 and the X -body axis is perpendicular to the CSM orbit plane, then the gain in the yaw steering channel is zero for any orientation of the $Z$ axis. By specifying a unit vector $W_{b}$ not normal to the CSM orbit plane and by setting DEDA Address 623 to +10000 ,yaw steering control can be maintained.

## 10. 3 Z-Body Axis Steering

This mode is entered via the DEDA by using the address 400 and entering the value +20000 . No DPS or APS thrust can be accomplished in this mode with AGS in control. An option exists for specifying the desired direction of the Z -body axis:
a) DEDA Address $507+00000$, Orient $Z$-body axis toward estimated direction of CSM
b) DEDA Address $507+10000$, Orient $Z$-body Axis in the desired thrust direction.

Option (a) is normally used during rendezvous radar acquistion whereas option (b) is used to perform small thrusting maneuvers along the Z -body axis. In either option with the $Z$ axis pointed in the desired direction, the X -body axis is oriented parallel to the CSM orbit plane. If the + Z-body axis is pointed ahead of the LM, the +X -body axis will be above the local LM horizontal plane. If the Z axis is behind the LM , the +X body axis will be below the local horizontal plane. The gain in the roll channel ( $Z$ axis) decreases toward zero as the +Z axis approaches a perpendicular orientation with respect to the CSM orbit plane. When perpendicular, the gain in the roll steering channel is zero for any orientation of the $+X$ axis.

In this mode, manual control of the $X$-body axis can be achieved by setting the roll attitude control switch to either the "Pulse" or "Direct" position and manually controlling the roll channel with the hand controller.
10.4 Pre-Thrust Steering

Pre-thrust steering is defined as that guidance steering (address $400=+10000$ ) done prior to ullage for the purpose of orienting the LM for the burn. AGS guidance steering is obtained by setting Guidance Control to AGS, Mode Control to AUTO, the three Attitude Controls to MODE CONT, and entering address $400+10000$. The AGS will then orient the LM to the particular guidance mode selected (address 410 ). Note that it is not necessary to depress the Abort or Abort Stage buttons to obtain guidance steering. All pre-thrust steering is done in the External $\Delta V$ guidance mode (DEDA entry 410 + 50000).

### 10.5 Orbital Rate Pitch Steering

The AGS has the capability of maintaining the LM vehicle at any attitude in a local coordinate frame during free flight. In particular, the vehicle can be pitched at the orbital rate in order to maintain the X-body axis along the local horizontal. To accomplish this, use is made of the "external $\Delta V$ " guidance routine along with the "Guidance Steering" mode of operation (See Section 27.0 for procedures).

### 10.6 Open Steering Channels

When the AGS is in control of the vehicle, the attitude control switches (PITCH, YAW, ROLL) are usually in the "MOD CONT" position. Manual override on any particular channel can be accomplished by changing the switch position for that channel to either "PULSE" or "DIR." In some instances manually orienting one LM axis more than $90^{\circ}$ from the desired (AGS computed) direction can cause the LM to rotate through large angles about the two AGS controlled axes. For this reason the following general rule should be observed.

> IN ATTITUDE HOLD AND GUIDANCE STEERING, X AXIS OVERRIDE CAN BE ACCOMPLISHEDTHRUANY DESIRED ANGLE. IN Z-BODY AXIS STEERING Z AXIS OVERRIDE CAN BE ACCOMPLISHED THRU ANY DESIRED ANGLE. IF MANUAL OVERRIDE OF ANY OTHER STEERING CHANNEL IS DESIRED, THE ATTITUDE EXCURSION ABOUT THAT AXIS SHOULD BE LIMITED TO LESS THAN $90^{\circ}$ FROM THE DESIRED ORIENTATION AS COMPUTED BY THE AGS

### 11.0 RESCALING FROM LUNAR TO EARTH MISSION

In order to make an inflight conversion of a lunar scaled program to an earth scaled program, various constants must be input via DEDA. In addition to all targeting $J$ constants the following DEDA entries should be made. All constants are based on Flight Program No. 6 and are not mission constants.

| Parameter | DEDA Address | DEDA Entry | Definition |
| :---: | :---: | :---: | :---: |
| *B23SF | 677 | ** ${ }^{2} 20305$ | DEDA scale factor |
| $\therefore$ B13VSF | 701 | **+20000 | DEDA scale factor |
| $\because B 23 R S F$ | 703 | **+32756 | DEDA scale factor |
| 1 K 35 | 634 | \% \% +00020 | Acc. bias threshold |
| 4K2 | 654 | (Note 6) | $\mathrm{T}_{\mathrm{B}}$ factor |
| 4K3 | 655 | (Note 6) | $\mathrm{T}_{\mathrm{B}}$ factor |
| 4 K 25 | 657 | **+00002 | Eng. cutoff comp. |
| 4K26 | 454 | +00100 | $\Delta V_{G}$ threshold |
| 4K27 | 473 | -07332 | Descent stage bias |
| 4K34 | 660 | **+00100 | $\mathrm{a}_{\mathrm{T}}$ lower limit |
| 4K35 | 661 | $\because \%+00007$ | Ullage threshold |
| 2K1 | 636 | **+62026 | Gravity constant |
| 2K2 | 637 | **+50732 | 1/2K1 |
| 2K4 | 674 | **-15752 | -2(2K1) |
| 3 K 4 | 613 | ** +12744 | Sine of TPI central angle limit |
| 4K4 | 565 | (Note 6) | $\dot{\mathrm{r}}_{\mathrm{f}}$ constant (O.I.) |
| 4K5 | 662 | (Note 6) | $\dot{r}_{f}$ constant (O.I. ) |
| 4K6 | 527 | (Note 6) | $\dot{r}_{f}$ upper limit (O.I.) |
| 4K10 | 227 | (Note 6) | Constant in $\alpha_{L}$ (O.I.) |
| 4K12 | 506 | (Note 6) | Accel. check for $\ddot{r}_{d}$ lower limit (O.I.) |

Page 11-2
Revision 1

| Parameter | DEDA Address | DEDA Entry | Definition |
| :---: | :---: | :---: | :---: |
| 5 K 16 | 561 | (Note 6) | Upper limit of $\ddot{y}_{\mathrm{d}}$ (O.I.) |
| 5 K 17 | 601 | (Note 6) | Lower limit of $\dot{y}_{\mathrm{d}}$ (O.I.) |
| 5 K 18 | 564 | (Note 6) | Lower limit of ${ }^{\text {r }} \mathrm{r}_{\mathrm{d}}$ (O.I.) |
| 5K26 | 466 | +00015 | $V_{G}$ threshold |
| K55 | 607 | * $x+20000$ | Altitude rate scaling |
| 2K11 | 526 | ** ${ }^{\text {\% }} 13560$ | $\mathrm{V}_{\mathrm{T}}{ }^{\text {limit }}$ |
| 1 K 18 | 534 | (Note 3) |  |
| 1 K 20 | 535 | (Note 3) | Accelerometer scale <br> factors including |
| 1 K 22 | 536 | (Note 3) | compensation |
| 1K19 | 540 | (Note 5) |  |
| 1 K 21 | 541 | (Note 5) | Accelerometer bias compensation constants |
| 1 K 23 | 542 | (Note 5) |  |
| BACCSF | 446 | +10000 | DEDA scale factor |
| 1K14 | 537 | (Note 4) | X gyro SAMU compensation constant |
| 6K2 | 457 | (Note 6) |  |
| 6K4 | 456 | (Note 6) |  |
| 6K5 | 656 | (Note 6) |  |
| 6 K 6 | 522 | (Note 6) | Radar filter constants |
| 6K8 | 304 | (Note 6) |  |
| 6K9 | 611 | (Note 6) |  |
| 6 K 10 | 517 | (Note 6) |  |

Note 1: The three DEDA scale factors must be entered first and in the above order as they are used for inputprocessing of other DEDAentries.
** Note 2: These entries are octal values.
Note 3: These values must be read out via DEDA and rescaled prior to DEDA entry as earth orbit constants. The steps are:
A. Read out the constant
B. Convert the octal readout to binary
C. Round the constant by adding 1 to the $2 n d$ least significant bit
D. Drop the two least significant bits and add two bits at the most significant end of the word. The two bits added are zeros if the readout was plus and ones if the readout was minus. Regroup as five digits.
E. Enter into the original address with the origimal sign:

## Example $\quad$ Correct 1 K 18

A. Read out
$534+63147$
B. $\begin{array}{lllll}110 & 011 & 001 & 100 & 111\end{array}$
C. $\begin{array}{llllll}110 & 011 & 001 & 101 & 001\end{array}$
D. $\begin{array}{lllll}001 & 100 & 110 & 011 & 010\end{array}$
E. Enter $534+14632$

Note 4: This value must be readout and rescaled prior to entry as follows:
A. Read out

1 K14
B. Convert the octal readout to binary
C. Drop the two most significant bits and add two zeros at the least significant end of the word. Regroup as five octal digits.
D. Enter the new value into the original location with the original sign.

Example:
A. Read out
$537+00120$
B. $000 \quad 000 \quad 001010 \quad 000$
C. $\begin{array}{lllll}000 & 000 & 101 & 000 & 000\end{array}$
D. Enter $537+00500$

Note 5: Before changing BACCSF, read out and record the constant in units of $\mathrm{ft} / \mathrm{sec}^{2}$, quantized at $0.001 \mathrm{ft} / \mathrm{sec}^{2}$. After changing BACCSF (the accelerometer bias compensation DEDA scale factor), round the constant by adding 0.005 to its magnitude, and re-enter the constant quantized at $0.01 \mathrm{ft} / \mathrm{sec}^{2}$.

Example
Change 1 K 21
Read out 541-00036. This equals $-0.036 \mathrm{ft} / \mathrm{sec}^{2}$. Adding 0.005 to 0.036 gives $-0.041 \mathrm{ft} / \mathrm{sec}^{2}$. After BACCSF is changed, enter 541 -00004.

Note 6: These parameters do not apply for an earth mission.

> DUE TO PROGRAM SCALING, RENDEZVOUS RADAR NAVIGATION STATE VECTOR UPDATING CAPABILITY DOES NOT EXIST WHEN THE AGS FPG IS USED IN EARTH ORBIT.

## 12. GROUND CHECKOUT PROCEDURES PRIOR TO EARTH LAUNCH

This section lists those functions which are performed to as sure that the AGS is in a flight readiness configuration prior to Earth launch. The intent of this section is to provide general information. Detail information can be found in Reference 4.

1) Pre-Installation Calibration-Determination of all AGS hardware parameters (scale factors, biases, drifts, misalignments, etc.) before 35 days to launch. A subset of these parameters constituting significant mission error sources will be used to prepare the Mission Constants Tape.
2) Flight Simulation - End to end spacecraft systems check. Interface between AGS and all related subsystems as CES, ASCENT/DESCENT engines, FDAI, etc., tested in a programmed flight simulation.
3) Earth Prelaunch Calibration-Measurement of the $Y$ and Z gyro constant drift parameters and also the lumped $X$ gyro constant drift and MUSRA (Mass Unbalance about the Spin Reference Axis) term. The data is used for evaluation and parameter update. In the normal flow, a final EPC will be performed prior to cabin closeout during countdown.
4) Flight Program Load-Flight program is loaded into the AEA by ACE. The load operation will then be verified by means of a Memory Dump and Compare routine. The program contains nominal values of all octal and decimal constants including the nominal values of the compensation constants (scale factors, biases, etc.) and mission dependent constants (targeting, etc.)
5) Updating Compensation Constants - Subsequent to the Flight Program Load and prior to earth launch the following constants can be updated in the AEA by means of ACE C Start:

1K1, 1K6, 1K11 - Gyro drift compensation coefficients
1K3, 1K8, 1 K 13 - Gyro scale factor error compensation coefficients

- Compensation constant for X gyro spin axis mass unbalance drift

1K19, 1K21,
1K23

- Compensation constants for accelerometer bias
$1 \mathrm{~K} 18,1 \mathrm{~K} 20$, 1 K 22 - Accelerometer scale factors

6) Memory Check-Subsequent to Step 5 a memory dump should be executed via ACE for final memory verification,

## PART III - PROCEDURES FOR AGS FUNCTIONS

### 13.0 SYSTEM TURN ON

The following procedure should be followed to turn on the AGS.

1) Verify the positions of the following switches:
a) Guidance Control Switch in PGNCS Position - follow-up signal is sent to the AEA and the AEA outputs are not utilized.
b) AGS Status Switch in OFF position - applies inhibit standby signal to ASA and AEA.
c) ASA Circuit Breaker is closed. This breaker remains closed to keep the sensors in the ASA up to temperature.
2) After 15 minutes, set AGS status switch to STANDBY this removes inhibit standby signal to ASA.
3) Close AEA Circuit Breaker - this applies power to AEA.
4) After 25 minutes in standby, close the AGS circuit breaker and set the AGS status switch to "OPERATE". AGS flight program is initialized in an attitude hold, orbit insertion mode. AGS is also in followup and outputs Engine OFF commands.

> WHEN THE AGS IS SWITCHED TO OPERATE FROM STANDBY OR FROM OFF TO STANDBY, THE AGS CAUTION AND WARNING LAMP ON THE CAUTION WARNING PANEL WILL COME ON. SIMULTANEOUSLY, THE AUDIO WARNING ALARM IN THE ASTRONAUT EARPHONES WILL SOUND. THE LAMP MUST BE RESET BY SWITCHING THE "O $2 / \mathrm{H}_{2} O$ QTY MON" TO "CW RESET." THE ALARM SIGNALED THROUGH THE EARPHONES MUST BE MANUALLY RESET TO STOP THE SOUND. THE ACTIVATION OF THE TEST MODE FAILURE AND ALARM SIGNALS IS NORMAL WITH THE ABOVE SWITCHINGS AND DOES NOT IMPLY EQUIPMENT FAILURE.
5) The system is now in operating condition.
6) Checks of Computer Readiness
A check of computer readiness should be made according to the procedures of Section 14. 1.
7) AGS Computer Time Initialization
AGS computer time should be initialized using the procedure of Section 14.2
8) Perform CSM, LM Navigation Initialization
The LM and CSM state vectors should be initialized with the appropriate procedures of Section 15.0.
9) Align
An AGS align should be performed according to the procedure of Section 16.0
10) Calibration
The AGS should be calibrated according to the procedures of Section 17. 0.
11) During step 10) enter targeting parameters for orbit insertion per Section 22. 0.

### 13.1 System Turn-Off

The following procedure should be used to turn off the AGS.

1) Open the AEA circuit breaker - AGS warning lamp will come on due to ASA low voltage (because of absence of AEA clock).
2) Set AGS Status Switch to OFF - AGS warning lamp will go out.
3) Open the AGS circuit breaker.
4) Leave the ASA Circuit Breaker closed. This breaker remains closed to keep the sensors in the ASA up to temperature.

### 14.0 COMPUTER READINESS AND AGS TIME INITIALIZATION

These procedures are the first to be performed during AGS turn on once the AGS is in an operate condition. The computer readiness procedures may be performed when an AGS failure has been detected or an AGS failure is suspected.

### 14.1 Computer Readiness

In order to check the readiness of the AGS, the following procedures should be followed:

1) Readout the self test selector ( $\mathrm{S}_{12}$ ) on the DEDA (address 4l2).
2) If the output is +10000 , proceed to step 5. If not +10000 , then an AEA error has occurred. The error indications are:*
+00000 Test not complete, if this state exists for more than 15 sec , test is not being executed
$+30000 \quad$ Logic test failure
+40000 Memory test failure
+70000 Logic and Memory test failure
If the indication is +00000 some failure has occurred which is preventing execution of the self test. If the readout is one of the other indications determine if normal AEA operation has resumed by performing step 3.
3) Enter via DEDA $412+00000$.
4) At least 12 seconds after step 3 read out the self test via the DEDA (address 412).

FOR THE SYSTEM TO BE OPERATING CORRECTLY THE SELF TEST OUTPUT SHOULD BE $412+10000$.

If the readout is not +10000 , then self test indicates an AEA error is still occurring. Further operations with the AGS are not recommended.

[^4]5) Readout DEDA address 574, the state of the AEA staging recognition signal.

| Output of DEDA address 574 | Indication |
| :---: | :---: |
| Any negative number | Staging has occurred |
| Any positive number | Staging has not occurred |

If the readout indication is not consistent with the actual vehicle situation, insert via DEDA address 574, an appropriate value (suggested values are +00000 , if the vehicle has not staged, -00000 if the vehicle has staged).
6) Readout DEDA address 604, the state of the lunar surface flag ( $\delta_{21}$ ).

| Output of DEDA address 604 | Indication |
| :---: | :---: |
| Any negative number | Vehicle is on lunar surface |
| Any positive number | Vehicle is not on lunar surface |

7) If the readout indication is not consistent with the actual vehicle situation, insert via DEDA address 604 an appropriate value (suggested values are +00000 if LM is not on the lunar surface, -00000 if LM is on the lunar surface).
8) Readout via DEDA address 612, the value of the staging sequence counter.
9) If vehicle is not staged, value should read +00000 . Enter this value if necessary.

If vehicle is staged, value should read +00006 . If +00000 is read out, enter +00007 .
10) Readout DEDA address 507, the indication of desired Z -body axis pointing direction during Z -body axis steering.

| Output of DEDA address 507 | Indication |
| :---: | :--- |
| +00000 | In Z-body axis steering mode <br> the Z-body axis will orient in <br> the estimated direction of the <br> CSM. |
| +10000 | In Z-body axis steering mode <br> the Z-body axis will orient in <br> the desired thrust direction. |

11) If the readout indication is not as desired insert via DEDA address 507 the desired value.
12) Readout DEDA address 623, the indication of desired Z -body axis direction during guidance steering.

| Output of DEDA address 623 | Indication |
| :---: | :--- |
| +00000 | In guidance steering mode the <br> Z-body axis will orient paral- <br> lel to the CSM orbit plane. |
| +10000 | In guidance steering mode the <br> Z-body axis will orient paral- <br> lel to the plane defined by the <br> unit vector $\underline{W}_{-b}$ |

13) If the readout indication is not as desired insert via DEDA address 623 the desired value.

When these readiness procedures are used following a suspected AGS failure and normal operation has resumed, a check should then be made that the AEA computed LM and CSM state vectors and the AGS attitude alignment are still valid. This can be accomplished by Mission Control using the AGS telemetry data.
14.2 AGS Computer Time Initialization
14.2.1 AGS Time Initialization when PGNCS is Operative

If the PGNCS is operating: The following PGNCS and AGS operating procedures must be performed in the order presented".

PROCEDURES
REMARKS

1. Select AGS Initialization Routine
(R47): Key V47E
Poss PROG 1t - on
Key V05 N09E - call alarm
R1 00220 REFSMFLAG not set
R2 XXXXX
R3 XXXXX
exit R47
Key KEY REL \& RSET, exit R47
Perform IMU Orientation
Determination (P51)
Return to beginning of step 1 .
2. FL V06 N16

R1 00XXX hr
R2 000XX min
R3 0XX. XX sec

Before first AEA clock initialization, V06 N16 contains meaningless value. After AEA clock initialization, V06 N16 contains stored GET of AEA clock zero (K). (GET of AEA clock zero is MIT/IL expression for AGS time bias.) AGS time bias is required because AGS time is limited to approximately 72 hours. GET AGS time bias (K) = AGS time.
3. Initialization of AGS time: Selection of specific AGS time bias (K)

Key DEDA C $377+X X X X$. $X$ (0.1 min)

Key DEDA ENTR

To simplify computation of AGS time, value for GET of AEA clock zero (K) can be determined that:

1. Can be readily subtracted from GET to obtain AGS time
2. Has occurred in recent past
3. Is easy to remember

Positive value of XXXX. X (and GET of AEA ENTR must be determined so that GET of AEA ENTR less XXXX. X equals predetermined AGS time bias (K).

Entry to be made at GET of AEA ENTR.

[^5]
## PROCEDURES

4. Verify AGS time is incrementing from XXXXX value entered in step 3:
Key DEDA C 377R
5. Press DSKY Key Release

Key V25E
6. Check V06 N16

If value is not satisfactory, Return to Step 5 Record K, Key PRO
RecordK, Key PRO
7. FLV50 N16

R1 00XXX hr
R2 000XX min
R3 0XX. XX sec
8. To continue interrupted PGNCS program; Key PRO, exit R47
14. 2. 2 AGS Time Initialization if PGNCS is Inoperative

If the PGNCS is inoperative:

1) Enter into the DEDA $377+00000$.
2) Mission Control Center then determines the AGS time bias which is recorded for possible future use. Mission Control Center also determines LM and CSM state vectors for Navigation Initialization.

> AFTER THE AGS SYSTEM HAS BEEN SWITCHED TO "OPERATE" AGS COMPUTER TIME MUST BE INITIALIZED PRIOR TO ENTERING CSM OR LM EPHEMERIS DATA.

This procedure is necessary for the following two reasons:
a) A computer overflow may occur if the epoch time is inconsistent with AGS computer time.
b) The computer obtains the current LM state vector by propagating the ephemeris data to the present time. For this propagation to be valid the present time must be known.

### 15.0 NAVIGATION INITIALIZATION PROCEDURES

In this section procedures are presented to initialize AGS navigation for the LM and CSM from external sources.
15. 1 Procedures for LM, CSM Navigation Update via PGNCS Downlink

The following PGNCS and AGS procedures must be followed in the order presented.

> PGNCS DOWNLINK UPDATES SHOULD NOT BE PERFORMED IF THE LM PGNCS COMPUTER (LGC) IS INOPERATIVE OR THE TELEMETRY IS IN THE LOW BIT RATE MODE.

## PROCEDURES

REMARKS

1. Select AGS Initialization Routine (R47) :

Key V47E
Poss PROG 1t - on
Key V05 N09E - Call alarm
R1 00220 REFSMFLAG not set
R2 XXXXX
R 3 XXXXX
exit R47
Key KEY REL \& RSET, exit R47
Perform IMU Orientation Determination (P51)
Return to beginning of step 1.
2. FL V06 N16

R1 00XXX hr
R2 000XX min
R3 0XX. XX sec

Before first AEA clock initialization, V06 N16 contains meaningless value. After AEA clock initialization, V06 N16 contains stored GET of AEA clock zero (K). (GET of AEA clock zero is MIT/IL expression for AGS time bias.) AGS time bias is required because AGS time is limited to approximately 72 hours. GET AGS time bias $(\mathrm{K})=$ AGS time.
3. Command LM/CSM state vector update via PGNCS downlink: Key DEDA C $414+10000$ E
4. Check V06 N16

Record K, Key PRO
5. V50 N16

R1 $00 \times X X \mathrm{hr}$
R2 000XX min
R3 0XX. XX sec
6. FL V50 N16

R1 00XXX hr
R2 000XX min
R3 0XX. XX sec
7. Verify AGS initialization complete:
Key DEDA C $414 \mathrm{R}+00000$
To continue interrupted PGNCS program:
Key PRO, exit R47
To terminate:
Key V34E, exit R47
8. If update accuracy verification is desired:
Display LGC rendezvous parameters (R31) - Key V83E
FL V06 N54
R1 Range XXX. XX nm
R2 Range rate $X X X X$. $X$ fps R3 $\theta$ XXX.XX
9. Read out AGS range rate:

Key DEDA C 440R XXXXX (0.1/1 fps)
Compare PGNCS \& AGS values of range rate
Values should be within 10 fps
To terminate R31:
Key PRO

After keying PRO (step 4), display is static until AEA downlink list is transmitted 10 times. If IMU is not in use CDU, LGC and and AEA gimbal-angle counters are zeroed, DAP is disabled during this time ( $\approx 12$ seconds).

Occurs within 2 seconds.

Range rate comparison is usable up to $8,388,000$ feet ( 1380 nm ) in lunar orbit or up to $33,554,000$ feet $(5,518 \mathrm{~nm})$ in earth orbit.

If IMU orientation has changed since last AGS alignment, perform AGS/PGNCS Align. Wait at least 30 seconds after CDU zero.
15.2 Procedures for LM Initialization Via DEDA**

1) Enter the LM data via the DEDA and verify according to the following table: (all data must be entered)

| $\begin{array}{c}\text { Equation } \\ \text { Symbol }\end{array}$ | Address | Description |
| :---: | :---: | :---: |
| 1 J 1 | 240 | $\begin{array}{l}\text { x component of LM position, AGS } \\ \text { coordinates }\end{array}$ |
| 1J2 y component of LM position, AGS |  |  |
| coordinates |  |  |
| 1J3 component of LM position, AGS |  |  |
| 1J4 coordinates |  |  |$]$| x component of LM velocity, AGS |
| :--- |
| coordinates |

2) Enter into the DEDA $414+20000$.
3) Verify "completion of initialization" by reading out DEDA address 414. The value is automatically set to +00000 after the update is complete (within 2 sec of step 2 ).
[^6]Epoch times input to the AEA via the DEDA are in units of minutes with a quantization level of $1 / 10$ minutes or 6 seconds.

## EPOCH DATA USED IN THE AGS FOR NAVIGATION UPDATES VIA THE DEDA MUST be VALID AT A MULTIPLE OF $1 / 10$ MINUTE

If this is not so, position errors on the order of 12 miles for Earth missions and three miles for lunar missions could result just due to roundoff of epoch time through the DEDA.
15.3 Procedures for CSM Initialization via DEDA ${ }^{*}$

1) Enter the CSM data via the DEDA and verify according to the following table: (all data must be entered)

| Equation Symbol | Address | Description |
| :---: | :---: | :---: |
| 2 J 1 | 244 | $x$ component of CSM position, AGS coordinates |
| 2 J 2 | 245 | y component of CSM position, AGS coordinates |
| 2 J 3 | 246 | z component of CSM position, AGS coordinates |
| 2 J 4 | 264 | $x$ component of CSM velocity, AGS coordinates |
| 2 J 5 | 265 | y component of CSM velocity, AGS coordinates |
| 2 J 6 | 266 | z component of CSM velocity, AGS coordinates |
| 2 J 7 | 272 | Epoch time of CSM ephemeris data, AGS time |

[^7]2) Enter into the DEDA $414+30000$.
3) Verify "completion of initialization" by reading out DEDA address 414 . The value is automatically set to +00000 after the update is complete (within 2 sec of step 2 ).

### 15.4 Discussion of AGS Navigation for Information Purposes

This section contains a discussion of the navigation employed by the AGS along with the limitations imposed.

### 15.4.1 CSM Navigation

The CSM position and velocity at any time is determined by utilization of a subroutine called the "Ellipse Predictor". This subroutine has the capability of accepting position and velocity of a vehicle, say at time ${ }^{t} E$, and determining the position and velocity of a vehicle at another time say $t_{E}+T_{i} . \quad T_{i}$ can be either positive or negative but because of computer scaling it is limited in magnitude. The prediction of position and velocity is based upon the assumption that the gravity model of the attracting body is spherical. Because the actual gravity is not truly "spherical" the proportionality constant used in the gravity model is "tuned" to the range of trajectories under consideration.

For CSM navigation, position and velocity, valid at an epoch time $t_{E}$, are stored in the computer. If, for example, it is desired to know the position and velocity of the CSM at the present time $t$ then the time $\left\langle t_{b}\right\rangle$ since epoch time is computed and used in the ellipse predictor along with the epoch position and velocity. The output of the ellipse predictor is the present position and velocity of the CSM. The epoch point is maintained as the original point unless "bootstrapped" by the AEA (Section 15.4.2).

SINCE THE ELLIPSE PREDICTOR ASSUMES THE VEHICLE TO be IN fREE FLIGHT, THE AGS MUST RECEIVE NEW CSM EPOCH DATA AFTER EVERY CSM MANEUVER.

### 15.4.2 Epoch Time Bootstrap

As indicated in Section 15.4.1, the prediction time $T_{i}$ can be either positive or negative but it is limited in magnitude because of computer scaling. The limit is $\pm 8191$ seconds which is somewhat greater than the time of 1 CSM orbit. In order not to exceed the computer scaling the quantity $t_{b}$ (time from CSM epoch to present time) is compared to the orbital period of the CSM ( $\mathrm{T}_{\text {CSM }}$ ). When $t_{\mathrm{b}}$ exceeds $\mathrm{T}_{\text {CSM }}$ the CSM epoch time ( $t_{E}$ ) is advanced by one orbital period. Thus, no computer overflow occurs during CSM navigation because of the manner in which the update operation is performed in the computer:

## NO FUTURE EPOCH POINT SHOULD BE ENTERED FOR THE CSM NAVIGATION UPDATE.

### 15.4.3 LM Navigation

15.4.3.1 Inflight Navigation. The "ellipse predictor" subroutine as discussed in Section 15.1 does not take into account any acceleration of the vehicle other than that due to "spherical" gravity. Thus, the technique used for CSM navigation is not used for LM navigation since the LM vehicle goes through various thrusting phases. LM navigation is done by integrating the equations of motion of the vehicle. In this way all accelerations (including thrust) can be used where appropriate. The only time the ellipse predictor subroutine is used for LM navigation is during coasting flight when new LM ephemeris data is obtained and this data is updated to the present time (for use as initial conditions in the integration equations). Of course, for the updating to be valid two conditions are required.

1. NO LM THRUST ACCELERATION CAN OCCUR BETWEEN THE TIME THE EPHEMERIS IS DETERMINED (FROM EXTERNAL SOURCES) AND THE UPDATE TIME.
2. THE TIME FROM THE EPHEMERIS POINT TO THE UPDATE TIME CANNOT EXCEED 8191 SEC.
15.4.3.2 Surface Navigation. On the lunar surface a simplified form of LM navigation is performed. For this reason:

> THE EPOCH TIME FOR LM NAVIGATION UPDATES ON THE LUNAR SURFACE SHOULD BE WITHIN 0.5 HOUR OF NOMINAL LIFTOFF TIME.

### 15.4.4 DEDA Entry Errors

A DEDA entry of +00000 in address 414 is treated as a +10000 entry by the flight program. If the PGNCS downlink contains the correct identification word, the PGNCS downlink will be used to initialize the LM and CSM states in the AGS. If the identification word is not present, initialization will not take place.

> NEVER ENTER + 00000 INTO ADDRESS 414 VIA DEDA. IF THIS IS DONE, THE FLIGHT PROGRAM WILL SEARCH THE PGNCS DOWNLINK FOR THE IDENTIFICATION WORD. SHOULD THE IDENTIFICATION WORD BE LOCATED THE LM AND CSM STATE VECTORS COULD BE DESTROYED.

> SHOULD +00000 OR +10000 BE INADVERTENTLY ENTERED INTO ADDRESS 414 , THE PGNCS SEARCH CAN BE ELIMINATED BY ENTERING $563+00000$.

Position, velocity and time DEDA entry errors prior to entry of +20000 or +30000 in address 414 (LM or CSM DEDA initialization) may be corrected by reentering the correct quantities prior to the address 414 entry.

### 16.0 ALIGNMENT

Alignment of the strapdown system consists of the computation of the direction cosines which relate vehicle body axes to the desired inertial coordinate system. In the AGS system the alignment techniques can be classified according to whether or not the PGNCS is operative.
16.1 AGS Alignment with PGNCS Operative (AGS Align to PGNCS)

### 16.1.1 In Flight Procedure

1) Verify that the PGNCS inertial platform is operating. *
2) Verify that after the AGS system is put in the "OPERATE" status, a PGNCS downlink navigation update has been performed. This procedure can cause a CDU zero signal to be sent to the AEA which in turn would cause the AEA Euler angle registers to be set to zero and to count up to the correct value.
3) At least 30 seconds after completing the PGNCS downlink navigation update, enter via the DEDA the code $400+$ 30000. This causes the AGS to PGNCS align to be accomplished within 2 sec . The system is then automatically placed in the attitude hold submode ( $\mathrm{S}_{00}=0$ ).
4) Verify that AGS to PGNCS align has been completed by reading out DEDA address 400 . The output should be $400+00000$. Further verification of alignment is obtained by observing that the attitude ball on an FDAI gives the same reading (within system tolerances) when the Attitude Monitor switch is in either the PGNCS or AGS position.
16.1.2 Lunar Surface Procedure
5) Verify that the PGNCS inertial platform is operating.

[^8]2) Verify that after the AGS system is put in the "OPERATE" status, a PGNCS downlink navigation update has been performed. This procedure can cause a CDU zero signal to be sent to the AEA which in turn would cause the AEA Euler angle registers to be set to zero and to count up to the correct value.
3) At least 30 seconds after completing the PGNCS downlink navigation update, enter via DEDA the code 400 +30000 . This causes the AGS to PGNCS align to be accomplished within 2 seconds. The system is automatically placed in the attitude hold submode ( $\mathrm{S}_{00}=0$ ).
4) Verify that AGS to PGNCS align has been completed by reading out DEDA address 400 . The output should be $400+00000$. Verification that CDU coarse transients have not occurred during alignment is made as follows:
a) After completion of alignment (DEDA Address $400+00000$ ), read out DEDA Address 132 (octal).
b) Repeat AGS to PGNCS align by entering via DEDA the code $400+30000$. Verify completion of alignment by reading out DEDA address 400. (The output should again be $400+00000$ ).
c) Upon completion of second alignment, again read out DEDA Address 132. If a change of more than 2 octal counts is indicated in the fourth place of Address 132 ( $\pm$ XXX?X), reperform the AGS-toPGNCS alignment.*

## 16. 1. 3 Discussion

In the AGS to PGNCS align mode, the AGS direction cosines are set equal to the PGNCS direction cosines as computed from the PGNCS Euler Angles $\theta_{p}$, $\phi_{p}, \psi_{p}$. Thus the AGS inertial reference frame is the same as the PGNCS stable member coordinate frame.
the X-Z plane of the ags inertial reference frame must lie within 10 DEG OF THE CSM ORBIT PLANE DURING RENDEZVOUS RADAR UPDATING TO OBTAIN CORRECT OPERATION OF THE RADAR FILTER

[^9]
### 16.2 AGS Alignment with PGNCS Inoperative

In the event the PGNCS is inoperative several alignment techniques exist for the AGS. On the lunar surface the submode called Lunar Align $\left(S_{00}=4\right)$ can be utilized as well as the Body Axis Align techniques dis cussed below. When inflight, only the Body Axis Align techniques are applicable. These various methods are now considered.

### 16.2.1 Lunar Align

Lunar Align orients the AGS x-inertial axis to the vertical. The $y$ and $z$-inertial axes with respect to the $z$-body axis are determined from azimuth reference data input to the DEDA before the Lunar Align.

One method of providing the azimuth reference is to use the stored AGS indicated LM attitude existing in the AEA shortly after touchdown. Storing is accomplished immediately by DEDA entry 413 = any number (+ 10000 is suggested). The basic assumption inherent in storing attitude data is that the landing shock will not disrupt the inertial attitude reference nor will the LM change its azimuth angular orientation (by settling or shifting) after the attitude is stored.

Near the end of the lunar stay, the earth will determine if an update is necessary to correct the stored attitude data for the moon's rotation and the CSM orbit plane change. If so, azimuth correction $\Delta$ (octal) is communicated to the LM where it is entered via DEDA entry 547 into the AEA prior to the Lunar Align.

A second, more general method of obtaining the azimuth reference is provided by the AOT. The general procedure is as follows:
a) Perform Lunar Align (orients $x$-inertial axis to be vertical).
b) Take AOT star shot, one known star.
c) Communicate the two angles to earth.
d) Earth records star data and telemetered AGS attitude cosines and computes azimuth reference correction.
e) Earth communicates and flight crew enters either
(i) $\Delta$ (if corrections 5 degrees) DEDA address 547
(ii) cos $\delta L, \sin \delta_{L}$ (if correction $>5$ degrees) DEDA address 053 and 047 respectively. Also enter $547+$ 00000 which sets $\Delta \delta=0$.
f) Perform Lunar align at designated time just before launch for final alignment.

The AOT procedure is not affected by landing shock or LM settling before the AOT star shot.

Lunar Align is started by entering via DEDA address $400+40000$. A minimum of three minutes is required to perform lunar align. The system does not automatically switch out of lunar align after 3 minutes. In fact, final lunar alignment should only be terminated within $\pm 4$ minutes of the nominal liftoff time. ${ }^{*}$ This is accomplished by entering a value of +00000 or + 10000 into address 400 .

THE AGS MUST REMAIN IN THE LUNAR ALIGN SUBMODE (ADDRESS $400+40000$ ) UNTIL JUST PRIOR TO NOMINAL LIFT OFF TIME. EARLY EXIT FROM LUNAR ALIGN RESULTS IN ALIGNMENT ERROR ACCUMULATION AT THE RATE OF APPROXIMATELY 0.5 DEG/HR (LUNAR RATE).

[^10]
### 16.2.2 AGS In-Orbit Align

Proposed in-orbit Align techniques are outlined below. MSC has not decided on the procedure to be used. Two classifications,
a) Use existing reference frame
b) Establish desired reference frame
are apparent and are discussed below. For either type alignment, the following two steps are necessary:

1) Two star sightings are taken with the selected optical device, either the AOT and for the COAS. Mission Control Center must record the AGS direction cosines existing simultaneously with each star sighting.
2) The Mission Control Center computes the orientation of the AGS inertial reference frame existing at the time of the two star sightings. This is to say, Mission Control can compute unit vectors pointing in the respective directions of the AGS $x, y$, and $z$ inertial axes, expressed in the ground computer's computation inertial reference frame.

AGS Alignment is then performed as follows:
a) Existing Reference Frame Orientation

In this mode, the DEDA entry for Body Axis Align is not necessary. The ground computer, knowing the orientation of the AGS reference frame and knowing also the position and velocity of the LM and CSM, computes the LM and CSM state vectors with coordinates expressed in AGS reference frame. The state vectors are communicated to the LM where they are inserted into the AEA. If only the IMU has failed (assuming PGNCS failure) but not the LGC, the AGS state vectors can be up-linked to the LGC and then downlinked by the crew to the AEA. The alignment is now complete.

The alignment errors resulting from the above procedure depend on the accuracy of the star sightings and the capability of Mission Control to record the telemetered AGS cosines existing at the instant each star sighting is made. Because of the possibility of timing errors, it is highly advisable that LM rotation rates, at the time of marking a star sighting, be held to a minimum. In addition, the existing AEA reference frame must be such that the $y$ inertial axis is greater than 10 degrees from the LM orhit plane.
b) Preferred Reference Frame Orientation

If a preferred orientation of the AGS reference frame is desired, the reference frame existing at the time of the star measurements may not suffice. In this case, Mission Control can direct the flight crew to orient the LM, in inertial space, to a desired attitude as indicated by the attitude angles on the FDAI. "Body Axis Align" is then executed via two DEDA commands.

1) Enter via the DEDA $400+50000$. This slaves the reference computational frame to the body axes (instantaneously).
2) At the time when the align is to be performed, enter via the DEDA $400+00000$. This releases the reference frame from the body axes allowing it to remain fixed in inertial space.

Unless the preferred reference frame corresponds to the one in which the LM and CSM state vectors already existing in the AEA are valid, the LM and CSM state vectors must be updated. The error in achieving the desired LM attitude via the FDAI results directly in an alignment error. Other error sources using this technique are noted in a) above. Because of the restrictions on the AEA computations, the preferred attitude used in this align technique must be such that the $y$ inertial axis is greater than 10 deg from the CSM orbit plane.

The procedure described above does not require the simultaneous sightings of the two stars nor that the vehicle attitude be held between sightings. If it is possible that the AOT can be employed in such a way that the two star sightings may be taken simultaneously, and if Body Axis Align can be entered simultaneously with the star sighting, then it is not necessary for Mission Control to monitor the telemetered AGS direction cosines closely in time. At the time of the "mark," the cosines obviously take on the values of the unity matrix. The resulting AGS reference frame orientation, however, will correspond to the orientation of the LM at the time of the align. In general, LM and CSM state vectors must be reinitialized.

### 17.0 CALIBRATION

Calibration of the gyros and accelerometers as performed in the AGS can be placed in three separate categories; Lunar Surface Gyro Calibration, Inflight Gyro and Accelerometer Calibration, Inflight Accelerometer Calibration only. Procedures for performing these calibrations are considered in turn.
17. 1

## Lunar Surface Gyro Calibration

Shortly after lunar touchdown the DEDA entry $413+10000$ should have been made. This entry does three things:
a) Stores AGS attitude for possible future lunar align
b) Sets the AEA lunar surface signal flag
c) Inhibits accelerometer calibration

## PROCEDURE

1) If the PGNCS is operative, perform a PGNCS to AGS align. If PGNCS is not operative, perform a lunar align.

THE AGS ALIGNMENT MUST RESULT IN A Y-INERTIAL AXIS THAT IS WITHIN 10 DEG (HALF CONE ANGLE) OF THE MOON'S NORTH POLAR AXIS.
2) At the completion of align, enter via the DEDA $400+60000$.
3) Completion of calibration ( 302 seconds required) can be verified by reading out DEDA address 400 . At completion, the readout automatically returns to +00000 .
17.2 Inflight Gyro and Accelerometer Calibration (DEDA entry $400+60000$ )

IF THE PGNCS IS INOPERATIVE, DO NOT ENTER THIS MODE WHILE IN FLIGHT. TO DO AN INFLIGHT ACCELEROMETER CALIBRATION, PROCEED TO SECTION 17.3.

## PROCEDURE

1) Vehicle in PGNCS ATT HOLD.
2) Maneuver vehicle via ACA until DSKY display of ICDU angles read approximately 22.5 degrees away from $0^{\circ}$, $450,90^{\circ}, 135^{\circ}$, etc., in all three channels.
3) Perform IMU CDU zero. Wait at least 20 seconds before proceeding to step 4 . As long as all gimbal angles are more than 11.25 degrees away from $0^{\circ}$, the CDU zero and subsequent "count-up" (requires a maximum of 20 seconds) exercises all of the CDU "fine" switches and it is highly unlikely that fine switching transients will occur during calibration.
4) Inhibit the RCS.
5) Enter the calibrate mode via DEDA entry $400+60000$. Wait at least 35 seconds before proceeding to step 6 .
6) Return the vehicle to PGNCS ATT HOLD. Wait two minutes before proceeding to step 7.
7) Inhibit the RCS. Remain in this state until calibration is complete.
8) If during the last minute of calibration it would be necessary to manually command an RCS jet firing to prevent a "coarse" CDU transient in any channel (ICDU angles crossing $0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}$, etc.) then manually exit the calibration via DEDA entry $400+00000$.

## INFLIGHT GYRO AND/OR ACCELEROMETER CALIBRATION MUST ONLY BE PERFORMED DURING FREE FLIGHT. ATTITUDE ROTATION RATE SHOULD BE LESS THAN 0.l DEGREE PER SECOND.*

[^11]
## 17. 3 Inflight Accelerometer Calibration Only

PROCEDURE

1) Vehicle in ATT HOLD.
2) Inhibit the RCS.*
3) Enter the calibrate mode via DEDA entry $400+70000$.

Calibration is completed in 32 seconds. After 302 seconds, the readout of DEDA address 400 returns to +00000 (attitude hold). Inflight Accelerometer Calibration Only does not affect AGS alignment. Vehicle attitude maneuvers may be resumed after 35 seconds. (Inflight Accelerometer Calibration may be terminated any time after 35 seconds via DEDA entry $400+00000$.)

### 17.4 Discussion

The gyro and accelerometer bias compensation values should be on record prior to the inflight calibration. These can be obtained via DEDA readout.

| Equation Symbol | Address | Description |
| :---: | :---: | :---: |
| 1 Kl | 544 | x gyro drift compensation coefficient |
| 1K6 | 545 | y gyro drift compensation coefficient |
| 1K11 | 546 | z gyro drift compensation coefficient |
| 1 K 19 | 540 | $x$ accelerometer bias compensation coefficient |
| 1 K 21 | 541 | $y$ accelerometer bias compensation coefficient |
| 1 K 23 | 542 | z accelerometer bias compensation coefficient |

[^12]After calibration, the new compensation values can be read out. The gyro compensations are DEDA available as decimal quantities, degrees/ hour, quantized to 0.01 degree/hour. The accelerometer compensations are read out as decimal quantities, quantized to $0.001 \mathrm{fps}^{2}(\approx 31 \mu \mathrm{~g})$. The acceptable bounds on gyro drift and accelerometer bias shifts, which can occur between two successive calibrations, are given in Table 17.1. Three limits are given for each instrument. The firstis for the time interval between prelaunch and the first inflight calibration. The second is for the difference between two successive inflight calibrations. The third limit indicates suspected instrument failure. (The first and second limits define normal behavior). Should an inflight calibration result in a compensation shift which exceeded the acceptable limit, but not the failure limit, it is recommended that another IFC be conducted. If the limit is still exceeded, it is recommended that the new values be discussed with Mission Control. If the IFC results in a compensation value which exceeds the failure limit, a system problem is evident and Mission Control should again be contacted.

Table 17.1 Bounds on Inflight Instrument Compensation Shift (Lunar Mission)

| Instrument | Launch to IFC | IFC to IFC | Failure Limit |
| :--- | :--- | :---: | :---: |
| Gyro Drift | $\pm 0.90^{\circ} / \mathrm{hr}^{(1)}$ | $\pm 0.70^{\circ} / \mathrm{hr}$ |  |
| Accelero- <br> meter <br> Bias | $\pm 0.008 \mathrm{fps}^{2(2)}$ | $\pm 0.008 \mathrm{fps}^{2(3)}$ | will be specified <br> prior to launch |
| wrior to launch |  |  |  |
| prion |  |  |  |

${ }^{(1)}$ Based on 18 days from EPC to IFC
${ }^{(2)}$ Based on 60 days from PIC to IFC
${ }^{(3)}$ Based on less than 24 hours between IFC's.

Thirty two (32) sec after entering the calibrate mode, the accelerometer calibration is completed. The accelerometer bias compensation constants are modified in the AEA only at the completion of the calibration process. If the $A G S$ is removed from the calibrate modeprior to $32 \mathrm{sec}-$ onds, the initial values of the calibration constants will be maintained. The gyro calibration updating is performed differently. Once each twosecond compute cycle during calibration, the gyro calibration constants are reestimated and updated in the AEA. If the AGS is removed from the calibrate mode before the allotted 302 seconds has elapsed, the updated constants will be utilized by the AGS. If the calibration mode is exited before 180 seconds have elasped, reload the initial values of the gyro calibration constants. The constants obtained after 180 seconds will be more accurate than those existing prior to entering the calibrate mode but less accurate than those that would have resulted had the gyro calibration been completed.

### 18.0 RENDEZVOUS RADAR NAVIGATION UPDATING

This section contains the procedure to be used to obtain a LM navigation update using the Rendezvous Radar.

The digital radar filter used in the AEA accepts both range and range rate information. The value of radar range entered into the DEDA must be the value read from the tape meter at the time the radar gimbal angles are zero (time at which DEDA entry $415+10000$ is made). The value of radar range rate entered into the DEDA must be the value read from the tape meter at the time DEDA entry $415+10000$ is made. However, the radar gimbal angles need not be zero when the radar range rate is read.

It is recommended that the radar data entry schedule consist of a sequence of at least six range entries. One (1) range rate entry should be made in the interval between each pair of range entries. (Any more than one range rate entry between range entries neither improves nor degrades performance.) At long ranges (pre-CSI), a radar data entry schedule should consist of a sequence of at least nine range entries.

The time between range updates should be maintained relatively constant in any particular updating sequence, and should be between two and six minutes. It is desirable that the total time interval between the first and last range entry in a given sequence be large, in order to take advantage of the changing geometry.

> ANY EXTERNAL NAVIGATION UPDATE INFORMATION (PGNCS DOWNLINK, MSFN) OBTAINED DURING THE RADAR DATA GATHERING PROCESS COMPLETELY SUPERSEDES THE PREVIOUS RADAR NAVIGATION UPDATING; I.E., THERE IS NO COMBINING OF UPDATE INFORMATION WITH THE NAVIGATION ESTIMATES ALREADY IN THE COMPUTER.

The radar filter is initialized by setting DEDA address 417 to +10000 .

> PRIOR TO THE START OF TAKING EACH SEQUENCE OF RADAR DATA (I.E., PRIOR TO CSI, CDH, TPI AND MIDCOURSE), DEDA ADDRESS 417 MUST BE SET TO + 10000 TO INITIALIZE THE RADAR FILTER.

### 18.1 Procedure for Rendezvous Radar Updating

## 1) General

As an aid to rendezvous radar acquisition, enter the $Z$-body axis steering mode (DEDA entry $400+20000$ ) and orient the Z -body axis toward the estimated direction of the CSM (DEDA entry $507+00000$ ). When the MODE CONT is placed in AUTO, the LM will orient the Z-body axis to the desired direction. After the desired pointing direction is achieved, set the MODE CONT to A/H.

During rendezvous radar updating, the $X-Z$ plane of the AGS inertial reference frame must lie within 10 deg of the CSM orbit plane to obtain correct operation of the radar filter.
2) Procedure

The following steps, required for radar data entry, are to be performed when the rendezvous radar is locked on to the CSM.
A. RADAR RANGE DATA

1) Insert on the DEDA (but do not enter) $415+10000$. This is the command to "store Z -axis direction cosines and assign a time tag to the radar data."
2) Set Deadband Switch to "MIN" position.
3) Using the Attitude Controller, rotate the vehicle manually in order to null the rendezvous radar gimbal angles (as observed on the rendezvous radar gimbal display). When the stick is moved out of the detent position, the AGS enters the followup submode and zero attitude errors are output. When the stick returns to detent, attitude hold is reentered.
4) At gimbal angle null depress the "ENTR" button on the DEDA and note radar range on the Rendezvous Radar Range Display.
5) If it is felt that the radar gimbal angles were not zeroed when the DEDA "ENTR" button was depressed (step 4), the process should be repeated beginning with step 1 . At this time in the filtering process no external data has been irrevocably placed in the AEA. The above steps can be repeated any number of times (at any frequency) until the radar gimbal angles are zeroed when the DEDA "ENTR" is depressed (with the entry $415+10000$ ).
6) Attitude controller can be returned to detent at which time AGS goes into "attitude hold."
7) Via DEDA address 316 (quantized at $0.1 \mathrm{n} . \mathrm{mi}^{*}$ ) enter the recorded value of radar range. This should be accomplished within 30 seconds of step 4 . At this time the radar data is irrevocably entered into the AEA.
8) Set Deadband Switch to "MAX" position.

> BECAUSE OF TECHNIQUES USED TO CODE THE RADAR FILTER IN THE AEA, ENTRIES SHOULD NOT BE MADE IN DEDA ADDRESS 415 FOR AT LEAST 16 SECONDS AFTER A RANGE OR RANGE RATE ENTRY HAS BEEN MADE.

## B. RADAR RANGE RATE DATA

The following steps are required for radar range rate entries into the AEA:

1) Deadband switch is in "MAX" position.
2) Insert on DEDA (but do not enter) $415+100000$. This is the command to "store Z -axis direction cosines." However, no special orientation of the spacecraft is necessary; all that is required is that the rendezvous radar be locked-on to the CSM beacon.
3) At any convenient time, depress the "ENTR" button on the DEDA and note radar range rate on the Rendezvous Radar Range Rate Display.

[^13]4) Via DEDA address 503 (quantized at 0.1 fps) enter the noted value of radar range rate. This should be accomplished as soon as possible and within 30 seconds of step 3. At this time, the range rate is irrevocably entered into the AEA. (Range rate must be entered with the correct sign, i.e., negative for closing.)
5) If it is decided not to use the range rate reading after the 415 entry is made, begin the procedure over with a new 415 entry when the new range rate is desired.

IT IS NOT NECESSARY THAT THE RADAR GIMBAL ANGLES BE ZERO FOR THE RADAR RANGE RATE ENTRY.

### 19.0 LUNAR SURFACE OPERATIONS

This section presents the procedures to be utilized on the lunar surface.

### 19.1 Operations Prior to AEA Shutdown

1) Immediately after touchdown, enter DEDA address 413 +10000 (any other entry in address 413 is just as valid). This command sets the lunar surface flag and stores the lunar azimuth of the LM. Setting the lunar surface flag is mandatory for LM navigation initialization on the lunar surface.
2) If the PGNCS is operating, perform the following steps:
a) Enter DEDA address $400+30000$ to obtain an AGSto PGNCS align.
b) After the PGNCS is fine aligned (approximately 20 minutes after touchdown) reinitialize LM and CSM state vectors via downlink (see Section 15.1). This may send the CDU zero signal to the AEA.
c) Verify completion of initialization via DEDA readout of +00000 on DEDA address 414 .
3) If the CDU zero signal was not sent to the AEA (Step 2b) go to Step 4. If the CDU zero signal was sent, perform the following steps:
a) At least 30 seconds after step 2b) enter DEDA address $400+30000$. This entry is for an AGS-to-PGNCS align.
b) Enter DEDA address $413+10000$ to store the lunar azimuth of the LM. This step stores the improved azimuth available as a result of the AGS-to-PGNCS align.
4) Pull out AEA circuit breaker. This removes 28 VDC power from the AEA.
5) Set AGS status switch to OFF.
6) Pull out the AGS circuit breaker. This removes $115 \mathrm{~V}, 400 \mathrm{CPS}$ power from the AEA.

DO NOT PULL OUT THE ASA CIRCUIT BREAKER.
THE BREAKER SUPPLIES HEATER POWER TO THE
ASA SENSORS WHOSE TEMPERATURE MUST BE
MAINTAINED DURING LUNAR STAY.

In this status, all information in the computer is saved for use when the system is again turned on.

### 19.2 Operations Prior to Lunar Liftoff

In sufficient time (greater than 30 minutes) prior to lunar liftoff, the following steps should be performed:

1) Set AGS status switch to STANDBY.
2) Close AEA circuit breaker. This applies 28 VDC power to the AEA.
3) After 25 minutes in standby, close the AGS circuit breaker.
4) Set AGS status switch to "OPERATE". AGS flight program is entered with the pre-shutdown parameters retained. When first entering the OPERATE status, address 400 and 410 are automatically set to +00000 (See Section 7. 0). The address 410 entry of +00000 selects the orbit insertion routine. Because the lunar surface signal is set, the AGS outputs zero attitude control signals when Guidance Control is in AGS and Mode Control in AUTO. If Guidance Control is in PGNS and Mode Control in ATT HOLD, the AGS will also output zero attitude control signals. If Guidance Control is in PGNS and Mode Control in AUTO, the AGS will issue zero attitude error signals since address 400 is +00000 . If Guidance Control is in AGS and Mode Control in ATT HOLD, the AGS will attempt to reestablish the LM attitude with continued, fruitless RCS thrusting. AGS is in follow-up if the Guidance Control switch is in the PGNS position and outputs Engine OFF commands.

The system is now in operating condition. A series of checks should be made to verify the readiness of the AGS.
5) Checks of Computer Readiness

A check of computer readiness should be made according to the procedures of Section 14.1.
6) AGS Computer Time Initialization

AGS computer time should be initialized according to the procedures of Section 14.2 .
7) Obtain nominal liftoff time from MSFN and set events timer appropriately.
8) If the PGNCS is operative, go to step 9. If not, proceed to step 12.
9) CSM, LM Navigation Initialization

Perform CSM, LM navigation update via PGNCS downlink (Section 15.1). This procedure should occur within 0.5 hour of nominal liftoff time.
10) AGS to PGNCS Align

At least 30 seconds after the completion of step 9 , perform a AGS to PGNCS align according to the procedures of Section 16.1.
11) Proceed to step 14.
12) Align

Perform either Lunar Align or Body Axis align according to the procedures of Section 16.2.
13) LM, CSM Navigation Update

During Lunar Align or after Body Axis Align, perform LM and CSM navigation update via DEDA according to the procedures of Section 15.0.
14) Lunar Surface Gyro Calibration

Perform Lunar surface gyro calibration according to the procedures of Section 17.0.
15) During step 14, enter targeting parameters for Orbit Insertion per Section 22.0. If so desired, CSI targeting parameters can also be entered at this time.
16) If PGNCS is operative, proceed to step 18. If not, perform step 17.
17) After gyro calibration is completed enter DEDA address $400+40000$ to return to lunar align mode.
18) Enter appropriate octal values into DEDA addresses 514 , 515 and 516 if during orbit insertion the vehicle is to yaw to maintain S -band communication. These values must be obtained from Mission Control. Also enter $623+10000$. If no yaw maneuver is required, i. e., if the Z -body axis is to be parallel to the CSM orbit plane, then DEDA address 623 should be set or verified at the value +00000 .
19) Verify DEDA address $410+00000$ for orbit insertion mode.
20) If AGS is to be used for "orbit insertion," verify that the Guidance Control Switch is in AGS position and the AGS Mode Control Switch is in AUTO.
21) Enter address $400+10000$ within $\pm 4$ minutes of the nominal lift off time. If lunar align was used, it is completed at this time.
22) At liftoff time depress the "Abort Stage" button. This automatically initializes the staging sequence and fires the ascent engine.

### 20.0 ENGINE IGNITION

This section describes the AGS procedures to follow for turning on the engine(s) in coasting flight or on the lunar surface, when the AGS actively controls the LM. AGS control during the abort staging sequence is also described.
20.1 DPS, RCS or APS Engine Selection

The AEA assumes that translational thrust is applied in certain nominal directions.

| Engine | Direction of Thrust Assumed by AEA |
| :--- | :--- |
| DPS | +X -body axis direction |
| APS | Canted. Cant angle data is used by AEA to <br> account for the canted thrust direction. |
| RCS | The $\pm X, \pm Y, \pm Z$ RCS translation engines are <br> assamed to thrust along the $\pm X, \pm Y, \pm Z$ body <br> axes, respectively. |

The nominal cant angle assumed by the AGS is controlled by two constants in the AEA program (DEDA accessible in octal).
$\mathrm{K}_{7}^{4}$ Cant angle (radians) of thrust vector in pitch plane. DEDA address 566. Positive sign indicates thrust vector is canted from the +X -body axis toward the direction of the +Z -body axis.
$\mathrm{K}_{8}^{4}$ Cant angle (radians) of thrust vector in the roll plane. DEDA address 602. Positive sign indicates thrust vector is canted from the +X -body axis toward the direction of the +Y -body axis.

DPS or APS misalignments less than 2 degrees with respect to the assumed thrust directions result in lateral cat-off velocity errors less than 3 fps. This type of error is sensed by the navigation guidance loop and consequently can be removed by performing a $\Delta V$ trim maneuver using axis-byaxis RCS thrusting (see Section 28. 0 ).

Prior to in-orbit maneuvers, the flight crew chooses which translation engine(s) will be employed. The AGS must be instructed via the

DEDA of the decision to ignite the APS so that steering transients will not occur at the start of the burn. Prior to each AGS controlled orientation to the desired thrust attitude, the following DEDA selection should be set or verified:

| DEDA Address 411 | Entry +00000 | DPS or RCS Selection |
| :--- | :--- | :--- |
|  | Entry +10000 | APS Selection |

As indicated by Figure 20.1, regardless of the above selection, the AEA assumes the canted thrust direction whenever the APS ON discrete is received. Hence, at staging or lift-off from the lunar surface, an entry via DEDA address 411 is not required. Note,however, that if $411+10000$ is selected, and the DPS or RCS is used, the AEA will assume canted thrust.

At AGS sensed engine cut-off conditions, address 411 is set automatically to +00000 (see Section 2. 2).

If only the RCS engines are to be used for all in-orbit maneuvers, address 411 need be verified +00000 only prior to the first RCS maneuver. Address 411 never switches automatically to +10000 .


Figure 20.1. Canted Thrust Selection Logic
20.2 Required Control Panel and DEDA Selections for Engine Ignition (AGS Control)

| Necessary Conditions for the AEA to Generate an Engine ON Signal |  |  |  |
| :---: | :---: | :---: | :---: |
| Condition | Control | Position | Remarks |
| 1. | Guidance Control | AGS | Removes follow-up signal to AGS. |
| 2. | Mode Control | Auto | Transmits Auto discrete to AGS. Removes AGS from $\mathrm{A} / \mathrm{H}$. |
| 3. | a. Abort <br> b. Abort Stage | Depressed | Enables Engine ON. <br> a. Abort arms the DPS <br> b. Abort Stage arms the APS |
| 4. | DEDA Entry | $\begin{aligned} & \text { Enter } \\ & 400+10000 \end{aligned}$ | Enables Engine ON and Guidance Steering |

The above conditions are sufficient

1) for the AGS to assume control and orient the LM in accord with the selected guidance routine.
2) to arm the appropriate engine.

In order to effect DPS or APS engine ON, however, additional conditions must be met.

### 20.3 Velocity-to-be-Gained Checks

For the Engine ON discrete signal to be issued to the CES by the guidance equations, at least one of the two following conditions must be satisfied.

| Condition 5. <br> $\Delta V$ Magnitude | The magnitude of the velocity-to-be-gained <br> vector, as computed in the AEA, must exceed <br> 100 fps. (constant 4K26) |
| :--- | :--- |
| Condition 6. <br> X-Body Axis <br> Component of <br> $\Delta V$. | The component (sign and magnitude) of the <br> velocity-to-be-gained vector (positive mea- <br> sure inthedirection of the + X-body axis) <br> must exceed the engine tail-off $\Delta V$ value (cur- <br> rently + 2. 125 fps in the program). This com- <br> ponent of velocity-to-be-gained is the projec- <br> tion of the velocity-to-be-gained vector on the <br> X-body axis. |

The velocity-to-be-gained vector is computed by the selected guidance routine. Any guidance routine (address 410) other than TPI search (DEDA entry $410+30000$ ) may be selected. The TPI search routine should be restricted to planning the TPI maneuver (per Section 25.0) because the computed rendezvous point is not fixed in inertial space. However, engine ignition should only be commanded when in the orbit insertion guidance routine (DEDA entry $410+00000$ ) or the external $\Delta V$ guidance routine (DEDA entry $410+50000$ ).

### 20.4 Ullage for DPS or APS Ignition

Before main engine ignition, the AGS must sense ullage. Ullage must be supplied manually with the Thrust/Translation Controller Assembly or by depressing the $+X$ Translation button until main engine ignition. The precise condition governing the AEA recognition of successful ullage is given as follows:

| Condition 7. | The AEA recognizes ullage if and only if the <br> sensed velocity change per two second com- |
| :--- | :--- |
| Ullage <br> Recognition <br> pute cycle equals or exceeds 0.2 fps in the <br> +X-body axis direction for $1 K 9$ consecutive <br> compute cycles. |  |

If the sensed velocity increment drops below 0.2 fps in a two second compute cycle, the engine OFF command will be issued. Before the engine can be reignited, the ullage recognition condition must again be established and address 400 must be reset to +10000 .

During the powered flight abort staging sequence, the sensed velocity accumulated over any two second period will be well above 0.2 fps ; hence ullage is maintained and the AEA generates the engine ON signal without interruption.

In order to prevent 1) a premature engine shutdown (during a critical phase) due to a momentary loss of ullage or 2) a delay in APS ignition during abort, NASA/MSC has recommended (Reference 8) that the ullage counter limit ( 1 K 9 ) be set to 0 (DEDA Entry $616+00000$ ) after the start of powered descent. The ullage counter should be reset to $616+00003$ (equivalent to 3-2 sec cycles) after orbit insertion has been completed.

It can be seen that the time duration required to generate AEA ullage recognition, when 1 K 9 is set equal to 3 compute cycles, can vary between slightly over 4 seconds up to slightly over 6 seconds. The exact time duration depends upon when in the compute cycle ullage is initiated and to a lesser extent upon the thrust acceleration level.

### 20.5 Sufficient Conditions for DPS or APS Ignition

The logical product of the seven conditions described above is sufficient to generate the AGS engine ON signal. Note that the chosen engine must be armed. Explicitly:

To ignite the DPS, combined conditions $1,2,3 a, 4,5$ and/or 6,7 are sufficient.

To ignite the APS, combined conditions 1, 2, 3b, 4, 5 and/or 6,7 are sufficient.

### 20.6 DPS Variable Thrust

The AGS will perform guidance properly for any DPS thrust level selection with the exception that in the Orbit Insertion routine

1) sufficient thrust is required to overcome the net effect of gravity and centrifugal accelerations
2) thrust level changes should be avoided, if possible, particularly when near guidance engine cut-off (see Section 22).

### 20.7 RCS Translation; AGS Steering Control

RCS translation can be employed with full AGS steering control.
a) Establish conditions 1,2 and 4 in sufficient time for the LM to orient to the desired thrust attitude.

| Condition | Control | Position |
| :---: | :--- | :--- |
| 1 | Guidance Control | AGS |
| 2 | Mode Control | Auto |
| 4 | DEDA address 400 | Entry +10000 |

b) Select DEDA quantity $\Delta V_{g X}$ for read-out. (DEDA Address 500).
c) Set the ATT/Translation switch to the desired number of jets (2 or 4).
d) At the maneuver time utilize the Thrust/Translation Controller to perform the maneuver. Null out the DEDA reading by moving the Thrust/ Translation Controller up.
e) When the $\Delta V_{g X}$ becomes less than 15 fps , set the MODE CONT TO A/H.
f) When $\Delta V_{g X}=0$, immediately reduce the thrust to zero.

### 20.8 Lunar Surface Liftoff

Ullage is automatically generated on the lunar surface. Switch

## settings are

Guidance Control to "AGS"
Mode Control in "Auto"
AGS Submode Selector must be

Address 400
AEA Guidance Routine must be
Address 410

Entry +10000 (Guidance)

Entry +00000 (Orbit Insertion)

On the lunar surface, the orbit insertion guidance routine generates a large value of velocity-to-be-gained.

Depress the Abort Stage button. The AGS issues the E/ON command igniting the APS engine and ascent to orbit insertion follows.

### 20.9 Manual Engine Operation

In the event that a main engine is ignited manually by depression of the Engine Start button, then it can only be extinguished by depressing the Engine Stop button unless fuel depletion or staging occurs first. Activation of either of these two pushbuttons, as indicated by a red light in the button, will result in the AGS engine commands being inhibited from main engine control.

> THE AGS WILL NOT TERMINATE A MAIN ENGINE BURN IF THE ENGINE WAS IGNITED BY DEPRESSION OF THE ENGINE START BUTTON.

In the event that a main engine was ignited manually, the flight crew can monitor $\Delta V_{g X}$ via DEDA (address 500) quanitized at 0.1 fps lunar mission or 1 fps for earth missions and depress the Engine Stop button when $\Delta V_{g X}$ is near zero. (The Engine -Stop button will function if the Abort Stage button is not set.)

## 20. 10 Satisfaction of Ullage Condition Due to Angular Accelerations

The maximum distance between the ASA and the LM center of gravity is approximately 10 ft in the +X -body axis direction and 5 ft in the +Z -body axis direction. There is effectively no displacement in the $Y$ direction. Because the ASA is offset in the $Z$ direction the possibility of angular accelerations about the pitch axis causing the ullage condition to be satis-
field exists. (If ullage is sensed in the CSI mode, CDH mode, TPI modes or External $\Delta V$ mode, $S_{07}$ will be set to 1.) The required angular acceleration is slightly greater than $1 \mathrm{deg} / \mathrm{sec}^{2}$ and must exist for a minimum of 1 K 9 consecutive $2-$ вес compute cycles.

> IF ALL CONDITIONS FOR ENGINE IGNITION EXCEPT THE ULLAGE CONDITION ARE SATISFIED (SEE SECTION 20.5) AND THE LM IS TO BE REORIENTED THROUGH A LARGE ANGLE UNDER AGS CONTROL, THEN THE ABORT OR ABORT STAGE BUTTON MUST NOT BE DEPRESSED UNTIL LM REORIENTATION HAS OCCURRED IN ORDER TO AVOID SENDING THE E/ON COMMAND.

### 21.0 THRUST TERMINATION

In this section procedures for terminating thrusting maneuvers are presented and discussed. It should be noted for all thrusting maneuvers that the desired thrust direction becomes fixed in inertial space when the velocity-to-be-gained is less than 15 fps (DEDA accessible constant 5 K 26 ) and ullage has been detected during the current 2 sec computing cycle. The desired thrust direction is fixed in order to avoid large attitude variations by the LM to achieve small velocity cutoff errors (as velocity-to-be-gained goes to zerol.

### 21.1 APS or DPS Engines

Termination of main engine thrust by the AGS is a wholly automatic process that occurs when the Engine OFF command is sent to the CES, provided the engine was not turned on manually (by depression of the Engine Start button). With the AGS in control the Engine OFF command will be generated under any of the following conditions:

1) Velocity-to-be-gained magnitude $<4 \mathrm{~K} 26 \mathrm{fps}$ and the component of the velocity-to-be-gained vector resolved along the +X -body axis $\leq 4 \mathrm{~K} 25 \mathrm{fps}$ (APStail-off $\Delta V$ value).
2) Loss of ullage recognition (less than 0.2 fps sensed velocity in a two second computer cycle).
3) Address 400 does not contain the value +10000 .

An AGS guidance (engine) cut-off is initiated by 1) above; at the same time address 400 is automatically set to +00000 , attitude hold, and address 411 is set to +00000 . If Engine OFF command is due to condition 2 ), address 400 and 411 remain unchanged.

### 21.2 Follow-up and Attitude Hold

If the Guidance Control Switch is in "PGNS, " the AGS will continue to follow up the engine operation commands.

If the Mode Control is switched to "A/H" during AGS controlled powered flight, the AGS will hold LM attitude. Engine ON will continue because the AEA is in an engine follow-up mode. The flight crew can assume manual attitude control, with continued engine operation, by moving the Attitude Controller (hand control) out of the detent (AGS will transmit zero steering signals at this time). Thrust will not terminate unless accomplished manually. Upon returning the Attitude

Controller to the detent position and switching the Mode Control back to "Auto", the AGS will resume guidance control and terminate thrust when the velocity-to-be-gained conditions for engine cut-off are met.

### 21.3 RCS Engines

The following procedure applies to each axis individually if axis by axis translation is being performed (LM in attitude hold - see Section 28) or to the X -body axis if AGS steering is being employed (Section 20. 7).

1) Monitor via the DEDA the velocity-to-be-gained in the appropriate thrust direction, i. e.,

|  |  |  | DEDA Least Significant Digit |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Quantity | DEDA Address | Units |
| $\Delta V_{g X}$ | 500 | fps | 0.1 | Lunar Mission |
| Earth Mission |  |  |  |  |
| $\Delta V_{g Y}$ | 501 | fps | 0.1 | 1.0 |
| $\Delta V_{\mathrm{gZ}}$ | 502 | fps | 0.1 | 1.0 |

These quantities are computed every 40 msec and updated on the DEDA display every $1 / 2$ sec.
2) Terminate thrust manually with the thrust/translation controller when velocity-to-be-gained (along the appropriate axis) equals zero.
3) Cautionary Note on RCS Thrusting with AGS Steering

At AGS controlled main engine cut-off, the LM is placed in Attitude hold at the time the Engine ON command is changed to an Engine OFF command. With RCS X axis thrusting, the same logic will switch the AGS to attitude hold (address 400 is switched to +00000 ) when $\Delta V_{g X} \leq 4 \mathrm{~K} 25 \mathrm{fps}$ only if the RCS burn has continued long enough (greater than $1 \mathrm{~K} 92-\mathrm{sec}$ intervals) for the ullage recognition signal to be generated in the AEA. Otherwise address 400 will remain +10000 (guidance steering).

If the burn is too short for ullage recognition, or if thrusting along the Z body axis with $\mathrm{S}_{507}=1$, then after the termination of thrust the AGS will orient the LM along the direction of the residual $\Delta V$ vector. Since this could be any direction, the LM would probably begin an attitude maneuver at the maximum allowable rate (up to $10 \mathrm{deg} / \mathrm{sec}$ pitch rotation, $5 \mathrm{deg} /$ sec yaw and roll axes rotation) to align the $+X$-body along the residual $\Delta V$ vector.

Before presenting a procedure for preventing post-burnout rotations subsequent to short RCS X -axis burns, another aspect of the guidance steering will be reviewed. As mentioned in Section 2. 1, when the velocity-to-begained is less than 15 fps and the sensed thrust acceleration level in the +X -body axis direction is greater than $0.1 \mathrm{fps}^{2}$, the AEA will cease updating the computation of the desired thrust direction. Hence if the velocity-to-be-gained during the RCS burn is to be less than 15 fps , it can be seen that once the burn commences the AEA would normally adhere to a fixed desired thrust direction.

The above discussion leads to the following procedure for performing RCS burns of less than 15 fps magnitude when AGS steering is employed prior to the maneuver to orient the LM X -body axis in the desired thrust direction.

1) Orient to the desired thrust direction
a) Guidance Control "AGS"
b) Mode Control "Auto"
c) Verify DEDA entry $400+10000$ (Guidance Steering Submode)
2) Monitor $\Delta \mathrm{V}_{\mathrm{gX}}$ via DEDA

Read address 500
3) Immediately preceding the maneuver (within 10 seconds) Set Mode Control to A/H
4) Perform the maneuver with Thrust/ Translation Controller Assembly (not necessary to depress Engine Stop button)
5) Terminate RCS thrusting when $\Delta V_{g X}=0$.

If the option to perform a Z -body axis RCS burn with the Z body oriented in the desired thrust direction is chosen (DEDA Address 400 +20000 , DEDA Address $507+10000$ ) it is necessary to set the Mode Control Switch to A/H when the velocity-to-be-gained along the Z -body axis (DEDA Address 502) is less than $15 \mathrm{ft} / \mathrm{sec}$. This procedure will eliminate undesired vehicle rotation after thrust termination.

## PART IV - PROCEDURES FOR MANEUVERS

### 22.0 ORBIT INSERTION

22.1 Procedures for Using Orbit Insertion Routine

1) Initial Guidance and Control Configuration

## PGNCS in Control

a) Guidance Control in "PGNS"
b) DEDA: Enter Guidance Steering

Address: 400
Entry: +10000
c) Other PGNCS control as required

## AGS in Control

a) Guidance Control in "AGS"
b) Mode Control in " $\mathrm{A} / \mathrm{H}^{\prime}$
c) DEDA: Enter Guidance Steering

Address: 400 Entry: +10000
2) AGS: Select Orbit Insertion Routine

$$
\text { DEDA Address } 410 \quad \text { Entry }+00000
$$

3) AGS Targeting

| Parameter | Address | Entry | Remarks |
| :---: | :---: | :---: | :---: |
| Injection <br> Altitude (16J) | 232 |  | DEDA least significant digit 100 ft , lunar mission 1000 ft , earth mission |
| Injection <br> Altitude Rate, Lower Limit (23J) | 465 |  | DEDA least significant digit <br> 0.1 fps , lunar mission <br> 1.0 fps , earth mission |
| Semi -Major Axis Targeting Term (7 J) | 224 |  | DEDA least significant digit 100 ft , Iunar mission 1000 ft , earth mission |
| Semi-Major Axis Lower Limit (8J) | 225 |  | DEDA least significant digit 100 ft , lunar mission 1000 ft , earth mission |
| Semi-Major Axis Upper Limit (9J) | 226 |  | DEDA least significant digit 100 ft , lunar mission 1000 ft , earth mission |

4) AGS: Select Engine( s)

$$
\begin{array}{ll}
\text { DEDA Address } 411 \quad \text { Entry }+00000 \text { (DPS or RCS) } \\
& \text { Entry }+10000 \text { (APS) }
\end{array}
$$

5) AGS: Yaw Steering Selection
a) If Z body axis is to be oriented parallel to the CSM orbit plane verify or enter $623+00000$.
b) If $Z$ body axis is to be oriented parallel to a specified plane enter $623+10000$ and verify or select the plane with DEDA entries

| Address | Octal Scaling | Description |
| :---: | :---: | :---: |
| 514 | B1 | X component of unit vector <br> normal to specified plane |
| 515 | B1 | Y component of unit vector <br> normal to specified plane |
| Z component of unit vector |  |  |
| normal to specified plane |  |  |

6) Establish Guidance System Control For Maneuver

a) Mode Control to "Auto" Perform normal PGNCS functions
b) To abort, depress Abort or Abort Stage Button
c) To Switch-over to AGS -
(i) Guidance Control to "AGS".
(ii) Verify Abort or Abort Stage.

## AGS in Control

a) Mode Control to "Auto" (LM now orients to desired thrust attitude)
b) Initiate and Complete Selected Thrust Sequence (See Section 20). Balance Couple Switch as Desired.*
c) TRIM. Burnout Residual. At engine cut -ff , the system enters attitude hold. If desired, at this time the balance couple switch can be set or verified $O N$ and the residual burn velocities removed (See Section 28.0).

[^14]
## 7) After Maneuver

a) Balance Couple Switch ON
b) Deadband Switch to MAX
c) Establish Desired Guidance and Control Configuration for Coasting Flight

### 22.2 Altitude Update During Powered Descent

## AN ALTITUDE UPDATE SHOULD BE DONE TO INSURE SAFE PERICYNTHION DURING AN AGS CONTROLLED ORBIT INSERTION.

The capability exists for the astronaut to manually update the magnitude of the AGS computed LM inertial radius vector during powered descent. This is accomplished by the astronaut entering valid altitude information from the altitude tape meter or any other available means into DEDA address 223 (DEDA least significant digit, 100 ft lunar missions.) The altitude update (zero is not a valid update) can be done anytime during powered descent. The altitude update is implemented by first entering the desired altitude in the DEDA address 223; when the altitude (as indicated by the altitude tape meter) becomes equal to the desired altitude, the ENTER button is depressed and the LM position vector is normalized to the desired altitude.

### 22.3 Discussion

The "orbit insertion" guidance mode has been designed to drive the LM vehicle to a prescribed altitude above the moon with a specified value of altitude rate and a computed orbit apocynthion based upon the current LM-CSM Phase angle. In addition, steering in this mode is such that the LM is driven into the CSM orbit plane with an out of CSM orbit plane velocity component of zero.

Each steering channel ( $Y$ and $Z$ ) is a two degree of freedorn loop, steering for desired position and desired velocity at engine cutoff. The equations have been designed to maintain the derivative of acceleration (radial and out-of-plane) constant. By limiting the allowable range of the
derivative of acceleration the desired turning rate of the LM is also limited. This has the effect that as the velocity-to-be-gained decreases the system concentrates more and more on attaining the targeted velocity conditions rather than the insertion position conditions. The derivative of radial acceleration is so limited that the AGS will never allow the LM to steer downward to a nominally targeted altitude below the LM altitude (it can steer down to obtain desired velocity cutoff conditions). Whenever the derivatives of acceleration reach their limits the LM may not attain the targeted position at engine cutoff.

As nominally targeted, an out-of-CSM plane error of $0.5^{\circ}$ can be removed for an abort from the lunar surface. If the abort occurs later in powered ascent or in the powered descent, less dispersion will be removed. In the event there is more than $0.5^{\circ}$ out-of-CSM plane error, the orbit insertion mode will remove $0.5^{\circ}$ and the remainder can be removed with the CSI, PCI, CDH and TPI maneuvers. The program is normally set up this way because of the fuel efficiency achieved. The amount of out-of-plane errors removed in orbit insertion can be varied by changing DEDA accessible constants 5 K 16 (DEDA address 561) and 5 K 17 (DEDA address 601).

In some off-nominal abort situations it may not be possible to achieve the desired orbital altitude prior to achieving desired velocity cutoff conditions. In these situations a new value of desired radial rate is computed in the AEA based upon the predicted burnout altitude. A plot of the function of this desired radial rate is shown in Figure 22. 1. If desired, the parameters of this function can be changed by DEDA entry of the constants $4 \mathrm{~K} 4,4 \mathrm{~K} 5,4 \mathrm{~K} 6$ (DEDA addresses 565,662 , 527 respectively). The purpose of computing altitude rate in this manner is to ensure that if cutoff altitude is low the LM will be on a rising trajectory. At a later time when ascending through 60 K feet altitude, an appropriate small $\Delta V$ addition can be made to the orbit to insure a safe pericynthion by again using the Orbit Insertion routine.


Figure 22. 1. Desired Final Altitude Rate versus Final Altitude

## 22. 4 Abort in Very Early Powered Descent (Lunar Mission)

Powered descent is initiated under PGNCS control. The LM thrust vector is oriented essentially opposite to the inertial velocity vector. LM velocity is initially lower than the Orbit Insertion targeted velocity, thus the Orbit Insertion velocity-to-be-gained vector points essentially in the minus X -body axis direction ( $\Delta \mathrm{V}_{\mathrm{gX}}$ is negative).

With 4 K 26 set to 70 fps (engine cutoff criteria for $\Delta V_{G}$ when $\Delta V_{g X}$ is negative), the probability of an automatic cutoff due to thrust vector misorientation is small. The following options are available for completing the Orbit Insertion pertion of the abort:
a) The DPS may be manually shut down. After the vehicle stabilizes in the desired thrust direction, the DPS thrust lever is set for engine ignition and ullage is executed. After DPS ignition, the throttle should be advanced to $50 \%$ or greater to complete the Orbit Insertion maneuver.
b) The DPS may be allowed to thrust at low acceleration ( $10 \%$ ) while the vehicle is rotating. Once the vehicle thrust vector is oriented approximately in the desired direction the throttle should be advanced to $50 \%$ or greater. It will shut down after the Orbit Insertion maneuver is completed.
c) If the DPS has failed, the vehicle should be staged, oriented to the desired thrust direction and the insertion completed on the APS.

For aborts throughout powered descent the basic policy in regard to throttling the descent engine for AGS is as follows:
a) Use maximum thrust until altitude rate is positive. If the vehicle is not oriented in the desired thrust direction at the time of abort allow the vehicle to orient to the desired direction while maintaining the throttle setting that existed at the time of abort. After reorientation increase the throttle setting to obtain maximum thrust. If the possibility of lunar impact exists, maximum thrust should be commanded as soon as the thrust axis orients above the local horizontal.
b) After a positive altitude rate is achieved reduce the throttle setting to obtain $50 \%$ thrust. This setting has been chosed to minimize the transient when staging occurs and to assure sufficient thrust to overcome gravity.

### 22.5 Switch-Over to AGS in Very Late Powered Ascent

Consider that the switch-over from the PGNCS to the AGS is delayed until the targeted velocity magnitude is achieved (5530 fps). Also, consider that the actual trajectory is quite perturbed and that the AGS sensed altitude rate (or cross-plane velocity) is more than $\pm 100 \mathrm{fps}$ with respect to the targeted cut-off conditions. It can be seen that the LM will overshoot the desired cut-off velocity and begin a rotation to reverse its thrust direction without shutting off the engine. It is conceivable that APS propellant could be exhausted before the targeted orbit insertion conditions are achieved.

In essence, if the LM is not "on course", the velocity-to-be-gained vector will swing very rapidly as orbital speed is approached. The flight crew should initiate a switch-over early enough before reaching the speed of 5530 fps so that large attitude rates, prohibited by the CES, are not necessary to acquire the proper powered flight trajectory.

If the very late switch-over cannot be avoided, and the inertial velocity surpasses 5530 fps without engine cut-off, terminate APS thrusting. The AGS will rotate and stabilize the 1 M attitude in the proper orientation to continue the orbitinsertion maneuver. Then, complete the maneuver with RCS thrusting (monitoring $\Delta V_{g X}$ which goes to zero) or reset the Abort Stage button, allowing APS ignition, manually commence ullage, receive an AGS On command, and complete the maneuver automatically with the APS.

Notice that the basic situation causing the events noted in 22.4 also causes those discussed immediately above. At switch-over to the AGS, velocity-to-be-gained is small and the LM is pointing grossly in the wrong direction for driving $\Delta V$ directly to zero. However, since the LM speed is essentially orbital, the crew can perform the corrective actions discussed above without undue haste, except where vital propellant expenditure is concerned.

### 22.6 Steering

In the guidance steering selection, the LM orients so that the LM thrust vector lies along the desired thrust vector. For a discussion, see Section 10. 2.

### 22.7 Pitch Profile (Lunar Mission)

The steering equations are so designed that if the LM altitude above the launch site is less than 25,000 feet (constant 21 J, DEDA address 233) and altitude rate is less than 50 fps (constant 22 J , DEDA address 464) the vehicle will thrust in the vertical direction. After liftoff from the lunar surface, 50 fps altitude rate is exceeded at approximately 12 seconds. At this time, the normal pitch steering profile begins (pitch-over).

In the orbit insertion routine, the LM commanded attitude depends upon the thrust acceleration level. During DPS operations, once the vertical thrusting phase is executed, the thrust control lever should be set and then left alone until cutoff or staging occurs. The Orbit Insertion routine assumes a constant propellant flow rate in the computation of time-to-go-to-maneuver completion. Changing the thrust level setting causes the AGS to change the LM's pitch attitude to account for the newly sensed value of acceleration.

After staging, some change in attitude can be expected. The LM attitude will stabilize above the horizon about 5 to 15 degrees higher, depending on what $\Delta V$ remains to be gained and the relative values of the DPS and APS thrust level at staging. Part of the increased pitch angle is due to accounting for the canted APS thrust.

During powered ascent (from the lunar surface or abort from powered descent) the thrust level should exceed by a factor of at least two the net value of the gravitational force minus the centrifugal force. At very slow speeds (near the lunar surface) the centrifugal force is almost zero; the thrust acceleration level should exceed $10 \mathrm{fps}^{2}$. At near orbital speeds, the DPS thrust level can be less, but a safe rule of thumb would be to maintain a sensed acceleration of at least $10 \mathrm{fps}^{2}$.

It is important to note that the Orbit Insertion routine is targeted for variable velocity conditions at cut-off. Any post-orbit injection $\Delta V$ trim maneuver should be performed immediately (unless the targeted values are revised) and with sufficient thrust acceleration to achieve the targeted values. It is recommended that residuals not be nulled unless they exceed 5 fps .

### 22.8 Plots of the AGS Ascent Trajectory

Figures 22.2 through 22.5 are typical plots of altitude, altitude rate, out-of-plane position and out-of-plane velocity respectively for an AGS controlled launch from the lunar surface. Initial out-of-CSM plane displacement assumed for these plots is $-24,000$ feet. Targeting conditions for this simulated run were $60,000 \mathrm{ft}$ altitude, 19.5 fps altitude rate and 5510. 2 fps horizontal velocity. At 12 seconds into the flight the pitch profile changes from vertical rise to normal pitch steering. This is discussed in Section 22.7.


Figure 22. 2. Altitude versus Time for Lunar Surface Abort


Figure 22. 3. Altitude Rate versus Time for Lunar Surface Abort


Figure 22.4. Out-of-Plane Position versus Time for Lunar Surface Abort


Figure 22.5. Out-of-Plane Velocity versus Time for Lunar Surface Abort


Figure 22.6. Pitch Angle versus Time for Lunar Surface Abort


Figure 22. 7. Yaw Angle versus Time for Lunar Surface Abort
23. 0 CSI

### 23.1 Procedures For Using CSI Routine

1) Initial Guidance and Control Configuration

a) Guidance Control in "PGNS"
b) DEDA: Enter Guidance Steering

Address: 400
Entry: +10000
c) Other PGNCS Controls as required.

## AGS in Control

a) Guidance Control in "AGS"
b) Mode Control in " $\mathrm{A} / \mathrm{H}$ "
c) DEDA: Enter Guidance Steering

$$
\text { Address: } 400
$$

$$
\text { Entry: } \quad+10000
$$

2) AGS: Select CSI Routine

| DEDA Address 410 | Entry +10000 |
| :--- | :--- |

Note: A valid CSI solution should not be attempted earlier than 136 minutes prior to $\mathrm{t}_{\mathrm{ig}}$.
3) CSI Targeting

| Parameter | Address | Entry | Reme.rks |
| :--- | :---: | :---: | :--- |
| CSI Time | 373 | 275 | Absolute time of CSI; DEDA <br> least significant digit 0. 1 minute <br> Absolute time of nomin.al TPI; <br> DEDA least significant digit |
| Cotangent of <br> Line-of-Sight <br> Angle at TPI | 605 | 0.1 minute <br> Cotangent of Line-of-sight angle <br> to CSM. Limit between cot 200 <br> and cot 700. Scaled at B7. |  |
| 28J2 | 451 | +00000 | Out-of-plane velocity-to-be- <br> gained in CSI maneuver (not <br> automatically zero) |

(continued on next page)

| Parameter | Address | Entry | Remarks |
| :--- | :---: | :---: | :--- |
| Select Half <br> OrbitalPeriod <br> Transfers | 416 | +10000 | Select CDH transfer at one-half <br> orbital period following CSI |
| (One of these <br> two entries <br> must be made) |  | +30000 | Select CDH transfer at three- <br> halves orbital period following <br> CSI |

4) AGS: Select Engine(s)

DEDA Address 411 Entry +00000 (DPS or RCS)
Entry +10000 (APS)
5) AGS: Yaw Steering Selection
a) If $Z$ body axis is to be oriented parallel to the CSM orbit plane verify or enter $623+00000$.
b) If Z body axis is to be oriented parallel to a specified plane enter $623+10000$ and verify or select the plane with DEDA entries

| Address | Octal Scaling | Description |
| :---: | :---: | :---: |
| 514 | B1 | X component of unit vector <br> normal to specified plane |
| 515 | B1 | Y component of unit vector <br> normal to specified plane |
| Z component of unit vector |  |  |
| normal to specified plane |  |  |

6) Events Timer
a) Readout DEDA address 310 (minutes, quantized at 0.01 minute), the time to go till the CSI maneuver ( $\mathrm{T}_{\Delta}$ ).
b) Set the events timer to this value. Begin countdown to CSI.

## 7) CSI Solution Checks

The following quantities can be readout via DEDA to indicate the characteristics of the meneuver.

| Equation <br> Symbol | Quantization |  | Units | Address | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lunar Mission | Earth Mission |  |  |  |
| $\Delta V_{G}$ | 0.1 | 1.0 | fps | 267 | Total velocity-to-be-gained magnitude in CSI maneuver (will not contain out-of-plane velocity component until 28 J 2 is entered.) |
| 28 Jl | 0.1 | 1.0 | fps | 450 | Downrange velocity-to-begained in CSI maneuver |
| $\Delta \mathrm{r}$ | 0.1 | 0.1 | $\mathrm{nm}{ }^{\text {d }}$ | 402 | Differential altitude in coelliptic orbit |
| $\mathrm{T}_{\text {A0 }}$ | 0.1 | 0.1 | min | 372 | Time from CSI to CDH |
| $\theta_{\mathrm{f}}$ | 0.01 | 0.01 | deg | 303 | LM to CSM Phase Angle at CSI time |
| $\mathrm{V}_{\mathrm{p} 0}$ | 0.1 | 1.0 | fps | 371 | Velocity-to-be-gained in CDH maneuver |
| $\dot{\mathrm{r}}_{\mathrm{A}}$ | 0.1 | 1.0 | fps | 477 | LM altitude rate at CSI time |
| $\delta \mathrm{r}$ | 0.1 | 0.1 | nmj | 314 | Differential orbital altitude along LM radial at CSI time |

If any of these quantities are unsatisfactory (See Section 23.5) proceed to Section 23. 2.
8) Establish Guidance System Configuration for CSI Maneuver
a) Enter into address $410+50000$. The AGS is now in the External $\Delta V$ guidance mode. The procedure for executing an External $\Delta V$ maneuver can be found in Section 27. If an axis-by-axis $\Delta V$ maneuver is desired, refer to the procedures of Section 28.
b) The downrange and radial components are automatically entered by the flight program and may be verified by reading out addresses 450 and 452 , respectively. Since this is a horizontal burn, address 452 will be zero.
9) If a CSI out-of-plane meneuver to reduce the wedge angle between LM and CSM orbit planes is desired, proceed with the following steps. If a normal CSI maneuver (parallel to the CSM orbit plane) is desired, set $451+00000$ and proceed to execute the CSI maneuver.

## Establish CSI out-of-plane guidance

a) Read out address 263 via DEDA. This is the value of $V_{\text {py }}$ which is quantized at 0.1 fps lunar scaling ( 1.0 fps earth scaling). $V_{p y}$ is the out-of-CSM plane velocity of the LM at the time of the CSI maneuver.
b) This value, or a fraction of it, is then entered via DEDA into address 451 quantized at 0.1 fps lunar scaling ( 1.0 fps earth scaling). This sets up the crossrange component for an external $\triangle V$ maneuver at CSI time. The sign of the quantity entered in 451 should be the same as that readout in address 263.

Note: If $\mathrm{V}_{\mathrm{py}}$ as obtained in step (a) is zero, this out- ofplane burn $v$ ill be identical to the normal in- plane burn.

> ALL CSI MANEUVERS WILL BE PERFORMED IN THE EXTERNAL $\triangle V$ MODE (DEDA ENTRY $410+50000$ ).
> IT IS SUGGESTED THAT THE EXTERNAL $\triangle V$ MODE
> NOT BE ENTERED UNTIL 4 OR 5 MINUTES PRIOR
> TO ${ }^{\text {igA. THIS WOULD ALLOW MONITORING OF CSI }}$ PARAMETERS. (EARLY SWITCHING WILL NOT INVALIDATE THE CSI SOLUTION)*
10) After CSI Maneuver
a) Balance Couple Switch ON.
b) Deadband Switch to MAX.
c) Enter via DEDA address $410+20000$ (CDH guidance mode).
d) Monitor the time to go to CDH maneuver via DEDA address 310 (quantized at 0.01 minute for earth or lunar mission).

[^15]
## THIS QUANTITY IS ONLY VALID WHEN TIME TO GO IS LESS THAN 136 MINUTES.

e) Set Events timer based upon DEDA readout for countdown to CDH.
f) Establish Desired Guidance and Control Configuration for coasting flight.
g) This terminates the CSI procedure.
23.2 In the Event of an Unsatisfactory Solution
A. 1 Request new targeting from Mission Control and enter per Step (3).
A. 2 Proceed to Step (6).
or
B. 1 Generate a nəw TPI time to get a desirable solution and enter per Step (3). If lighting is an important consideration in the rendezvous a good first guess for a new value of TPI time would be the present value of TPI time plus 125 minutes (lunar mission). This means the TPI would occur approximetely lorbit later than originally programmed.
B. 2 Proceed to Step (6).

### 23.3 Discussion

The CSI maneuver is a burn performed along the local horizontal parallel to the CSM orbit plane for the normal in-plane option. The CSI out-of-plane option results in a burn which may not be parallel to the CSM orbit plane. The purpose of the maneuver is to create the correct phasing between the LM and CSM such that following the coelliptic maneuver ( CDH ) the desired line of sight angle between LM and CSM will be achieved at nominal TPI time.

This flight program (FP6) has the feature that CDH follows CSI by one-half or three-halves of a LM orbital period.

A valid CSI computation should not be attempted earlier than 136 minutes before $t_{i g A}$ due to computer scaling limjtations on $T_{\Delta^{\prime}}$

Targeting for this maneuver is critical. That is, the phasing between the LM and CSM at CSI time should be such that physically realizable solutions can be obtained. For example, if the CSM is above and far ahead of the LM the computed solution could be a retrograde maneuver that would possibly force pericynthion of the transfer orbit to be lower than "safe pericynthion". On the other hand if the LM is far ahead of the CSM the resultant LM trajectory would be one with apocynthion much higher than the CSM. Subsequent maneuvers by the LM to achieve rendezvous would be costly as far as fuel is concerned.

The line of sight angle is measured from the LM local horizontal plane. The targeted (DEDA input) line of sight angle is always input as the cotangent of the angle between 20 degrees and 70 degrees. In the TPI mode(s), the actual line of sight angle can be monitored via the DEDA. For purposes of this readout the line of sight angle has a range of 0 degree to 360 degrees. The angle convention is as follows:

| LM/CSM Phasing | Line of Sight Readout ( $\theta$ LOS $)$ |
| :---: | :--- |
| CSM ahead and above LM | 0 degree to 90 degrees |
| CSM behind and above LM | 90 degrees to 180 degrees |
| CSM behind and below LM | 180 degrees to 270 degrees |
| CSM ahead and below LM | 270 degrees to 360 degrees |

### 23.4 Reasonableness of Solutions

After the CSI solution has been obtained, several quantities can be examined to determine the reasonableness of the resultant solution. These quantities are:
(DEDA Address 267
quantized at 0.1 fps for lunar missions, 1.0 fps for earth missions)
$\dot{r}_{\mathrm{A}} \quad$ (DEDA Address 477, quantized at 0.1 fps for lunar missions, 1.0 fps for earth missions)
total velocity-to-be-gained magnitude in the CSI maneuver. (Will not contain out-of-plane velocity component until 28 J 2 is entered.) Limits on this magnitude are mission dependent.

LM altitude rate at CSI time. Limits on this magnitude are mission dependent.
$\mathrm{V}_{\mathrm{p} 0}$ (DEDA Address 371, quantized at 0.1 fps for lunar missions, 1.0 fps for earth missions)
$\mathrm{T}_{\mathrm{AO}}$ (DEDA Address 372 quantized at 0.1 min )
$\Delta \mathbf{r} \quad$ (DEDA Address 402, quantized at 0.1 nm for lunar missions and earth missions)

28J1 (DEDA Address 450 quantized at 0.1 fps for lunar missions, 1.0 fps for earth missions)
$\theta_{f} \quad$ (DEDA Address 303, quantized at 0.01 deg for lunar missions a and earth missions)

סr (DEDA Address 314, quantized at 0.1 mni for lunar missions and earth missions)

Predicted velocity-to-be-gained at CDH time to make LM orbit coelliptic with CSM orbit. Limit on the magnitude of this maneuver is mission dependent.
time from CSI to CDH. This quantity should be approximately 60 or 180 minutes.

Predicted differential altitude at CDH in coelliptic orbit (negative quantity indicates LM higher than CSM).

Downrange velocity-to-be-gained in the CSI maneuver. Limits on this magnitude are mission dependent. If this quantity is of negative sign the maneuver will be performed in a retrograde manner, in general decreasing pericynthion of the orbit.

LM to CSM phase angles at CSI time. Limits on this magnitude are mission ependent.

Differential orbital altitude along LM radial at CSI time.
23.5 Plane Change Maneuver (PCI)

The purpose of a plane change maneuver (PCI) is to create a node at any desired time. A node is defined as that point at which a desired orbital plane crosses the actual orbital plane. A node is created by removing the out-of-plane velocity at a point $90^{\circ}$ before the desired nodal point. At the nodal point, another out-of-plane thrusting maneuver is done to cause the two orbital planes to become coplanar. It is recommended that the CSI Routine be used to compute the required out-of-plane velocities. In order to do this, it is necessary to specify the absolute time of the out-of-plane maneuver. For PCI targeting consideration, $t_{i g A}$ will represent this time. The following procedure can be used to perform the plane change (PCI) maneuver.

1) Initial Guidance and Control Configuration
PGNCS in Control
a) Guidance Control in "PGNS"
b) DEDA: Enter Guidance Steering
```
Address: 400
Entry:
+10000
```

c) Other PGNCS Controls as required.

AGS in Control
a) Guidance Control in "AGS"
b) Mode Control in "A/H"
c) DEDA: Enter Guidance Steering

Address: 400
Entry: $\quad+10000$
2) AGS: Select CSI Routine

$$
\text { DEDA Address } 410 \quad \text { Entry }+10000
$$

3) PCI Targeting

| Parameter | Address | Entry | Remarks |
| :--- | :---: | :---: | :--- |
| PCI Time | 373 |  | Absolute time of PCI; DEDA <br> least significant digit 0.1 <br> minute. |

4) Events Timer
a) Readout DEDA address 310 (minutes, quantized at 0.01 minute), the time to go till the PCI maneuver (TA).
b) Set the events timer to this value. Begin countdown to PCI.
5) Establish PCI Out-of-Plane Guidance
a) Enter into address $410+50000$. The AGS is now in the External $\Delta V$ guidance mode. The procedure for executing an Externzl $\Delta V$ maneuver can be found in Section 27. If an zxis-by-axis $\Delta V$ maneuver is desired, refer to the procedures of Section 28.
b) Readout address 263 via DEDA (this is the out-of-CSM plane velocity of the LM at the time of the PCI maneuver). The value of $\mathrm{V}_{\mathrm{py}}$ is enter via DEDA into address 451 (quantized at 0.1 fps lunar scaling 1.0 fps earth scaling). This sets up the crossrange component for an external $\Delta V$ maneuver at PCI time. The sign of the quantity entered in 451 should be the samt? as that read out in address 263. Set the downrange and radial velocity components (DEDA addresses 450 and 452 , respectively) to zero.
6) After PCI Maneuver
a) Balance Couple Switch ON.
b) Deadband Switch to MAX.
c) Establish Desired Guidance and Control Configuration for coasting flight.
d) This terminates the PCI procedure.

## 24. 0 CDH

### 24.1 Procedures For Using CDH Routine

1) Initial Guidance and Control Configuration

PGNCS in Control
a) Guidance Control in "PGNS"
b) DEDA: Enter Guidance Steering

Address: 400
Entry: +10000
c) Other PGNCS controls as required

AGS in Control
a) Guidance Control in "AGS"
b) Mode Control in " $\mathrm{A} / \mathrm{H}$ "
c) DEDA: Enter Guidance Steering

## Address: 400

Entry: +10000
2) AGS: Select CDH Routine

3) AGS Targeting
a) CSI computed maneuver performed immediately prior to CDH selection.

```
No Targeting Required
```

b) Otherwise, after selecting CDH routine, enter AGS absolute time of CDH maneuver $\mathrm{t}_{\mathrm{ig}} \mathrm{B}$ (information from Mission Control).

DEDA Address 373

Enter CDH time, in Minutes; DEDA least significant digit 0.1 minute

[^16]4) AGS: Select Engines

| DEDA Address 411 | Entry +00000 (DPS or RCS) |
| :--- | :--- |
|  | Entry +10000 (APS) |

5) AGS: Yaw Steering Selection
a) If Z-body axis is to be oriented parallel to the CSM orbit plane verify or enter $623+00000$.
b) If Z-body axis is to be oriented parallel to a specified plane enter $623+10000$ and verify or select the plane with DEDA entries.

| Address | Octal Scaling | Description |
| :---: | :---: | :---: |
| 514 | B1 | X component of unit vector <br> normal to specified plane |
| 515 | B1 | Y component of unit vector <br> normal to specified plane <br> Z component of unit vector <br> normal to specified plane |

6) Events Timer
a) Readout DEDA address 310 (minutes, quantized at 0.01 minute), time-to-go-to CDH maneuver.
b) Set events timer to this value.
7) CDH Solution Checks

The following quantities can be readout via DEDA to indicate the characteristics of the maneuver.

| Equation Symbol | DEDA <br> Address | Quantization and Units |  | Description |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { (lunar } \\ \text { mission) } \end{gathered}$ | $\begin{aligned} & \text { (earth } \\ & \text { mission) } \end{aligned}$ |  |
| $\mathrm{T}_{\Delta}$ | 310 | 0.01 min | 0.01 min | time to go until CDH maneuver |
| $\dot{\mathrm{r}}_{\mathrm{f}}$ | 423 | $0.1 \mathrm{ft} / \mathrm{sec}$ | 1.0 ft/sec | desired final value of altitude rate at CDH time |


| Equation Symbol | DEDA Address | Quantization and Units |  | Description |
| :---: | :---: | :---: | :---: | :---: |
|  |  | (lunar mission) | (lunar mission) |  |
| $\Delta V_{G}$ | 267 | $0.1 \mathrm{ft} / \mathrm{sec}$ | $1.0 \mathrm{ft} / \mathrm{sec}$ | total velocity-to-be-gained magnitude in CDH maneuver (Not valid until the External $\Delta V$ mode has been entered. (Will not contain out-of-plane velocity componentuntil 28J2 is entered.) |
| $\Delta r$ | 402 | 0.1 nmi | 0.1 nmi | differential altitude between coelliptic orbits |
| $\dot{r}_{\text {A }}$ | 477 | 0.1 fps | 1.0 fps | altitude rate of LM at time of CDH |
| 28 J 1 | 450 | 0.1 fps | 1.0 fps | downrange velocity-to-begained in CDH maneuver |
| 28 J 3 | 452 | 0.1 fps | 1.0 fps | radial velocity-to-be-gained in CDH maneuver |

8) Establish Guidance System Configuration for CDH Maneuver
a) Enter into address $410+50000$. The AGS is now in the External $\Delta V$ guidance mode. The procedure for executing an External $\Delta V$ maneuver can be found in Section 27 . If an axis by axis maneuver is desired, refer to the procedures of Section 28.
b) The downrange and radial components are automatically entered by the flight program and may be verified by reading out addresses 450 and 452 , respectively.
9) If a CDH out-of-plane maneuver to reduce the wedge angle between LM and CSM orbit planes is desired, proceed with the following steps. If a normal in-plane CDH maneuver is desired, set 451 +00000 and proceed to execute the CDH maneuver.
a) Read out address 263 via DEDA. This is the value of $V_{\text {py }}$ which is quantized at 0.1 fps lunar scaling ( 1 fps earth scaling). $V_{p y}$ is the out-of-CSM plane velocity of the LM at nominal CDH time.
b) This value, or a fraction of it, is then entered via DEDA into address 451 quantized at 0.1 fps lunar scaling 11 fps earth scaling). This sets up the crossrange component for an External $\Delta V$ maneuver at CDH time. The sign of the quantity entered in 451 should be the same as that readout in address 263.

NOTE: If $V_{\text {py }}$ as obtained in step (a) is zero, this out-of-plane burn will be identical to the normal in-plane burn.

> ALL CDH MANEUVERS WILL BE PERFORMED IN THE EXTERNAL $\triangle V$ MODE (DEDA ENTRY $410+50000$ ). IT IS SUGGESTED THAT THE EXTERNAL $\triangle V$ MODE NOT BE ENTERED UNTIL 4 OR 5 MINUTES PRIOR TO tigB. THIS WOULD ALLOW MONITORING OF CDH PARAMETERS. (EARLY SWITCHING WILL NOT INVALIDATE THE CDH SOLUTION).*

## After Maneuver

a) Balance Couple Switch ON
b) Deadband Switch to MAX
c) Establish Desired Guidance and Control Configuration for coasting flight.

### 24.2 Discussion

The "CDH" maneuver is used to place the LM in a trajectory such that the differential altitude between the CSM and LM orbits is essentially a constant. If the CDH maneuver follows the CSI maneuver, no targeting inputs are required. Otherwise, the time of the maneuver must be entered. Prior to the targeted time of CDH , the AGS predicts the maneuver. When real time exceeds the targeted time, however, the system computes the guidance solution on a real time basis.

The CDH maneuver is a burn performed parallel to the CSM orbit plane when the normal in-plane option is used.

It is important to note:
a) Following the CSI maneuver, if CDH is selected prior to receiving a CSM or LM navigation update, then no CDH targeting is required.

[^17]b) If the CSI maneuver does not precede the CDH maneuver, then the AGS absolute time of the CDH maneuver must be inserted via DEDA address 373 (quantized at 0.1 minute).
c) If the CDH maneuver time $\mathrm{t}_{\mathrm{ig}} \mathrm{B}$ is greater than 136 minutes from the present time, a valid CDH solution will not be obtained due to computer overflow of $T_{\Delta}$. Note that this may occur if the CDH solution is to be performed threehalves orbital periods following CSI. A valid solution will be obtained, however, when absolute time ( $t$ ) is within 136 minutes of $t_{i g B}$.

The terminal phase initiate (TPI) maneuver begins the direct transfer to rendezvous. There are two direct transfer routines; one primarily for mission planning, the other for computing the maneuver. The latter can also be used for mission planning if desired. In general, the routines are used together in sequence to compute the required TPI maneuver.

In the mission planning mode the object is to determine when the direct transfer should occur. This determination is based upon either achieving the desired line-of-sight angle between the LM and CSM or finding the minimum (acceptable) fuel rendezvous. Once the ignition time is determined, the AGS is switched to the TPI Execute mode to freeze the solution and then to External $\Delta V$ for the performance of the maneuver.
25.1 Procedures for Using TPI Routines

1) Initial Guidance and Control Configuration

PGNCS in Control
a) Guidance Control in "PGNS"
b) DEDA: Enter Guidance Steering

Address: 400
Fntry: $\quad+10000$
c) Other PGNCS controls as required

AGS in Control
a) Guidance Control in "AGS"
b) Mode Control in "A/H"
c) DEDA: Enter Guidance Steering

$$
\text { Address: } 400
$$

Entry: +10000
2) TPI Search Procedure
a) Select TPI Search Routine

| DEDA Address 410 | Entry +30000 |
| :--- | :--- |

b) TPI Search Time Increment Input

| Parameter | Address | Entry | Remarks |
| :---: | :---: | :---: | :---: |
| Time to Go <br> to TPI, T <br> $\Delta$ | 310 |  | Fixed time from "now" to TPI: <br> DEDA least significant digit <br> 0.01 minute |

Note: Time-to-go-to-TPI, address 310, must be entered after TPI Search Routine, entry $410+30000$. Otherwise the entry is lost. A valid TPI solution should not be attempted earlier than 136 minutes prior to targeted rendezvous time. (Targeted rendezvous time equals $6 \mathrm{~J}+\mathrm{T}_{\Delta}$.)
3) Targeting for Direct Transfer

| Parameter | Address | Entry | Remarks |
| :---: | :---: | :---: | :---: |
| Time Duration <br> of Transfer, <br> $6 J$ | 307 |  | TPI to Rendezvous, transfer <br> time in minutes. DEDA least <br> significant digit 0. 01 min. |

4) Search Procedure; Line-of-Sight Angle Search
a) Readout line-of-sight angle via DEDA.

| Line-of-Sight <br> Angle, $0_{\text {LOS }}$ | Address 303 | Read © LOS, degrees. DEDA least <br> significant digit 0.01 deg |
| :--- | :--- | :--- |

b) Select TPI Execute Routine when ${ }^{\text {LOS }}$ achieves desired value (known to flight crew). Time of TPI ( $\mathrm{t}_{\mathrm{ig}}$ ) is now selected.

TPI Execute Routine

| DEDA Address 410 | Entry +40000 |
| :--- | :--- |

c) Set Events Timer

| DEDA Address 310 | Readout Time-to-go to TPI |
| :--- | :--- |

Set Event Timer to Correspond to Time-to-go.
d) Go to Step 6).
5) TPI Execute Procedure
a) Select TPI Execute Routine

| DEDA Address 410 | Entry +40000 |
| :--- | :--- |

b) TPI Execute: AGS Time Entry

| Parameter | Address | Entry | Remarks |
| :---: | :---: | :---: | :---: |
| Targeted Time <br> of TPI burn, <br> $t_{\text {igC }}$ | 373 |  | AGS absolute time of TPI <br> burn, minutes. DEDA least <br> significant digit 0.1 minutes |

6) Select Node

Enter or verify via DEDA Address 306 the time increment prior to rendezvous at which the node is to occur. This time, 4J, should be a positive number quantized at 0.01 minutes.
7) Check the TPI Solution

| Equation <br> Symbol | DEDA <br> Address | Lunar <br> Mission <br> Quantization | Earth Mission Quantization | Units | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{r}}$ | 311 | 0.01 | 0.01 | min | time to rendezvous |
| ${ }^{0}$ LOS | 303 | 0.01 | 0.01 | deg | line of sight angle between LM and CSM |
| $\Delta \mathrm{V}_{\mathrm{G}}$ | 267 | 0.1 | 1.0 | fps | velocity-to-begained in initial maneuver |
| $\mathrm{V}_{T}$ | 371 | 0.1 | 1.0 | fps | total velocity-to-begained magnitude to rendezvous (onlyvalid if $4 \mathrm{~J}=0$, i.e., node occurs at rendezvous) |
| $q_{1,1}$ | 402 | 0.1 | 0.1 | nmi | transfer orbit pericynthion |
| ${ }^{\text {t }} \mathrm{ig} \mathrm{C}$ | 373 | 0.1 | 0.1 | $\min$ | AGS time of TPI |


| Equation Symbol | DEDA <br> Address | Lunar Mission Quantization | Earth Mission Quantization | Units | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\Delta}$ | 310 | 0.01 | 0.01 | min | Time-to-go-to-TPI |
| 4 J | 306 | 0.01 | 0.01 | min | Time increment prior to nominal rendezvous time at which the nedalcrossing is to occur. |
| 3 J | 312 | 0.01 | 0.01 | min | TPI rendezvous offset time |
| 6 J | 307 | 0.01 | 0.01 | min | Transfer time from TPI to rendezvous. |

If DEDA address 371 reads 6000 the $p$ iterator has not converged to a valid solution. In this situation the rendezvous problem should be retargeted. The best way to proceed (assuming no targeting data available from the earth) would be to change the time to rendezvous by entering a new value into DEDA address 307.
8) AGS: Establish Desired Steering

If thrusting is to be performed with the Z body axis in the desired thrust direction perform the following steps. If not go to Step 9.
a)

| DEDA ENTRY | REMARKS |
| :--- | :--- |
| $507+10000$ | Specifies Z body axis to <br> be aligned a long desired <br> thrust direction |
| $400+20000$ | Specifies Z body axis <br> steering |

b) Go to step 10 .

## 9) AGS: Yaw Steering Selection

a) If Z body axis is to be oriented parallel to the CSM orbit plane verify or enter $623+00000$.
b) If Z body axis is to be oriented parallel to a specified plane enter $623+10000$ and verify or select the plane with DEDA entries.

| Address | Octal Scaling | Description |
| :---: | :---: | :--- |
| 514 | Bl | X component of unit <br> vector normal to <br> specified plane |
| 515 | Bl | Y component of unit <br> vector normal to <br> specified plane |
| Z component of unit <br> vector normal to <br> specified plane |  |  |

10) Establish Guidance System Configuration for TPI Maneuver

Enter into address $410+50000$. The AGS is now in the External $\Delta V$ guidance mode. The procedure for executing an External $\Delta V$ maneuver can be found in Section 27. If an axis by axis maneuver is desired, refer to the procedures of Section 28.

ALL TPI MANEUVERS WILL BE PERFORMED IN THE EXTERNAL $\triangle V$ MODE (DEDA ENTRY $410+50000$ ). IT IS SUGGESTED THAT THE EXTERNAL $\triangle V$ MODE NOT BE ENTERED UNTIL 4 OR 5 MINUTES PRIOR TO tigS. THIS WILL ALLOW MONITORING OF TPI PARAMETERS. (EAREY SWITCHING WILL NOT INVALIDATE THE TPI SOLUTION).*
11) After Maneuver
a) Balance Couple Switch ON
b) Deadband Switch to MAX
c) TPI Execute Routine (DEDA Entry $410+4000$ ) reentered. See Section 26.0.
d) Establish Desired Guidance and Control Configuration for coasting flight.

### 25.2 Discussion

a) The TPI maneuver begins the final direct transfer phase to rendezvous. The direct transfer mode is used in the coelliptic rendezvous scheme following the CDH maneuver.

[^18]The two previous maneuvers (CSI and ${ }^{-} \mathrm{CDH}$ ) are performed such that at the nomi al TPI time the proper phasing between the LM and CSM should exist so that the desired line-of-sight angle is achieved.

Because of errors in the system (sensors, navigation, maneuver execution, etc.) the desired line-of-sight is not achieved at exactly the targeted TPI time. In order to determine when the desired line-of-sight will be achieved and thus when to perform the maneuver, a direct transfer search guidance option is available in the AGS ( $S_{10}=3$ ). In this mode also, the a stro aut can determine total velocity required to rendezvous and perform the TPI maneuver based upon achieving a desirable value of this quantity. The alternate direct transfer guidance mode ( $S_{10}=4$ ) is used to fix the solution for the maneuver.

The two different modes operate as follows:
$S_{10}=3$
The flight crew introduces an increment of time, $\mathrm{T}_{\Delta}$, ahead of the present time $t$ at which he wishes to look at the rendezvous solution. The time at which the TPI maneuver is to occur is always moving ahead 2 sec per 2 sec compute interval because the time of initiation of the burn $t_{i g C}$ equals $t+T_{\Delta} \cdot T_{\Delta}$ is a fixed number and $t$ increments two seconds per 2 second. When the solution is satisfactory, based upon DEDA monitoring of the line of sight angle, $S_{10}$ is set equal to 4 by the flight crew via DEDA.
$S_{10}=4$
Whereas the guidance mode $S_{10}=3$ is used as a form of "mission planning," the mode $S_{10}=4$ is used for the fixing of the solution. If the desired rendezvous solution is found with $S_{10}=3$ and the $S_{10}$ is set to 4 , no additional entry of $t_{i g C}$ need be inserted in the computer since this is done automaticaliy, If guidance mode $S_{10}=4$ is used, a value of targeted TPI time ( $t_{i g} C$ ) must be inserted. Many different values of $\mathrm{t}_{\mathrm{i}} \mathrm{C}$ could be tried if the crew desired to do some "mission planning" in this mode and did not care to use the alternate mode. After a value of $t_{i g C}$ is inserted, a solution is found in one two-second computing increment. Assuming the value of $\mathrm{t}_{\mathrm{ig}} \mathrm{C}$ has been selected (and $\mathrm{S}_{10}=4$ ) then the quantity $\mathrm{T}_{\Delta}$ is the time to go until the mancuver. This quantity could be used to set the events timer.

In this mode the capability exists for computing a solution so that thrusting in a given manner will achieve a node (intersection of LM and CSM orbit planes) at a specified time increment prior to nominal rendezvous time. The required time increment, 4 J , is entered in DEDA address 306 scaled at 0.01 minutes. If 4 J is not zero the indication of total velocity required to rendezvous (DEDA address 371) is not valid. It should be noted that entering a value for 4 J only controls the direction of the maneuver and thus need only be entered prior to enabling steering. The advantage to this is that DEDA address 371 can be used as an indication of total velocity required to rendezvous prior to making the 4 J entry.

Just as the quantity 4 J can be used to create a node, the quantity 3 J (DEDA address 312 quantized at 0.01 minutes) can be used to establish the desired relationship between the LM and CSM for a "stable orbit" rendezvous. By entering a time increment, 3 J , via DEDA the AGS will calculate the two impulse maneuvers to place the LM on the CSM orbit displaced from the CSM by time 3J. A positive value for 3 J will place the LM behind the CSM and a negative value of 3 J will place the LM ahead of the CSM.
b) If the TPI maneuver is to occur based upon the desired line-of.sight angle between LM and CSM, then DEDA address 303 (quantized at 0.01 degrees) should be readout to obtain this quantity. When the desired value is obtained, the DEDA entry $410+40000$ should be made to put the AGS in the TPI Execute mode.
c) If the TPI maneuver is to occur when the total fuel to rendezvous is minimum, a continuous readout of DEDA address 371 (quantized at 0.1 fps for lunar missions, 1.0 fps for earth missions) should be made. When the readout attains its minimum value or when other constraints are being approached (such as lighting) the DEDA entry $410+40000$ should be made to put the AGS in the TPI Execute mode.
d) If the DEDA readout of address 371 indicates a value of +6000 fps , a valid solution to the direct transfer problem has not been found. In this case the direct transfer problem has not been found. The 6000 indicates computer overflow or that the iteration procedure has not converged (two seconds required).
e) Prior to the TPI maneuver, when the TPI Execute routine is selected, the AGS time of computed rendezvous (two impulse rendezvous solution) can be computed.

$$
\text { time of rendezvous }=6 J+t_{i g C}
$$

Time-to-go-to rendezvous, $\mathrm{T}_{\mathrm{r}}$, can be read out of the DEDA directly, address 311.

Time-to-go-to nodal crossing can be calculated as $\mathrm{T}_{\mathrm{r}}-4 \mathrm{~J}$.

### 25.3 Constraints on TPI Transfer Time

DEDA address 307, (quantized at 0.01 min ) is the desired time from TPI to rendezvous. This time must be so chosen that the rendezvous transfer angle ( $\theta_{r}$ ) (central angle between LM at TPI initiation and the rendezvous point) lies within the following regions.

For earth missions

$$
\begin{aligned}
& 20^{\circ} \leq \theta_{r} \leq 160^{\circ} \\
& 200^{\circ} \leq \theta_{r} \leq 340^{\circ}
\end{aligned}
$$

For lunar missions

$$
\begin{aligned}
& 10^{\circ} \leq \theta_{r} \leq 170^{\circ} \\
& 190^{\circ} \leq \theta_{r} \leq 350^{\circ}
\end{aligned}
$$

pictorially

shaded region non-valid

shaded region non-valid

These conditions are checked internally in the computer, and if found to be violated cause the quantity $\mathrm{V}_{\mathrm{T}}$ to be set t 6000. In general, these conditions can be satisfied if DEDA address 307 does not have the following values entered into it.

| DEDA <br> Address 307 | For earth missions <br> (Based upon 200 <br> CSM orbit) | For lunar missions <br> (Based upon 80 nm <br> CSM orbit) |
| :--- | :--- | :--- |
| not less than <br> does not lie <br> between <br> 5 min <br> does not exceed <br> 42 min to 53 min <br> 90 min to 100 min <br> 130 min | 3.5 min <br> 57 min to 65 min | 119 min |

The above constraints are imposed to avoid inaccuracy due to indeterminancies existing at the $0^{\circ}, 180^{\circ}$, and $360^{\circ}$ transfer angles.

### 26.0 MIDCOURSE CORRECTION

To compute the midcourse corrections, use is made of the TPI execute routine $\left(S_{10}=4\right)$. There are several ways in which the midcourse maneuver can be targeted.
26.1 Retarget the Entire Rendezvous Problem
a) Determine from the mission plan the required time of initiating the midcourse maneuver, ${ }^{t} \mathrm{igC}^{\prime}$.
b) Determine from the mission plan the required transfer time duration from midcourse to rendezvous, 6J.
c) With the above data, compute a TPI maneuver. Follow the procedures of Section 25.0 for the TPI execute routine $\left(S_{10}=4\right)$.
26.2 Maintain the Same Rendezvous Time, Inflight Targeting of New Midcourse Maneuver Time

The flight crew may want to keep the same computed rendezvous point (as used in the TPI maneuver) and perform the midcourse maneuver at a newly specified time, $t_{i g C}$. A procedure that can be used is exactly that of Section 25.0 except for specifying the rendezvous targeting. This can be done in flights as follows:
a) Decide or specify the time $t_{i g C}$ that the midcourse maneuver will be performed. This time will be DEDA entered and should be sufficiently later than "present" AGS computer time to permit the desired orientation stee ring to be performed.
b) From the calculated time of rendezvous (as determined in Section 25.0), calculate 6J, the desired time from midcourse to rendezvous by $6 J=$ time of rendezvous $-\mathrm{t}_{\mathrm{ig}}$.
c) Use the new values of 6.J and $t_{\text {igC }}$ to target the TPI execute routine (Section 25.0 ).
d) Set or verify that 4 J , which specifies time of nodal crossing, is as desired.

### 26.3 Maintain the Original TPI Rendezvous Problem

If this alternative is used, no new targeting need be done for the midcourse maneuvers.

> THE GUIDANCE MODE SELECTOR (DEDA ADDRESS 410 ) SHOULD BE RESET TO + 40000 AFTER EXECUTION OF THE TPI MANEUVER IN THE EXTERNAL $\triangle V$ GUIDANCE MODE

Since the TPI execute routine operates in real time after the targeted time $t_{i g} C$ to achieve rendezvous at the (fixed) rendezvous point, no new targeting entries are required. Perform the direct transfer maneuver at the desired time following the procedure of Section 25.

### 26.4 Approaching the Node

As indicated above, the capability exists of creating a node 4 J minutes prior to nominal rendezvous time. As the node is approached (within 10 degrees for a lunar mission and 20 degrees for the earth missions) the quantity 4 J is automatically set to zero and the node is established at the targeted rende zvous time. The purpose of this is to have the midcourse maneuver (at the node) be in such a direction as to cause the LM to be in the CSM plane. When the switchover occurs the LM will be out of the CSM orbit plane by an angle that depends upon the wedge angle between the two trajectories. This is depicted in Figure 26.1. If the midcourse is not performed near the node and the switchover has occured then the maneuver will continue to be computed with the node at the nominal rendezvous point.


Figure 26.1. Out-of-Plane Angle at Switchover to Node at Rendezvous Versus Wedge Angle for Lunar and Earth Mission

At the time the switchover occurs $\langle 4 \mathrm{~J}$ is set to zerol the desired LM thrust direction will change to cause the node to be created at the rendezvous point. For one two-second compute cycle the guidance solution will be invalid. If the midcourse maneuver is to be performed near the node it is recommended that 4.J be examined (DEDA address 306) prior to the maneuver to ascertain that 4 J has been set to zero. If not zero either delay the maneuver until switchover has occurred or manually set 4 J to zero via DEDA entry $306+00000$.
27.0 EXTERNAL $\triangle V$

The external $\Delta V$ routine accepts components of a velocity-to-begained vector in local vertical coordinates input either via the DEDA or computed in the CSI, CDH or TPI Mode. At the time of maneuver initiation the velocity-to-be-gained vector is "frozen" in inertial space.

## 27. 1 Procedures for Using the External $\Delta V$ Routine

1) Initial Guidance and Control Configuration

## PGNCS in Control

a) Guidance Control in "PGNS"
b) DEDA: Enter Guidance Steering

Address: 400
Entry: +10000
c) Other PGNCS controls as required

## AGS in Control

a) Guidance Control in "AGS"
b) Mode Control in " $\mathrm{A} / \mathrm{I}{ }^{4}{ }^{4}$
c) DEDA: Enter Guidance Stee ring

Address: 400

$$
\text { Entry: } \quad+10000^{*}
$$

[^19]2) AGS: Select External $\Delta V$ Routine

DEDA Address 410 Entry +50000
the Order of selecting the external $\triangle V$ ROUTINE AND TARGETING IS IMPORTANT. AN INVALID EXTERNAL $\triangle V$ SOLUTION MAY RESULT IF THE PROPER SEQUENCE IS NOT FOLLOWED
3) AGS Targeting (only done when not coming from CSI, CDH or TPI modes)*

| Parameter | Address | Entry | DEDA <br> Least Significant Digit |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lunar <br> Mission | Earth Mission |
| $\Delta V_{x}$ Component of velocity-to-be-gained vector in the horizontal direction parallel to the CSM orbit plane. A positive value indicates a velocity-to-be-added in the posigrade direction. | 450 |  | 0.1 fps | 1. 0 fps |
| $\Delta \mathrm{V}_{\mathrm{y}}$ Component of velocity-to- <br> $y$ be-gained vector in the horizontal direction perpendicular to the CSM orbit plane. A positive value indicates a velocity-to-beadded opposite to the LM angular momentum vector. | 451 |  | 0.1 fps | 1.0 fps |
| $\Delta V_{z}$ Component of velocity-to-be-gained vector in the radial direction. A positive value indicates a velocity-to-be-added toward the gravitational source. | 452 |  | 0.1 fps | 1. 0 fps |

[^20]4) AGS: Select Engine(s)

> | DEDA Address 411 | $\begin{array}{l}\text { Entry }+00000 \text { (DPS or RCS) } \\ \text { Entry }+10000 \text { (APS) }\end{array}$ |
| :--- | :--- |

5) Event Timer

Set Event Timer for count-down to External $\Delta V$ maneuver initiation.
6) Establish Guidance System Control for Mancuver

## PGNS in Control

a) Mode Control to
"Auto." Perform normal PGNCS functions.
b) To abort: depress Abort or Abort Stage Button
c) To switch-over to AGS
(i) Guidance Control to AGS
(ii) Verify Abort or Abort Stage

## AGS in Control

a) Mode Control to "Auto." (LM now orients to desired thrust attitude).
b) Prior to thrusting verify DEDA address 407 equals +00000 (if +10000, reset to +00000 )
c) At Count-Down Time Zero: Initiate and complete selected thrust sequence (see Section 20). Balance Couple Switch as desired.
d) Trim Burnout Residual. At engine cutoff, the system enters attitude hold. If desired at this time the Balanced Couple Switch can be set or verified ON and the residual burn velocities removed (see Section 28.1).

[^21]
## 7) After Maneuver

a) Balance Couple Switch ON
b) Deadband Switch to MAX
c) Establish desired Guidance and Control configuration for coasting flight
27.2 Using External $\Delta V$ Routine for Orbital Rate Pitch Steering

The AGS has the capability of maintaining the LM vehicle at any attitude in a local vertical coordinate frame during free flight. In particular, the vehicle can be pitched at the orbital rate in order to maintain the X -body axis along the local horizontal. To accomplish this, use is made of the "External $\Delta V$ " guidance routine and the procedures of Section 27.1. A fictitious velocity-to-be-gained vector is entered via the DEDA to obtain the desired attitude. Thus, for example, the necessary entries (Step 2, Section 27.1) to maintain the X-body axis along the local horizontal with the $z$ axis downward are the following (earth or lunar mission):

| Address | Value |
| :---: | :---: |
| 450 | +05000 |
| 451 | +00000 |
| 452 | +00000 |

Since thrusting is not to be performed, steps $6 c$ and $6 d$ are unnecessary.

## If ULLAGE IS SENSED WHILE IN THIS CONFIGURATION THE VEHICLE ATTITUDE WILL BECOME FIXED IN INERTIAL SPACE

Orbital rate steering would again be achieved by entering via DEDA address $407+00000$.

## 28. 0 AXIS BY AXIS TRIM

After any maneuver the residual velocity-to-be-gained can be reduced by placing the vehicle in attitude hold and performing translationalthrusting along each axis. This procedure can also be used to perform small $\Delta V$ maneuvers if desired. It should be recognized however that thrusting successively along each axis requires more fuel than thrusting with one engine along the desired direction.

> FOR AXIS BY AXIS TRIM OR RESIDUAL REMOVAL, THE Y AND Z BODY COMPONENTS OF VELOCITY-TOBE-GAINED ARE TO BE REMOVED PRIOR TO REMOVING THE X COMPONENT.

### 28.1 Procedure

1) Verify that the AGS is in Attitude Hold: i. e., Mode Control in "A/H" or DEDA selection $400+00000$.
2) Set deadband switch to MIN
3) Set balanced couple switch to ON.
4) If necessary, verify via DEDA readout (address 410) that the system is in the External $\Delta \mathrm{V}$ guidance routine.
5) Set ATT/Translation switch to " 2 jet" position.
6) Set throttle /jet control select level of de sired crew member to "jet" position.
7) Set DEDA address 407 to +10000 .
8) Readout velocity-to-be-gained in $Y$ direction via DEDA address 501. $\left(\Delta V_{\mathrm{gY}}\right)$
9) Null out DEDA reading by moving related thrust/translation controller to right (or left). Right (left) corresponds to Y translation which nulls positive (negative) values of $\Delta V_{\mathrm{gY}}$.
10) Readout velocity-to-be-gained in $Z$ direction via DEDA address 502. $\left\{\Delta \mathrm{V}_{\mathrm{gZ}}\right\rangle^{\text {. }}$
11) Null out DEDA reading by moving related thrust/controller in (or out). In (out) corresponds to Z translation which nulls positive (negative) values of $\Delta V$
12) Readout velocity-to-be-gained in $X$ direction via DEDA address 500. $\left(\Delta \mathrm{V}_{\mathrm{gX}}\right)$
13) Null out the DEDA reading by moving related thrust/translation controller up (or down). Up (down) corresponds to X translation which nulls positive (negative) values of $\Delta V_{\mathrm{gX}}$.
14) Set deadband to MAX.
28. 2 Notes
1) If this trim procedure is utilized after orbit insertion it should be done immediately. This is because the orbit insertion equations are designed to drive the LM to a particular point on the desired orbit. Thus as time goes by, the computer will indicate an increasing velocity-to-be-gained (even if cutoff were perfect) since the vehicle is departing from the injection point.
2) If the axis by axis procedure is used to perform an external $\Delta V$ maneuver and the first burn is not in the +X -body axis direction, then DEDA entry $407+10000$ must be made to freeze the targeted external $\Delta V$ vector in inertial space (see Section 27.0). The time at which the burn is initiated, affects the orbit parameters of the ensuing trajectory. Hence targeting for an axis-byaxis External $\Delta V$ maneuver must include the time when DEDA entry $407+10000$ is to be executed (if required) as well as the time for thrust initiation.

## APPENDIX A

DEDA ACCESSIBLE QUANTITIES

The following tables are complete lists of the meaningful quantities available for entry or readout via DEDA. The decimal region quantities are grouped by scaling; i.e., all velocity quantities with a quantization of $0.1 \mathrm{ft} / \mathrm{sec}$ are listed together, and etc. Both lunar and earth mission scaling are given in the form lunar/earth. For example, $V_{p y}$ which is located at address 263 has a lunar mission binary scaling of B13, a lunar DEDA range of $8191.9 \mathrm{ft} / \mathrm{sec}$ and a lunar DEDA quantization of $0.1 \mathrm{ft} / \mathrm{sec}$.

The octal region quantities are presented in numerical order of their addresses. The binary scaling is given for both lunar and earth missions. One number in the scale column indicates the same binary scaling for both lunar and earth missions.

The right hand columns on these lists indicate the guidance modes in which each quantity is meaningful. For example, R5X at address 174 is computed in the OI, CSI, CDH and TPI guidance modes.

Time shared locations are omitted from these lists since DEDA readouts are not easily interpreted when two quantities are alternately displayed.

DEDA AVAILABLE PARAMETERS DECIMAL REGION

BINARY SCALING LUNAR/EARTH $23 / 25$
DEDA RANGE 8,388.600/33.554.000 FEET
DEDA QUANTIZATION $100 / 1000$ FEET

| SYMROL | ADO | DEFINITION | $\left(0^{\circ}=\right.$ NOT $\left.A V A J L A B L E\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OIN | CSI | CDH | TPI | XDV |
| R5X | 174 | LM PREDICTED POSITION VECTOR AT CSI, CDH, | 1 | 1 | 1 | 1 | 0 |
| R 5 Y | 175 | OR TPI BURIV TIME, PRESENT R IN O.I. | 1 | 1 | 1 | 1 | 0 |
| R57. | 176 |  | 1 | 1 | 1 | 1 | 0 |
| $\Delta \mathrm{L}$ | 177 | PREIICTED LM SEMI-MAJOR AXIS. | 1 | 1 | 1 | 0 | 0 |
| REX | 200 | CSM EPOCH POSITION VECTOR. | 1 | 1 | 1 | 1 | 1 |
| REY | 201 |  | 1 | 1 | 1 | 1 | 1 |
| RET | 202 |  | 1 | 1 | 1 | 1 | 1 |
| RT | 203 | PREOTCTED CSM POSITION MAGNITUDE. | 1 | 1 | 1 | 1 | 1 |
| RCIX | 204 | POSITION VECTOR INPIT TO ORRIT PARAMETER. | 1 | 1 | 1 | 1 | 1 |
| RПY | 205 | SUBROUTINE. | 1 | 1 | 1 | 1 | 1 |
| RO? | 206 |  | 1 | 1 | 1 | 1 | 1 |
| R | 207 | PREDICTION POSITION MAGNITUDE. | 1 | 1 | 1 | 1 | 1 |
| R | 210 | LM PRESENT INERTIAL POSITIBM MAGMITUSF. | 1 | 1 | 1 | 1 | 1 |
| Y | 211 | LN OUT OF PLANE POSITION. | 1 | 1 | 1 | 1 | 1 |
| POUTFS | 213 | MAX P DISPLAYARLF. | 1 | 1 | 1 | 1 | 1 |
| 2k3 | 216 | OL SFT ON DVERFLOW. | 1 | 1 | 1 | 1 | 1 |
| 2kI4 | 217 | INITIAL P PERTURFIATIIN. | 1 | 1 | 1 | 1 | 1 |
| 25 J | 223 | DEDA ENTRY FOR ALTITUDE UPDATE. | 1 | 1 | 1 | 1 | 1 |
| 7 J | 224 | TERM IN O.I. SEMIMAJIIR AXIS. | 1 | 1 | 1 | 1 | 1 |
| 8 J | 225 | PRED. O.I. LM SEMI-MAJOR AXIS LOWER LIMIT. | 1 | 1 | 1 | 1 | 1 |
| QJ | 226 | PREQ. O.I. LM SEMI-MJJR AXIS UPPER LIMIT. | 1 | 1 | 1 | 1 | 1 |
| 2K19 | 230 | DELTA P LIMITFR. | 1 | 1 | 1 | 1 | 1 |
| 5 J | 231 | NOMINAL LUNAR LANQINIG SITE RAOIUS. | 1 | 1 | 1 | 1 | 1 |
| 1hJ | 232 | TARGETED ORBIT INSERTIDN ALTITUDE. | 1 | 1 | 1 | 1 | 1 |
| $21 J$ | 233 | VERTICAL PITCH STEERING ALT THRESHOLD. | 1 | 1 | 1 | 1 | 1 |
| 1 Jl | 240 | LM EPHEMERIS POSITION ( $X$ COMPONENT). | 1 | 1 | 1 | 1 | 1 |
| 1J2 | 241 | LM EPHEMERIS POSITION (Y COMPONENT). | 1 | 1 | 1 | 1 | 1 |
| $1 J 3$ | 242 | LM EPHEMERIS POSITION (Z COMPONENT). | 1 | 1 | 1 | 1 | 1 |
| $2 \sqrt{1}$ | 244 | CSM EPHEMERIS PQSITION (X COMPONENT). | 1 | 1 | 1 | 1 | 1 |
| 2 J 2 | 245 | CSM EPHEMERIS POSITIUN (Y COMPDNENT). | 1 | 1 | 1 | ]. | 1 |
| 2.13 | 246 | CSM EPHEMERIS POSITION (Z COMPONENT). | 1 | 1 | 1 | 1 | 1 |

```
            DFOA AVAILARLE PARAMETERS
                        I)ECIMAL REGI RIN
                -------FPG-----FPG---------
                            BINARY SCALING LUNAR/EARTH 23/25
DFDA RANGE 8,348,600/33,554,000 FEFT
DEDA QUANTIZATION: 100/1000 FEFT
```







DEUA AVAILARLE PARAMETERS OCTAL REGION

| LUN/EARTH |  |  |  | $(0=$ NOT AVAILABLE) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYMBML | $\triangle D D$ | SCALE | DEFINITION | OIN | CSI | CDH | TFI | XOV |
| C 2 | 033 | 1 | RENDEZVOUS ANGLE SI!VE. | 0 | 0 | 0 | 1 | 0 |
| V1X | 034 | 1 | LM IN-PLANE HORIZONTAL UNIT VECTOR | 1 | 1 | 1 | 1 | 1 |
| VIY | 035 | 1 | AT TIG FOR CSI, CDH AND TPI, AT PRESENT | 1 | 1 | 1 | 1 | 1 |
| V12 | 036 | 1 | FOR OI, XOV. | 1 | 1 | 1 | 1 | 1 |
| W1x | 040 | 1 | LM OUT-OF-PLANE UNIT VECTIR AT TIG FOR | 1 | 1 | 1 | 1 | 1 |
| WIY | 041 | 1 | TPI, DTHERWISE CURRENT. | 1 | 1 | 1 | 1 | 1 |
| W17 | 042 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A 315 | 044 | 1 | RAOAR NULL DIRECTION COSINES. | 1 | 1 | 1 | 1 | 1 |
| $\triangle 325$ | 045 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A33S | $04 t$, | 1 |  | 1 | 1 | 1 | 1 | 1 |
| STDFLL | 047 | 1 | SINE QF ALIMIUTH ANGLF. | 1 | 1 | 1 | 1 | 1 |
| CIIDELL | 053 | 1 | COSINE OF $\triangle Z I M U T H$ ANGLE. | 1 | 1 | 1 | 1 | 1 |
| WCX | 054 | 1 | OUT-OF-CSM ORBIT PLANE UNIT VECTUR | 1 | 1 | 1 | 1 | 1 |
| WCY | 055 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| WC7 | 056 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| $111 \times$ | 060 | 1 | NORMALIZEO L\% PiJSITION VFC.TIR AT TIG | 1 | 1 | 1 | 1 | 1 |
| Uly | 061 | 1 | FQR CSI, CDH AND TPI, $\triangle$ T PRESENT FOR | 1 | 1 | 1 | 1 | 1 |
| U1? | 062 | 1 | [1] ANO XDV. | 1 | 1 | 1 | 1 | 1 |
| $\Delta T$ | 067 | $7 / 9$ | THRUST ACCELFRETJON (FT/SEC SQ). | 1 | 1 | 1 | 1 | 1 |
| I) $R X$ | 104 | 14/16 | LM POSITION REMAINIERS (FEET). | 1 | 1 | 1 | 1 | 1 |
| I)RY | 105 | 14/16 |  | 1 | 1 | 1 | 1 | 1 |
| DRZ | 10\% | 14/16 |  | 1 | 1 | 1 | 1 | 1 |

```
[DFDA AVAILARLF PARAMETFRS
OCTAL RFGITM
```

| LIIN/EARTH |  |  |  | $(0)=\mathrm{NOT}$ AVAILARLE) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYMEILL | $\triangle D D$ | SCALE | UFFINITIJA | OIN | CSI | CDH | TPI | XDV |
| THEP | 107 | 15 | PGNS THETA (PULSES). | 1 | 1 | 1 | 1 | 1 |
| PSIP | 113 | 15 | PGNS PSI (PULSES). | 1 | 1 | 1 | 1 | 1 |
| PHIP | 117 | 15 | PGNS PHI \{PULSES\}. | 1 | 1 | 1 | 1 | 1 |
| ATSE | 110 | $7 / 9$ | PREDICTEI CHANGE IN INTFGRATED | 1 | 1 | 1 | 1 | 1 |
| Digy | 111 | 7/9 | GOAVITY (FPS). | 1 | 1 | 1 | 1 | 1 |
| CIGZ | 112 | 7/9 |  | 1 | 1 | 1 | 1 | 1 |
| FXOT | 114 | 7/9 | Gravity times najor cycle time (FPS). | 1 | 1 | 1 | 1 | 1 |
| CYOT | 115 | 7/9 |  | 1 | 1 | 1 | 1 | 1 |
| CTDT | 116 | $7 / 9$ |  | 1 | 1 | 1 | 1 | I |
| DVSX | 120 | 719 | PESOLVED SENSET DELTA VELCICITIES | 1 | 1 | 1 | 1 | 1 |
| nvs | 121 | 7/9 | $\triangle L O N G$ INERTIAL $\triangle$ XES (FPS). | 1 | 1 | 1 | 1 | 1 |
| DVSZ | 122 | $7 / 9$ |  | 1 | 1 | 1 | 1 | 1 |
| Sifa | 123 | 1 | SINE OF FDAI GAMNA. | 1 | 1 | 1 | 1 | 1 |
| Rex | 124 | 23/25 | COMPUTED LM-CSin RANGE (FT). | 1 | 1 | 1 | 1 | 1 |
| RRY | 125 |  |  | 1 | 1 | 1 | 1 | 1 |
| RR7 | 126 |  |  | 1 | 1 | 1 | 1 | 1 |
| COFA | 127 | 1 | COSINE OF FDAI Glimma. | 1 | 1 | 1 | 1 | 1 |
| A 11 | 130 | 1 | XB DIRECTIDN COSINES. | 1 | 1 | 1 | 1 | 1 |
| A12 | 131 | 1 |  | 1 | 1 | 1 | 1 |  |
| Al 3 | 132 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A 21 | 140 | 1 | YR DIRECTION COSINES. | 1 | 1 | 1 | 1 | 1 |
| A 22 | 141 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A23 | 142 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A 31 | 134 | 1 | IB DIRECTION CDSINES. | 1 | 1 | 1 | 1 | 1 |
| A 32 | 135 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A33 | 136 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| T1 | 147 | 142 | TYME OF LAST RADAR RANGE UPBATE (SEC). | 1 | 1 | 1 | 1 | 1 |
| All | 160 | 1 | XD DIRECTION COSINES. | 1 | 1 | 1 | 1 | 1 |
| A120 | 161 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A13D | 162 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| $\triangle 310$ | 164 | 1 | Z- DIRECTION COSINES. | 1 | 1 | 1 | 1 | 1 |
| A320 | 165 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| A33D | 166 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| MU17 | 167 | 17 | FILTER CYCLE COUNTER(2SEC COUNTS). | 1 | 1 | 1 | 1 | 1 |

Page A-9
deda avaiable parameters
OCTAL REGION

| LUN/EARTH |  |  |  | $(0=$ NIOT AVAILABLE\} |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYMBOL | ADD | SCALE | DEFINITION | 13 IN | CSI | CDH | TPI | X DV |
| ALPHA | 171 | 23/25 | XFR ORBIT SEMI-MAJOR AXIS(FT). | () | () | 0 | 1 | 0 |
| SO | 400 | 3 | AGS FUNCTICN SELECTOR. | 1 | 1 | 1 | 1 | 1 |
| O1SC1C | 401 | Q | DTSCRETE WORD CNE. | 1 | 1 | 1 | 1 | 1 |
| 57 | 407 | 3 | PEFERENCE FRAME SELECTOR FOR FXT OV. | 0 | 0 | 0 | 0 | 1 |
| 510 | 410 | 3 | GUIDAAICE MCDE SFLECTOR. | 1 | 1 | 1 | 1 | 1 |
| S 11 | 411 | , 3 | CANT ANGLE CORRECTION SELECTOR. | 1 | 1 | 1 | 1 | 1 |
| 512 | 412 | 3 | TN FLIGHT SELF TEST STATUS INDICATUR. | 1 | 1 | 1 | 1 | 1 |
| S 13 | 413 | 3 | STORE/NO STORE LUNAR AZIMUTH SELFCTOR. | 1 | 1 | 1 | 1 | 1 |
| S14 | 414 | 3 | NAVIGATION INITIALIZE. | 1 | 1 | 1 | 1 | 1 |
| S15 | 415 | 3 | PADAR GIMBAL NULL. | 1 | 1 | 1 | 1 | 1 |
| S16 | 416 | 3 | NGR OF LM HALFMIURITS FROM CSI TU CIH. | 1 | 1 | 1 | 1 | 1 |
| S1\% | 417 | - 3 | - adar filter initialize. | 1 | 1 | 1 | 1 | 1 |
| RD30nt | 504 | $-210$ | DESIRE[ R A [ I AL JRRK (FT/SFC Cl!BED) . | 1 | 0 | ¢ ${ }^{\text {j }}$ | (s) | $\theta$ |
| Y-300T | 505 | $-2 / 0$ | [ EESIREi) (UUT-OF-PLANE JERK(FT/SEC CURED) | 1 | () | 0 | () | 0 |
| 4 K 12 | 506 | 719 | ACCEL CHECK FOR RD3OTL IN O.I. | 1 | 1 | 1 | 1 | 1 |
| 5507 | 507 | 3 | IRRIENT 2 BIODY $\triangle$ XIS TO THRIJST AXIS | 1 | 1 | 1 | 1 | 1 |
| C. 1 | 513 | 1 | RENOEZVEMS ANEL- COSIME. | 0 | (1) | (1) | 1 | 0 |
| WBX | 514 | 1 | LMAT VECTITK INPUT FOR COMMAMDING | 1 | 1 | 1 | 1 | 1 |
| $\triangle B \%$ | 515 | 1 | YON WHEN SOO $=1$. | 1 | 1 | 1 | 1 | 1 |
| WR? | 51ヶ | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 6K10 | 517 | 2R132 | RADAR FILTER RANGE VARIANCE(FT SORJ). | 1 | 1 | 1 | 1 | 1 |
| TE1 | 520 | 18 | CSM EPLICH INS (SEC). | 1 | 1 | 1 | 1 | 1 |
| TLI | 521 | 18 | L M EPOCH NS (SE:C). | 1 | 1 | 1 | 1 | 1 |
| GKh | 522 | R | PADAR FILTER VY WEIGHT(ND IJNITS). | 1 | 1 | 1 | 1 | , |
| 5 K 20 | 523 | -2 | DD300T LOWER LIMIT TEKM (I/SFC) | 1 | 1 | 1 | 1 | 1 |
| TE2 | 524 | $l$ | CSM EPOCH LS (SEC). | 1. | 1 | 1 | 1 | 1 |
| TL2 | 525 | 1 | LM EPIJCH LS (SEC). | 1 | 1 | 1 | 1 | 1 |
| 2K11 | 326 | 13/15 | SET VALUE OF VT (FPS). | 1 | 1 | 1 | 1 | 1 |
| 4 KG | 527 | 13/15 | RFDCT UPFER LINIT (FPS). | 1 | 1 | 1 | 1 | 1 |
| DAXA | 530 | -6 | X-AXIS ALIGNUENT EKKGR SIGAALS(RAO). | 1 | 1 | 1 | 1 . | 1 |
| DAYA | 531 | -6 | Y-AXIS ALIGNMENT ERROR SIGMALS(र̇AD). | 1 | 1 | 1 | 1 | 1 |
| DATA | 532 | -6 | 7-AXIS ALIGNVENT ERRROR SIGMALS(RAD). | 1 | 1 | 1 | 1 | 1 |

```
DFDA AVAILABLE PARAMETERS
    octal rFgION
```

LUN/EARTH


## deda available parameters OCTAL REGION



# DERA available parametfrs 

DCTAL KFGIOA：
－－－－－－－F以R－－－－－FP6－－－－－－－－－－
LHA／EARTH

| LHM／EARTH |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SYeiRITL | A 10 | SCALE | わFFIMITIUN |  |
| 4 K 2 | 654 | －121－14FACTOR I N TF，TIME TO BURN，COMP．（1／FPS）． |  | the availayility |
| 4 K 3 | R55 | －＜5／－2aractorr | FACTIR IN T\＆，TIME TO BURN，CIMP．（1／FPS SO）． | OF PaPamiteters on |
| －K5 | 65 | 0 F\｛LTER Y WEIGHT（N1）UINITS）． |  | THIS PMGE IS |
| 4 K 25 | 657 | 13／15 ENGINF CIITOFF COMPENSATION（FPS）． |  | I MiJLFENDENT OF |
| $4 \times 34$ | h60 | 719 | THRUST ACCEL（AT）LUWER LIN：（FT／SEC SO）． | THF GlIIDARMCE |
| $4 K 35$ | h大ı | 7／9 | Ullage thresholl（FT／SEC So）． | mrilfe． |
| $4 \times 5$ | $6 \in 2$ | 23／25 NRMINAL RURAOUT ALTITUOF 1M 13．1．（FT）． |  |  |
| VYOFS | 6ht | 13／15 MAX VYO ISPLAYARLF（HPS）． |  |  |
| 4K21 | Ghth | 2 SCALE FACTUR FOQ ATTITIJE ERRUR OUTPUT（RAD）． |  |  |
| M25R1大 | 6ヶ大 7 | 16 | CYCLE COIINTS TO SFCOMOS FACTOK． |  |
| OTH． | 670 | 1 | 1 SEC＋OFIIA TIME BIAS． |  |
| 1®1 | 671 | 17 | DOWNLIAK CODF． |  |
| 1K5 | 673 | －14 | GYRI CALIR．Llivak rate compensatigniral） |  |
| 2R4 | 674 | $49 / 55$ | －2（2K1）\｛FT CUE，¢0／SEC）． |  |
| KJT | 675 | 1 | DELTA T／2 \｛SFC\}. |  |
|  |  |  | DCTAL RFGIDN |  |
|  |  |  | DEDA CONVERSION SCALF FACTOPS |  |
| BACCSF | 446 | 0） | ． $0011.01 \mathrm{FT} / \mathrm{SEC}$ SO TO FPS／20MSEC SCALED $A T$ | 1／3． |
| BMI3SF | 676 | 0 | ． 01 DEG／HR T $\cap$ RAM／20MS SCALED AT－13． |  |
| B23SF | 677 | 0 | 100／1000 FT T FT SC，ALED AT 23／25． |  |
| BlRSF | 700 | 0 | － 1 MIN TO SEC．SCALEQ AT lk． |  |
| Bl3VSF | 701 | 0 | ．1／1 FPS TO FPS SCALED AT 13／15． |  |
| 83 SF | 702 | 0 | ．O1 DEG TO RAD SCALED AT 3. |  |
| B23RSF | 7013 | 0 | ． 1 NMI TO FT SCALED AT 23／25． |  |
| 813 SF | 704 | 0 | ． 01 MIN TO SEC SCALED AT 13. |  |

## REFERENCES

1. "LMAGS Programmed Equation Document, Flight Program No. 6," TRW Report 11176-6041-T000, April 1969. (U)
2. T. S. Bettwy, "LM/AGS Flight Equations, Narrative Description," TRW Report 05952-6076-T000, 25 January 1967. (U)
3. "Apollo Operations Handbook, Lunar Module 5, Vol. II," GAEC Document LMA 790-3-LM5, revised 15 February 1969.
4. "LM AGS Hardware Compensation Constants Selection Plan," TRW Document 07420-6002-T000, December 1968.
5. "AGS Ullage/Engine Logic Meeting," MSC Memo E. G. 43-69-03, 6 January 1969.
6. "Apollo Mission G Spacecraft Reference Trajectory, Vol. I, Reference Mission Profile, " MSC Internal Note No. 69-FM-5, 7 February 1969.
7. "Expanded Capability Radar Filter," LM/AGS Guidance Software Change Proposal Number 43, 28 June 1968.
8. "CSI/CDH Equations for FPX," LM/AGS Guidance Software Change Proposal Number 50, 14 November 1968.
9. "Continously Variable Orbit Insertion Targeting," LM/AGS Guidance Software Change Proposal Number 51, 27 November 1968.

[^0]:    *Refer to Sections 4.0 and 6.0 for complete description of these switches.
    ** Throughout this document reference is made to the "Mode Control Switch." It is understood that LM 4 and subsequent will contain two Mode Control Switches, one for AGS and one for PGNCS. Thus, it is necessary to understand that reference to the "Mode Control Switch" in this document implies the AGS Mode Control Switch.

[^1]:    See footnote on next page

[^2]:    *These are internal computer flags. Only the sign of the quantity has significance

[^3]:    *Only the time to next maneuver ( $t_{i g}$ ) is available for DEDA input and read out. However, the nomenclature of $t_{i g A}, t_{i g B}$ and $t_{i g} C$ (time to CSI, time to CDH and time to TPI, respectively) has been retained for clarity.

[^4]:    Note: BTME tapes do an automatic tape load checksum immediately after loading memory which sets $\mathrm{S}_{12}=+50000$ if a failure is detected. This is not a valid inflight state.

[^5]:    ${ }^{*}$ These operating procedures were obtained from the Apollo Operations Handbook, Lunar Module 4, dated 3 February 1969.

[^6]:    "Position components are quantized at 100 feet and velocity components at 0.1 fps for lunar missions and 1000 ft and 1 fps respectively for earth missions. Epoch times are quantized at 0.1 minute.

[^7]:    "Position components are quantized at 100 feet and velocity components at 0.1 fps for lunar missions and 1000 ft and 1 fps respectively for earth missions. Epoch times are quantized at 0.1 minute.

[^8]:    To avoid CDU "coarse"switching transients, ensure that no IMU gimbal angle is within +5 degrees of integer multiples of 45 degrees (including 0 degrees). CDU "fine" switching transients are avoided as long as all gimbal angles are more than 11.25 degrees away from 0 degrees and a CDU zero has been executed. If this procedure is followed, it is highly unlikely that fine switching transients will occur during alignment.永永

    Setting the CDU's to zero is required once each time the AEA Circuit Breaker is closed.

[^9]:    *A change of three counts in the next-to-least-significant octal digit would indicate a change in the pitch plane Euler angle of from 0.056 deg to 0.084 deg .

[^10]:    *When the lunar align is terminated, the reference frame goes inertial. Nominal lunar liftoff time is the time when the reference frame achieves its designated orientation.

[^11]:    *With the AGS in control, there is no automatic attitude control during inflight calibration since the attitude error commands are set to zero. When the PGNCS is in control, attitude hold can be achieved with the Mode Control Switch.

[^12]:    It is acceptable to do an inflight accelerometer only calibration with the RCS not inhibited, but calibration accuracy may be degraded.

[^13]:    *Address 316 (radar range entry) is quantized at $0.1 \mathrm{n} . \mathrm{mi}$. for both earth and lunar scaling. At short ranges the radar range display is in units of feet, so that range must be converted to $n$. mi. by dividing by 6000 prior to entering via DEDA.

[^14]:    ${ }^{*}$ For liftoff from the lunar surface, it is recommended that the Balance Couple switch be on from liftoff until the pitch over maneuver is completed at approximately 18 seconds.

[^15]:    *if radar data is entered into the AEA after switching to the External $\Delta V$ mode or a navigation update is made, the CSI mode (DEDA entry 410 +10000 ) should be reentered and a new CSI solution computed.

[^16]:    *The out-of-plane velocity-to-be-gained in the CDH maneuver (28J2) should be set to zero (DEDA entry $451+00000$ ) after entering the CDH routine.

[^17]:    *If radar data is entered into the AEA after switching to the External $\Delta V$ mode or a navigation update is made, the CDH mode (DEDA entry $410+20000$ ) should be reentered and a new CDH solution computed.

[^18]:    If radar data is entered into the AEA after switching the External $\Delta V$ mode or a navigation update is made, the TPI Search Routine (DEDA entry $410+30000$ ) should be reentered and a new TPI solution computed.

[^19]:    *For Z-Body Axis Steering, set DEDA address 400 to +20000 and DEDA address 507 to +10000 .

[^20]:    ${ }^{\bar{*}}$ If successive External $\Delta V$ maneuvers are to be performed, DEDA address 407 must be set to +00000 as part of the targeting procedure.

[^21]:    "If $Z$-Body Axis Steering has been chosen (DEDA address $400+20000$ ), set DEDA address 407 to +10000 just prior to thrusting.

