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PART FI

INTRODUCTION

An integral part of the Apollo 13 Review Board's effort included

an extensive test and analysis program to evaluate in detail postulated

modes of failure. The majority of these tests and analyses were con-

ducted at the Manned Spacecraft Center (MSC) and five other NASA cen-

ters--Langley Research Center (LRC), Ames Research Center (ARC), Lewis

Research Center (LeRC)_ Marshall Space Flight Center (MSFC), and Kennedy

Space Center (KSC). Some tests at White Sands Test Facility (WSTF),

North American Rockwell, Beech Aircraft, Parker Aircraft, and Boeing

were also conducted. The results of this intensive test and analysis

program formed, to a large extent, the basis for the development of many

of the Board's findings, determinations, and recommendations.

During the review, the requests for tests and analyses were chan-

neled through the MSC Apollo Program Office, which maintained a master

file. The selection of individual tests and analyses was made after a

preliminary study by Review Board specialists. In each case the request

was approved by the Board Chairman or a specially designated Board moni-

tor. In many instances the preparation and execution of tests were

observed by Apollo 13 Review Board representatives.

Nearly a hundred separate tests and analyses have been conducted.

The level of effort expended on this test and analysis program included

a total of several hundred people over a period of about 6 weeks.

The first portion of this Appendix is a summary of those tests and

analyses which most precisely support the sequence of events during this

accident. This is followed by a more detailed description of these tests

and analyses. This Appendix concludes with a test and analyses master

list and a fault tree analysis.

It should be noted that an attempt has been made to include all

tests that have been carried out in support of this review in the master

list. As a result, the list includes a number of early tests which were

exploratory, and in some cases inconclusive, and may not appear to lend

substantive information. For each effort_ there is summary information

which includes identification, a statement of the objective, and a brief

statement of results. More complete data on studies and tests can be

found in the official files of the Apollo 13 Review Board.

F-I



This page left blank intentionally.

F-2



PART F2

SU}@4ARY OF TESTS AI,_ ANALYSES

To assist the reader, a summary of the most significant tests and

analyses is included in this part. The summary consists of a series of

concise statements which are based on the results from one or more test

or analysis. The summaries are presented in chronological order of the

events as they occurred in the spacecraft.

DETA_TKING AT KENq_-EDY SPACE CENTER

A test simulating the conditions of the special detanking opera-

tions during the countdown demonstration test (CDDT) revealed that the

thermal switches were overloaded and failed in the "closed" position.

The failure of the thermostats caused very high temperatures (700 ° to

i000 ° F) inside the heater tubes. Damage to the wire insultation re-

sulted from this overheating. Subsequent tests showed that under the

conditions existing in the tank, the wire insulation would seriously

degrade at temperatures between 700 ° F and i000 ° F, thus exposing bare
wire.

QUANTITY GAGE DROPOUT

Tests to determine the signal characteristics of the quantity

probe under various fault conditions showed that a short between the

concentric tubes would cause an off-scale high readins which would then

_<o to zero when the short is removed, remain there for about 1/2 second,

and then retur_ to the correct indication in about 1-1/2 seconds. These

are the characteristics that were observed in flight. It is not estab-

lished that the failure of the quantitH gage was related to the combus-

tion that occurred in the oxygen tank no. 2.

IGNITION AND COMBUSTION PROPAGATION

The enersy required to achieve the pressure rise from 887 psia to

]OO$ p_la observed in oxygen tank no. 2 (iO to 130 Btu) can be supplied

by the comb_stion of the Teflon wire insulation in the tank and conduit

(260 Btu). Tests have also indicated that other Teflon elements and

certain aluminum components inside the tank may also be ignited and

thus contribute to the available energy.

F-3



Experiments show that tile Teflon insulation on the actual wires

in oxygen tank no. 2 can be ignited by an energy pulse which is less

than the energy estimated to be available from the observed flight
data.

Test of fuses in the motor power leads showed that sufficient

energy to ignite Teflon insulation could be drawn through the fuses

before they would blow.

The flame propagation rate experiments in supercritical oxygen

indicate a rather slow burning rate along Teflon wire insulation (about

0.25 in/sec dovmward in one-g). Propagation rates as low as 0.12 in/sec

were measured under zero-g conditions. These measurements are consist-

ent with the slow rate of pressure rise observed in the spacecraft.

Under one-g conditions, Teflon wire insulation flames will propa-

date along the wire through apertures fitted with Teflon grommets.

TANK FAILURE

Several combustion tests confirmed that burning of Teflon and pos-

sibly aluminum could reach high enough temperatures to cause either the

tank or the conduits into the tank to fail. Oxygen pressure was very
likely lost due to the failure of the conduit.

A test in one-g in which the actual bundled Teflon insulated wire

was ignited within the conduit leading from an oxygen tank and filled

with supercritical oxygen resulted in bursting the heat-weakened con-
duit wall.

A test which contained an upper portion of the quantity probe and

conduit showed that ignition of the motor lead bundle in supercritical

oxygen results in flame propagation through the quantity probe insula-

tor and into the conduit. Posttest examination showed an approximately

2-inch diameter hole had been burned out of a 3/8-inch thick stainless

steel simulated tank closure plate.

PANEL LOSS

Tests with I/2-scale honeycomb panel models in vacuum produced

complete panel separation with a rapid band loaded pressure pulse in the

oxygen tank shelf space. Peak pressures in the simulated tunnel volume

w_th scaled venting were considerably lower (about 1/5) than that of the

ox_y_en tank shelf space. These tests are consistent with the informa-

tion obtained from the photographs of the service module taken by the
Apollo 13 crew.

F-4
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PART F3.1

THEP_AL SWITCH TESTS

Objective

Determine the behavior of the thermostatic switches in the oxygen

tank no. 2 under the conditions experienced during the abnormal detank-

ing experienced at KSC. During the KSC tests, heater currents of

6.5 amperes at 65 V dc were used.

Approach and Results

Subsequent to discovering that the heater thermostatic switches

most likely fused in the closed position during the KSC detanking pro-

cedures, tests were conducted to determine the power handling capabili-

ties of these switches.

Batteries were used as a power source to test the switches. They

were initially supplied with 31 V dc at currents up to 3.5 amperes. No

contact degradation was observed under these conditions. _en the volt-

age was raised to 65 V dc, some increase in contact resistance (up to

about 3 ohms from a few milliohms) was noted at 1.25 amperes, although

the switch continued to operate. The current was then increased to

1.5 amperes at 65 V dc; and when the switch attempted to open, it fused

closed. The body of the switch was removed and the condition of the

contact can be seen in figure F3.1-1.

Conclusions

Thermostatic switches similar to those in oxygen tank no. 2 will

fuse closed when they attempt to open with a 65 V dc potential and

currents in excess of 1.5 ampere.

F-7
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Figure F3.1-1.- Fused thermal switch control.



PARTF3.2

TEFLONINSULATIONDAMAGEDUETOOVERHEATING

Objective

These tests were conducted to determine the damagethat could have
been done to the Teflon wire insulation during the abnormal detanking
operation at CapeKennedy.

Approach and Results

The likelihood that the equipment inside the oxygen tank was
subjected to high temperatures for several hours prompted tests to
reveal any changes in the thermochemistry of the remaining material.
Four samples were treated in a heated oxygen flow system. The flow rate
was 259 cc/sec. These samples were comparedwith an unbaked control
sample. A typical sample of wire is shownin figure F3.2-I. The mass-
loss results are given in table F3.2-I.

The relative values of heats of reaction in subsequent DTAtests
in oxygen showthat the degraded material is slightly more energetic
per unit massthan the virgin material when oxidized.

Conclusions

The tests reveal that severe damagecould have resulted to the
wire insulation during the abnormal detanking procedure. In several
places along the leads, bare wire was exposedwhich could have led to
the short circuits that initiated the accident.

F-9
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Figure F3.2-I.- Damaged Teflon insulation.



TABLE F3.2-I.- INSULATION DEGRADATION TESTS

Baking

Sample

Temperature, °F Time, hr Weight loss, percent
insulation

0i

2

3

4

5

77

572 2.75 +0.15

752

86o

932

1.0

0.5

0.5

-o.o8

-34.

-i02.
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PARTF3.3

THERMODYNAMICSANDCOMBUSTIONANALYSISOFOXYGENTANKPROCESSES

Since there is strong evidence that the failure centered around an
abnormal energy addition to oxygen tank no. 2, it seemsappropriate to
include a special discussion of the analysis of the thermodynamicsand
combustion processes that mayhave occurred in this tank° Consideration
is given here to (1) the energy required to account for the measured
pressure rise, (2) the energy available in potentially combustible mate-
rials in the tank, and (3) potential ignition energy.

Energy Required to Account for MeasuredPressure Rise

The measuredabnormal pressure rise in oxygen tank no. 2 is pre-
sented in figure B5-3 of Appendix B. Calculations can be madefor two
limiting thermodynamicprocesses to account for this pressure rise. One
process assumesthat the pressure rise results from an isentropic com-
pression of the supercritical oxygen by an expanding 'bubble" of com-
bustion products. This corresponds to the minimumamountof energy re-
quired to achieve the measuredpressure rise. Another limiting process
assumesthat the energy addition is accompaniedby complete mixing which
results in homogeneousfluid properties.

Figure F3.3-1 is a pressure-enthalpy diagram for oxygen whereon
point '_" is the thermodynamicstate just prior to the abnormal energy
addition, approximately -190° F and 887 psia° Thepath of the isentropic
compression (minimumenergy) from this state to the maximumpressure
measuredof 1008 psia is represented by line AB. Thermodynamicproper-
ties of oxygen presented by Weber (ref. l) and Steward (ref. 2) were used
to computethe increase in the internal energy of the oxygen. This in-
ternal energy increase of the oxygen (242 lbm) amountsto about lO Btu.
The temperature increase associated with this process is about 1.8 ° F.

Figure F3.3-1 also showsthe constant density path along line AC
from 887 psia to 1008 psia. This process could be achieved by complete
mixing of the tank contents. The internal energy increase for this
case (maximumenergy) is about 130 Btu. The temperature increase for
this process is 2.6 ° F. It should be noted that this energy addition is
to the _ in the tank. It does not include energy that might be
added to other tank componentssuch as metal parts.

The measured temperature rise of 38° F (indicated by figure B5-5 in
Appendix B) during the pressure rise to 1008psia cannot be explained by

F-12
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either of the above-mentioned thermodynamic processes because they give

a rise of only 1.8 ° and 2.6 ° F. As figure B5-3 shows, the measured tem-

perature rise lagged the pressure rise. Both this lag and the magnitude

of the temperature rise can be explained by the passage of a combustion

front near the temperature sensor.

Energy Available in the Potentially Combustible Materials in the Tank

Many materials can of course react with oxygen if an ignition

source is provided. Here only Teflon is considered in any detail while

aluminum is mentioned briefly.

Teflon (polytetrafluoroethylene) can react with oxygen to form

largely a mixture of carbonyl-fluoride, carbon tetrafluoride, carbon

dioxide, and other species in small quantity, such as fluorine, depend-

ing on the stoichometry and flame temperature. The overall chemical

reactions which produce these combustion products include:

_( _ = -1910 Btu/ib TeflonC2F4) n + 02 2 COF 2 ; _c m

i - = -2130 Btu/ib m Teflon(C24)n+ O2 C02+ ;

where the heat of combustion for these reactions is also given. For the

purpose of this discussion, the heat of combustion of Teflon is taken to

be -2000 Btu/lb m Teflon. The internal energy of combustion f_Ec is

about 99 percent of fkHc. The amount of Teflon wire insulation in the

system is about 0.13 lbm, so that the energy available from combustion

of Teflon wire insulation alone is about 260 Btu. This amount of energy

is therefore more than sufficient to account for the measured pressure

rise from 887 to 1008 psia.

If aluminum combustion occurs, or other tank components, the quantity

of energy available is many times greater than the energy released by

Teflon combustion. Experiments show that once ignited, aluminum burns

readily with supercritical oxygen.

Potential Ignition Energy

Several experiments have shown that Teflon insulated wire can be ig-

nited under the conditions that existed in the tank. A series of tests

F-14



has shownthat the energy required to ignite Teflon in supercritical
oxygen is 8 joules or less. It was also determined that ignition v_as
geometry dependant and in one favorable configuration combustion was the
fault initiated with an estimated energy as low as 0.45 joule. In any
case, the value of 8 joules is less than energy deduced from the telem-
etry data, as will be shownbelow.

The fan motors were turned on just before the event occurred. There
are clear indications of short circuiting in the fan motor circuitry
immediately prior to the observed pressure rise. For the moment, wewill
consider ignition mechanismsby electrical arcing originating in the fan
circuits as being the most probable cause of the fire.

An analysis has been madeof the telemetry data that permits an es-
timate of the total energy that could have been dissipated in a postu-
lated short circuit which ignited the Teflon. A summaryof the analysis
is presented here.

The following telemetry data were used in the analysis:

i. SCSthrust vector control commands. Onehundred samples per
second at lO-millisecond intervals. This channel provides, in effect,
a time differentiated and filtered indication of phase C of ac bus no. 2
voltage.

2. Bus no. 2 ac phase A voltage. Ten samples per second at
lOO-millisecond intervals.

3. Fuel cell no. 3 dc voltage at i0 samplesper second.

4. Total fuel cell current at i0 samples per second.

The ll5-volt fan motor circuit is shownin figure D3-5 of Appendix
D. The power for the motor comesfrom an inverter producing three-
phase, 400-cycle, ll5-volt power. The motors are operated in parallel,
each phase to each motor being separately fused with a 1-ampere fuse
(there are a total of six fuses in the circuit). The important portions
of the telemetry traces are shownin figure F3.3-2. The sequenceof
events postulated is as follows:

i. Fan turnon occurs at 55:53:20 g.e.t, and the phase A voltage
drops from 116.3 to 115.7 volts. This is normal. The telemetry granu-
larity is ±0.3 volt.

2. At 55:53:23, an ac voltage drop from 115.7 to 114.5 volts is
observed, coincident with a fuel cell current increase of ii amperes.
This is the first short circuit that occurred after fan turnon. Since
the ac voltage rose from 115.7 to 116.0 volts (as indicated by "toggling"
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between 115.'7 and 116.3 volts) after the event, it is probable that the

short circuit involved phase A of the motor drive circuit, and all power

may have been lost to one of the two fan motors at this time. This hy-

pothesis is further supported by the coincident decrease in fuel cell

current of 0.7 ampere_ approximately half of the 1.5 amperes drawn by

both motors.

3. At 55:53:38 another short circuit occurred, causing an ac volt-

age rise to 117.5 volts followed by a drop to 105 volts. The voltage

rise indicates a short circuit in phase B or C as the regulator tries to

bring up the voltage in a nonshorted phase. The 4-ampere dc current

spike that occurs concurrently with this ac voltage rise and fall was

probably much greater at some time between telemetry samples. The re-

sultant decrease in phase A voltage may indicate an open circuit in one

of the other phases of the second motor, causing phase A to draw more

than normal current. The pressure in the tank starts to rise at 55:53:36

so that this short probably occurred after some combustion had commenced.

4. A final short circuit occurs at 55:53:41 as indicated by the

22.9-ampere spike on the dc current telemetry. No voltage drop is ob-

served on the ac bus_ probably because the short was of such short dura-

tion that it was not picked up by the telemetry samples. All the re-

maining fuses are blown (or the leads open-circuited) by this short

circuit since the ac bus voltage and dc current return to the levels

observed prior to initial energizing of the fans in oxygen tank no. 2.

%_e approximate total energy in the short circuit (arcing) can be

estimated from the telemetry data. The voltage spikes indicate that the

shorts were less than i00 milliseconds (the telemetry sampling interval)

in duration. The fact that all the voltage and current "glitches" con-

sisted of essentially one data point (sometimes none) means that the time

of the short was very likely 50 milliseconds or less. An independent

piece of evidence that bears on the time interval during which the short

circuit condition exists comes from the signal on the SCS telemetry. A

signal appeared on the SCS telemetry line each time a short circuit

occurred on ac bus no. 2. These signals have a data rate i0 times larger

Dhan the signals from the ac and dc busses. The initial excursion of

each of these SCS signals was 20 to 40 milliseconds long, and was then

followed by one or two swings which are due to the SCS circuit filter

characteristics. Thus, 30 milliseconds will be taken as an approximate
value for the duration of the short circuits.

The current drawn during the short circuit can be estimated from the

properties of the fuses used to protect the motor fan circuits. From

April 18 to April 20, tests were conducted by MSC personnel to measure

failure currents and failure times of the fuses using the same type in-

verter and fuses that were in the spacecraft. The following are the

results of these measurements for a single-phase short circuit (data
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taken from a preliminary report of table III of the MSCApollo 13 In-
vestigation Team):

Volts, ac Amperes, ac
Fault

Duration_
milliseconds energy,

joules

107 _.0 120 _9
i05 4.0 31 13
102 5.0 20 i0
95 7.O lO 7
75 9.O 8 5

From these results, the most probable range of ac current in the short
circuit that occurred is 3 to 5 amperes. The total energy in the short
circuit is therefore between i0 and 16 joules, since it is considered
unlikely that the fault persisted for more than 50 milliseconds. Thus,
a most probable energy of i_ joules and a most probable ac current of
4 amperes is reasonable for those faults which blew fuses.

Thesevalues are applicable to single-phase faults to ground. For
two-phase faults, the current in each phase remains the same, while the
available ignition energy doubles to 26 joules.

F-18



PART F3.4

TEFLON INSULATION IGNITION E_RGY TEST

Objective

To determine the energy required to ignite the Teflon insulation

by 115 volt, 60 cycle sparks on flight-qualified wire which had been

subjected to the type of heating which could have occurred during the

KSC detanking procedure. The spark-generating circuit was fused so

that it could deliver no more energy than could have been delivered by
the fan motor circuit.

Approach

Sample sections of Teflon-insulated conductors obtained from Beech

Aircraft Corporation through MSC were baked in oxygen for 5 hours at

572 ° F, held overnight at room temperature in oxygen, and baked further

for 2 hours at 842 ° F. The Teflon lost its pliability, cracked, and

flaked off as shown in figure F3.4-I.

The test specimen consisted of four strands of degraded-insulation

wires, as shown schematically below.

_ Shorting so,few,, approx. 2 ohm resistance
Ground _ _j_ ground to hot

leg _ _ _-_J_-J_-_'-'---__--_-"__

j_ __Z w -__--Z__Copper clipIlHot II
legs I _ Copper clip to restrain / _-__._ to. restrain

L. - wires i wire

L.. Unglozed alumina Insulotors

An adjustable short was provided by a number 80 screw driven be-

tween the strands of the "ground" wire and then adjusted so that a low-

resistance short was established to one of the "hot" legs near some re-

maining Teflon. A replica of the test harness, made of virgin wire, is

also shown in figure F3.4-I. The shorting screw and the standoff loop,

installed to hold the screwhead away from the test-chamber walls, are

seen in this photograph. The low resistance short was installed in

series with a 1-ampere slow-blow fuse. In an independent test series,

the current-carrying ability of this fuse was determined by inserting

(in series) dummy resistors of various values to replace the shorted
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Figure F3.4-I.- Heat degraded wire and test harness replica.



test harness, and a O.l-ohm resistor across which the voltage drop was

measured. Repeated tests showed about 3.5 to 7.5 joules were required

to destroy the fuse. Depending on the resistance of the remaining cir-

cuit, 10 to 90 percent of the line voltage might appear across the arc.

The fault energy of the ignition tests, where the arc resistance is less

than 2 ohms, is in the same range (i.e., from 3.5 to 7.5 joules).

The specimen was immersed in liquid oxygen (as before) inside the

stainless steel tubing test rig shown in figure F3.4-2. The initial

pressure was 920 psi.

Results

The test assembly withstood three firing pulses, 115 volts, 60 cy-

cles, before igniting on the fourth. The 1-ampere fuse was blown each

time. The short resistance was measured after each trial and was found

to reduce progressively from about 5 ohms to 2 ohms, at which level

ignition occurred on the next try. Approximately 1/2 second later the

pressure gage showed the start of a 7-1/2 second pressure rise from 920

to 1300 psi. A thermocouple placed about 1 to 2 inches from the ignition

point showed a small rise about 1 second after ignition and a large rise

about 1/2 second later as the flame swept by. Much of the main conduc-

tor wire was consumed; all of the small thermocouple wire was gone.

Virtually all of the Teflon was burned--Teflon residue was found only in

the upper fitting where the electrical leads are brought into the test

chamber. All but one of the alumina insulators vanished.

Conclusion

From the fuse energy tests and these ignition tests, it is clear

that from 5.5 to 7.5 Joules are adequate to initiate combustion of heat-

degraded Teflon insulation. This is essentially the same as is required
for unheated wire.
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Figure F3.4-2.- Stainless steel test rig.
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PARTF3.5

IGNITIONANDPROPAGATIONTHROUGH
QUANTITYPROBESLEEVEANDCONDUIT*

Objective

The purpose of this test was to determine if burning wire insula-
tion would propagate through the upper quantity probe insulator. Another
objective was to determine the failure modeof the conduit which results
from the combustion of the polytetrafluoroethylene insulation.

Experimental

The chamberused for this test consisted of a schedule 80 weld-neck
tee equipped with three flanges to provide a viewport, electrical and
hard line feedthroughs, and conduit to quantity probe interface. The
chamber, which is shownin figure F3.5-I, had a volume of approximately
one-third cubic foot. A pressure relief valve was provided to maintain
chamberpressure at 1050 psia during test; and, in addition, the chamber
contained a rupture disc to prevent chamberfailure. Supercritical con-
ditions inside the chamberwere obtained by filling with gaseous oxygen
to a pressure of 940 psia and cooling externally with liquid nitrogen,
using insulating foam covered with thermal blankets. Five thermocouple
penetrations were provided through the chamberwall. Chamberpressure
was monitored by a pressure transducer. Color motion pictures were
taken through the chamberviewport at a speed of 2h frames a second. An
additional cameraprovided external color motion pictures of the conduit-
chamber interface.

The test item consisted of an upper portion of the quantity probe
interfaced with a conduit assembly shownin figure F3.5-2. The quantity
probe used was Block I hardware which had been sectioned for demonstra-
tion purposes. An additional hole was drilled in the probe insulator to
modify it to Block II and wire was routed through it and the conduit
assembly to represent the Apollo 13 configuration. Stainless steel sec-
tions were welded onto the probe to close the demonstration ports. Wiring
with insulation was allowed to extend beyond the Teflon insulator approx-
imately 4 inches. This wiring was also routed through the conduit and
connected to the feedthrough pins through which power, 115 volts at 400
cycles, was supplied to both fan motor bundles by a system which had been

*Extracted from "Fuel Quantity Probe Sleeve and Conduit Assembly
Flammability Report," prepared by the MannedSpacecraft Center for the
Apollo 13 ReviewBoard under TPS13-T-06, June 5, 1970.
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fused using 1-amp fuses. Oneof the fan motor bundles was allowed to
extend beyond the other wiring inside the test chamberand a nichrome
ignitor was installed on it.

The probe conduit interface consisted of a stainless steel 2-inch
pipe plug machined to the dimensions shownin figure F3.5-2. The inter-
face was mountedon the bottom flange of the chamberso that flame propa-
gation would be downward.

Three the_Locouples were located in the region of the quantity probe
as shownin figure F3.5-I. Twothermocouples were installed to measure
internal chamberwall temperatures. Three thermocouples were installed
on the external surface of the conduit as shownin figure F3.5-I.

After filling the chamberto 925 psia with gaseous oxygen, the
chamberwas cooled until thermo_ouple 3 shownon figure F3.5-I indicated
-138° F. Twenty-eight volts dc was applied at 5 ampsto the ignitor for
approximately 3 seconds. The current was increased to I0 ampsfor
2 seconds at which time fusion of the ignitor occurred.

Results

Pressure history of the chamberis shownin figure F3.5-3. The
first relief valve opening occurred at approximately 28 seconds. It
subsequently reopened 15 times before failure occurred. Fusion of the
ignitor is shownon the graph to indicate ignition of the insulation.

Temperature histories of both internal and external portions of
the test apparatus are shownin figures F3.5-4 and F3.5-5. Thermocouple
placements in each of these areas are included in the legend figures of
each of these graphs. It should be noted that two types of thermo-
couples were used, one with good sensitivity at low temperatures, copper-
constantan, and one with good sensitivity at high temperatures, chromel-
alumel. These two types are also indicated in figures F3.5-h and F3.5-5.

The propagation observed in the color motion picture coverage inter-
nally proceeded from the ignition site (fig. F3.5-6) vertically downward.
Figure F3.5-7 showsburning of the insulation on the fan motor wire bun-
dle Just before reaching the other wire bundles. Figure F3.5-8 shows
the burning of several of the wire bundles. Figure F3.5-9 shows the burn-
ing of the wire bundles Just prior to reaching the Teflon insulator, and
figure F3.5-I0 showsthe more subdued fire after the propagation had pro-
gressed further into the upper probe region. Figure F3.5-II showsthe
dense smokeafter propagation of the burning into the insulator.

Figure F3.5-12 shows the conduit and chamberinterface burnthrough
scenes taken from the external movie coverage. The time for this sequence
(24 frames) is i second. The small _ount of external burning resulted
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from ignition of the Mylar film used to insulate the test chamber.

Visual observation of the failure of the conduit through a test
cell window revealed that a flame front resulted as far away as 3 or
feet from the chamber.

After the test, the section of conduit was found approximately
8 feet from the chamber. Several pieces of the Teflon insulator, two
pieces of the conduit swedgelock nut, and one piece of conduit tubing
were gathered from a.20-foot radius around the test area (fig. F3.5-13).
The only item remaining in the test chamberwas a portion of the Inconel
section of the capacitance probe (fig. F3.5-14). The stainless steel
portion was completely gone and a portion of the Inconel was burned. No
remains of the aluminumportion of the probe could be found. The conduit-
chamber interface was torched out to a maximumdiameter of 1-7/8 inches
(see figs. F3.5-15 and F3.5-16).

Conclusions

It is quite evident from the results of this test that the insula-
tion burning on the electrical conductors did propagate through the probe
insulator even in downwardburning and proceeded into the conduit. It
is difficult to determine if the insulator was ignited and what time
was required for the burning to propagate through the insulator. How-
ever, failure of the conduit occurred in approximately i0 seconds after
burning had proceeded to the insulator-wire bundle interface. After the
initial failure of the conduit, the contents of the tank (1/3 cubic foot)
were vented in approximately 0.5 second with a major portion of the burn-
ing of metal occurring in 0.25 second. Venting of larger amountsof
oxygen would not necessarily take longer since continued oxygen flow
should produce considerably larger "torched out" sections. In order to
produce the heat necessary for the effects observed here, metal burning
must have occurred.
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Figure F3.5-6.- Internal chamber view shortly after ignition.
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Figure F3.5-7.- Burning along fan motor wire bundle.
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Figure F3.5-8.- Burning of adjacent wire bundles.



!

Figure F3.5-9.- Burning bundles prior to reaching probe insulator.
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Figure F3.5-I0.- Burning progressed into insulator.
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Figure F3.5-11.- Dense smoke after propagation of burning into insulator.



Figure F3.5-12.- External views of chamber-conduit
interface at time of failure.

F-37



Figure F3.5-13.- Parts of probe insulator and tubing collected
from area around test chamber.
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Figure F3.5-14.- Portion of probe which remained in the test chamber.
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Figure F3.5-15.- External view of chamberflange on which
conduit-quantity probe interface was mounted (after test).
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Figure F3.5-16.- View of chamber flange internal surface after test.
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PART F3.6

ZERO-g TEFLON FLAME PROPAGATION TESTS

Objective

The objective of these tests was to measure the flame propagation

rate along Teflon-insulated wire bundles in oxygen at 900 psia and -180 o F

in a zero-g environment. A second objective was to determine whether

flames travelling along the fan motor lead wires would pass through the

aperture in the motor case. Measurements are to be used to interpret

the pressure and temperature history observed in the oxygen tank during
the accident.

Apparatus

Tests were conducted at the Lewis Research Center's 5-Second Zero

Gravity Facility. An experimental apparatus was designed and constructed

which permitted the tests to be conducted in an oxygen environment of

920 psia ± 20 psi and -180 ° F ± lO °. The apparatus was installed on a

standard drop test vehicle capable of providing the necessary supporting

functions. An overall view of the drop vehicle is presented in fig-

ure F3.6-1 and a detailed photograph of the experimental apparatus is

shown in figure F3.6-2. The basic components of the experimental appara-

tus are the combustion chamber with a sapphire window to permit high-

speed photography, and an expansion tank as a safety feature in the event

an excessive pressure rise were to occur. The apparatus was equipped

with a fill and vent system, pressure relief system, and liquid nitrogen
cooling coils. The test specimen was installed in the combustion chamber

in a horizontal position as is shown in figure F3.6-3. This figure is

typical of all installations. Ignition was caused by heating a 26-gage

nichrome wire which was wrapped around the specimen. Chamber pressure

and temperature were monitored throughout the test. High-speed photo-
graphic data (h00 frames per second) were obtained using a register

pin Milliken camera.

Approach

A total of eight tests were conducted on three test specimens. Each

specimen was run in a one-g and a zero-g environment, and a one-g and

zero-g test was repeated on two specimens to examine repeatability of the

data. The three specimens were the following:

Type i - Fan motor conductor bundle - four wires and white sleeving
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Type 2 - Fan motor conductor bundle - four wires and clear shrink
sleeving

Type 3 - AluminumTeflon feed-through assembly - four wires and no
sleeving

The aluminumplate thickness for the Type 3 tests equaled that of
the fan motor case. This specimenwasused to determine whether a flame
burning along the lead wires would continue through the aperture in a
simulated motor case, and whether the aluminumwould ignite.

Results

The zero-g linear propagation rate for fan motor wires in white
pigmented Teflon sleeving (Type l) was measuredas 0.12 in/sec, and for
the samewires in clear Teflon sleeving (Type 2), the rates in two sep-
arate tests were O.16 and 0.32 in/sec. The corresponding flame propaga-
tion rate at one-g for both types of wire bundles was 0.55 in/sec meas-
ured in three tests. These results are listed in table F3.6-I. The
flame in both zero-g and one-g tests pulsed as it spread along the wire
bundles with the flame markedly more vigorous in the one-g cases. In
all cases the Teflon was completely burned with little visible residue.

The flame propagation tests through an aluminumplate (Type 3)
showedthat the flame did not appear to have propagated through the Tef-
lon grommetedaperture under zero-g conditions, but did pass through at
one-g. Unfortunately, the pictures of the flames under zero-g were not
clear enough to be certain that the flame failed to propagate through
the aperture. Becausethe zero-g period lasts for less than 5 seconds
following ignition, it is possible that flame propagation through the
aperture would have been observed if more time at zero-g were available.
These results are also listed in table F3.6-I.

Conclusions

The flame propagation rate along Teflon insulation in zero-g is
reduced by about a factor of two from that observed in one-g. The
propagation rate along the fan motor lead bundle in zero-g is in the
range of 0.12 to 0.52 in/sec. These flame propagation rates are of a
magnitude which is consistent with the time required to account for the
duration of the pressure rise in the spacecraft oxygen tank.
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Figure F3.6-I.- 5-second drop vehicle.
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Figure F3.6-2.- Experimental combustion apparatus.
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g

Figure F3.6-3.- Typical test specimen installation in combustion chamber.



TABLE F3.6-I.- SUMMARY OF RESULTS

_J
!

Run no.

A-I-I

A-I-2

A-l-6

A-I-3

A-I-5

A-I-7

A-I-8

A-I-4

Test specimen

Type i

Type 2

Type i

Type 2

Type i

Type 2

Type 3

Type 3

Gravity level

One

One

One

Zero

Zero

Zero

One

Zero

Average flame

spread rate, in/set

0.55
O.55
O.55

O.16

0.12

0.52

Comments

The specimens burned vigor-

ously. The flame progressed

along the specimens in a

pulsating fashion.

The specimens burned in zero-g

but not as vigorously as in

normal gravity. _le flame

pulsated along the specimens

in a similar way as in normal

gravity but at a slower over-
all rate.

The flame propagated through
the aluminum holder but did

not ignite it.

The flame could not be clearly

defined on the film. The

aluminum holder did not ignite.



PART F3.7

FULL-SCALE Si_._7LATED OXYGEN TAI,IKFiPJ_

Objectives

The purpose of this test was to simulate as closely as possible, in

a one-g environment, the processes that occurred during the failure of

oxygen tank no. 2 of Apollo 13. The data to be obtained include the

pressure and temperature history which results from the combustion of

Teflon wire insulation beginning at one of three likely ignition loca-

tions, as well as observing the manner in which the tank or conduit fails

and vents its contents.

Apparatus

A Block I oxygen tank was modified to Block II configuration. The

vacuum dome was removed and the tank was mounted in a vacuum sphere with

the appropriate size and length of tubing connected. The heaters were

disconnected and three hot-wire ignitors were installed. One ignitor was

located on the bottom fan motor leads, one on the top fan motor leads,

and another on the wire loop between the quantity probe and the heater-

fan support. The connecting tubing, filter, pressure transducer and

switch, relief valve, and regulator were flight-qualified hardware. The

tank was mounted so that the long axis of the quantity probe was hori-

zontal. Figure F3.7-I shows the tank mounted in the chamber. Two tele-

vision cameras and four motion picture cameras were mounted in the vacuum

chamber. One camera operates at 64 frames/sec, two at 250 frames/sec,

and another at 400 frames/sec. The two 250 frames/sec cameras were

operated in sequence.

Re sult s

The nichrome wire ignitor on the bottom fan motor leads was ignited.

The tank pressure rose from an initial value of 915 psia to 990 psia in

48 seconds after ignition. The temperature measured by the flight-type

resistance thermometer, mounted on quantity gage, rose 3 ° F from an

initial value of -202 ° to -199 ° F in this 48-second period. The tank

pressure reached approximately 1200 psia at 56 seconds after ignition and

apparently the flight pressure relief valve which was set to open at

1005 psia could not vent rapidly enough to check the tank pressure rise.

Two GSE pressure relief valves, set at higher pressures, apparently

helped to limit the tank pressure to 1200 psia. The tank temperature

rose abruptly after 48 seconds, following ignition, from -199 ° to -170 ° F

in 3 seconds. After this time the temperature read off-scale above

F-48



2000 ° F. Failure of the temperature measuring wiring is indicated by

the erratic readings that followed. These data are shown in figure

F3.7-2. The pressure data shown beyond 56 seconds represent the vent-

ing of the tank contents. These pressure and temperature histories are

qualitatively similar to the measured flight data but occur more rapidly

than observed in flight.

The conduit failed close to where it attaches to the tank closure

plate about 57 seconds after ignition (fig. F3.7-3). The two 250-frame/

sec cameras and the 6h-frame/sec camera failed to operate during this

test. However, the 400-frame/sec camera suggests that the first mater-

ial to issue from the ruptured conduit was accompanied by bright flame.

The tank pressure declined from 1175 psia to 725 psia in 1 second fol-

lowing conduit rupture. High oxygen flow rates were observed from the

conduit breach for about 15 seconds. A posttest examination of the rup-

tured conduit showed that the expulsion of the tank contents was limited

by the 1/2-inch-diameter aperture in the tank closure plate. An exami-

nation of the internal components of the tank showed complete combustion

of the Teflon insulation on the motor lead wires as well as almost com-

plete combustion of the glass-filled Teflon sleeve. This is shown in

figure F3.7-h.

Conclusions

The qualitative features of the pressure and temperature rises in

oxygen tank no. 2 have been simulated by initiating Teflon wire insula-
tion combustion on the lower fan motor lead wire bundle. The time from

ignition of the total combustion process in the simulated tank fire is

about three-fourths to one-half the time realized in the spacecraft

accident. The conduit housing the electrical leads failed near the

weld and resulted in a limiting exit area from the tank of about

1/2 inch diameter. The venting history is characteristic of the expul-

sion of liquid for the first l-l/2 seconds. This was followed by a

two-phase flow process.
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Figure F3.7-I.- Posttest oxygen tank setup.

F-50



!

k_n

-165

-175 -

u.
o

_2
-185

E

I.-

-195

-205 -

1200

ii00

- i000

_J 900

800

700

600

rGSE tank pressure gage

Flight type pressure gage

O0

g

--Flight type teiperature gage0 0 0 0 0 0 0

i0 20 30 40

Time after ignition, sec

Jl

Ogu
Q

(
¢

O0 o

i C

C

0

[)

50 60

Figure F3.7-2.- Measured pressure and temperature time histories

(preliminary data as of June 4, 1970).



!

(a) Wide-angle view.

Figure F3.7-3.- View of failed conduit.



(b) Closeup view.

Figure F3.7-3.- Concluded.
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PART F3.8

ANALYSIS OF FLOW FROM RUPTURED OXYGEN TANK

Objective

The objective of this analysis was to compute the real gas discharge

rate from the cryogenic oxygen tank no. 2 and provide the subsequent pres-

sure history of various service module volumes.

Assumptions

i. Oxygen remains in equilibrium at all times. The oxygen prop-

erties were obtained from the tabulations and plots of references 2 and

3.

2. All orifice coefficients were taken to be unity and the orifices

assumed to be choked.

3. All volumes and areas are invariant with time.

4. The effective volume of the oxygen tank is 4.7 ft 3 and is not

changed by combustion processes.

5. All processes are isentropic both inside the oxygen tank and

also between the oxygen tank and its discharge orifice.

6. Oxygen thermodynamic properties (p, p, h) are uniform through-

out any given individual volume at any time.

7. The processes in volumes external to the oxygen tank are adia-

batic. The total enthalpy in these volumes is equal to the average en-

thalpy of all prior discharged oxygen. Each volume acts as a plenum

chamber for its respective vent orifice.

8. The initial tank conditions at t _ 0 are _ = 900 psi;

P = 47.4 ib/ft3; T = -190 ° F.

Method

Computations were based on several manually generated cross plots

of the thermodynamic properties, correlations of intermediate computed

results; and analytical and numerical integrations involving these
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correlations. Choked orifice states were obtained by maximizing pu

for a given entropy•

Results

Figure F3.8-I shows the mass flow rate per unit of effective orifice

area plotted as a function of time. The two time scales shown are appli-

cable to effective orifice diameters of 0.5 inch and 2.0 inches.

Figure F3.8-2 plots the total mass discharged from the oxygen tank

against the same two time scales.

Figures F3.8-3 and F3.8-4 are plots of pressure time histories for

various combinations of secondary volumes and orifices. The time scale

in this case is only applicable to the 2-inch diameter exit orifice in

the oxygen tank. The combinations of V and A* shown in figure F3.8-3

were chosen to roughly simulate the components of the SM as follows:

i. V = 25 ft 3 A* = 2.08 ft 2 (300 in 2) Simulates net volume

of the oxygen shelf in bay 4 with effective venting of 300 in 2.

2. V = 67 ft 3, A* = 2.08 ft 2 (300 in 2). Simulates the bay 4
2

oxygen shelf and fuel cell shelf combined volume with venting of 300 in .

3. V = 67 ft 3 A* = 1.39 ft 2 (200 in 2) Same as case 2 but

reduced venting area to rest of service module.

4. V = i00 ft 3 A* = 43 ft 2 (62-1/2 in 2) Simulates entire

bay 4 with small venting.

5- V = 200 ft 3, A* = .L3 ft 2 (62-1/2 in 2). Simulates combined

bay 4 and tunnel volumes with venting past rocket nozzle only.

Also plotted are reference curves for each of the above volumes

without any venting (A* = 0).

Case i has a very rapid initial pressure rise with time due to the

small volume (25 ft 3) of the oxygen shelf. However, the mass efflux from

this volume also increases rapidly with time so that it equals the influx

at t = 0.18 second and the pressure peaks at approximately 8.8 psia.

*If the tank were initially at p _ i000 psi and the same entropy,

then with a 2-inch diameter orifice the pressure would drop to 900 psi

in 0.004 second with the discharge of i ib oxygen.
m
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The pressure of case 2, with V = 67 ft 3, rises less rapidly and

consequently peaks at a later time (t = 0.32 sec) and a lower peak

pressure (p _ 7.2 psi).

When the vent area for V = 67 ft3 is decreased from 300 in 2 to

200 in 2 (case 3), the pressure rises more rapidly, peaks at a longer

time (t _ 0.45 sec), and has a higher peak pressure (p _ 9.8 psia).

The large volume solutions with minimum vent areas (cases 4 and 5)

have higher peak pressures (p _ 18 and 12 psia) occurring at much larger

times (t = i.i and 1.5 sec).

Discussion and Conclusions

These "quasi-steady" two-volume, two-orifice, adiabatic calcula-

tions do not predict pressures in excess of 20 psia for a 2-inch diameter

effective orifice in the oxygen tank. In fact, if the two larger volume

simulations (cases 4 and 5) are excluded due to unrealistically low vent-

ing areas and/or the long time rise, then the maximum predicted pressure

is below i0 psia. The smaller volumes representative of the oxygen shelf,

or the oxygen shelf plus fuel cell shelf (which is fairly well inter-

vented to the oxygen shelf) have shorter rise times which are more rep-

resentative of the implied "time to panel failure" of Apollo 13. The

effective venting area of these volumes is also more realistic.

On the basis of these approximate calculations, the following

alternative possibilities might be considered:

i. The panel failure pressure is below i0 psi. Other experiments

show this low failure pressure level to be unlikely.

2. The dynamic unsteady pressures exceed the computed quasi-steady

pressures. A non-uniform pressure distribution with internal moving

pressure waves is considered very probable with their importance being

larger for the smaller times and volumes.

3. The oxygen tank orifice had an effective diameter greater than

2 inches. During the discharge of the first 9 pounds of oxygen, the

orifice was choked with nearly saturated liquid oxygen and the coeffi-

cient was probably nearer 0.6 than i. Thus an effective 2-inch diameter

would require an even larger physical hole during this time.
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4. The processes in the oxygen tank were not isentropic in a

fixed volume. Either continued combustion inside the oxygen tank or

the presence of a bubble of combustion products at the time of initial

gas release could prevent the computed rapid decrease in mass flow with

time (fig. F5.8-I) and therby increase the pressure rise rate and the

peak pressure.

5. The processes in the external volume (V) are not adiabatic.

Combustion of the Mylar insulation has been estimated to produce large

pressures (several atmospheres) if the combustion process is rapid

enough.

6. The oxygen processes are not in equilibrium. The possibility

of super-satruation of the oxygen discharged into the bay and subse-

quent flashing to vapor might produce a strong pressure pulse.
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PART F3.9

MYLAR-INSULATION COMBUSTION TEST

Objective

The purpose of this test was to determine the ignition properties

and measure the rate of combustion of Mylar insulation in an initially

evacuated simulated oxygen shelf space. The conditions of this test

are achieved by ejection of oxygen from a iO00 psia/-19 O° F oxygen sup-

ply with ignition by pyrofuses placed on the Mylar blanket at several

locations.

Apparatus

The basic dimensions and arrangement of the apparatus are shown in

figure F3.9-I. An end view of the apparatus is shown in figure F3.9-2.

Mylar blank material is placed on the bottom shelf. Oxygen is supplied

through a regulator into a simulated tank dome volume. The dome contains

a 2-inch diameter rupture disc which is designed to open at 80 psi.

Pressures are measured during the course of combustion process. High-

speed motion pictures are obtained through window ports in the chamber.

The chamber volume and vent area simulate the oxygen tank shelf space.

Approach

Oxygen is supplied from a cryogenic source which is initially at

i000 psia/-190 ° F. Oxygen flows for a controlled time into the dome

volume. The 2-inch disc ruptures at 80 psi. This exposes the initially

evacuated chamber and its contents to a mixture of liquid and gaseous

oxygen. A series of pyrofuses are then ignited in sequence. The data

include high-speed motion pictures and pressure-time histories.

Results

A test in which oxygen was allowed to flow for 3 seconds from an

initially i000 psia/-19 O° F source resulted in complete combustion of a

14.5 ft 2 Mylar blanket sample. Five pyrofuses located at various loca-

tions on the Mylar blanket were sequentially activated at times ranging

between 0.3 and 1.4 seconds after the disc ruptured. Examination of the

chamber after this run showed that all of the Mylar blanket was consumed.

The pressure rise rate with the addition of oxygen but before ignition

was approximately 6 psi/sec. Ignition occurs when the pressure rises to
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about i0 psi with subsequent combustion which causes a sharp increase in
the pressure rise rate. The rate of pressure rise during the combustion
process reaches approximately 42 psi/sec. The initial pressure rise rate
of 6 psi/sec also corresponds to a measuredrise rate obtained in an
earlier test in which combustion did not occur. The pressure data are
shownin figure F3.9-3. 'lhe conditions in the chamberbefore the test
are shownin figure F3.9-4. Figure F3.9-5 showsthe chamber just after
the test.

Conclusion

The Mylar insulation blanket burns completely when ignited locally
and exposed simultaneously to oxygen from a i000 psi/-190 ° F source.
The pressure rise rate increases from 6 psi/sec without combustion to
about 42 psi/sec with the combustion of Mylar. A substantial increase
in the pressure rise rate in the oxygen tank shelf space due to Mylar
combustion might therefore be expected. From tests conducted elsewhere,
it is further concluded that an ignition source is required to achieve
Mylar/oxygen combustion.

_-64



I

ox

42 in.

77snLI
1 inch tube 0 2 supply

g orifice

Pome

_/_ 20 ft

, Iowout disc

---t--
19.5 in. dia vent

300 in. 2

29in.
I.D.

_-To

vacuum

pump

Floor

2 in. dia rupture disc,
80 psi

Ignitors
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PART F3. i0

PA}_L SEPARATION TESTS

Objectives

The objective of these tests was to demonstrate complete separation
of the SM bay 4 cover panel in a manner that could be correlated with

flight conditions. The panel failure mechanism and the pressure distri-

bution that resulted in separation were also to be determined.

Approach

An experimental and analytical program utilizing one-half scale dynamic

models of the SM bay 4 cover panel was conducted. Panels were attached

through replica-scaled joints to a test fixture that simulated pertinent SM

geometry and volume. Venting was provided between compartments and to

space. A high-pressure gas system was used to rapidly build up pressure

behind the cover panel as the input force leading to failure.

Size of the dynamic models (one-half scale) was determined primarily

by material availability. The use of full-scale materials and fabrication

techniques in the model was dictated by the need to duplicate a failure

mechanism. Therefore, similarity laws for the response of structures led

to scale factors of one-half for model time and one-eighth (one-half cubed)

for model mass. From these scale factors for the fundamental units, some

of the derived model to full-scale ratios are as follows:

Displacement = 1/2 Force = 1/4

Velocity = i Pressure = 1

Acceleration = 2 Stress = 1

Area = i/4 Energy = 1/8

Volume = 1/8 Momentum = 1/8

A step-by-step approach to testing led to rapid learning as new factors

were introduced. Initial tests were conducted on isotropic panels that

scaled only membrane properties while more completely scaled sandwich

panels were being fabricated. Testing started in atmosphere while prepara-

tions for vacuum testing were underway. In a similar manner, first tests

concentrated on determining the pressure input required for separation and

deferred the simulation of internal flow required to produce these distri-
butions to later tests.

Analysis of the one-half scale bay 4 cover panel models used two com-

puter programs. Initial dynamic response calculations using a nonlinear

elastic finite difference program indicated that panel response was
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essentially static for the class of pressure loadings expected in the
tests. Subsequent calculations used static loadings with a nonlinear
elastic finite element representation and the NASTRANcomputer program.

Apparatus

Models.- Figure F3.10-1 shows the full-scale and model panel cross

sections.

7].78-T6
0.010 in. 0.030 in.

, _ _ 7075-T6

I, ,I,li,'_\ 0.060 _n.
ill/. t l,

I=_lll ,I,,1',1 ! !,!..

0.020 in. 0.010 in.
2024-T81 7178-T6

3/16 in. X 0.0015 in. core

(a) Full scale.

0.016 in.
2024-T3

7075-T6
0.032 in.

!!!,
11

(b) DM model.

7075-T6
0.006 in. 0.016 in.

'11_ 1¢1_'_10.032 in.
,I 71 i' _;11I 1
ill,ll'; L_-_

0.012 in. 0.006 in.
2024-T3 7075-T6

Alclad

1/8 in. × 0.008 in. core

(c) HS model.

Figure F3.10-1.- Panel designs.

The full-scale panel is a honeycomb sandwich structure with a z-bar edge

closeout attached to the SM by i/4-inch bolts around the edges and to each

of the bay 4 shelves. The first one-half scale panel models, designated

DM and shown in figure F3.10-l(b), scaled membrane properties of the

full-scale sandwich panel inner and outer face sheets with a single iso-

tropic panel having the correct nominal ultimate tensile strength. The

z-bar was simulated by a flat bar that represented the shear area of the

outer z-bar flange. Fastener sizes, bolt patterns, and bonding material

were duplicated from full scale.

One-half size honeycomb sandwich panels, designated HS and shown in

figure F3.10-1(c), scaled both bending stiffness and membrane stiffness.

Although core density of the sandwich models is slightly high, the dimen-

sions, materials, bonding, and z-bar closeout are scaled. Some alloy

substitutions were made but nominal strength requirements were met.
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Test fixture.- The test fixture shown schematicaliy in figure F_.IO-2

and in the photographs of figure F3.10-3 is a one-half size boilerplate

mockup of the SM bay 4 and central tunnel. Vent areas connect the bay 4

shelf spaces to the central tunnel and to each other. The tunnel also has

Volume

1
2
3
4
5
6
7

Description

Pressurization tank

Fuel cell space
02 Tank space
Upper H2 tank space
Lower H2 tank space
Tunnel

Other SM free volume

Figure F3.i0-2.- Schematic of test fixture.

vents to space and to a large tank simulating the remaining free volume
of the SM. Vent areas were adjusted in initial tests to obtain desired

pressure distributions but were scaled from the best available data for

final testing. The fixture also holds the pressurization system and in-

strumentation. True free volume was approached by adding several wooden
mockups of equipment.

Pressurization system.- The pressurization system can also be seen in

the photographs of figure F_.IO-3. A 3000-psi accumulator is discharged

on command through an orifice by mechanically rupturing a diaphragm. The

gas expands into the oxygen shelf space of bay 4 through a perforated

diffuser. In order to obtain uniform pressure over the entire panel for

some tests, the diffuser was lowered so that it discharged into both the

oxygen and hydrogen shelf spaces. For these particular tests, extra vent

area was provided between all shelves to insure uniform pressure throughout

bay 4. For most tests, a shield was placed between the diffuser and panel
to minimize direct impingement.

Other.- Instrumentation consisted of strain gages, fast response

pressure sensors, and high-speed motion picture cameras. Atmospheric

tests were conducted in the Rocket Test Cell and vacuum tests at imm Hg
pressure in the 60-Foot Vacuum Sphere at Langley Research Center.
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(a) _al vieW.
(b) Fixture with pamel In$1alled.

Shelf

H2 Shelf

(cI Internal view.

Figure F3.10-3.- One-half size boilerplate mockup
of the SM bay _ and central tunnel.
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Results and Discussion

Presentation of results.- The test program is summarized in

table F3.10-I. Typical failures and pressure-time histories are illus-

trated in figure F3.10-4. Figure F3.10-5 is a sequence of prints from

high-speed movie cameras that demonstrate separation of the sandwich

panel models. Results of NASTRAN calculations on the one-half scale

models are presented in figures F3.10-6 and F3.10-7.

Demonstration of panel separation.- Panel separation has been demon-

strated with both membrane and sandwich panels. Two sandwich panels

separated completely from the test fixture during vacuum tests. Two

membrane panels, although less representative of flight conditions, also

separated completely in vacuum tests. However, similar tests with mem-

brane panels in atmosphere left portions of panels attached to the test

fixture as illustrated in figures F3.10-h(b) and (c). Complete separa-

tion in atmosphere could not be achieved due to mass and drag of the
air.

Pressure distributions.- Complete membrane panel separation was

achieved only with nearly uniform pressure distribution over the entire

bay h panel cover, shown in figure F3.10-h(d). When Just the oxygen

shelf space experienced high pressures, membrane panel separation was

localized to the area of the panel over the oxygen shelf space as shown

in figure F3.10-2(a). This type of local failure occurred in both at-

mosphere and vacuum. When scaled internal venting was introduced,

model DM-10 lost a slightly larger portion of panel due to high pressure

experienced by both the oxygen shelf and fuel cell shelf spaces while

the rest of bay 4 was at low pressure.
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Figure F3.10-4.- Failure modes and pressure-time histories.
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t=O t = 0.003 t= 0.005 t= 0.0065 t= 0.0105

(c) Sandwich panel HS-2.

t= 0.012 [= 0.015
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(b) Sandwich panel HS-3.
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Figure F_.IO-5.- Sequemtial failure of two sandwich and one membrane

panel (t = time from first observed failure).
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Figure F3.10-6.- Maximum edge load on half-scale honeycomb panel

as predicted by NASTRAN.
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Figure F3.10-7.- Distribution of edge loads on half-scale

Apollo 13 honeycomb panel as predicted by NASTRAN.
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TABLEF3.10-1.- PANELSEPARATIONTESTSUMMARY

_J
I

kO

Model
Internal

vents

Volume

first

pre ssuri zed

Diffuser

Pressure*

Load I

Peak, Rise time,
character psi sec

Failure

Atmosphere tests

DM-l-1

DM-1-2

DM-2

DM-3

DM-4

Not scaled

Not scaled

Not scaled

Not scaled

Not scaled

Oxygen shelf

Oxygen shelf

Oxygen shelf

Bay 4

Bay 4

Open

Open

Open

Open

Shielded

Band 24-30 0.020

Band 30-58 0.005

Band 34-52 0.006

Uniform 15-35 0.015

Uniform 20-26 0.016

None

Oxygen shelf area

Oxygen shelf area

Nearly total (folded back)

Nearly total (left edges)

Vacuum tests

DM-5-1

DM-5-2

DM-6

DM-7

DM-8

DM-9

DM-IO

HS-1

HS-2

HS-3

HS-4

Not scaled

Not scaled

Not scaled

Not scaled

Not scaled

Not scaled

Scaled

Scaled

Scaled

Scaled

Scaled

Bay 4

Bay 4

Bay 4

Oxygen shelf

Oxygen shelf

Oxygen shelf

Oxygen shelf

Oxygen shelf

Oxygen shelf

Oxygen shelf

Oxygen shelf

Shielded

Shielded

Shielded

Open

Shielded

Shielded

Shielded

Shielded

Shielded

Shielded

Shielded

Uniform 14-20

Uniform 20-28 0.016

Uniform 19-27 0.018

Band 25-40 0.005

Band 20-37 0.012

Band 18-23 0.040

- 21-39 0.070

- 23-32 0.190

- 30-67 0.020

- 3o-44 o.o2o

None

Total

Total

Oxygen shelf area

Oxygen shelf area

None

Upper 2/3 of panel

None

Total

Total

None

*Range of peak pressures in the oxygen shelf space is indicated. Time from pressure release to peak

pressure is rise time.



Complete separation of sandwich panels has been obtained with both

uniform and nonuniform pressure distributions. Figure F3.10-8 shows the

type of pressure time histories experienced by various sections of the

panels. The pressure predictions are based on the internal flow model

Pressure

/ .-.-.- _. ; _ _ _ :-_-Fuel cell shelf

r .-'" .-" _-RestofBay4

space

-.02 -.20
Time, sec

Figure F3.10-8.- Pressure build-up in bay 4.

of the Apollo 13 SM shown in figure F3.10-2 and have been verified in

these experiments. Peak pressure levels were varied from test to test

but the curve shape was always similar. One sandwich panel separated

after about 0.02 second during the initial pressure rise in the oxygen

shelf space, while overall panel loading was highly nonuniform as shown

in figure F3.10-4(b). The other sandwich panel did not separate until

about 0.19 second after all bay 4 compartments had time to fill with gas

and arrive at a much more uniform loading, as shown in figure F3.10-4(e).

The effect of pressure distribution on peak pressures required for

failure is shown by the NASTRAN calculation in figure F3.10-6. Included

for reference is the linear membrane result, N = pR. The load required

for edge failure was determined from tensile tests on specimens of the

DM model joints. The peak uniform pressure at failure initiation is only

75 percent of peak pressure at the failure load with just the oxygen
shelf space pressurized.

Failure mechanism.- The failure mechanism for complete separation of

a membrane panel is demonstrated by the photographic sequence in

figure F3.10-5(a). Pailure is probably initiated by a localized high

pressure near the edge of the oxygen shelf space. A crack formed where

a shelf bolt head pulled through and rapidly propagated through the

panel. Expansion of the pressurizing gas through the openings accelerated
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panel fragments to very high velocities. Inertia loads from the high
acceleration completed the separation. Membranepanels were observed to
separate in three pieces--one large and two small fragments.

The failure of a sandwich panel under uniform loading in vacuumis
shownin the picture sequenceof figure F3.10-5(c). F_ilure started at
the edge of the oxygen shelf space by pull-through of the edge bolts
through the upper sandwich face sheet. Very rapid tearout along three
edges followed, primarily by tension in the face sheets and tearing of
the core material from the z-bar at the edge. The panel then rotated
like a door and separated from the test fixture in one piece.

Nonuniform loading of a sandwich panel led to the failure shownin
figure F3.10-5(b). Initial failure wasat the panel edge near the fuel
cell shelf. Tearout along one edge and the top rapidly followed, similar
to the previous failure. However, the edge tear stopped before reaching
the bottom and becamea diagonal rip that left the lower third of the
panel attached to the fixture. The upper two-thirds of the panel then
rotated door-like and separated. Finally, a vertical tear propagated
through the center of the remaining fragment_ the bottom tore out_ and
rapid rotation separated the remnants in two pieces.

Figure F3.10-7 relates NASTRANcalculations to the observed failures.
Predicted edge load direction and magnitude are illustrated for two
pressure distributions. In figure F3.10-7, parts A-I and B-I, panel edges
are assumedfixed, while in figure F3.10-7, parts A-2 and B-2, the panel
edge joint along the oxygen shelf space is assumedto have failed. Also
shownin figure F3.10-7, parts A-2 and B-2, are typical observed failure
patterns for these types of loadings on membranepanels. An enlargement
of the dotted section of figure F3.10-7, part A-2, is shownin part C of
the figure to indicate the type of edge failure observed. Arrows indicate
the direction of force required to cause the pullout failures. The NASTRAN
edge force patterns are consistent with these failures. In addition,
figure F3.10-7, parts A-2 and B-2, indicates that tears into the membrane
panels tend to remain normal to the direction of the edge forces.

Correlation with flight.- Tests with sandwich panels more closely

similate flight conditions than tests with membrane panels due to initial

failure characteristics and post-failure separation behavior. The separa-

tion behavior of sandwich model HS-3, figures F3.10-4(f) and F3.10-5(b),

is also believed to be more representative of flight than the separation

behavior of model HS-2, figures F3.10-4(e) and F3.10-5(c), for two

reasons. First, although model HS-2 was tested with scaled internal

venting between the compartments of bay 4 and the SM tunnel, the rest of

the SM free volume had been closed. In the HS-3 model test, this vent

area had been opened to a realistic value of 60 square inches. Second,

the slow pressure buildup before separation of model HS-2 allowed SM

tunnel pressure to rise well above the lO-psi limitation required to

F-81



prevent CM-SMseparation. Pressurization leading to model HS-3 separation
was so rapid (20 milliseconds) that SM tunnel pressure remained below the

lO-psi limit. The time to failure would scale up to 40 milliseconds for

the flight configuration.

Tests with models HS-3 and HS-4 have bracketed the most likely separa-

tion conditions. For both tests, internal venting was scaled and diffuser

configuration and accumulator pressure were identical. Model HS-3 sep-

arated due to an initial air flow of 190 ib/sec through an orifice of

2.85 square inches. Separation was not achieved on model HS-4 when initial

air flow was 135 ib/sec through a 2.0-square inch orifice, even though peak

pressures of over 95 psi occurred in the oxygen shelf space after 20 milli-
seconds.

As a part of this study, an analysis has also been carried out at the

Langley Research Center to estimate the distribution and time history of

pressures within the Apollo 13 service module. Based on these calculations

and the experimental results on panel separation, it appears that ad-

ditional combustion outside the oxygen tank or rapid flashing of ejected

liquid oxygen may have occurred to produce panel separation. A report of

this analysis can be found in the official file of the Review Board.

Conclusions

Complete separation of one-half scale honeycomb sandwich models of

the bay 4 cover panel in vacuum has been demonstrated. Separation was

achieved by rapid air pressurization of the oxygen shelf space. Internal

volumes and vent areas of the SM were scaled. Separations were obtained

with both uniform and nonuniform pressure distributions. The separation

resulting from a nonuniform loading that peaks 20 milliseconds after start

of pressurization (40 milliseconds full scale) correlates best with hypo-

theses and data from flight. This particular panel separated in three

pieces after an initial tear along the sides that allowed it to open like

a door. Inertial loads are a major factor in obtaining complete separa-
tion after initial failure.
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PART F4

MASTER LIST OF TESTS AND ANALYSES

This part presents a listing of tests and analyses grouped according

to the following event categories:

Shelf Drop

Detanking

Quantity Gage Dropout

Short Generation

Ignition

Propagation of Combustion

Pressure Rise

Temperature Rise

Pressure Drop

Final Instrument Loss

Telemetry Loss

Tank Failure

Oxygen Tank No. 1 Pressure Loss

Panel Loss

Side Effects

Mi sce llane ous
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MAS'-ER LIST OF TESTS AND ANALYSES

[By Event ]

!
OO
4¢-

Number (T/A)

Location Title _jective - Description Status - Results - R_marks

Monitors

"SHELF DROP"

Tank Impact Test C - May 26, 1970. A load of 7g was re-

quired to produce a dent in the tank shelf

13-T-55(T)

MSC

P. Glynn

R, Lindley

I}-T-60

MSC

P. Glynn

S. Himmel

A-92(T)

LRC

R. Herr

R. Lindley

15-T-O7RS(T)

Beech A/C

S. Owens

K. Heimburg

Quantity Gage Rivet

Test

Shock Load Failure

Test of Fan Motor

Mounting Screws

Determine energy required to produce a dent

in tank dome and determine the approximate

input g level to tank.

Apply incrementally increasing force to the

load rivet supporting the quantity probe

concentric tubes until the rivet fails.

X-ray the rivet during significant failure

stages to show the failure mechanism.

Determine by test the shock load at which

the four 4-40 x 1/4-inch steel fan mounting

screws fail.

C - April 27, 1970. Shortly after a load

of 105 ib was applied, a decrease to 90 ib

was noted, indicating a failure. When the

load was increased to 120 ib, the rivet

failed by bending and subsequently pulling

through the probe tubing.

C - May 8, 1970. The four machine screws

started yielding between 2OOOg and 2500g

with complete failure in tension between

4OOOg and 420Og with an attached 0.875-ib

mass.

DETANKING

Apollo 15 Oxygen De- ECD - June 18, 1970. Test in progress.
tanking Simulation

Determine the effects on the tank wiring

and components of the detanking sequence

with the Inconel sleeve and Teflon block

displaced in the top probe assembly,

LEGEND: (T) - Test (A) - ,_Jalyses C - Completed ECD - Estimated Completion Date TBD - To Be Determined

NASA--MSC

MSC Form }45 (OT)



MASTER LIST OF TESTS AND ANALYSES

[By Event ]

I
CO
k]l

Number(T/A)
Location Title Objective - Description Status - Results - Remarks

Monitors

DETANKING

Bench Test of Oxygen

Tank Conduit

15-T-OSRI (T)

MSC

C. Propp

K. He imburg

13-T-19(T)

NR

J. Jones

K. Heimburg

13-T-20(T)

KSC

H. Lamberth

K. Heimburg

I_-T-_3(T)
MSC

C. Propp

K. He imburg

Ground Support

Equipment Filter

Analysis

Heater Cycle Test

at KSC

Heater Assembly

Temperature Profile

Determine whether the electrical loads and

pressure cycling during KSC detanking

raised the wire temperature in the conduit

to damaging levels.

Identify contaminants (oil and glass beads)

found in GSE filter pads during Apollo 13

oxygen tanking at KSC and determine if the

filter material could be responsible for

the failure to detank.

Determine if the oxygen tank heater cycled

during the 7-hour period of prelaunch de-

tanking at KSC.

Determine if the heater temperatures could

have been high enough during the KSC de-

tanking to degrade the fan motor lead wire

insulation. Tests are to be carried out

using nitrogen.

C - May 15, 1970. Maximum temperature of

the conduit (at the midpoint) reached

325 ° F. Pressure cycling of the tank did

not raise the temperature significantly.

Inspection showed no degradation. Test re-

sults will be confirmed by TPS 15-T-O7R3(T_

C - April 20, 1970. This test showed that

the filter assembly did not contribute to

the system malfunction. Oxygen-compatible

lubricant was found on filter.

C - May i, 1970. Test results indicate

that heater cycling would cause voltage

drop on other channels. The prelaunch

records during detanking show that the

heaters did not cycle but remained con-

tinuously "on."

C - May 26, 1970. Tests indicate heater

surface could reach i000 ° F. Wire conduit

could reach 750 ° F. Teflon insulation was

damaged. A second detanking test resulted

in thermal switch failure in the closed

position with 65 V dc applied.

LEGEND: (T) - Test (A) - Analyses C - Completed ECD - Estimated Completion Date TBD - To Be Determined

Mac For_ 343 (OT)
NASA--MSC



K&S[ER LI3T OF TESIt; A_ ANALYSES

[_y Event ]

!
CO
O_

Num,,er(T/A)
Location

Monitors

19-T-80

MSC

C. Propp

H. Mark

A-15(T)
KSC

T. Sasseen

E. Baehr

13-T-30(T)

MSC

R. Robinson

R. Wells

Title Objective - Description Status - Results - Remarks

DETANKING

Thermostatic Switch

Failure Tests

Blowdow-n Character-

istics of Oxygen

Tanks

Determine the voltage and current levels at

which the thermostatic switches weld shut

in the closed position when they attempt to

open in response to temperatures exceeding
80 c F.

Determine the Oleeddown time from 250 psig

using GSE at KSC with the proper configura-

tion for one tank and the fill tube com-

pletely disconnected for the other tank.

C - June 5, 1970. Tie thermostatic

switches fail to open where currents ex-

ceeding 1.5 amps at 65 V dc are passed

through them. The heater current used in

the special detanking procedure at KSC was

7 amps at 65 V dc, well in excess of the

measured failure current.

C - May 15, 1970. The test proved that

both tanks did depressurize in practically

identical times considering the difference

in vent lines and back pressure. The test

refuted the earlier assumption of a time

difference between the different tank con-

figurations. The significance is that

blowdown data are not sensitive enough to

determine the fill tube configuration.

QUANTITY GAGE DROPOUT

Quantity Gage and

Signal Conditioner

Test

Determine the signal conditioner response

under extreme transient conditions of am-

bient temperature, determine quar_tity gage

failure indications, and define transient

and stead_'-state energy levels supplied to

every possible fault condition.

C - May 22, 1970. The quantity gage signal

conditioner deviated less than 0.85 percent

under extreme temperature excursions, the

response of the gage so various electrical

faults was catalogued, and an analysis of

the energy level of faults was made. The

significance of this test is that it per-

mits interpretation of abnormal quantity

gage readings at the time of the accident

and eliminates the gage as a probable

source of ignition.

LEGE_YJ: (T) - Test (A) - Analyses C - Completed ECD - Estimated Completion Date TBD - To Be Determined

MSC Form }49 (OT) NASA--MSC



MASTERLISTOFTES!'SANDAiiALYSES

[By Event ]

_J
I

on

Number (T/A)
Location

Monitors

13-T-II(T)

MSC

R. Robinson

R. Wells

13-T-22(T)

MSC

G. Johnson

R. Wells

15-T-23(T)

MSC

J. Hanaway

R. Wells

Title Objective - l_scription

SHORT GENERATION

Status - Results - Remarks

Fan Motor Inductive

Voltage Discharge

and Electrical

Energy Release

Inverter Operational

Characteristics

AC Transient Voltage

Signal Duplication

Determine the amount of stored energy re-

leased from the fan motor when one power

lead is opened.

Determine the operating characteristics of

the spacecraft ac inverter when operated

with three-phase, phase-to-phase, and

phase-to-neutral step loads and short cir-

cuits.

To determine whether bus 2 transients are

capable of producing the type of response

seen in the SCS auto TVC gimhal command

servo signals just prior to the oxygen tank

failure.

C - May 7, 1970. The test showed a power

release of 0.02 joule. Transient peak

voltage of 1800 volts and current of

0.7 amp were measured. These data estab-

lish the energy potential from an open cir-

cuit failure of a fan motor.

C - April 20, 1970. Generally, faults in-

troduced on a particular phase gave a volt-

age reduction on that phase and a voltage

rise on the other phases. Clearing the

faults gave the opposite response. This

information assists in interpretation of

flight data.

C - April 22, 1970. This series of tests

applied transients to the ac bus that

dipped the bus voltage to 105, 95, 85, and

80 volts for durations of 50, i00, and

150 milliseconds. The transient that

dipped the voltage to 85 volts for

150 milliseconds, caused a transient of

0.16 degree per second in the SCS signals,

which matched the largest transient ob-

served in the flight data. The signifi-

cance of this is that it allows more pre-

cise timing of the duration, and estimation

of the magnitude, of possible causes of

ignition.

LEGEnd): (T) - Test

MSC Form 34_5 (OT)

(A) - Analyses C - Completed ECD - Estimated Comp]-tion Dmte TBD - To B_ Determined

NASA--MSC



9_kSTER LI:',; OF TF, S FS AWD AN;_LYSF, L;

_By Event

!
CO
Oo

Numi,er (T/A)

Lo _'at ion

Monitors

i3-T-Oi(T)

MSC

L. Leger

I. Pinkel

15-T-19(T)

MSC

C. Propp

I. Pinkel

13-T-15 (T)

ARC

L. Stollar

H. Mark

ig-T-2i(T)

MSC

G. Johnson

I. Pinkel

I_-T-24(T)

MSC

C. Propp

I. Pinkel

Title
Objective - Dt,scripti,:m Status - Results - Remarks

IGNITION

Ignition of Fan

Motor Winding by

Electrical Overload

Spark Ignition

Energy Threshold for

Various Tank Ma-

terials

Spark Source Ig-

nition in Super-

critical Oxygen

One-Amp Fuse Test

Tank Materials Ig-

nition Test

Determine if overloaded fan motor winding

will cause ignition and combustion of the

insulation in supercritical oxygen.

Initial conditions were i15 volts, 1-amp

fuse, current initially 1 amp and increased

in 0.5-amp increments.

Determine if an electrical spark generated

by tank wiring can ignite selected non-

metallic tank materials.

Determine if Teflon can be ignited with

115 V ac spark under various conditions in

oxygen atmospheres.

Determine the time/current characteristics

to blow the 1-amp fuses in the tank fan
circuit.

Exploratory test with electrical overloads

and nichrome heaters to de,ermine the ig-

nition and combustion possibilities of tank

materials in low and high pressure gaseous

oxygen and ambient pressure liquid oxygen.

C - April 24, 1970. Windings were not

fused by 400 Hz-5 amps; 8 amps dc fused

winding wire. Ignition did not occur. Re-

sults were the same in nitrogen and oxygen

at 900 psia, -180 ° F. NR test shows same
result.

C - May 50, 1970. A single Teflon in-

sulated wire may be ignited with energies

as low as 0.45 joule with a spark/arc.

C - April 50, 1970. Three tests in oxygen

of 50 psig, 500 psig, and 940 psig at am-

bient temperature showed insulation ignited

and burned in all cases. In oxygen at

940 psig and -190 ° F the Teflon insulation

ignited and burned with a 138-psig pressure

rise and no noticeable temperature rise.

C - April 20, 1970. .,-he fuses blow at the

following currents and times: 4 amp -

0.05 second, $ amps - 0.025 second. These

values give approximately 16 joules.

C - May _O. 1970. Drilube 822 and all of

the different types of tank wiring ignited.

Nickel wire was only partially consumed in

LOX and solder could not be ignited. The

power levels required to get ignition were

far in excess of the amount available in
the tank.

LEGEND: (T) - Text (A) - Analyses C - Completed ECD - Estlm_ted Comlle;,ion Date TBD - To Be Determined

MSC Form 54} (OT) NASA--MSC



MASTER LIST OF TESTS AND ANALYSES

[By Event ]

I
OO

Numbe_(T/A)
Location

Monitors

Title Objective - Description Status - R_-sulbs - R_:marks

13-T-25(T)

MSC

P. MeLaughlin

19-T-28(T)

MSFC

R. Johnson

I. Pinkel

13-T-33(T)

NR

B. Williams

I. Pinkel

13-T-34(T)

NR

B. Williams

I. Pinkel

Locked-Rotor Motor

Fan Test

Liquid Oxygen Impact

Test of Tank Com-

ponents

Spark/Electric Arc

Ignition Test

Closed Chamber Spark

Ignition Test

IGNITION

Determine motor behavior in a locked con-

dition and check possibility of ignition

and propagation.

Obtain the impact sensitivity data on Ag-

plated Cu wire (two sizes), nickel wire,

822 Drilube, and Pb-Sn solder.

Determine the spark/electric are ignition

characteristics of Teflon and other non-

metallic materials in a LOX/GOX environment

by simulating specific component failures

which could serve as possible ignition

sources.

Determine the possibility of igniting Tef-

lon on a motor lead wire when the Teflon is

penetrated by a grounded knife edge in

pressurized L0X while the motor is running.

C - April 19, 1970. [wo motors were tes%ei

in LOX and powered for 2.5 and !.O hours,

respectively. Tmere was no indication of

malfunction such as heating, arcing, or

sparking. Posttest measurements showed no

degradation of motor wire insulation.

C - May 22, 1970. Teflon insulated wire

showed no reaction, Drilube 822 had one

reaction of 20 tests, 60-40 solder ignited

in 7 out of 20 tests. _ese results in-

dicate that in one-g, Teflon and Drilube

are acceptable in LOX from an impact sen-

sitivity standpoint and tha_ 60-40 solder

is not acceptable.

C - April 19, 1970. _ere was no ignition

of the Teflon in the LOX at i atmosphere.

This test was super_eled Ly later tests,

C - April 20, 1970. inis was an early tes_

designed for a quick appraisal and the d_-

sired test conditions were not realized.

Li,',O_',r3L):(T) - Test

MSC Form 543 (OT)

(A) - Analyses C - Compf_te:l ECD - _]3tilrlatt-i ]_m_ b "i,)n D'¢2e. TBD - 'I', B.: D_termined

NASA -- MSC



_ItgS'fER L[GT OF TESI'S AI_I] ANALYSES

[By Ew<t ]

_J
I

Number (T/A)

Location Title Objective - D_scripti_n Status - Results - Remarks
Monitors

IGNITION

One-Amp Fuse Test13-T-35(T)
NR

G. Johnson

I. Pinkel

13-T-_6(T)

N'R

R. Johnson

I. Pinkel

13-T-41(T)

MSC

R. Bricker

I. Pinkel

13-T-42(T)

MSC

C, Propp

I. Pinkel

13-T-44(T)

WSTF

A. Bond

I. Pinkel

Hot Wire Test oi"

Nonmetallic Tank

Materials

Failed Wire Over-

load Ignition

Ignition Capability

of Quantity Gage

Signal Conditioners

High Pressure LOX

Sensitivity of

Metallics with Sur-

face Oxide Penetra-

tions

Determine the time/current characteristics

of the 1-amp fuses in the tank fan circuit

using a spacecraft regulator and inverter.

Determine if Teflon materials in the tank

will ignite with ohmic heating at simulated

tank environment.

Determine if a failure or defect in a wire

could produce an overload condition with

eventual ignition of wire insulation.

Determine if the quantity gage signal con-

ditioners can supply sufficient energy _o

cause ignition in supercritical oxygen.

Determine if a freshly scored or abraded

surface of tank metal would provide an en-

vironment suitable for _nitiation of fire

under typical LOX tank operating con-
ditions.

C - April 19, 1970. Fuses blow at the

following times and currents: 0.010 seconc

-7.3 amps, 0.012 second - 5,O amps,

0.100 second - 3.1 amps, and 1.00 second -

_,o amps.

C - April 20, 1970. This test shows that

Teflon sleeving in supercritical oxygen car

he ignited by the burn-through of a ni-

chrome wire with 7 to 18 joules.

C - June i, 1970. No ignition was obtained

where fan motor wire was reduced to one

strand with electric current ranging up to

5 amperes. Current-time duration was fixed

by quick-blow 1-amp fuse used in fan motor

circuit. In a separate test, a 3-amp

current was held for 1 minute without

ignition.

C - May 18, 1970. Test with signal con-

ditioner showed that it is incapable of

generating enough electrical energy to

cause ignition of Teflon.

ECD - TBD. Tests to start June 5, 1970.

Metallic materials will be IIOOAI,

2024T-SAI, and 300_AI. Tests will be ex-

tended to include Alcoa AMS-_412 brazing
flux.

LEGEI_]: (T) - T_st (A) - Analyses C - Complt-tcd ECD - Estimated Com_let, i,0n Date TBD - % B,_. Determined

MSC Form }45 (OT) _ASA--_SC
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L,_.at.i_n li'Se Obje_tive - Ik. st'ritt]_n 2T tt,u; - R. s,2ts - R_::::_r<s

M_ni tort;

IGNITION

13-'r-62('r)
ARC

T. Canning

H. Mark

13-T-68(T)

ARC

J. Parker

H. Mark

15-T-69(7)

ARC

J. Parker

H. Mark

i_-T-70(T)
ARC

g. Parker

H. Mark

13-T-O4_(T)
mVMSC/XX
E. Tucker

I. Pinkel

Ignition Test of

Teflon Submerged i_

LOX

Flow Reactor Test

Arc Test of Tank

b_teria!s Submerged

in LOX at One Atmos-

phere

Ignition Test on

Tank Materials in

High-Pressure LOX

Determine the ignition potentiality cf Tef-

lon submerged in LOX from an electrical

short.

Determine the effect of flowing oxygen ,over

a heated polymer.

Determine ignition energy required !"rim a

shorL circuit to cause ignition in atmos-

pheric oxygen.

Determine the ignition energy require_ from

a short circuit to cause ignition in hi<h-

pressure LOX.

C - May 4, 1970. N_is test s:_ows that Tef-

lon can be ignited _y a low energy elec-

trical spark (5 f 3 joules) and gi.'es sus-

tained temperatures great enough melt

through the tes_ fixture. ;:eramic feed-

throughs and cause pressure increases.

C - May 4, 1970. The initial stage of deg-

radation follows a first-order process.

'The t{mlerature at which spontaneous

igni_i:m occurs is 500 ° C.

C - May 4, 1970. All materials zould be

igniteu but burning was very marginal.

Ignition energy under these conditions was

not determined.

C - May 4, 1970. lhe test indicated that

spark energies of 2.5 Joules would ignite

_eflon and initiate a metal-Teflon re-

action.

PROPAGATION OF COMBUSTION

Sample Analysis of

Residual Oxygen in

S/C 109 Surge Tank

Determine the contaminates Fresent _n the

residual oxygen in 5he surge tank as an aid

in identifying the possible source of ;_om-

gustion.

3 - _y 50, 1970. Tests shewed trace con-

ruminate level had not changed rrom that

or <ri_ihal tank fill.

-S:'H'[ii: (i) - lest (A) - Aaal.Tses <, -:3om[J_te i E,;D - ,_]stimatel ] mll,/:t- _ ,c. ['90- L _ >-:t<;!'m[net

NASA -- MSC

t,t;:"_ r_:"<; (r,.)



MA.STI_]R LIST Of' TESTS AND ANALYSES

[By Event ]

_J
!

Number (T/'A)

Location Title Objective - Description Status - Results - Remarks
Monitors

PROPAGATION OF COMBUSTION

15-T-O6(T)

MSC

R. Bricker

I. Pinkel

I}-T-12(T)

MSC

R. Bricker

I. Pinkel

13-T-18(T)

NR

E. Tucker

I. Pinkel

1}-T-48(T)

MSC

A. Bond

I. Pinkel

Ignition of Oxygen

Tank Metals by

Burning Teflon

Propagation Rates

of Ignited Teflon

Wire Insulation and

Glass-Filled Teflon

Inspection and Con-

tamination Analysis

of CM Cxygen System

Components - S/C

I09

Comparison of Un-

colored and Color-

Filled Teflon Flame

Propagation Rates

Determine if burning Teflon can ignite

metals at cryogenic conditions and attempt

to ignite quantity probe aluminum tube by

igniting the probe wires.

Determine the flame propagation rate of

various forms of Teflon used in the oxygen
tank.

Determine the contaminates present and

damage incurred in components of the oxygen

system as an _id in identifying the source

and extent of the anomaly.

Determine the electrical conductivity and

the flame propagation of colored, un-

colored, and fingerprint-contaminated

Teflon.

C - May 27, 1970. Iron, Inconel, and alum-

inum were ignited by burning Teflon in a

series of tests. A separate test showed

that a flame propagating along Teflon in-

sulation will enter the quantity probe in-

sulator. Posttest examination showed that

about a 2-inch diameter hole had burned

through the 3/8-inch thick stainless steel

tank closure plate.

C - May 15, 1970. Flame propagation rate

for Teflon insulation in 900 psia/-180 ° F

oxygen was 0.2 to 0.4 in/see downward. In

900 psia/75 ° F oxygen, Teflon gives 0.4 to

0.9 in/sec downward and 2 to lO in/sec up-

ward, and glass-filled Teflon gives 0.09 to

0.17 in/sec downward.

ECD - TBD. Work in progress. Laboratory

analysis of contaminants in oxygen system

components is to begin June 18, 1970.

C - May 15, 1970. This test was done under

TPS 13-T-12. The fingerprint portion will

be done at a later date.

LEGEnd): (T) - Test (A) - Analyses C - Completed ECD - Estimated Completion Date TBD -To Be Determined

MSC Form 345 (OT) NASA--Mse



_t%SPERLISTOFPESTSAIRANALYSES

[By Event ]

_J
I
<O
t_

Number (T/A)

Location Title Objective - Description Status - Results - Remarks

Monitors

PROPAGATION OF COMBUSTION

Teflon Flame Propa-

gation in Zero-g

13-T-49(T)

LeRC

A. Bond

I. Pinkel

15-T-56(T)

MSC

R. Bricker

I. Pinkel

13-T-57(T)

MSC

R. Bricker

I. Pinkel

13-T-58(T)

MSC

C. Propp

I. Pinkel

13-T-59(T)

MSC

C. Propp

B. Brown

Teflon Spark

Ignition

Teflon Propagation

Rates

Ignition and Flame

Propagation Tests

of Fan Motor Lead-

Wire System

Oxygen Tank Combus-

tion Propagation

Test

........ _). (T) _'_st (A)- _,_lj_es

Determine the propagation rates for fan

motor and temperature sensor wire bundle at

zero-g for comparison with data from tests

performed at one-g.

Determine the ignition energy of a variety

of Teflon materials not associated with

Apollo 15.

Determine the bounds of Teflon propagation

rates in supercritical oxygen.

To determine whether lead wire flame will

propagate into fan motor and ignite the in-

terior when immersed in oxygen at 900 psi

and -180 ° F.

Determine the pressure time history curve

of an oxygen tank if the lower motor lead

wires are i_nited between the entrance to

the motor and the exit from the heater

assembly.

ECD - June 17, 1970. Zero-g flame propaga-

tion rate over fan motor wire bundles in

clear Teflon sleeving is 0.12 in/sec and i_

white pigmented sleeving 0.15 to 0.}2 in/

sec. Measurement of zero-g flame propaga-

tion rate along wire in oxygen tank conduit

to start June i0.

ECD - August i, 1970.

ECD - August 30, 1970. Tests to start end

of June. Tests will establish flame propa-

gation rates for Teflon insulation formula-

tions which differ from present Apollo in-

sulations; to provide possible candidate

insulations of reduced fire hazard.

C - May 22, 1970. Flame propagates into

fan motor house without ignition of any

metals or stator windings.

C - June 4, 1970. Ignition point was

located at lower fan motor. Flame propa-

gated along wire insulation to tank conduit

approximately 1-1/2 as fast as observed _n

Apollo 13 flight oxygen tank. Tank failure

occurred in conduit close to tank closure

plate.

C - CLmpl_-ted ECD - Estimate! Compietiun Date TPD - To Be Desermined

, " (oT)MSC Form j4_

NASA--MSC



bt4:;ir]R LIS'I Of' [IES'S A]2D ANALYf, Eg

<-', E ":_.t 7

!
kO

f, ati_ ]i_! ,- O =e_tiv __ - [A-s:ri_ti h Status - Results - Remarks

N_ ,n i : <:r s

PROPAGATION OF COMBUSTION

Determine the principal products of 'omous-

_ion of F_flon in oxygen.

13-T-63 (T)

ARC

J. Parker

il. Mark

LRC

J. Hallisay

W. Ericksen

13-T-67(T)
ARC

J. Parker

H. Mark

.a-O6(A)

LRC

G. _alberg

W. Erickson

Products cf Com_ US-

rich t,f Teflon in

LOX

frcpagaticn Rate <r

7_f'icn C_mtt_sticn

in 2upercritieal

Oxygen

DYA on Motor Cem-

ponents

Computer Preiiction

cf Products from

Oxvgen/leflon Com-

bustion

Determine the propagation rate ol comt_:s-

tion along a wire in s_percritical oxygen.

Perform. a differential thermal analysis on

aluminum and leflon in air.

Compute tLe flame temperature and major

;omEus<ion products for a range of oxygen/

ieflon ratios and assumed heat losses.

? - May 4. 1970. N_e pri:_:isal product of

cc'mbusti_ was COF,_ with aL _:iergy release

:_ 121 k:a!/mole.

C - June 2, 1970. rest gi.es downwar]

propagation rate of 0.25 in/sec for a

single black wire.

C - May 4. 1970. _lis test shows that

a_proximacely 79_ keal/mole of heat are re-

leased when Teflon, alumih,_m, and oxygen

react.

C - May 19, 1970. The maximum flame tem-

peratare is 4360 ° F anti the major products

of combustion are COF2, CF 4, and CO 2. F 2

mole fraction is 0.i0 at highest tempera-

t ilTF-.

See Pressure Rise.

S<e ignit ic<.

LECENI): (T) - Test (A) - Analyses C - Completed ECD - Estimatei ,Jompietic,n Date T_D - To Be Determined

MS;; F_rrn 545 (0_')

NASA--M$C



MASTER 1I£'.. OF TESTS A]_ AliALYSES

[By Event ]

_J
I

kO
k_

::._,: <..r (r/.,°,)

L.J "kLion

_,]_ni " urs

I}-T-17Ri(T)

MSC

C, Propp

W. Eriekson

i}-T-26(T)

MSC

P. McLaughlsm

F. Smith

I}-T-46(T)

ARC

A. Bond

F. Smith

B-62(T)
MSC

C. Propp

E. Cortright

Title Objective - Description

PRESSURE RISE

Oxygen Tank Wiring

Conduit Propagation

Rate and Pressure

Buildup

Flowmeter Test

Filter Clogging by

COF 2

Simulated Tank Fire

Determine the propagation rate of combus-

tion and the pressure increase in the tank

conduit filled with supercritical oxygen

when the wiring is ignited at the elec-

trical connector end of the conduit.

Determine the effects of oxygen pressure

and temperature variations on flowraeter

output to analyze why the flowmeter be-

havior led the remaining instrumentation in

the timeline prior to failure.

Determine if the oxygen tank filter can be

clogged by COF 2 snow.

Investigate pressure-temperature profiles

and propagation patterns within a zlosel/

simulated oxygen tank with various ignition

points.

Status - Results - Remarks

C - May 17, 1970. Ignition started in con-

duit behind electrical connector. Conduit

ruptured approximately 2 to 3 seconds after

ignition.

C - April 27, 1970. During the ambient

temperature test a step pressure increase

would result in a spike in the flowmeter

output but the flowrate indication would

not show any other change. At low tempera-

tures an increase or decrease in pressure

would give an indicated corresponding

change in flow. At constant pressure a

temperature change would give an indicated

flow change. All of these effects were

known and the data do not have to be

corrected for any unexpected behavior of

the flowmeter.

ECD - TBD. This test has not yet been con-

ducted.

This test was conducted under TPS 13-T-59.

LEGEI_D: ('f) - Ses

MSC Form 54_ (0i)

(A) - Amalyses C - Completed ECD - Estima ,÷-i Comli' < l)n Dat_ T_D - 'r<)B_ D_t,ermineJ

NASA -- MSC



MASTER iI31 OF TESIS AlJD Ai;ALYSES

[By _]ve_t ]

!

Number (T/A)
Location Title Objective - Des::ripti)n Status - Results - Remarks

Monitors

PRESSURE RISE

A-87(A)

MSC/LRC

R. Ried/

G. Walberg

W. Erickson

Energy Required to

Account for Ob-

served Pressure

Rise

13-T-02(T)

MSC

C. Propp

V. Johnson

Determine the energy required to explain

the observed pressure rise in oxygen tank

no. 2. An isentropic compression of the

oxygen is considered as well as a _onstant

density process with heat addition.

C - May 19, 1970. The minimum energy re-

quired (isentropie) is about iO Btu and the

maximum (constant density) is about

i}0 BtLl.

15-T-37(T) See Final Instrument Loss.

TEMPERATURE RISE

13-T-38(T) See Final Instrument Loss.

B-62(T) See Pressure Rise.

PRESSURE DROP

Relief Valve Blow-

down Investigation

Determine the differential pressure between

a simulated oxygen tank and the flight

pressure transducer as a function of a mass

flew through the relief valve. Also deter-

mine the response of the flight transducer

to a step pressure stimulus.

C - April 27, 1970. The maximum pressure

difference between the tank and the flight

transducer was 9 psig at a flow rate of

182 ib/hr. B_e pressure stimulus of 75 psi

was transmitt_/ t_. the fli_h5 transducer in

24 milliseconds and reached iOO percent of

the step pressure in 57 milliseconds. This

test shows that the flight transducer will

follow the system pressure under high flow

rates and step pressure increases and will

not introduce significant errors in the _]_

data.

LEGEND: (T) - Test (A) - A_mlyses C - Completed ECD - Estimated Completion Date TBD - To Re De%ermined

NASA--MSC

MSC Form 545 (OT)



MASTER LIS'! OF TESTS AI'fD ANALYSES

[By Event ]

I
<O

Numt)e r (T/A)

Lo_atiun Title Obj_ctiv_ - Lk.scription Status - Results - Remarks
Monitors

PRESSURE DROP

Relief Valve Flow Determine the flow rate of the relief valve

Tests at temperatures from 360 ° R to i060 _ R.

13-T-16(T)

Parker A/C

W. Chandler

V. Johnson

13-T-27(T)

MSC

P. Crabb

N. Armstrong

iS-T-31(T)

Parker A/C

L. Johnson

S. Himmel

A-24(A)

MSC

W. Chandler

F. Smith

Oxygen Relief Valve

System Simulation

at 80 ° F

Relief Valve Flow

Rate

Oxygen Tank Filter

Determine the pressure drop between the

filter and the relief valve, and the flight

pressure transducer response to a step

pressure increase.

Determine flow rate through a fully open

relief valve.

Determine flow rates and pressure drops

through lines and filter to account for

those pressure measurements noted during

the flight. Consider the case of a com-

pletely clogged filter.

C - May 15, 1970. The flow rate at these

temperatures ranged from approximately

0.016 to 0.034 ib-m/see. This is greater

than is required to produce the observed

pressure drop.

C - April 21, 1970. The maximum recorded

pressure drop between the simulated tank

and pressure transducer was 18 psi. A

500-psi step increase in the "tank" was

measured by the pressure transducer with a

delay of about lO0 milliseconds. This test

indicates that under conditions of warm gas

and an open filter, the pressure transducer

will follow actual tank pressure with

reasonable accuracies in magnitude and
time.

C - April 21, 1970. The crack pressure of

the valve was 1OO5 psig and it was fully

open at i010 psig. The maximum flow rate

of GO)( was 34.5 ib/hr and 108 ib/hr for
LOX.

C - May 14, 1970. The analysis showed that

if the filter had been clogged, the rate of

pressure drop would have been much greater

than that observed in the data. Analysis

shows that the pressure relief valve can

reduce the oxygen tank pressure at the rate

shown in the telemetry data.

LEGEnd): (T) - Test (A) - Analyses C - Completed ECD - Estimated Completion Date TBD - To Be Determined
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MASTER LIST OF TESTS AND ANALYSES

[By Event ]

!
<O
OO

[_umbe r (T/'A)

Location Title Objective - Description Status - Results - Remarks

Monitors

PRESSURE DROP

Premature Relief

Valve Opening

A-55(A)
MSC

W. Rice

N. Armstrong

To determine if a premature relief valve

opening would account for the 15 seconds of'

constant tank pressure after the initial

pressure rise, assuming several gas tem-

peratures.

C - May 14, 1970. This analysis showed

that the relief valve flow would have

caused a pressure drop, not a plateau.

13-T-71(T) See Tank Failure.

FINAL INSTRUMENT LOSS

15-T-37

Beech A/C

R. Urbach

R. Wells

13-T-38(T)

Beech A/C

W. Rice

A-3 (A)

MSC

G. Johnson

J. Williams

Pressure Transducer

Test

Temperature Sensor

Response

Time Tabulation of

Alarms

Determine the pressure transducer output

characteristics at extremely low tempera-

tures.

Determine the temperature sensor response

time in a rapidly changing temperature en-
vironment.

?o determine times and causes for caution

and warning alarms during the mission.

C - April 21, 1970. The pressure trans-

ducer gives erratic readings below -250 ° F.

Temperatures in the oxygen tank were always

above -190 ° F.

C - April 18, 1970. This test gave sensor

response rates of 5 ° to 12 ° F per second

over a range of +60 ° to -317 ° F.

C - May 14, 1970. These data were usei by

Panel i in their analyses of mission

events.

LEGEm): (T) - Test (A) - Analyses C - Completed ECD - Estimated Completion Date TBD - To Be Determined

NASA--MSC

MScPorm _45 (OT)



I9\LTER LIST OF' T'<S]13 Ai_D Ai_AIYSES

[Bj E.,_r._ ]

_J
i

_er (C/A)
Location

Monitors

Title Objective - Description Status - Results - Remarks

TELEMETRY LOSS

A-2(A)

MSC

M. Kingsley

J. Williams

High Gain Antenna

Signal Loss

To explain the difficulties associated with

acquiring high-gain antenna operation at

55 hours 5 minutes into the mission.

C - May 14, 1970. This was not a specific

antenna problem which could be isolated to

this mission. Previous missions have en-

countered similar problems. This dif-

ficulty is not considered significant to

the Apollo 13 incident.

TANK FAILURE

13-T-29(T)

Boeing

S. Glorioso

B. Brown

13-T-40(T)

MSC

S. Glorioso

B. Brown

I_-T-61(T)

MSC

S. Glorioso

B. Brown

1}-T-71(T)

LeRC

W. Chandler

S. Himme i

LEGE_[):

Fracture Mechanics

Data for EB Welded

Inconel 718 in LOX

Torch Test of In-

conel 718

Crack Growth of

Cracked Inconel EB

Welds

Supercritical

Oxygen Blowdown

Test

Determine the fracture toughness and LOX

threshold of electron beam welded Inconel

718 tank materials.

Determine the burn-through tolerance of In-

conel 718, by prestressing the specimen to

tank operating pressure and burning through

the specimen with an oxyacetylene torch.

Weld specimens (0.125 inch thick) con-

taining cracks will be tested in liquid

nitrogen and subjected to a mean stress

corresponding to a relief valve pressure in

the supercritieal oxygen tank with a super-

imposed cyclic stress equal to that caused

by heater operation.

Determine the transient thermodynamic pro-

cess involved in sudden venting of super-

critical oxygen t_ a hard vacuum.

C - June 3, 1970. Test results show that a

through fracture greater than 3 inches long

would be required to cause rupture of the

pressure vessel.

C - May 18, 1970. The significant result

of this test is that fairly large holes

must be burned through Inconel 718 to cause

catastrophic failure.

ECD - July 15, 1970.

ECD - June 16, 1970. Apparatus being

assembled for this test.

(T) - Test (A) - Analyses C - C,_T_:_:icted ECD - Estimatel 3c:ml]etion i):_e TPD - T; Be Determined

NASA--MSC

MSC Form _ (OT)



IL." '_.,'_; LIST OF TESPS AND Ali.'i':_£S

[By Event ]

_J
!

O
O

,:::_:, (:'i)
Lz:'ation

i. ":" tors

.... So(A)
MSP

P. Glynn

:',. Brow_]

A-_/(A)
t.ISC

P. _lynn

_. Brown

A-40(T)
Poeing Co.

P. Glynn

B. Brown

MSC/Boeing

P. Glynn

[:. _row_

.':-_(_)
:gU'Boeing
J. ]2tanchJk

>. Brown

_._"3E2;1}: (T) - Test

Title Objective - Description Status - Results - Remarks

TANK FAILURE

Stress Analysis of

Oxygen Tank Neck

Areas

Complete Tank Stres_

Analysis

Fracture Test on

Oxygen Tank

Tensile Test at Low

and Elevated Tem-

peratures

Fracture Mechanics

Review of All Apoll(

Pressure Vessels

To determine whether failures of the oxyger

tank neck area might be initiated by the

combined effects of pressure and thermal

stresses.

To provide information on the complete de-

sign stress analysis and on the assumption

of membrane stress made in the fracture

mechanics analysis with particular emphasis

on low discontinuity areas.

Carry out fracture mechanics tests and

analysis of the oxygen tank.

Determine the tensile strength of Inconel

718 and EB weld in the temperature range

from -320 ° to +18OO ° F.

To assess the adequacy of ;revious fracture

analyses and to identify areas where ad-

ditienal data are needed.

C - May 19, 1970. The analysis was per-

formed using three assumptions on thermal

inputs. In all cases analysis showe2 that

the =onduit would fail rather tna_ the

vessel.

C - May i], 1970. Received two cu_rsory

stress analysis reports. Factors of safet_

acceptable for all conditions analyzed.

C - June 3, 1970. Test shows that the

failure mode of the tank would have

probably been leaking and no5 a rupture.

C - May 20, 1970. All information fur-

nished on typical ultimate and yield

strength lata showed adequate safety mar-

gins for Fressures reached in tank.

ECD - June 19, 1970. .4_alys s ls trderway.

(A) - A_Jalyses C - C:mI:lete! ECD - Estimatei Comiieti,m I):.T,: FT:D - F_ D-" P' :,<i



MASTER LIST OF ir],]?S AND ANALYSES

[By Event ]

_J
I

O

Number (T/A)

Location Title Objective - ik,scription Status - ResulLs - R_marks.

Monitors

OXYGEN TANK NO. 1 PRESSURE LOSS

Oxygen Tank Blow-

down

13-T-59(T)
Beech A/C

W. Rice

H. Mark

A-56(A)

MSC

W. Chandler

g. Baehr

Hardware Damage -

Tank i

15-T-50(T)

MSC

R. Bricker

W. Eriekson

13-T-54(T)

NR

D. Arabian

S. Himmel

Oxygen Impingement

Test on Mylar In-

sulation

Fuel Cell Radiator

Inlet Temperature

Response Test

Determine the rate of pressure decay from

oxygen tank XTA 00041 through simulated

delivery and vent line fracture starting at

78 percent density level, and 900 psig and

ending at ambient pressure.

Determine what hardware damage would be re-

quired to explain the loss of pressure from

oxygen tank no. i.

C - April 20, 1970. Vent through delivery

line (O.1870D x O.OI5W) reached 550 psia in

25 seconds and 160 psia in 600 seconds.

Vent through vent line (0.5750D x O.OI5W)

reached 415 psia in 5 seconds and ambient

in 560 seconds.

C - May 18, 1970. The analysis shows that

a hole from 0.076 inch to 0.108 inch in

diameter would be required to explain the

pressure loss in tank no. 1.

PANEL LOSS

Determine if Mylar insulation can be ig-

nited by a jet of hot oxygen.

Determine thermal response of temperature

sensor installed on EPS water-glycol line.

C - June 5, 1970. The lowest pressure at

which the Mylar will burn in a static

oxygen atmosphere with flame ignition is

0.5 psia. Impingement of i000 ° F and

1200 ° F oxygen at 80 psia did not ignite

the Mylar blanket. (A test is being pre-

pared to attempt to ignite Mylar in the

configuration of the oxygen tank area.)

C - May 20, 1970. Results indicate that

under no-flow conditions 5he flight pro-

files could not be reproduced. Initial re-

sponse of the temperature sensor occurred

in 0.25 second after heat application.

LEGEI_I): (T) - Test (A) - Analyses C - Completed ECD - Estimated Completion Date TPD - 2c Be Determined

M_'7 Form 545 (OT)

NASA--MSC



MASTER LIST OF TESTS AND ANALYSES

[By Event ]

_J
!

O
?O

141m_er (_ A)

Lo,::ati_ri li!l¢ Objective - Descriptic, n Status - R._sults - R_r'a.,'ks

Moni" <rs

PANEL LOSS

One-Half Scale Panel

Separation 'Pest

1}-T-65(T)

LRC

£. .Morgan

_' mF [_=kso:

I3-T-66(T)
LRC

M. Ellis

W. Erickson

l_-T=75(r)
MSFC

J. Nunellej

W. Ericks_n

l_-?-T<i(r)
MSFC

C. Key

W. Erickson

Hot Oxygen Impinge-

ment on Mylar Ig-

nition Test

Heats of Csm:kustion

of Teflon. _ylar

and Kapton

_it'esh<ll Oxygen

Pr_ss_r_ ibr _[,_lar

& Ka}ton Flam_

Propagation

Determine the pressure impulse necessary to

cause complete panel separation and deter-

mine the mode of failure. A i/2-scale

mode! of SM _ay 4 is use/ with stru_turally

scaled best _anels. T_sts are -o _e run in

va:!uum witti appropriate .ent areas. Pan_l

isaiing is simulated by a ru}il pressure

pulse.

Determine if the Mylar insulation blanket

will oe ignited by a jet of hot oxygen an_

estimate the rate of combustion.

De%ermine the heats of somcustinn cf Tef-

lon. Mylar, aluminized N_vlar. arid alumi-

nized Kapt::n.

Dezermine the threshold ox[,gen pressure for

flume propagation nr P_'iur _n_i Eagles

films.

C - June 2, 1970. Complete separation of
/

i/2-scale honey_.cmt panel models in vacuum

was demonstratei f_r a rapi_ _,'_:_ loaded

pr, zslre pulse a!i] Yet _liif_r_h _ressure.

_eparatiLn for non mifrrm !oafling o:;eurred

wl triin atout 20 mi!lis_- nds. leak

press_r_s that occur in tne ox2"gen sheif

space are near 50 psia, 25 psia in fuel

cell shelf, and somewha_ less than i0 psia

in tunnel volume.

C - May 18, 1970. Mylar blanket can be

ignited by a hot oxygen (15OO _ F) jet at

pressures above iO psia. Combustion of a

1-foot square sample requires about 15 sec-

onds. More rapid combustion occurs witi_

70 ° F at iO psia oxygen when Mylar is ig-

nited with Pyrofuse.

? - Hay 27, 1970. H_ats of combustion

_ere: T_i'!on - 22C< <t],/!t. M¥1ar -

_;, ,_ ['_lh, Kapton - l O.i'OO ftu/ib.

S - !day 2;, 1])7©. i6xiti_n tnrssncld

_xygen _r_ssure ran6ed from O.7 to [,5 _si

f_r _oth aluminized _'iar and Kupton under

_-utis cnn_itions.

NASA--MSC



_.L_JIER LiS'i Oi' rESiS Ai._D ANALYSES

P>, Event ]

!
k-J
O
Co

:iu_,oer (L'A)

i,c tr]ti: ! i i _i,_ Obje_-tive - Des N'ipt. __,;, Status - R _sults - Remarks

Honl i <Jrs

P?d:EL LOSS

A-6_(A)
MSC

P. Olynn

V. Johnson

A-6_(A)

MSC

M. Wind!__ r

W. Hedri _k

A-88(A)
LRC

5. Walberg

/J, Erickson

A-9}@)
LRC

R. Trimpi

W. Erickson

LE]END: (i) - i'_s_

HSC F;rm _4_ (OT)

CM-_,! Heat Shield

and Attach F_ttings

Analysis

Panel Trajectory

Prediction of Com-

b,_stion Pro_u_rts

from Ox_y_en/Myiar

Oxi4ation

Calculated Pressure

Rise in Bay _ Due

t< Com%ustisn

Determine if there is any reasona_ie p_s-

sibJlizy of estimating rhe pressur_ i_ads

applied t_ the bay 4 panel Ly reviewing the

design of _he CM heat shield structure aud

_he C%I-SM attach fitt.[ngs.

To determine if the bay _ panel is in lunar

or earth orbit: if so_ -o investigate the

possibility of getting photo@raphs of thu

panel on some future manned space fligh<..

Compute the flame temperature and major

combustion products for an o×ygen/My!ar r_-

action over a range of oxygen/}_lar ratios.

Calsulaze _he press_re rise in the oxygen

tank shelf which could result from various

modes of r,ank rupture. Consider tasks with

and without combustion.

C - May 22, 1970. Visu_l inspection of the

bolt assembly between ti__ CM-SM interface

revealed no _hread damage. It is im-

prcoable that the bulkhead experienced any

s_rueturally significant pressures during

%he event.

C - May 15, 1970. Analysis revealed that

the mos_ protahle tra ect,_ry l_d to an im-

pact of tue pa_i _n tke H:;on.

C - May 25, 1970. Flame temperature is

47p0 _ and 5400 _ F for stoishiometric com-

bustion at 1.5 and 60 psia. For oxygen/

Mylar molar ratios of iO, the flame tem-

perature is 2350 ° and 2400 ° F at 1.5 and

60 psia. Combustion products are CO o and

Ho0 below 3_00 _ F ani include UO an_ 0 at

the blather temperaL_res.

C - June 8, 1970. A maximum pressure rise

::r at:cut 9 psia is achieve[ in the oxygen

sLelf space for no combustion based on

initial tank e_nditions -f 900 psia/-190 ° F

ana a 2-inch diameter oriri:_, ibis pres-

sure s_urs at 180 milliseconds after rup-

tare. An estimate with combustion Of*

0.2 i% of _]ar indicates a press;re rise
m

of about 55 }sia.

(A) - Analyses C - Completed ECD - Estima_)e] 3omI, ietfon i,_te TPD - To Be D,,termined



MASTEi LIST Of' TESI<_ AND AI{fdJYSES

L_-.v Ev,::it ]

!

0
4¢-

Locati_ !_

Monit, r_

A-94(T)
LRC

i',1. Ellis

W. Er_ 'kz

A-95(A)
LRC

R. Trimpi

W. Erickson

13-T-32(T)

NR

R. Johnson

R. Wells

I_-T-26(!)

Ti,le
Objective - _,s2ri_t] Status - Results - Remarks

PA}_L LOSS

Mylar Combustion

T_sts with Super-

"ri*i-al Oxygen in

,<im_lated Shelf

Spau_

Analysis of Tempera-

ture by Sensors Out-

side Shelf Space

Observe the nature of the comoustio._ oi'

Mylar insulation blanket with sulercriti:_al

oxygen in a simulate_ suL'_Y spa _ ._-,]im>.,

Measure tL_ resulting pressure rise for

various rr_o<tes of ignition u_]q simulateJ

tank ru_ turn.

Use the flight measured temperature-time

histories for sensors outside shelf space

to estimate the temperature of the gas

which flows from shelf space.

SIDE EFFECTS

C - June 6, 1970. Mylar ins_lation flanker

burns completely when igh[te i be p,vrofuse

anl exposed to oxygen _xh_nstir,_ Fr-m

::nmsber at. 900 psia/-/[}o F. i)ur_< _in oz'

CO_O_sti:7:_] pFocess is a[clt o to _ SccoHis.

The pressure rise rate witn <_m[..;tion in

these tests is about '[ times that _easured

with no combustion,

C - June 9, 1970. Examination of the tem-

perature-time histories suggests heat

addition outside of oxygen tank.

Fuel Cell Valve

Mod_le - Reactan_

Valve Shock Test

Determine the effect of a high g load on

the fuel sell reactant shutoff valves.
C - April 20, 1970. _is test showed that

the reactant valves shut under l_wer shock

loads than the RCS va].'es. Sin,_e a _orti<,n

of the RCS valves clo_-i a _ "!m _ime of the

[ncldenL. the rea:._tant ",_ives pro: abij_

closed due to *he sho<k l,>a_[::g.

S_e Pressdre Rise,

LEC'<:_I): (:) - Test (A) - Aaalyses C - C<,mlicted ECD - Estimated Completion Date T_D - Tc B_ Determined

I_[S() F::rm Jq'; (OT) NASA--MSC



MA:r[<R ilZT Of' TE.NS AND ANA3_YSES

[B:/ Ew-r!t ]

_J
!
k-J
O

:;,;rater (I,;:)
Lo'ati<h Titi_ OLj_:_tive - D_scrilti_n Stat_s - I_Js_its - R{-m;_'_s

_._oni<ors

MISCELLANEOUS

ECD - _D. Test has not yet been con-

Ju¢ted.

I_-T-43(T)

MSC

C. Propp

S. Himmel

I}-T-51(T)

KR

d. Diaz

F. Smith

l_-T-52(T)

WSTF

M. Steinthal

I. Pinkel

13-T-VS(T)
MSC

C. Propp

H. Mark

13-T-73(T)

MSC

C. Propp

H. Mark

Development of

Service Procedure

for Apollo 14

LOX Tank Fan Motor

Examination

N204 and A-50 Re-

activity with ief-

ion Insulated Wire

Reactivity of

_vdrogen Tank Ma-

terials

Spark Ignition

Threshold and Prop-

agation Rates for

Hydrogen Tank Ma-

terial in Gaseous

Hydrogen

Develop new operating procedures for groun=

operations tc prevent stratification in rht

oxjgen tanks.

lffentil_ nonmetallic motor parts and pro-

vide information on their usage. Identify

surfaces containing Drilube 822 and look

for signs of corrosion.

Determine the reactivity of' Teflon in N204

and A-50 when arcing or short _ir-uiting

occurs.

Hydrogen materials will be ig_:ttel in

gaseous hydrogen at various temperatures.

Ignition will be by a nit,rome wire ele_-

tri_ally heated until failure occurs.

Determine spark ignition threshold anti com-

bustion propagation rates for hjdrogen tank

material in gaseous and s_percri_i:al hy-

drogen at various temperatures.

C - May 12, 1970. The motor _arts were

identified for the use of Panel i. Drilube

822 was used on threaded areas or the motor

housing and mounting hardware. The motor

showed evidence of corrosion at areas of

contact of dissimilar metals.

ECD - Jun_- 12, 1970. 1_e overload test has

been completed and the arcing test is bein@

prepared. The overloau test shows a maxi-

mum temperature rise of 2 F and maximum

pressure rise of 2 psi. ihere have been nc

reactions with _ir_er N O_ or A-50.
- 2. 4

ECD - June _0, 1970. _te test has not ye!

been conauct, e i.

ECD - June 19, 1970. The test has not yet

been conduut¢ff.

f _..... i)Ln ,ni_ . _Tj -

MSC Form 34_ (OT)

(A) - Analyses C - Completed ECD - Estimated Completion Dat< TBD - T< B_ D_termfned

NASA--MSC



i%AS!Ek LIST OF 'r'E'S2IS AL_) AHfk[IYS_[;

LP.y Event ]

_J
I

g

:Ium:,_,. 0 "z)
L, cat.ioh

M,?_]it Jr;:

]i!i,: Objective - l>:_s:ripticn St}ttN:; - Resllt2 - Remarks

MISCELLAI_ous

MSC

{2 Propp

H. Hark

,:G{C

E, din£1 :'

H. Mark

I;rni tiorl oF

S]pe . [fic C, nf'i_art_-

[::n." in Hydrog:_

I _ /'i :t ]_!uminum

I6:!_<:]:n in inert

A t_n : i phe re

Details ffepenff on results cf i5-[-72 ani

_J. Sill mo<:kup h.'¢_rogen tank !Gr:ii_KurR-

l.,_ePmi:: wh_ther 27 is pcssi:.R o [_x'.'e

i,:f'lon ctni :_imminum i:: an i:]er< atmosFm,:r<

EJD - J &y i, ]J (. Fhe test has t::_t yet

[(:'en o.qdu:_e i.

,; - "laj =p. 1_ ,:. t ;<F_ :i xhi iowdmr,'_

&l_mi._lam mixtuc_ -<uld be male <) :)urn.

lligh ignition _nergies (grealer than

iO joules) were necessary and it was ruund

that the aluminum had to be finely diviJed
before it would burn.

- • - _' ..FI,;: _ed ECD - Estimat-I Ccmtie< ].)ri 2_'xt_ I_BD - ?< Be Determined

MSC F:rm 5,4} (OT) NASA--NSC



PART F5

FAULT TREE ANALYSIS - APOLLO 13 ACCIDENT*

INTRODUCTION

This report contains a fault tree analysis of the applicable por-

tions of the electrical power and cryogenic system,s involved in the

Apollo 13 incident. It was prepared by the Boeing Company under the

direction of MSC and at the request of the Apollo 13 Review Board.

PURPOSE

The purpose of this analysis is to identify potential causes that

could lead to the loss of the SM main bus power, to show their logical

associations, and to categorize them as being true or false for the

Apollo 13 incident based upon available data, analyses, and tests. The

prime emphasis is to identify the initiating cause, and secondarily,

the sequence of events leading to the loss of SM main bus power.

SCOPE

This fault tree identified the applicable ECS/cryogenic system

hardware and potential causes, down to the component or groups of com-

ponents level. The logical association of the potential causes is shown

graphically and is developed tracing the system functions backwards.

Each potential cause is categorized as being true or false where flight

data, ground tests, technical analyses, and/or engineering judgment pro-

vide sufficient rationale. The main thread to determine the initiating

cause is identified in the fault tree. The tree does not include unre-

lated or secondary effects of the failure (i.e., quantity gage malfunc-

tion, panel blow-off, fire in the service module).

Pages F-lOS through F-l14 provide information on symbo!ogy, termi-

nology, abbreviations, references, and schematics for reference during

review of the fault tree. Page F-ill identifies what pages of the fault

tree are associated with the various segments of the system. Page F-l15

pictorially depicts the required layout of the pages of the fault tree

to provide an overview of the complete system.

*Extracted from "Fault Tree Analysis - Apollo 13 Incident_" dated

June 5, 1970, under Contract NAS 9-10364 - Task Item 9.0, for MSC

Apollo 13 Review Board, Action Item 35.

F-10?



DESCRIPTION OF FAULT TREE DEVELOPMENT PROCESS:

BEGINNING FROM THE DEFINED UNDESIRED EVENT, "FUEL CELL POWER
NOT AVAILABLE ON SM BUSES", THE CAUSATIVE FACTORS HAVE BEEN
SHOWNBY MEANS OF LOGIC DIAGRAMMING. GIVEN THAT A SPECIFIED
EVENT CAN OCCUR, ALL POSSIBLE CAUSES FOR THAT EVENT ARE ARRAYED
UNDER IT. IT IS IMPORTANT TO NOTE THAT THIS LISTING INCLUDES ALL
POSSIBLE WAYS IN WHICH THE EVENT CAN OCCUR. NEXT, THE RELATION-
SHIP OF THESE CAUSATIVE FACTORS TO ONE ANOTHER AND TO THE
ULTIMATE EVENT IS EVALUATED AND A DETERMINATION AS TO WHETHER
THE DEFINED CAUSES ARE MUTUALLY INDEPENDENT, OR ARE REQUIRED TO
COEXIST, IS MADE. THE SYMBOLOGYEMPLOYED TO ILLUSTRATE THE
THOUGHT PROCESS IS AS FOLLOWS:

L__]
FAILURE/CAUSE STATEMENT - FAILURES ARE
SHOWNWITHIN THE LOGIC BLOCKS - TRUE AND
FALSE STATEMENTS AND RATIONALE ARE
ADJACENT TO THE APPLICABLE BLOCKS.

"OR" GATE - THOSE CAUSES WHICH ARE CAPABLE,
INDEPENDENTLY, OF BRINGING ABOUT THE
UNDESIRED EVENT ARE ARRAYED HORIZONTALLY
BELOW THE "OR" SYMBOLS.

"AND" GATE - THOSE CAUSES WHICH MUST
COEXIST ARE ARRAYED HORIZONTALLY BELOW
THE "AND" SYMBOLS.

"INHIBIT" GATE - THOSE FACTORS WHICH

INTRODUCE ELEMENTS OF CONDITIONALPROBABILITY, AND WHICH ARE REQUIRED TO
COEXIST WITH OTHER CAUSES, ARE DEFINED
AS "INHIBIT" FUNCTIONS.

"HOUSE" - THOSE CAUSATIVE FACTORS WHICHARE NORMALLY EXPECTED TO EXIST, OR TO
OCCUR, ARE SHOWNAS "HOUSES"

"DIAMOND" - TERMINATED FOR THIS SUB-BRANCH;
FURTHER DEVELOPMENT NOT REQUIRED FOR THIS
ANALYSIS.

"CUT CORNER" - INDICATES THIS IS A KEY OR

___ _ NODAL BLOCK. ANALYSIS OF THESE BLOCKSWAS PERFORMEDIN GREATER DEPTH SINCE
THEY "CONTROL" SIGNIFICANT PORTIONS OF
THE FAULT TREE.
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TRUTH STATEMENT CATEGORIZATION:

EACH FAILURE STATEMENT IS REVIEWED TO DETERMINE WHETHER IT IS
TRUE OR FALSE. THE TYPE DATA USED TO SUPPORT A STATEMENT BEING
TRUE OR FALSE IS IDENTIFIED. IN ADDITION, THE SUPPORTING DATA
SOURCES ARE REFERENCED.

CATEGORY

F = FALSE

T = TRUE

EXAMPLE:

CODE KEY

DATA TYPE

FD = PER FLIGHT DATA

A = PER ANALYSIS

GD = PER GROUND DATA

EJ = PER ENGINEERING JUDGEMENT

TE = PER TEST

SL = SUBORDINATE LOGIC
(SUPPORTED BY SUB-TIER
LOGIC.)

F - FD = FALSE PER FLIGHT DATA

REFERENCES:

I. MSC APOLLO INVESTIGATION TEAM PANEL I, PRELIMINARY REPORT,
DATED APRIL 1970

2. APOLLO 13 UNPUBLISHED FLIGHT DATA, AVAILABLE AT NASA/MSC
BUILDING 45, 3RD FLOOR, DATA ROOM

3. NASA/MSC TPS 13-T-58, IGNITION OF DESTRATIFICATION MOTOR TEST

4. MSC APOLLO INVESTIGATION TEAM PANEL I, APOLLO 13 CRYOGENIC
OXYGEN TANK 2 ANOMALY REPORT (INTERIM DRAFT), DATED MAY 22, 1970

5. NASA/MSC TPS 13-T-53, HEATER ASSEMBLY TEMPERATURE PROFILE

6. NASA/MSC TPS 13-T-59, OXYGEN TANK IGNITION SIMULATION
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LIST OF ABBREVIATIONS

AL.

ASSY

CAP

CRYO

CU

ECS

ELEC

EOI

EPS

FAB

FC

FIG.

GEN

H2

H20

MECH

MSC

NASA

NEG.

NO.

O2

OS-X

PARA.

PRELIM.

PRESS

QTY

REF,

RF

s/c

SM

STRUCT

SYS

TEMP

ALUMINUM

ASSEMBLY

CAPABILITY

CRYOGENIC

COPPER

- ENVIRONMENTAL CONTROL SYSTEM

- ELECTRICAL

- EARTH ORBIT INSERTION

- ELECTRICAL POWER SYSTEM

- FABRICATION

- FUEL CELL

- FIGURE

- GENERATE OR GENERATED

- HYDROGEN

- WATER

- MECHANICAL

- MANNED SPACECRAFT CENTER

- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

- NEGATIVE

- NUMBER

OXYGEN

OXYGEN SUPPLY CONNECTION I, 2 OR 3

PARAGRAPH

- PRELIMINARY

- PRESSURE OR PRESSURIZED

- QUANTITY

- REFERENCE

- RADIO FREQUENCY

- SPACECRAFT

- SERVICE MODULE

- STRUCTURE OR STRUCTURAL

- SYSTEM

- TEMPERATURE

F-IIO
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SIMPLIFIED SCHEMATIC OF EPS

AND CRYOGENIC OXYGEN SYSTEM

N

B

U
S

A 4------- PAGE I -_-

OS -_

cT_] OXYGEN

PURGE

"] H 1,_
I T°ll
I ECSII

i jTIII, .....
I

PA_ 2,-. !

I

I

I

I

M!

A t_AG[ I _ PAGE I! i _--;
N I

_, i OS-1 l
L

II I FUEL CELL VALVE MODULE

_I I LSTORAG(

VALVE
TO

MODULE
ECS

[_ O_ YCI_I 9,_PLY CONN[C T ION [_ CHECK VAEV1E

Q OXYGEN FLOWM{'/ER _ FILTER

Q PR[SSUR[TRANSDUC[R

PRESSUR[ SWITCH
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I

CRYOGENIC P/J 1_L

FAN MOTOR MTR _ X
SW

(_A... AUTO i---oTo--..1NEUTRAL-- S

TYP. _.- L
_---R

(TYPICAL) _ W

_-.-M
MTR _ E

_N o_HEATER_.._ _._

28 VDC ON t

_> I15 VAC, 400 CPS
FROM INVERTER 2
(CONNECTED TO MAIN B)

DC RETURN J

OXYGEN TANK NO. 2 IP/JI

1iTEMP.

SENSOR

52.8W(TOTAL)

QUANTI T__---_-: Q]

PROBE--_

R2

155 WATTS

,---;Zlm.

IVAC -ION] ]MAPUMP _R]/--

SIGNAL
CONDITIONER

TEMP.
+

DENSITY

+

VAC-ION PUMP

_0-5 VDC
TLM

AC2

I>

0-5 VDC

TLM
METER

CONVERTER MAIN B28 VDC

p50 MA
LIMIT

OXYGEN TANK NO. 2 ELECTRICAL SCHEMATIC
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INCONEL

CONDUIT

HEATER AND
FAN HARNESS (4)
LEADS

MOTOR AL

FAN AL

HEATER THERMO

HEATER
TUBE STAINLESS

QUANTITY PROBE LEADS

TEMPERATURE SENSOR LEADS

INCONEL
HOUSING

GLASS-FILLED TEFLON

TEMPERATURE SENSOR

TUBE
.032

TO LOWER
MOTOR

WIRE LENGTH
UNCERTAIN

UPPER HEATER AND PROBE ASSEMBLY

vii



_J
!

_p-

TFE GROMMET---,J

CONDUIT

I ""

FAN MOTOR
LEAD

CAPACITANCE_

GAGING PROBE

;i.

0 0

DETAIL OF HEATER

ASSEMBLY

TINNED COPPER CLIPINPELLER

TANK

LOWERHEATER AND PROBEASSEMBLY

viii

0

_-HEATER

ASSEMBLY

STAINLFSS



I

]-,
I--'
",0-I

FAULTTREESHEETLAYOUT
1

19

13

8

2

,3-L2ot
5 [ 6 4 7 2()A

12
g 10 11

14

17

23

15

18

24

25

21
16[

I

TO ASSEMBLEFAULTTREE, LAYOUT PAGES IN THEPOSITIONS SHOWNABOVE

ix



i

I--'

illlllltl MAIN THREAD

...... CONTRIBUTORYBRANCHES

BUSESAND FUELCELLS
PAGE1

,,u°,.e,,.,L,,.sI'+--IAVAILA|LE T40

lune 5,Ig7O o,,.,,,s,, ,-o_,, ,olit.I'VE S C UR RE N'T PLOTS

_11111111111111111111111111111111 IIIIIIIIIIIII III

FUEL CELLS FAIL
FC CURRENi PI !_T'_ TO GENFJ_AIE

BUS VOtTAGI +1,,1_ P
LOAD PROf IL_ F _rO OWER t_rO
g[f lflG 16 WITHCOMMANOS

, OUS VOLTAGE PLOTS CURRENT PL01"5
ENRU ?_? RFF IFIG I_ THRU ._2 PRESENT I-j RET. IFIG 3

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIilllo o----,,-, o,-°,,,, ++-° +,+---- ,--t

FAILS TO G_NERATE FALLS TO GENERAT1E FALLS TO C-.I[NERAllE

REQUIRED PO_R PO_R PO_R WHEN

T.FO WHEN COt/_ 0 T_FD C(_NOE D T4_O
WHENCOEM4ANOED 1"4 I_.LFIG. 211 f'5 REF. LFIG_ I_ I_.|PIG]0

CELL NO. 1 _HE P_ H

IIIIIIIIIIIIIIIIIIIIII1_1 _ +,,,,,,,,,,,,,,++,,,,,,,,,,++,,,,,ITO G[NERATE

F _ _tlE TO CAUSES T'fO

rC PARA_RS [X[_.RNA[ TO $S. &FLOI#/ PLOTS
qEF I _UEL CIELLS r_L CELL I"tl F_] FIG 5. 9. _. & ZE

IIl|llll|llll iiillllllllllllllllll|lllUllllllll_-r

i+++1++.....0 P_TSS &
Dr' IVI"RE O TO r _' F 4_
F . _ t_'LOTS 0 F-A

Ll_ .Etl g[_ I rig _ T[MP PLOTS _C PARAME'ITRS

++.+,+r +,,+,
Ilrllnllllllllllllllllllllllllllllllll_

_O_L O2
F'fO NOT UELIVERED T"FD

H _[SS I'1) _ I FIG S &
R_? | F'_.(_ P1.Q_ TO FUEL CELL NO. _ I_.'ES S & FL (TF_ PI.OTS

BUSESAND FUELCELLS
sffPAGEZ PAGEI



I

i-J
I-J

_F'FO
I_IOW _OTS

REF. 1FtG._

FROM PAGE I
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_111111111111111111 t
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SEE PAGE
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I
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INITIATED BY REACTION INITIATED
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II SEE PAGE 13 SEE PAGE 14
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I fROM PAGE 4

CAUSED BY [×ffRt_AL

GNEMICALMEANS 4_ F_SL

EREE CORROSIVE

CONTAMINANT
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PAGE 8
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ELECTRICAL ENERGY CREATES HEAT IN 02TANK NO. ?
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April 24, 1970

APOLLO 13 REVIEW BOARD

ADMINISTRATIVE PROCEDURE NO.I

TITLE:

POLl CY :

PROCEDURES :

Authority to act for the Chairman of the Apollo 13 Review

Board.

i. The Chairman of the Apollo 13 Review Board will desig-

nate a member of the Board to act for him during his absence

from MSC.

2. The authority delegated to the Acting Chairman is full

and complete and includes all the authorities vested in the

Chairman by virtue of the NASA Administrator's letter of

April 17, 1970.

Delegation of authority to act for the Chairman in his

absence from _C will be prepared by the Secretariat.

Edgar M. Cortright
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April 24, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 2

TITLE:

SCOPE:

POLICY:

PROCEDURES:

DEFINITION:

Official File of the Apollo 13 ReviewBoard.

This procedure covers the accumulation and preservation
of all documentsrequired for the official Apollo 13
Review Board file including documentsacquired and main-
tained by Panels and supporting offices.

The documentation of actions taken by the Board and Panels
is required by the Board's Charter. The orderly organiza-
tion of the documentation is essential for the preparation
of the Board's Report to the Administrator.

i. All documentsreceived by the Board or emanating from
the Chairman or Membersof the Board will be maintained by
the Secretariat.

2. All documents received by Panels or Sub-Panels will be
maintained by these organizations until incorporation into
the Board's files at the time Panel Reports are accepted
by the Board.

3. Support offices of the Board will maintain all documents
pertinent to their areas of responsibility.

4. Documentsintended for incorporation in the Panel and
Board's Reports will be identified as such by Panel Chairmen
and the Board, as appropriate.

5. Documentsreferenced in the Panel and Board's Reports
will be identified as such, and classified in a manner that
will permit quick retrieval.

i. "Documents" meansany form of communication (written,
recorded, or photographic).

Edgar M. Cortright
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April 24, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 3

TITLE:

POLICY:

PROCEDURE:

Responseto Offers of Assistance or Recommendation

Offers of assistance or recommendationaddressed to the
Apollo 13 Review Board (Chairman, individual members,or
any Board participant) will be answeredby a memberof the
Apollo 13 Review Board or by individuals designated by the
Chairman of the Board.

i. All messages(letters, telegrams, or other written
communications) addressed to the Apollo 13 Review Board
or to any of its participants which are identified as
suggestions or offers of help or assistance will be for-
warded to the Public Affairs Office of the Apollo 13 Review
Board.

2. The Public Affairs Office will arrange for the prepara-
tion of replies to all such messages.

3. Copies of all incoming and outgoing correspondence or
offers of assistance will be maintained for the Board by
the Public Affairs Office.

4. The Head of the Apollo 13 ReviewBoard Public Affairs
Office is authorized to acknowledgeall messagesof assist-
ance covered by this Procedure, and to reply to messagesin
the nameof the Chairman of the Apollo 13 ReviewBoard.

Edgar M. Cortright
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April 24, 1970

APOLLO 13 REVIEW BOARD

ADMINISTRATIVE PROCEDURE NO. 4

TITLE:

SCOPE:

POLICY :

Apollo 13 Review Board Organization and Structure.

This document establishes the basic organization and respon-

sibilities of the Apollo 13 Review Board. This procedure is

an implementation of the Administrator's memorandum of

April 21, 1970.

I. The Apollo 13 Review Board was established by the

Administrator, NASA, on April 17, 1970, pursuant to NASA

Management Instruction 8621.1, dated April 14, 1966. The

following responsibilities and duties were assigned to the
Board:

a. Review the circumstances surrounding the accident

to the spacecraft which occurred during the flight of

Apollo 13, and the subsequent flight and ground actions

taken to recovery, in order to establish the probable

cause or causes of the accident and assess the effec-

tiveness of the recovery actions.

b. Review all factors relating to the accident and

recovery actions the Board determines to be signifi-

cant and relevant, including studies, findings, recom-

mendations, and other actions that have been or may be

undertaken by the program offices, field centers, and
contractors involved.

c. Direct such further specific investigations as may
by necessary.

d. Report as soon as possible its findings relating

to the cause or causes of the accident, and the effec-

tiveness of the flight and ground recovery actions.

e. Develop recommendations for corrective or other

actions, based upon its findings and determinations

or conclusions derived therefrom.



f. Documentits findings, determinations, and recom-
mendations, and submit a final report.

2. The membershipof the Apollo 13 ReviewBoard has been
established by the Administrator in letters to individual
Board members,as follows :

Memb e rs

Date of

Appointment

a. Mr. Edgar M. Cortright April 17, 1970

Director, Langley Research

Center, Chairman of the

Apollo 13 Review Board

b. Mr. Robert F. Allnutt April 21, 1970

Assistant to the Administrator,

NASA Headquarters, Member

c. Mr. Neil A. Armstrong April 21, 1970

Astronaut, Manned Spacecraft

Center, Member

d. Dr. John F. Clark April 21, 1970

Director, Goddard Space Flight

Center, Member

e. Brig. Gen. Walter R. Hedrick, Jr. April 21, 1970

Office of Deputy Chief of Staff,

Research and Space Headquarters,

USAF

f. Mr. Vincent L. Johnson April 21, 1970

Deputy Associate Administrator

(Engineering), Office of Space

Sciences and Applications, NASA

Headquarters, Member

g. Mr. Milton Klein April 21, 1970

Manager, AEC-NASA Space Nuclear

Propulsion Office, Member

h. Dr. Hans M. Mark April 21, 1970

Director, Ames Research Center_

Member



3. Technical support to the Board:

Mr. Charles W. Mathews
Deputy Associate Administrator,
Office of MannedSpace Flight,
NASAHeadquarters

April 21, 1970

4. Counsel to the Board has been appointed by the Adminis-
trator :

Mr. George T. Malley
Chief Counsel, Langley Research Center

April 21, 1970

5. Observers to the Apollo 13 ReviewBoard have been
appointed by the Administrator, NASA,as follows:

Date of
Members Appointment

a. Mr. William A. Anders April 21, 1970

Executive Secretary, National

Aeronautics and Space Council

b. Dr. Charles D. Harrington April 21, 1970

Chairman, NASA Aerospace Safety

Advisory Panel

c. Mr. I. Irving Pinkel April 21, 1970
Director, Aerospace Safety

Research and Data Institute

d. Mr. James E. Wilson April 22, 1970
Technical Consultant to the

Committee on Science and Astronautics

U.S. House of Representatives

6. Heads of Apollo 13 Review Board Supporting Offices have

been appointed by the Chairman of the Apollo 13 Review Board.
These officials are:

a. Secretariat - Mr. Ernest P. Swieda, KSC

b. Public Affairs - Mr. Brian Duff, MSC

c. Legislative Affairs - Mr. Gerald J. Mossinghoff,

NASA Headquarters

d. Report Editorial Group - Mr. R. G. Romatowski, LRC

c-6



PROCEDURES : i. The following organization of the Apollo Review Board

is established:

a. Panels

(i) Mission Events

(2) Manufacturing and Test

(3) Design

(4) Project Management

b. Board Offices

(i) Public Affairs

(2) Report Editorial Office

(3) Legislative Affairs

(4) Secretariat

2. In addition to the Board organization established by

the Chairman, the Administrator, NASA, has established a

number of observers to the Board. Each observer shall

have a direct access to the Board Chairman.

3. Sub-panel structure and assignment of responsibilities

will be authorized by the Chairman.

4. Changes to the basic organization of the Apollo 13

Review Board may only be authorized by the Chairman. All

such changes will be officially implemented in documenta-

tion prepared by the Secretariat.

Edgar M. Cortright
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April 24, 1970

APOLLO 13 REVIEW BOARD

ADMINISTRATIVE PROCEDURE NO. 5

TITLE :

SCOPE:

POLl CY :

PROCEDURES :

Overview responsibilities assigned to Apollo 13 Review
Board Members.

This document establishes overview responsibilities

assigned to members of the Apollo 13 Review Board.

Assignment of overall responsibilities to members of the

Apollo 13 Review Board will be made by the Chairman.

Specific assignments may be made in memorandum form

signed by the Chairman. Any specific assignments will

be made part of the official records of the Apollo 13
Review Board.

i. Overview assignments to members of the Apollo 13
Review Board are established as follows:

Member of the Board

Neil Armstrong, MSC

Overview Assi6nmen t

Mission Events

Dr. John Clark, GSFC

V. L. Johnson, OSSA

Manufacturing and Test

Design

M. Klein, SNPO

Brig. Gen. Hedrick, USAF

Dr. Hans Mark, ARC

ProJect Management

Apollo 13 Panel Integration

Special Studies and Coordina-

tion of Expert Advice and

Assistance

R. F. Allnutt, NASA Hqs Report Editing and Board
Do cument at ion

Edgar M. Cortright
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APOLLO 13 REVIEW BOARD

April 24, 1970

ADMINISTRATIVE PROCEDURE NO. 6

TITLE:

SCOPE :

POLICY:

PROCEDURES:

Designation of Apollo 13 Review Board Panel Chairmen and

general responsibilities.

This document establishes the general assignments made to

the Chairmen of Apollo 13 Review Board Panels.

The assignment of tasks and responsibilities to Panel

Chairmen will be made by the Chairman of the Apollo 13

Review Board. Each Panel Chairman will draw upon the

data, analyses, and technical expertise of the staff at

MSC and the Apollo contractors. In addition, sufficient

independent checks and analyses will be made to constitute

a clear and sufficient validation of key findings.

i. The following Panel Chairmen are designated:

Pane i Ch airman

a. Mission Events F. B. Smith, NASA Hqs.

b. Manufacturing and Test H. M. Schurmeier, JPL

c. Design S. Himmel, LeRC

d. Project Management E. Kilgore, LRC

2. Panel Chairmen are the Board's principal reviewing

agents for specified areas of the Apollo 13 Mission.

General responsibilities of Panel Chairmen include:

a. Maintaining a day-by-day record of activities

including such information as:

(I) Meetings

(2) Subject matter

(3) Attendance

(4) Minutes (when appropriate)

b. Collecting and retaining for the Board all records,

tapes, photographs, studies and other documents which

G-9



may be needed to substantiate Board findings and deter-

minations within a Panel area of inquiry.

c. Preparation of preliminary findings and determina-

tions for evaluation and assessment by the Board.

3. General area assignments for each Panel Chairman are

appended to this procedure. These may not be changed with-

out the approval of the Apollo 13 Review Board Chairman.

4. Each Panel Chairman will coordinate his reviews, anal-

yses, and findings with the other Panels as appropriate.

5. Each Panel Chairman will work under the overall guidance

and direction of a Board Member designated by the Board

Chairman. (See Procedure No. 5)

6. Each Panel Chairman is responsible for designating an

alternate in case of temporary absence. This alternate

must be approved by the Board Member assigned to overview
Panel activities.

7. Each Panel Chairman is responsible for recommending

membership on the panel. Such memberships must be approved

by the Chairman of the Apollo 13 Review Board.

8. Specific Task Assignments made to Panel Chairmen by the

Board Chairman will be cataloged and maintained by the
Secret ari at.

9. Panel reports of findings, determinations, and recom-

mendations (together with complete supporting documentation)

will be required of all Panels. Any minority positions

relative to Panel Reports will be brought to the attention
of the Board.

Edgar M. Cortright
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General Assignment for Mission Events Panel

It shall be the task of the Mission Events Panel to provide a
detailed and accurate chronology of all pertinent events and actions
leading to, during, and subsequent to the Apollo 13 incident. This
information, in narrative and graphical time-history form, will provide
the Apollo 13 ReviewBoard an official events record on which their anal-
yses and conclusions maybe based. This record will be published in a
form suitable for inclusion in the ReviewBoard's official report.

The Panel will report all significant events derived from telemetry
records, air-to-ground communications transcripts, crew and control center
observations, and appropriate documentssuch as the flight plan, mission
technique description, Apollo Operations Handbook, and crew checklists.
Correlation between various events and other observations related to the
failure will be noted. Wheretelemetry data are referenced, the Panel
will commentas appropriate on their significance, reliability, accuracy,
and on spacecraft conditions which might have generated the data.

The chronology will consist of three major sections: Preincident
Events; Incident Events; and Postincident Events. The decision-making
process leading to the safe recovery, referencing the relevant contin-
gency plans and available alternates, will be included.

Preincident Events. This section will chronicle the progress of

the flight from the countdown to the time of the incident. All action

and data relevant to the subsequent incident will be included.

Incident Events. This section will cover that period of time

beginning at 55 hours and 52 minutes after lift-off and continuing so

long as abnormal system behavior is relevant to the failure.

Postincident Events. This section will document the events and

activities subsequent to the incident and continuing to mission termina-

tion (Splash). Emphasis will be placed on the rationale used on mission

completion strategy.

O-ll



General Assignment for Manufacturing and Test Panel

Review the manufacturing and testing, including the associated
reliability and quality assurance activities, of the flight hardware
componentsinvolved in the flight failure as determined from the review
of the flight data and the analysis of the design. The purpose of this
review is to ascertain the adequacyof the manufacturing procedures,
including any modification, and the preflight test and checkout program
and any possible correlation of these activities with the inflight
events.

The Panel shall consist of three activities:

i. Fabrication and Acceptance Testin5

This will consist of reviewing the fabrication, assembly, and

acceptance testing steps actually used during the manufacturing of the

specific flight hardware elements involved. Fabrication, assembly, and

acceptance testing procedures and records will be reviewed, as well as

observation of actual operations when appropriate.

2. Subsystem and System Testin6

This will consist of reviewing all the flight qualification

testing from the completion of the component level acceptance testing

up through the countdown to lift-off for the specific hardware involved.

Test procedures and results will be reviewed, as well as observing

specific tests where appropriate. Results of tests on other serial no.

units will also be reviewed when appropriate.

3. Reliability and _uality Assurance

This will be an overview of both the manufacturing and testing,

covering such things as parts and material qualification and control,

assembly and testing procedures, and inspection and problem/failure
reporting and closeout.

G-12



Genera] Assignment for Design Panel

The Design Panel shall examine the design of the oxygen and asso-
ciated systems to the extent necessary to support the theory of failure.
After such review the Panel shall indicate a course of corrective action
which shall include requirements for further investigations and/or
redesign. In addition, the panel shall establish requirements for review
of other Apollo spacecraft systems of similar design.

The Panel shall consist of four subdivisions:

i. Des i_n Evaluation

This activity shall review the requirements and specifications

governing the design of the systems, subsystems, and components_ their

derivation, changes thereto and the reasons therefor, and the design of

the system in response to the requirements, including such elements as

design approach, material selection, and stress analysis; and development

and qualification test programs and results. This activity shall also

review and evaluate proposed design modifications, including changes in

operating procedures required by such modifications.

2. Failure Modes and Mechanisms

This activity shall review the design of the systems to ascer-

tain the possible sources of failure and the manner in which failure may

occur. In this process, they shall attempt to correlate such modes with

the evidence from flight and ground test data. This shall include con-

siderations such as energy sources, materials compatibility, nature of

pressure vessel failure, effects of environment and service, the service

history of any suspect systems and components, and any degradation that

may have occurred.

3. Electrical

This activity shall review the design of all electrical compo-

nents associated with the theory of failure to ascertain their adequacy.

This activity shall also review and evaluate proposed design modifica-

tions, including changes in operating procedures required by such modifi-

cations.

4. Related Systems

This activity shall review the design of all systems similar

to that involved in the Apollo 13 incident with the view to establish-

ing any commonality of design that may indicate a need for redesign.

They shall also consider the possibility of design modifications to

permit damage containment in the event of a failure.

G-13



General Assignment for Project ManagementPanel

The Project ManagementPanel will undertake the following tasks:

i. Review and assess the effectiveness of the management
structure employed in Apollo 13 in all areas pertinent to the Apollo 13
incident. This review will encompassthe organization, the responsibi-
lities of the organizational elements, and the adequacyof the staffing.

2. Review and assess the effectiveness of the management
systems employed on Apollo 13 in all areas pertinent to the Apollo 13
incident. This task will include the managementsystems employed to
control the appropriate design, manufacturing, and test operations; the
processes used to assure adequate communications between organizational
elements; the processes used to control hardware and functional inter-
faces; the safety processes involved; and protective security.

3. Review the project managementlessons learned from the
Apollo 13 mission from the standpoint of their applicability to subse-
quent Apollo missions.

Tasks (i) and (2), above, should encompassboth the general review
of the processes used in Apollo 13, and specific applicability to the
possible cause or causes of the mission incident as identified by the
Board.

G-14



April 24, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 7

TITLE: Use of Consultants, Advisors, a_d other special assistants
to the Apollo 13 Review Board.

POLICY: This procedure provides for the utilization of consultants
and advisors to the Apollo 13 ReviewBoard.

PROCEDURES:i. All official advisors and consultants to the Apollo 13
Review Board will be appointed by the Chairmanof the
Board.

2. Advisors and consultants will be given task assign-
ments whenever practicable so as to focus their efforts
on behalf of the Board.

3. Wheneverappropriate, experts and consultants utilized
by the Board will submit their advice or opinions in writ-
ing and these documentswill becomepart of the Board's
official file.

Edgar M. Cortright
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April 24, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 8

TITLE: Requisition and Control of Data and Equipment Related to
the Apollo 13 ReviewBoard Activities.

POLlCY: The Chairman of the Apollo 13 Review Board has been
authorized by the Administrator to impose controls on
the use of Apollo data and/or equipment when such con-
straints are deemednecessary for the conduct of the
Board review. Such acquisition and control mayonly be
authorized by a Memberof the Board acting for the
Chairman. Wheneverthe sequestration of data or equip-
ment maydelay or hinder program needs, the control will
be for a minimumof time adequate for the needs of the
Board.

PROCEDURES:i. Data and/or equipment required by a Panel or the Board
will be identified in a Data Control Request approved by
the Chairmanor Memberof the Apollo 13 ReviewBoard.

2. The Data Control Request will be submitted to the
program organization through the MSCApollo Office. The
MSFTechnical Representative to the Apollo 13 ReviewBoard
will transmit all such requests on behalf of the Board.

3. Each Data Control Request will be logged by the
Secretariat and closed out at the earliest appropriate
time. All such requests, MBFacknowledgements,and subse-
quent closeouts will be part of the official files of the
Board.

Edgar M. Cortright
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April 24, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 9

TITLE:

PROCEDURES:

General Assignments to Apollo 13 ReviewBoard Supporting
Offices.

i. The Heads of Apollo 13 ReviewBoard supporting offices
were established in Administrative Procedure No. 4, dated
April 24, 1970.

2. General assignments of responsibility to the Headsof
these offices are attached to this document. Changesmay
be madeonly with the approval of the Apollo 13 Review
Board Chairman.

Edgar M. Cortright
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April 24, 1970

ATTACHMENTA_SECRETARIAT

The Secretariat of the Apollo 13 ReviewBoard will:

i. Provide for complete administrative support to the Board,
including clerical assistance, office space, supplies, equipment, trans-
portation, travel, housing arrangements, and other _ogistic and adminis-
trative support.

2. Maintain all official files, minutes, and other Board documenta-
tion and correspondence.

3. Coordinate Board Schedules amdplaas so as to maximize the most
efficient utilization of time and effort.

4. Act as the liaison point with M_Cand other Center officials on
all administrative matters.

C-18



April 2L, 1970

ATTACHMENTB -- REPORTEDITORIALOFFICE

The Head of the Report Editorial Office will:

i. Recommendto the Board the form and content of the Board's
Report to the Administrator.

2. Organize the report, supervise its preparation, and provide
for the complete review of all preliminary and final drafts.

3. Insure that Counsel to the Board is consulted on all report
material with respect to legal sufficiency and substance.

C-19



April 2L, 1970

ATTACHMENTC -- PUBLICAFFAIRS

The Head of the Apollo 13 Public Affairs Office will:

i. Provide all public affairs support to the Chairman and Members
of the Board including preparation, review, and distribution of press
releases, statements, and other information releases.

2. Maintain a complete file of all Apollo 13 related press releases
and statements madeby officials of NASAand supporting agencies which
bear on the events and incidents in flight.

3. Maintain biographies, photographs, and other records with
respect to Board officials.

4. Provide all liaison with Public Affairs officials in NASA
Headquarters, other Centers, and outside agencies.

5. Maintain a complete inventory of letters received from the
public which are addressed to the Board Chairmanor any Members,includ-
ing copies of all replies.

6. Report to the Board on a regular basis in order to summarize
all significant PAOactivities.
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April 24, 1970

ATTACHMENT D -- LEGISLATIVE AFFAIRS

The Head of the Apollo 13 Legislative Affairs Office will:

i. Provide the Board with complete congressional support, includ-

ing arranging visits, recommending replies to inquiries, and monitoring

a complete record of all congressional activities related to the Board's

Charter and responsibilities.

2. Make periodic reports to the Board on the status of congressional

activity directly affecting the Board's operations.
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April 24, 1970

APOLLO 13 REVIEW BOARD

ADMINISTRATIVE PROCEDURE NO. i0

TITLE: Apollo 13 Review Board Sessions

i. The Apollo 13 Review Board meeting schedules are

established, as follows:

a. General Sessions. These will be daily sessions

held each evening at a time prescribed by the Chairman

of the Apollo 13 Review Board. The purpose of these

sessions will be to review the progress of Panel efforts

and to establish priorities for further reviews. All

participants in the Apollo 13 Review Board organization

should attend. Agendas for these meetings will be

prepared by the Secretariat after consultation with the

Board and the Panel chairmen.

b. Executive Sessions. These will be held at the call

of the Chairman (generally each morning). The purpose

of these sessions will be to discuss among the Board

itself progress and plans for Panel and Support Office

activities. Attendance at Executive Sessions will be

limited to Members of the Apollo 13 Review Board, and

Counsel to the Board, as well as such other members of

the Board's organization as are invited by the Chairman.

Each Executive Session will be recorded and transcribed.

c. Action items assigned by the Chairman in either the

General Session or in Executive Session will be recorded

by the Secretariat, and made part of the official files
of the Board.

Edgar M. Cortright
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April 27, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. ll

TITLE:

SCOPE:

POLICY:

PROCEDURE:

Work Orders

This procedure covers the origination and documentation of
Work Orders to the MSCApollo 13 Investigation Team, here-
inafter "Team," and other organizations.

All work by other sources connected with the Board's or
Panel's investigation will be documentedand preserved
for the Board's official files.

i. The Panel Chairman, with the concurrence of the cogni-
zant Board member,will originate a Work Order, if the
course of the Panel's investigation requires support from
outside sources.

2. The Work Order (memorandumform) will include:

A Statement of Work (detailed step-by-step procedures
or work items, when appropriate)

Identification of Board, Panel, or other personnel
who mayvisit the work site at the time the work is
being performed

Procurement requirements, if known

The kind of data, reports, drawings, and other infor-
mation required

Period of Performance

Other items essential for a complete understanding of
the Work Order

3. The Work Order will be assigned a numberby t_le
secretariat and transmitted to the Team.
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4. If the Work Order duplicates, in whole or in part,
prior work done for the Team, the TeamLeader will advise
the Panel Chairman to that effect.

5. If the Work Order initiates work not previously per-
formed, in whole or in part, by the Team, the TeamLeader
will advise the Panel Chairman of the need for amending
the Statement of Work to include such work items that are
needed by the Team.

6. Whencoordination between the Teamaad the Board has
been effected, the Teamwill prepare a Test Preparation
Sheet in accordance with its procedures and advise the
cognizant Panel Chairman of actions taken, together with
periodic reports, when feasible.

7. Whenthe work has been performed the TeamLeader will
advise the cognizant Panel Chairman and transmit work
products, if any, to the Chairman.

8. The Board Secretariat will documentclose-out actions
or final disposition of all Work Order requests.

Edgar M. Cortri6ht

C-24



April 27, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 12

TITLE:

SCOPE:

POLICY:

PROCEDURE:

Interrelationship of activities of the Apollo 13 Review

Board with those of the MSC Apollo 13 Investigation Team.

This procedure covers the methodology in conducting a

concurrent investigation of the Apollo 13 mission failure.

The investigation and review by the Board and the investi-

gation by the Team shall be in accordance with NMI 8621.1,

April 14, 1966; and as implemented by the Administrator's

memorandum of April 20, 1970 to the Associate Administrator

for Manned Space Flight. Further, the Board will conduct

its own independent review and conduct such further specific

investigations as empowered by the Administrator's memor-

andum of April 17, 1970: Establishment of Apollo 13 Review

Board.

i. Liaison between the Board and the Team is the responsi-

bility of Mr. C. W. Mathews, who provides OMBF technical

support to the Board pursuant to the Administrator's memor-

andum of April 21, 1970.

2. The Board and the Team will establish a working

relationship between the Panels of the Board and Team

Groups in areas of investigation of mutual interest.

Information and data will be freely exchanged between

the Panels and the Team Groups.

This information and data, together with informa-

tion and data obtained independently by the Board Panels,

will be s_alyzed and, when approved by the Board, will

be included in interim reports and the final report to

the Administrator.

3. All documents published by the Team shall be furnished

the Board for its official files.
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h. Requests for personnel details of Team members to the

Board will be approved by the Chairman and implemented by

the OMSF Technical Support representative.

Edgar M. Cortright
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May i, 1970

APOLLO 13 REVIEW BOARD

ADMINISTRATIVE PROCEDURE NO. 13

TITLE:

SCOPE :

POLICY :

PROCEDURES:

Records of the proceedings of the Executive and General

Sessions of the Board.

This procedure covers the methods and responsibilities

related to recording the proceedings of the Board during

its review and investigation activities.

The proceedings of all the General Sessions of the Board

shall be mechanically recorded and placed in transcript

form for inclusion in the files of the Board. The

Secretariat is responsible for transcribing and initial

editing of the record for content and accuracy. Counsel

shall be responsible for final review of the transcript.

The proceedings of Executive Sessions of the Board shall

be mechanically recorded but no transcripts shall be pre-

pared.

i. The Secretariat shall record all Executive and General

Sessions of the Board.

2. The Secretariat shall transcribe the recordings of

General Sessions. The Secretariat shall maintain a log

and suspense for each transcription during the review

process. The rough transcripts shall be edited by the

Secretariat for content and accuracy.

3. To the extent feasible, the transcript shall be retyped

after the editing and then Counsel shall perform the final

review of the transcripts.

4. Following the review, the transcripts of the General

Sessions shall be typed in final form and filed by the

Secretariat. The tapes for both General and Special

Sessions shall be included in the files of the Board by

the Secretariat.

Edgar M. Cortright
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May 6, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 12

TITLE:

POLlCY:

REFERENCE:

PROCEDURES:

Coordination and Control of Test Support for Apollo 13ReviewBoard.

Test support for the Apollo 13 ReviewBoard is to be
coordinated within the Board and controlled throughout
the tenure of the Board by use of Test Preparation Sheet(TPS).

i. Administrative Procedure No. ii, dated April 27, 1970.

2. Memorandumfrom Donald D. Arabian to Apollo 13 Investi-
gation Team, subject: TPSprocedures and requirements
dated May 5, 1970.

i. Wheneverany Member,Panel Chairman, or Panel partici-
pant requires a test activity by _C or one of its con-
tractors to support the Board's review of Apollo 13 events,
a request should be madein writing using the procedures
set forth in the referenced Administrative Procedure.

2. Each such request will be reviewed by a designated
Board Memberand M&TPanel Chairmanbefore it is submitted
to the MSCTeamLeader (Simpkinson) for implementation.

3. The designated Board Memberand the M&TPanel Chairman
will be responsible for maintaining a Master List of
Support Tests on which tests will be related to incidentevents.

4. After coordination within the Board, the support test
request (work order) will be submitted to the MSCTeamand
logged as an official TPSby the Team.

5. Support tests to be carried out by other than MBCor
its contractors will also be sent to the M&TPanel Chairman
for review and will also be coordinated and logged in as a
TPSby the MBCTeam. In this case, the intent is to use
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the Project's TPSnumbering, control, and filing procedures
as a central data system for the Review Board and the MSC
Investigation Team.

6. The above procedure should be applied to any support
test activity initiated by an official memberof the Board
organization from its inception on April 21, 1970.

Edgar M. Cortright
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May22, 1970

APOLLO13 REVIEWBOARD

ADMINISTRATIVEPROCEDURENO. 15

TITLE:

SCOPE:

POLICY:

PROCEDURE:

Custody of and access to Apollo 13 Review Board Materials

This procedure covers the custody of and access to Apollo
13 Review Board materials upon the completion of the
Board's activities at the MannedSpacecraft Center (MSC).

The files and other material used in preparing the Apollo
13 Review Board Report shall be stored in the custody of
the Langley Research Center. The files and report mater-
ials of the Panels shall be madepart of the Review Board
files. The files, documentation, and other data of the
MSCInvestigating Teamwill not be controlled by the
Apollo 13 ReviewBoard. Custody and disposition of the
materials preserved by the MSCTeamshall be left to MSC
Center management. Apollo 13 hardware and original data
received from the spacecraft during flight shall be con-
trolled and stored in accordance with the usual MSF
procedures.

Reports, files_ tapes, and working materials determined
by the Chairman to be included in the final repository
shall be in the final custody of the Director, Langley
Research Center. Access thereto shall be determined by
him or by the Chief Counsel, Langley Research Center.

Adequate secure storage and warehousing will be provided
by the Langley Research Center.

Edgar M. Cortright

NASA -- MSC

G-30



t_

0

0

ITI
I"'
rTI

m

m
Z Z

m

"v X

-,4

m

m

Z





CONTENT S

Section

News Release No. AI_-IO, April 17, 1970 ..........

News Release No. AI_-IO, April 18_ 1970 ..........

Apollo 19 Investio_ation Board Report He. i_ April 21, 1970 •

Apollo 19 Investigation Board Report No. i, April 24, 1970 •

Apollo i_ Press Conference with Dr. George Low,

May 1, 1970 ........................

Apollo 1_ Review Board Conference, June 2, 1970 .......

Status Reports of the Apollo 19 Review Board .........

Status Report No. i

Status Report No. 2

Status Report No.

Status Report No. 4

Status Report No. 5

Status Report No. 6

Status Report No. 7

Status Report He. 8

Status Report No. 9

Status Report No. iO ....................

Status Report ]&:. ii ....................

Status Report No. 12 ....................

S<a_us Report No. 19 ....................

Status Report No. 14 ...................

Status Report No. 15 ....................

..... ° ..... ° .......

.......... ° ° ° ° .....

.................. • °

• ° ................ ° °

......... ° ..... ° ° • ° °

.°°°° .... °°°°°.°.°°°

°•°.°°°° .... °°•°.°.

..°°°° ........ ° .....

Page

H-I

H-3

H-4

H-IO

H-19

H-3Z

Ho45

H-_6

H-48

H-50

U-5l

H-52

H-5_

H-54

H-55

H-56

H-57

H-58

H-59

H-60

H-61

iii



This page left blank intentionally.

iv



APOLLONEWSCENTER
HOUSTON,TEXAS

NEWSRELEASENO. AI3-10
APRIL17, 1970
SUBJECT:APOLLO13 REVIEWBOARD

The National Aeronautics and SpaceAdministration today established
an Apollo 13 Review Board to investigate the circumstances and causes of
the accident aboard the spacecraft Odysseyand the subsequent flight and
ground actions taken to recover.

This action was taken by NASA'sAdministrator, Dr. ThomasO. Paine,
and Deputy Administrator, Dr. GeorgeM. Low, immediately following the
successful recovery of the astronauts today "because of the serious
nature of the accident to the Apollo 13 spacecraft which jeopardized
humanlife and caused failure of the Apollo 13 lunar mission."

Mr. Edgar Cortright, Director of NASA'sLangley Research Center in
Hampton,Virginia, was appointed Chairman of the Review Board. Mr. Cort-
right served for manyyears as NASA'sDeputy Associate Administrator for
SpaceScience and Applications, and in 1967-68 was Deputy Associate
Administrator for MannedSpace Flight.

The other membersof the Board will be senior individuals from
NASAand other government agencies with special competence in flight
safety matters, the Apollo systems, or the various technical disciplines
related to the investigation, but not having direct responsibilities
relating to Apollo 13. Top consultants from government, industry, and
the academic communitywill also be available to the Board as required.
NASA'sAerospace Safety Advisory Panel, a statutory panel responsible
to the Administrator, will review both the procedures and findings of
the Review Board and makean independent report to the Administrator.

The Apollo 13 Review Board will establish its ownprocedures as
provided by standing NASAinstructions for the investigation of mission
failures. The timing of its report will be determined after the Board
has met and madean assessmentof the length of investigation required.
The Board will makeperiodic progress reports directly to the Administra-
tor and Deputy Administrator. Timely progress reports will also be made
to Congress and the public.

NASA'sOffice of MannedSpace Flight will makeavailable to the
ReviewBoard all pertinent records and data and will provide technical
support to the Board as requested. The Office of MannedSpace Flight,
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as a part of its regular responsibilities, will develop parallel recom-

mendations on corrective measures to be taken prior to the Apollo 14
mission.

Decisions on the Apollo 14 mission will depend on the findings and

recommendations of the Apollo 13 Review Board, the Aerospace Safety

Advisory Panel, and the Office of Manned Space Flight.
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APOLLONEWSCENTER
HOUSTON,TEXAS

NEWSRELEASENO. AI3-10
APRIL18, 1970
SUBJECT:UP-DATETO STATUSOFAPOLLO13 REVIEWBOARD

The Chairman of the Apollo 13 Review Board, Mr. Edgar Cortright,
Director of NASA'sLangley Research Center, expects to discuss with
Dr. Paine and Dr. Lowon Mondaythe appointment of additional membersof
the Board established to review the accident to the Apollo 13 spacecraft.
The Board will meet as soon as possible m very soon, Mr. Cortright
said --to set up its procedures and begin its investigations.
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APOLLO 13 INVESTIGATION BOARD REPORT NO. i

APRIL 21, 1970

DUFF :

CORTRIGHT:

QUERY:

CORTRIGHT:

Ladies and Gentlemen, this is a briefing by Mr. Edgar M.

Cortright, the chairman of the Apollo 13 Review Board. Mr.
Cortright.

I thought that it would be beneficial if we got together for

a few minutes today to give you some idea of how this Review

Board will be conducted, and to announce the members of the

Board. The membership has just been selected by Dr. Paine.

Basically, as you know, from the material you've received

already, and to paraphrase my detailed instructions, the

function of the Board is to perform an independent assessment

of what happened, why it happened, and what to do about it.

To do this, we have selected a group of senior officials from

both within the agency and without the agency. These gentle-

men will meet here with me during the next few weeks in

intensive sessions, which will probably run days, nights, and

weekends, without letup, in order to get an early determina-

tion. The group will be supported by an additional group of

experts, and we will select these gentlemen within the next

2 or 3 days. In addition, we'll draw on the work that the

project is now carrying out under the direction of the pro-

ject manager to determine on their own what happened. Now,

the members of the Board are as follows: Mr. Robert Allnutt,

who is assistant to the administrator in NASA Headquarters;

Mr. Nell Armstrong, astronaut, from the Manned Spacecraft

Center; Dr. John Clark, Director of the Goddard Space Flight

Center; Brigadier General Walter Hedrick, Jr., Director of

Space, Deputy Chief of Staff for R&D office, Headquarters,

USAF, Washington; Mr. Vince Johnson, Deputy Associate

Administrator for Engineering, in the Office of Space Science

and Applications, NASA Headquarters; Mr. Milton Klein, Manager

of the AEC-NASA Space Nuclear Propulsion Office; and Dr.

Hans Mark, Director of the Ames Research Center.

How do you spell that last?

Mark. M-a-r-k. In addition, the counsel, legal counsel,

for the Board, will be Mr. George Malley, who is Chief Coun-

sel for the Langley Research Center. Mr. Charles Mathews,

Deputy Associate Administrator, Office of Manned Space Flight,

will be named to work with the Board to help provide the

technical support we'll need to get our job don_. In addi-

tion, there will be three officially named observers to the
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DUFF :

QUERY:

DUFF:

QUERY:

CORTRIGHT:

Board. Mr. William Anders, former astronaut, now Executive

Secretary, National Aeronautics and Space Council; Dr.

Charles D. Harrington, Chairman, NASA Aerospace Safety Ad-

visory Panel, and also President and General Manager of

Douglas United Nuclear Incorporated; and Mr. Irving Pinkel,

Director, Aerospace Safety Research and Data Institute,
Lewis Research Center. We'll be assisted in our relation-

ships with the press by Mr. Brian Duff of the Manned Space-

craft Center. And we'll be assisted in our relationships

with the Congress, during the course of this investigation,

by Mr. Gerald Mossinghoff, Office of Legislative Affairs,

NASA Headquarters. It will be our policy during the course

of this investigation to keep you informed of what we're

doing, and how we're going about our business, insofar as

that is practical. One thing l'd like to avoid, however, is

speculation. I must avoid that with this type of a Board.

So, if sometimes I appear to be not as communicative as you

would like, it will only be because l'm not in a position to

say something with authority and certainty, at that time;

but otherwise we'll do all we can to keep the members of the

press fully informed of what we're doing. And, I think that

is about all I really planned to say. I make myself avail-

able for questions within the ground rules that I just speci-

fied, that l'd like to avoid speculation, and further, since

the Board has not held its first meeting, I can't very well

represent the Board at this point.

l'd just say one thing, before we have questions. The biog-

raphies of all the members and the documents relating to

what Mr. Cortright has just said will be available after

this conference is over. Now we'll take questions.

Can I add one point, Brian? I think I forgot to mention

that the first meeting of the Board will take place at

8:00 p.m. this evening.

All right Bob, we'll start across the front row.

I realize it's impossible for you to say precisely how long

the Board will take to reach the determination, but do you

have any estimate at this time? In other words, would it

be a matter of perhaps 3 or 4 weeks or do you think it would

last through the summer?

It's my hope that we can reach adequate and effective deter-

mination within 3 or 4 weeks. As a matter of fact, that is

the number I had in my mind. But we'll have to take as much

time as required to do it properly. It could run longer.
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SPEAKER

QUERY :

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

DUFF:

QUERY:

CORTRIGHT:

Bob.

What procedure will you follow for calling perhaps contractor

experts and so on? Can you - you said you would talk about

them a little bit.

Yes, we identified the need for speciality information that's

best developed by a contractor. We'll call on that con-

tractor to provide us information and/or to appear before

the Board to testify on this information.

Do you have any names or companies already formulated?

No.

What is going to be the possibility, Ed, on making your

releases? Are you going to do it on a regular basis like

once or twice a week, or just whenever you have something

to say? How are you going to arrange this?

The releases of the Board will be made only with my approval

and through the office of the Public Affairs here at Houston.

Now there may, of course, be releases by Dr. Paine or Mr. Low

based on information that I can provide them on regular

meetings. We'll probably meet once a week. And I would

envision the use of bulletins for the press. How much in-

formation they would contain would be dependent on how much

progress we will make. But at least it would keep you

informed on where we are and what activites are facing the

Board that week.

Do you intend to break the Board down into teams similar to

what was done for the 204 Review Board?

That's my current plan. But until the Board meets with me

and expresses their individual opinions _ud negotiate a

little bit, I won't know for certain.

Here.

Ed, when will you have all the telemetry data reduced, do

you think, with the Board then in a position to move at full

burner?

Well, the telemetry data are being reduced at the moment by

a pretty sizable team of engineers, both here and in the

contractor's plant. I don't have specifics on that yet,

Jules, but I have the impression that they expect some
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QUERY:

SPEAKER:

milestones to be reached before the end of the week, in terms
of telemetry data reduction. Of course, that's sort of
first time through, perhaps, and we'd have to iterate that
to get the last little bit out of it.

Wasconsideration given to appointing Lt. Gen. SamPhillips
to the Board?

l'm not certain. Dr. Paine selected the Board. I know
General Phillips is extremely busy with his present assign-
ment and it probably would be an impossibility.

DUFF:

QUERY:

SPEAKER:

Right here, Mary Bubb.

Whenyou finally do pinpoint the cause, sir, how long do
you think it will take you to decide whether you have to go
into redesign or somemodifications? I would presumeanY-
way that you would makerecommendationsalong these lines.

Well, of course that depends on what the problem is. Gen-
erally speaking, you work on potential fixes at the same
time you're homing in on the probable cause, so that there
need not necessarily be a long period of time between the
two, the determination of the problem and what to do about
it. On the other hand, there could be under certain circum-
stances, and my position at the momentis that I can't - I
have a totally open mind. l'm trying not to prejudge any-
thing. As the facts unfold, then we'll start forming
opinions.

DUFF:

QUERY:

Ed.

Two questions: I assumethat the bulk of the investigation
will be conducted here at MSC. Is that correct?

CORTRIGHT:

QUERY:

CORTRIGHT:

That is correct.

Andwhat will the relationship be between your Board's
investigation and the investigations already underway by
individual contractor teams and by the initial review board
that was set up right after the accident? And what is the
status of that board, by the way?

Well, l'd rather not commenton the status of the Manned
Spacecraft Center Board. That's Dr. Gi]ruth's board, but
I can tell you a little bit about how we plan to work to-
gether. In the first place, mos_I_{ [" the detailed technical
work will have to be done by the menwho know that area the



QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

DUFF :

QUERY:

CORTRIGHT:

QUERy:

CORTRIGHT:

best, and these are the engineers and scientists of the

Manned Spacecraft Center and the prime and supporting con-
tractors. We will follow their work and audit their work

and make the best possible use of their work that we can.

At the same time, we'll maintain sufficient independence

so that it will constitute a true independent check on what's

done here and an independent assessment of what corrective

measures should be taken. Does that answer your question?

Mr. Cortright, in your experience have you ever conducted

a similar investigation having to do with unmanned space-
craft, trying to find out what happened?

I have not chaired a board of this type, but l've been in-

volved in a number of investigations of various unmanned

spacecraft projects, such as Ranger, Surveyor, and Centaur.

What was your rate of success in these investigations?

Well, all of the projects that I mentioned succeeded to

a rather high degree. The extent to which the review

board helped that process is something we'll probably neverknow.

Here in the front row.

Will your reports - your periodic reports to Dr. Paine be
released to the press?

Probably not.

Will we know that there are these reports and will we even

know the gist of them, if you're making progress or stymied,or what?

Well, as I mentioned earlier, we will try to keep the press
informed as to what's going on with the Board, but we'll

stop short of speculating or prematurely judging the results.

That, of course, is quite a constraint in terms of making

public what our current opinions are as to what happened,

and I think we'll be fairly limited on what we can say until

this Job is done. Now, my reports to Dr. Paine will be in-

formal progress reports and will contain just the sort of

material that it would be improper to release in totality

because it's somewhat speculative in nature. I don't think
you'd really want that any more than I would.
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QUERY :

CORTRI GHT :

QUERY :

CORTRIGHT:

QUERY :

CORTRIGHT:

DUFF:

Ed, i'm not quite clear on this point. You may have made

it clear and I may have slipped in a cog. Does - is cor-

rective work, such as deemed necessary by various groups

here at MSC or the Cape, or wherever else it might be, is

corrective work suspended or held in abeyance while the

Board meets? For example, if it were found that the liquid

oxygen tank, for example, was suffering from stress corrosion

or metal fatigue and blew at too low a pressure, and Beech

or North American or somebody wanted to go ahead developing

new tanks, would that effort go ahead in tandem with the

Board's investigation or be held up for the Board's findings?

l'm not positive, but I believe the procedure that would be

followed would be that a major corrective work which might

impact the existing system and result in changes to hardware

that's currently assembled would be held in abeyance until

the Board's report was in. On the other hand, it is not

unreasonable that certain things could go forward in parallel

for possible incorporation later in order to save time now.

Dr. Cortright, does your franchise possibly extend to the

early shutdown of the second stage engine, and second

question, is it likely that you would make any recommen-

dations on the deployment of rescue ships in the Atlantic

or even possibly the Indian Ocean?

The instruction does not require us to examine the early

shutdown on the second stage engine except insofar as the

peak g loads might have influenced the anomaly we're

looking into. I don't anticipate that we will be con-

sidering deployment or any other aspects of rescue ships.

Along the same line, it is in your charter to examine the

adequacy of the measures taken in Mission Control to see

whether there are some improvements that could be made

in those or whether that response could be improved in

any way. That is still your understanding?

Yes, sir. That is in the charter, the instructions.

Thank you very much.
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APOLLO 13 INVESTIGATION BOARD REPORT NO. i

APRIL 22, 1970

CORTRIGHT: I indicated the other day when we talked that I'd keep you

abreast of what we're doing and although I think what I

have to say is less than you want to hear, it's a progress

report at least. I thought l'd start out by telling you

how we've organized to do the job. There was a little indi-

cation of that the other day, but this is the structure of

the Review Board. This is the Board itself, and I went

through those names the other day. Now, in addition, we

have four major panels. One is on Mission Events, and this

panel is chaired by Frank Smith from NASA Headquarters. In

addition, we have asked that Neil Armstrong from the Board

have a secondary function of following in depth the activi-

ties of this particular panel. The panel will have three

members: John Williams from Kennedy Space Center, who will

handle preincident events as to the events up to the time

of the incident; Tom Ballard, from Langley Research Center,

will handle the events of the incident in detail --the short

period of time in which the apparent explosion took place;

and the postincident events will be handled by Pete Frank,

and he is from Houston Manned Spacecraft Center. The second

panel is Manufacturing arid Test. Schurmeier from the Jet

Propulsion Laboratory will handle that, and Jack Clark,

the Director of the Goddard Space Flight Center, will be the

member of the Board who stays with that panel's activity

when he is not meeting with the Board. That panel will also

have three members: Ed Baehr from the Lewis Research Center,

who will review the fabrication and acceptance testing of the

hardware that flew; Karl Heimberg from the Marshall Space

Flight Center, who will review the subsystem and system test-

ing of the qualification-type testing_ and Brooks Morris from

the Jet Propulsion Laboratory, who will look into the reli-

ability and quality assurance aspects of the hardware. The

third panel, on Design, will be headed by Mr. Himmel from the

Lewis Research Center, and Mr. Johnson of the Board will

honcho that activity with him. Now the one member, Dr. Lucas

from Marshall, who has been identified to work on failure

modes and mechanisms, will also be a design evaluation man

and a man to look into related systems, so that if there is a

lesson in h<_re to be learned which can be interpreted and ap-

plied to other systems it will be his responsibility to

understand that. The last panel is on Project Management.

Ed Kilgore from Langley Research Center is the Chairman there,

and Milt Klein from the Board will work with him. There are

three men who will help, a Mr. Ginter from NASA Headquarters,
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CORTRIGHT :

SPEAKER:

CORTRI GHT :

Mr. Mead from the Ames Research Center, and Mr. Whitten on

safety from the Langley Research Center. That group will,

in general, look into the management aspects of the procure-

ment of this hardware and its preparation for flight to see

if there were any breakdowns in the system we've been using

which may have been contributory, Now, although I haven't

shown you this chart before, there are some staff boxes that

we don't have to spend any real time on. The first one I

mentioned the other day -- that's a very important box actu-

ally. Mr. Mathews is heading up the OMSF Technical Support.

That is, he's insuring that the Board gets everything it

needs down here. And he's also working on how to interface

with the investigation that's going on by the project, and

just how do our members of the panel work with their counter-

parts in the Manned Spacecraft Center and the contractors

who are really looking at the same questions. We have a

council secretary to handle our records and papers, a Report

Editorial Group, I think I mentioned that the other day, to

lay out the manner in which we'll report this to Dr. Paine,

Public Affairs, and Legislative Affairs, Mr. Mossinghoff.

We've had one addition to the observers, Mr. Wilson from

the House Committee on Aeronautics and Space, Congressman

Miller's Committee.

Now, that is the essence of what I wanted to tell you today.

We're getting into the problem in some depth. We've been

going through that period when everyone who starts to look

at the data immediately invents his own explanation and has

to discard it the _next day. So, it's sort of a "getting

humble" period, and I think we're almost through that, and

we're starting to get our hands really dirty and understand

what went on. l'm not prepared to issue any statement on

that subject today, but I would ask you whether or not

or I might point out, rather, that there was a statement

issued in Washington's part of the committee --the testi-

mony of Mr. Petrone before the Congress today, which gave

the timeline of significant events or the major events

leading up to the incident. Have you all had a chance to

get that yet?

I believe so - -

Well, it may be more current. I'ii be glad to quickly read

it for you if you'd like. The first event at -- this is

eastern standard time 10:06, oxygen fans were turned on. At

10:06 and 22 seconds, it was a high current spike in fuel

cell number 3. At 10:06 and 36 seconds, there was an oxygen

tank number 2 pressure rise. At 38 seconds, there
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was an ll.3-volt transient on ac bus number2, at 41 seconds,
a high current spike on fuel cell number 3, and at 58 sec-
onds, an oxygen tank number 2 temperature rise. At 10:07
and h5 seconds, oxygen tank number2 maximumrecorded pres-
sure, and at 10:07, 53 seconds, there were measurable mo-
tions of the spacecraft. At 10:07 and 56 seconds, the oxygen
tank number2 pressure went to zero, and shortly thereafter
Lovell stated that he had a problem. Additionally,
Mr. Petrone madethe following statements: "That the
event was not a meteorite. The probability was calculated
to be too low, for one thing." And also, "The telemetry is
good enough and the numberof events have enough information
in them that it would appear not to be that rare coincidence
of a meeting with a meteorite." He goes on to say, "From
preliminary examination, it does appear that the observed
rapid rise in the oxygen tank number 2 pressure would require

an amount of heat much greater than that produced from cur-

rent flow for the tank fans, heaters, and instrumentation

operation. In other words, the electrical system could not

alone pump enough heat into that --energy into that tank

to raise the temperature of the oxygen as -- and the pres-

sure of the oxygen, rather, as much as was observed. This

does not rule out electrical power as a source of initia-

tion for some other energy source as yet undetermined.

Analysis and tests are being made to determine what such

an energy source could be and how it could have been
initiated." That's all I have to say.

l'd like to ask you a question about what Dr. Paine said

this morning. He referred to it as a relatively simple

component in the number 2 oxygen tank, and he seemed to

think the problem could be taken care of right away. Could

you comment on that? What is this relatively simple compo-nent?

Well, here's what he said: "The oxygen thermos flask

believed to be involved is a relatively simple component,
and corrective action should not prove to be a major task."

I think he was referring to the entire tank and its con-

tained equipment as being simple. And I think what he

I'll speculate here _ that he means it's simple compared

with the rest of the system, and even if they had to do

major things to that tank, that it probably could be done

in time not to impact the schedule. But, I don't think

he was precluding the possibility of some fairly major

changes in that tank. But, the tank itself, you know, is

a reasonable-sized device to have to cope with.
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Then you see possibly somemajor changesthat will have to
be done in the tank for Apollo 14.

I wouldn't rule that out.

Cortright, have you seen any indication at all which would
give you a clue or a vague hint as to what possibly could
have gone wrong? Anything at all to lead you into a gen-
eral direction?

Well, the obvious. If you're looking for energy in a tank
like this, you have to say, "Well, what energy is there to
start with?" And, you do have kinetic energy, you have
moving parts, namely, the fan and the motor that drives it.
And, you have electrical energy. You do know that there
were glitches in the electrical system which would lead
you to think there might be someelectrical problem in the
tank. And, it's not very mysterious, really. You can get
short circuits with electrical equipment, and they usually
are accompaniedby glitches. So, that's certainly one
possibility that would have to be considered.

You didn't mention fires. Wasthere any danger of fires?

Again, the major energy source, potentially in the tank,
would be combustion, and if combustion took place, it's
not certain exactly what it would be like with super-
critical oxygen at those pressures and temperatures and
the small amountof combustible material in there. We
don't quite knowwhat it would be like if it happened, but
it could happen conceivably, and that could have been
the energy source.

Mr. Cortright, is there anything that you have eliminated
as m besides the meteorite -- as not being the cause?

Now, we're not really going at it that way, yet. Nowthe
Board has started by concentrating on that area that the
experts here had determined as the probable source of trou-
ble. And, we've spent most of our time trying to get to
understand everything about that oxygen tank; how it inter-
faces with the rest of the equipment in the system; what
energy sources are there in that tank and how might they be
triggered; what type of chemical reactions could take place
in the tank; would they look like combustion or not, and
how might they be initiated? So, we are not really yet
concentrating on ruling things out. We're trying to rule
things in right now.
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Mr. Cortright, do I interpret that to meanthat Mr. Petrone's
statement today was his own; it was not based on anything
the Board of Reviewhad said? It was based on the MSC
investigation? And, let meask you further to follow Paul
Recer's question, have you ruled out a meteorite?

Wehaven't considered it abort yet, but l'm inclined to
say "Yes." The odds would be extremely small that it could
be that. As far as Petrone's statements are concerned, l'd
say they are his own, and the way we're handling this sort
of thing, statements of fact, insofar as they can be deter-
mined to be fact, are madeby the Project. And, we draw on
those samefacts to help us in our investigation. So, in
other words, if you have detailed questions about how vague
were the current spikes and exactly whenthey occurred, the
Project is releasing all that information as fast as it can
pin it down. And, the interpretive part of it, apparently,
they are releasing someof that too. l'm trying not to do
too muchof that now.

Have you ordered any tests such as the effect of the elec-
trical arc within this tank or someto that effect? Any
tests using- -

Tests are already under way by the Houston team. They are
trying to determine in what way an electrical problem might
have been a source of ignition, for example.

To follow that question, have you ordered or requested that
Houston investigators or any others go further in their
investigations in any direction than they have been going
and are you generally satisfied with those investigations?

Well, l've been generally satisfied. Wehave madea sugges-
tion or two which would constitute slight expansions to what
was already being done, but generally, we've been satisfied.

You listed somepossible or potential causes that are being
investigated. I wonder if you could run through a complete,
you know, i, 2, 3, of the possibilities that will comeinto
consideration without weighing them in any relative value.

l'd rather you get that from the Project.

You plan to meet as -- in panels and perhaps one or two
executive sessions a day.
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Wedo that. Generally speaking, we meet with Jim McDivitt
and his people at 8 o'clock in the morning, to start the
day off. Andwe get a summaryof what they accomplished
the day before. Then we have special technical briefings
as we need them in the morning and otherwise operate as
panels and subpanels during the balance of the day. We
also monitor the technical meeting that takes place every
evening at 6 o'clock, Mr. Arabian's meeting.

It would makemy life a little easier if you'd say what you
plan to do over the weekend. If you don't, I don't have to.

Well, if you know, I wish you'd tell me. Wewill work over
the weekend, but at the moment,most of our days aren't
planned very far in advance. We're still playing it by
ear as we go along.

Sir, l've been told that there's a report at CapeKennedy
that one source of the problem is thought to have been a
motor driving fan which failed. That it's the motor driving
the fan that failed. Is this true, or do you know?

Well, that --the fan motor sad the fan does constitute the
kinetic energy you have and also constitutes a major elec-
trical element, one which does use a fair amount of current.
Yes, that's under close examination.

Did it fail?

No. I didn't say that. l'm sorry. I guess I misunder-
stood your question. It could have failed. It could have
been the source of the problem. It's one of the potential
sources .

Do I understand correctly that there's no doubt whatsoever

that the problem occurred within the tank?

No. It's highly likely. According to the project here, the

project office, that the problem occurred within the tank.

And frankly, the evidence we've seen so far, also points

in that direction. We haven't come up with anything dif-

ferent.

Will telemetry tell you whether this far m_tor failed?

Telemetry may. There was a loss of some telemetry, as I

guess you know, something like 1-I/2 seconds, and it may

be possible to get a little more data out of that lost telem-

etry, which would help determine that problem.
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And do you still think that you can conclude this in 3
or 4 weeks?

I think it's possible. It looks tight.

Well, in order to do that, wouldn't you have to knowwhere
you're going?

Yes. And that's why I said we haven't yet. Of course,
we've only been here a couple of days -- a few days, but
we haven't yet seen any anomalies in the mission that point
elsewhere. Everything points to this tank. So we're con-
centrating on understanding every possible failure mechanism
of the tank.

Are you as optimistic as Mr. Paine was this morning? He
seemedto be rather optimistic that everything would be
cinched up pretty fast and Apollo would be back on schedule
very soon. Are you that optimistic?

I think it should be possible to fix this tank up. Yes.
But I --you know, whenI look at a tank like that, I think,
well, there's a good Job here to be done, probably, and
it will take someeffort. But it's not as big an effort
as these people have handled manytimes before.

Talking about something as basic as a fan motor, all the
other tanks have fan motors, don't they? Or are there - -

There are other fans and other systems I believe_ yes,
that will have to be looked at.

Doesyour data indicate there was a fire on board definitely
and if so, what size fire?

No. That conclusion has not been reached. All it indicates
is that there was somesource of energy in the tank large
enough to raise the pressure above that possible with just
plain electrical omni heating.

Would you, in reference to that, that list you have there,
indicate the 1-1/2 second data dropout?

Well, the dropout occurred just at the time of the incident.
In other words, whenthe apparent bang took place that's
whenthey lost the data.

H-16



QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

How's that indicated on that list?

I guess it isn't.

Do you have a time for it?

You can get that from the Project Office.

Combustion in a tank would infer the presence of a contami-
nant, would it not?

Not necessarily. Combustion can be different things, of
course. Oxidation -- rusting is combustion, you know, in
a sense. So what we want to understand is if there was
combustion, what was it that was oxidizing and how was it
going about. It wouldn't have to be a contaminant. There
are other things in the tank that could react with oxygen
and metals and insulation, both.

Dr. Cortright, whenyou say within the tank, you meaninside
the sphere now. You're not talking about equipment associated
with the tank or near it. You were talking inside the sphere
of the tank.

That's correct.

I understand there's paper matting insulation between the
two walls. Is this being left out as the possible source
of combustion?

Yes. I don't know whether it's paper or not. There's
superinsulation in there. At the moment, the Board is
concentrating and looking at the inside of the inner sphere,
both the insulation on the wires and the possibility of
contaminants and someof the metals themselves.

You also plan to look between the two walls?

We'll have to look at all that.

--metal could react with the oxygen could you characterize
that? The nature of the reaction that the metal prepared
you're not speaking about combustion in there are you?

Yes. Aluminumcan burn, and liquid oxygen under the right
conditions.

Blaze sort of thing?
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I don't know too muchabout that yet. l'd just as soon not
try to answer that question. As you know, aluminum can
burn in air.

Is the Project Office or industry, or anyoneelse simulating
any failure modesand if so, what are they?

The Project Office and North American are both attempting
to generate failure modeswhich could explain all the anom-
alies in the telemetry. And I refer you to the Project
Office for the details of that.

In reference to the picture that was released, could you
tell very much from that picture what had happened?

Not at first glance. But there are image enhancement
experts working on the pictures now to try and get more out
of them. In other words, it was difficult to tell much
about the number 2 oxygen tank.

Is there anything you detected in the photos that would
indicate a fire? Any charring or that sort of thing?

No, not to mebut there was somestaining as you recall
that was announcedby the astronauts themselves. A brown
stain on the outside and I don't know what that means.
That's being looked at.

Would liquid oxygen itself leave a brown stain?

I haven't any idea.

Thar_kyou very much.
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Press conference this afternoon with Mr. George Low,
Deputy Administrator of NASA.

Goodafternoon. I have just spent the day since early this
morning receiving my first status report from the Apollo 13
Review Board. I received briefings this morning from
Mr. Cortright, who is Chairman of the Board, several members
of his panels, and also from Mr. Scott Simpkinson and
Col. McDivitt and Don Arabian who are conducting the Apollo
Program Office investigation here at the MannedSpacecraft
Center. There is a major effort on the way, as all of you
know, to determine the cause and the possible fixes for the
Apollo 13 accident, i don't have an exact number, but i
would estimate that between two and three hundred people are
working on the problems associated with this event. Wedo
have excellent telemetry data, and a great deal of informa-
tion from the spacecraft about the sequence of events that
occurred on April 13, about 55 hours into the flight of
Apollo 13. And as we said before, the major source of
information is the telemetry data. Wealso have photographs
of the service module taken after the service module was
jettisoned just before reentry. And as of today at least,
the information given by these photographs is still incon-
clusive. Specifically, there is still no firm decision
based on the photographs as to whether the oxygen tank
number2 was still in the service module at the time it was
jettisoned or not. Reviewwork is on the way in enhancing
the photographs, getting the maximumpossible information
out of them, but it is certainly not clear that we will ever
get that answer from the photos themselves. In addition to
the telemetry and the photograph, there's also on the way
now a very significant effort of tests and analyses. And
it will take a combination of all of the data from telem-
etry, from all of the testing of all of the analytical work,
and perhaps information from photographs to dete_rminethe
most probable cause or causes for the event that took place
on April 13. But from what l've heard today, and from what
l've been told previously, l'm fairly confident, quite con-
fident that we will be able to bound the problem, that we
will be able to determine its limits, and that we will find
corrective action that will encompassall possibilities.
Both the Board and the project people told metoday that
the most probable sequence of events on Apollo 13 was as
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follows. First, a short circuit occurred in oxygen tank

number 2. This short circuit most probably caused combus-

tion within the tank. This in turn caused the pressure and
a temperature within the tank to increase. The tank then

ruptured. This rupture of the tank caused the pressure in

the compartment in which the tank is located to increase

which then caused the panel, the big covering panel in the

service module, to blow off. And if at any one fact then

that I had not known before today is that the blowoff of

the panel most probably was when the panel flew off and

then hit the high gain antenna which temporarily knocked

it out for a matter of a second or two and this led to the

loss of data for that very short period of time just about

the time that the panel did fly off. We also discussed

today the preflight events that might be of importance in

connection with the Apollo 13 accident. These included the

facts that the motors, the fan motors, the fans inside of

the tank were changed early in the manufacture at the ven-

dor's plant; later on the tank, itself, was removed and

reinstalled; moved from one spacecraft and installed in

spacecraft 109 and during the removal from spacecraft, I

believe it was 106, it was jarred or dropped an inch or two,

and this may or may not have had an influence on the well-

being of the tank. Finally, during the loading and unloading

of the tank during the countdown demonstration tests at the

Cape, there was an anomaly which made it very difficult to

get the oxygen out of the tank. This was several weeks

before the flight and a new procedure, not previously tried,
was used in this detanking. These three factors are also

being looked at by the Board and by the Review Team to see

whether there's any possible connection between those and

the accident, itself. The Board, today, estimated that they

will make their final report to Dr. Paine and myself about

the first of June. This is a very brief summary of our

discussions today. I also spent time this afternoon then

with Dale Myers and Rocco Petrone and Jim McDivitt and

discussed possible alternatives of design changes that

might be made to the spacecraft without in any way prejudging

what the conclusions of the report would be. But no deci-

sions in any such changes have been made at this time.

Be glad to answer any questions you might have.

We'll start with Art Hill and then go back.

George, how certain can you be that a short circuit was

responsible for initiating this series of events?

H-20



LOW :

DUFF :

QUERY :

LOW:

QUERY :

LOW:

QUERY:

LOW:

DUFF :

QUERY :

As I said, Art, the conclusion by the Board and the Review

Team ws,s that this was the most probable initiative of the

events. I don't think that anybody, as of today _ can be

positive that this was the- that this will be the final

answer, but, as you know, there were a number of electrical

glitches, high currents, low voltages, just preceding the
rest of the events and the investigation today was focusing

in that direction.

Ed DeLong.

In what component would you estimate that that short cir-

cuit happened and when you say combustion in the tank, does

anyone yet have any idea of what combustion in a high pres-

sure L0X tank is?

First question, what component --what component did it

happen on. Short circuit could only be in the wiring

leading to the fans, to the temperature sensor, to the

quantity gage or to the heaters. Now the preliminary con-

clusions today are that the heaters were not powered at

the time, so they're eliminated. And the current to the

quantity sensor and to the temperature fills were so low

that they are unlikely components. So the most likely

source would be the current to the fans.

Before you go further, you say wiring leading to the fans.

Would that include wiring in the fan motors themselves?

It could certainly include that, yes.

What component reacted or where was --where did the com-

bustion take place?

Again, the people have looked at what might burn in this

oxygen environment, and it would have to be the insulation

on the wiring or the wires themselves or some of the

aluminum components.

Paul, you had one.

Have you all simulated this failure with the tank rupturing,

and if so, does it cause shrapnel that would damage other

components in the same bay?
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The complete simulation --there has been no complete sim-

ulation of the tank rupturing or of the entire events in

the full-scale tank, and it is certainly not clear today

whether the tank would rupture or whether it would spring

a leak or whether it would open a small hole only. I was

told today that all possible tests are still being examined

and that no firm test plan has yet been developed. Again

this will depend in part on the analyses and part in the

small scale tests and part of it is also the -- of looking

at the data before the people here will come up with a plan
for an overall test program.

Dr. Low, you indicated that during the countdown demonstra-

tion tests at the Cape that there was what you said was an

anomaly which caused difficulty in detanking the 02 tanks.

The other two factors were physical factors like a fan

changed or dropped. This is a procedural change. Would

you explain how that could possibly by a contributory
factor to the series of events?

Only in that it may --well, first of all it may have --

going back to this prelaunch event now, the -- at the time

that it was difficult to detank the oxygen, an analysis was
made and it was concluded that there could have been a

buildup of tolerances between various types in the stand-

pipe and the vent line that could have led to this diffi-

culty in detanking. In looking back over the records,

one can then ask the question could the detanking diffi-

culties be an indicator of something else being wrong

inside that tank, and we don't know today that it was.

Also, could the specific procedures in the detanking have

caused something else to be damaged? For example, during

the detanking the gaseous oxygen was pumped into the tank

and released again, and the heaters were turned off and on.

These procedures are now being examined in detail by the

Review Teams and by the Board to see if amy of it could
have had an effect on the tank itself.

George, at what point in the history of the tanks were the

fans changed and why were they changed and was it both fans

we're talking about or just one or what?

At what point in history were they changed? Before the tank

was delivered to North American, I believe, so while they

were still at Beech. They were changed, I believe, because

there was a reading of voltage or current or something that

was not completely within specifications, so they were
removed and a new set of fans was installed.
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So the fans that were in the tank that the explosion occurred
in were new fans?

As far as I know, that's right. They are not the original
fans that were removedat the vendors.

The old fans weren't fixed and then put back in, or amy-
thing like that?

I don't believe they were.

Sixty-six are we not - -

I don't knowthe date, but I would imagine it was at least
that early.

Wecould help perhaps afterward by going back and finding
someof these. Doyou have a question?

Two or three here. One, do you have any idea what combus-
tion would be -- I mean,would it be flame, what would the
physical process of combustion be under those high pressure
or low temperature liquid oxygen conditions? Two, yesterday
we received from, ! gather Jim McDivitt's group, although
it cameout through the Public Affairs Office and was not
tagged specifically as to who it cameout through, very firm
assurances that, although the shelf had been dropped an inch,
this did not contribute to the problem and you seemless
certain of that. Could you explain that a little bit, and
has there been any speculation at all about what might cause
a short circuit and what do you meanwhenyou say short
circuit; do you meantwo wires crossing, do you meansome-
thing stalling the motor and overheating it, what's included
there?

To the first question, do you rememberit? Okay, what is
combustion like in that environment, its supercritical
oxygen at minus 150 degrees and 900 pounds pressure. I
really don't know. Wehad an interesting discussion about
this at lunch time, whether -- I asked whether we had ever
seen or been able to take pictures of something reacting
violently in that environment. And I was told no, we had
not yet, at least the people here had not seen this, and
we are going to look at the possibility of putting a window
or a port into a test model so that one can take films of
this. So combustion really meansa violent reaction,
release of energy of so manyBtu's which are needed then to
increase the pressure and the temperature. I don't think
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anybody today can really answer that question in any more
detail. The second question concerned the -- I try to point
out here the three things that we discussed that were
anomalous in the preflight situation. The fan change and
the removal of the oxygen shelf, and the 2-inch drop that
was involved there, and third, the detanking. And I brought
these out only because they are unknownstoday; I mentioned
also that at the time that the shelf was removedand was
dropped a couple of inches there was a normal discrepancy
procedure followed; in other words, it was examined and was
looked at, it was analyzed and the conclusion reached at that
time was that certainly the tank was all right to reinstall,
where it would not have been done. What the people are now
beginning to do is take a look at this again, to reanalyze
what might have happenedat that time, to see whether higher
loads could have been imposed on it than was knownat that
time, to see whether anything else could have happenedthat
was overlooked at that time. And I mention it only in that
light. And if- do I have them all?

What do you meanby a short circuit?

A short circuit meansan abnormal flow of current which
could be caused by insulation missing off the wire, or the
wire touching the ground or it could be almost anything.

Does that include the fan motor stalling?

My recollection from previous knowledge I have had is that
the fan motor even in the complete stalled condition will
not generate enoughheat to cause any kind of a problem.

Wewill get Jim because we haven't gotten to him yet, then
we are going to Washington for a few questions, then we
will comeback.

Will any or all of the fixes that you have discussed delay
the launch of IL?

I don't know. I think the important thing here is to fix
what went wrong. I should have mentioned, of course, that
everybody here is also looking at all the manyother possi-
bilities in manyother areas where similar or related events
might occur. So we are going to take whatever time is nec-
essary to make right what went wrong, and until I get the
complete Board report, and this maynot even be on June ist,
this was the estimate today, if they need more time, they
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will get more time to do their job, and until the job is

done both by the people here at MSC and by the Board, we

won't really know whether or not we will delay Apollo 14.

We are ready for questions from Washington now.

Okay, please wait for the mike now. Don.

George, could you tell us when and where the tank jarring

occurred?

Where and when the tank jarring occurred; it occurred at

the North American Rockwell Factory in Downey. And it

therefore occurred before the spacecraft was delivered.

We will have to get to the exact date; I don't have it.

I am told November 68.

George, could you tell us --you were speaking of separating

the oxygen tanks takes some equipment change to do that.

Are you also thinking -- i to 3 months in this whole thing?

I missed the middle part of the question. Could you repeat

it please?

Could you repeat the question, please. I did not get it.

George, are you thinking of separating the oxygen tanks

some physical way, not putting them into a different bay,

but maybe armor plating them? Are you also thinking of

removing the fans and the heaters and any other source of

electricity, and if you are thinking of this, wouldn't this

mean a delay of anywhere from I to 3 months in Apollo lh?

First question concerned the separation of armor plating

of the tanks. This is being looked at also, but it is as of

today not proposed as a solution. The removal of fans,

specifically the removal of fans, and the changing of the

wiring to the heaters instead of removing them or even the

possibility of removing them is being examined by Jim

McDivitt and his people. Again, no decision has been

reached. As far as time is concerned, I cannot give you

an answer. I know that there was a time when we launched

Apollo flights on 2-month centers and made some very major

dramatic changes in those fairly short periods of time. As

I said before, we will take whatever time is necessary to

fix it.
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QUERY

LOW:

All right. I am told that October is the correct date.

Dr. Low, while you were talking about the change and relo-

cating them and so on, you discussed something in general

about what design modifications you talked to Jim McDivitt

and also what area is it you're looking into where you

could through a single event lose your safety redundance

other than the

I can answer the first question. The design changes today

are the only design changes. They have not yet moved out

on any hardware changes. The design changes that are being

looked at include the removal of the fans, the changing of

the heater wiring, or the heater location so that all of the

wiring into the heaters can be enclosed in a metal sheath

going to the outside of the tank. The relocation of the

quantity probe or the redesign of the quantity probe to

remove the aluminum in it, and at the same time make it

possible to assemble the heater and probe device without

needing flexible wiring leading to them. And the removal

of all nonmetallic materials from inside the tank, and the

removal of aluminum and anything else that may react with

oxygen. Now, again let me emphasize that these are changes

that were being discussed and not yet being perused at

North American. At the same time as looking at these and

other changes and until all these get together, no decision

has been made on any changes.

- - some of the possible errors where you could lose your
re dundan ce.

This we did not discuss today.

Did you say McDivitt has some people looking into those

other possible areas?

Yes.

- - yesterday that after they're manufactured the oxygen

tanks were rejected two times before hastily being accepted

on the third inspection as the deadline approached. Would

you comment on that?

This is the first time that I've heard this. We'll certainly

look into it and get you an answer. I have no information

on this.
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Well, l'm kind of confused on this fan. When you changed

out these fans, did you put back new ones of the same model

or were they different models, different in design than

the fans that had flown on all the previous Apollos?

The fans in Apollo 13, to the best of n_y knowledge, were

the same fans that we had flown in previous Apollos. The

fans that were removed from the tank back at the vendor's

plant apparently did not quite meet specifications when

they were tested in the tank. They were rejected, removed,

and other fans of the same kind were reinstalled.

Okay. Did this happen in any previous Apollo flights, that

you had to remove the fans?

If it did, it was not discussed today.

Dr. Low, again along with Paul's question, could you com-

pare these anomalies with anomalies of similar nature of

other Apollo flights? Have you had things of this nature

happen on other flights that you might be able to compare
with the anomalies on 13?

It's hard to form a comparison. We had, of course, some

anomalies in every Apollo flight. None of them was as

critical, none of them could potentially lead to as cata-

strophic a result as the anomalies on Apollo 13 could have

led to. Going back in history, of course, we had Apollo 6

where we lost 3 engines on the Saturn V launch vehicle on

the way out and had a very --had the POGO problem on the

first stage and also had a very major damage to the service

module LM adapter. Apollo 7, I don't remember the list.

We did lose, during the flight of Apollo 7, momentarily all

ac power as you'll recall. Apollo 8, we had very few,

although the list of details was quite long still.

Apollo 9, you're making me go back in memory here, but we

had some kinds of problems in every flight, up to and

including the computer alarms on Apollo Ii and the lightning

strike on Apollo 12, but none of them, as I mentioned

before, were potentially as catastrophic as these might have

been on Apollo 13.

Well, I was basically thinking that --not of the overall

flight but on the LOX tank itself. If you could compare

all of the Apollo L0X tank situations, what would 13 look

like? Would it look like really a bad tank and if you'd

have compared them all would you have gone with it?
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I can't answer that question. It is not at all unusual
to have countdownproblems or countdowndemonstration
problems and --because this is why you conduct a count-
down demonstration in the countdown. I rememberin
Apollo 9 we had a very significant problem the entire night
before launch on the supercritical helium tank where we
did not know whether we had a blockage in the tank or not,
and we decided at that time that we were satisfied that
we understood the problem as we did on Apollo 13 on the
oxygen tank, and went aheadwith the launch. That's a
related problem in that they were both cryogenics that we
had a problem with and only in that sense. I don't think
you should consider any single countdown problem or a
single countdowndemonstration problem or a single check-
out problem at the Capeto be unusual. We've changed
engines, we've changed fuel cells, we've done all of
these things and that's why you conduct tests at the Cape.
It's only today in retrospect, now that we've had the
accident, we're looking at the procedures again, that
we're looking particularly at the procedures in connection
with that tank to see whether that could have had an effect
on what happenedlater in the flight.

If you're moving the fans from the tank, what mechanism
would be used to stir that oxygen? The second thing, what
is your opinion now of the possibility of flying another
Apollo flight this year?

The first question is a technical one and even that does
not have a complete answer, Jim. Based on information by
Jim McDivitt and his people to date, it is possible that
we can conduct the flight without stirring the cryogenics
with the fan. This is based on looking at all the informa-
tion from all of the Apollo flights to date and looking at
the times and the fairly long times that we've gone on some
of these flights without turning on the fans, it appears to
be possible to eliminate the fans entirely without replacing
them with anything else. This is not yet a firm conclusion.
What is the probability of an Apollo 14 flight this year?
I can't give you an answer.

You talked about the possible design changes in the hard-
ware. Howabout design changes in the flight, itself, the
trajectory and the use of this hardware. Specifically,
there has been a suggestion that you might possibly carry
the ascent stage back as a possible lifeboat. Is there
any consideration being given to design changes in this
area?
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That was not discussed today and has not been discussed with
me at all, so I really can't answer that. I don't know
whether or not it is being considered and if it is being
considered, whether it has a positive outlook or not.

Dr. Low, based on the thinking of your investigative Board
that it can have a final report ready for you and Dr. Paine
by June ist. Does this meanthat you have arrested a prime
suspect and now you're just going to give the guilty party
a fair trial the rest of the month, or have you got some
other --

That's a good way of putting it. No, I told you all that
I know. However, the people here are quite confident, that
given another week or two of proceeding with the analysis,
of doing someof the tests that are underway, that they
will have enough information to bound the problem to decide
on the design fixes. Now, it maybe, as I said before, that
they will not be finished by the first of June or it maybe
that they will give a report on the first of June and we'll
ask them to reconvene in July or August or someother time
to again look at what has been going on within the Program,
and to makesure that all the loose ends, if any, will
clean up.

Amongthe possibilities of solving this problem, have you
considered any that are not directly related to the struc-
ture itself, such as carrying another set of bottles or
dividing them into two small bottles, or carrying a reserve
supply somewhereelse so that a flight would not be impeded?

Yes. I listed, a momentago, those avenues that the project
people here are looking at most seriously, today. They,
then, have a whole list of other things that they are also
looking at which include, perhaps all of them that -- all
of the ones that you have mentioned.

Have it one at a time, Ed.

Okay. You reminded mewhenyou mentioned the POG0problem
and the engine failure that we did have an engine-out on
this flight and that I have heard someproject people say
that if there is a delay in 14 that the fixes for that
engine-out maybe more responsible for it than any modes
to the spacecraft. What is the status of that engine
situation and how accurate is that assessmentof the possi-
bility of delay?
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Ed, I know that people at Marshall are working very hard

on that. I have not been briefed on it, and I have not

reviewed it, and I honestly don't know.

Thank you all very much.
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APOLLO13 REVIEWBOARDCONFERENCE
JUNE2, 1970

CORTRIGHT: Goodafternoon. The purpose of this particular conference
is to bring you up to date on where the Apollo 13 Review
Board stands, tell you a little bit about why we've de-
layed our report and a little bit about what our prospects
are of making the current date. Now, in particular, I
want to tell you something about the tests that are going
on. I will refer to a few notes here in which I hope I
didn't leave anything out. First of all, let me say that
the general status of the review is that it's nearing com-
pletion, l'm generally satisfied with the results that
have been turned up in the investigation to date. I think
the understanding of the accident is good. We've delayed
the report, as I mentioned in a bulletin which cameout
within the last few days, because there are critical tests
being carried out which will help pin downsomeof the de-
tails of what took place. The Board has not been satisfied
until recently that these details were pinned down. There
are still a few key points to clear up.

Now, the tests that are being carried out are being carried
out all over the country. For example, here at Manned
Spacecraft Center, there are a numbergoing on. They are
also being conducted at AmesResearch Center, Langley Re-
search Center, Marshall SpaceFlight Center, KennedySpace
Center, and at North American Rockwell, Beech, Boeing, and
a few other places. Oneof the key tests is -- one series
of tests relates to this special detanking procedure, which
you heard about before, and the checkout proceedings at
the Capeprior to launch. Nowthe tests so far have found
the faulty thermal switches, or the failed thermal switches,
which were mentioned the other day. They've also demon-
strated that if these thermal switches had failed as we
now are relatively certain was the case, that the tempers-
tures that would have been reached in the heater tube
assembly could have exceeded i000 ° F in somespots, although
not everywhere. There were tests conducted here at the
MannedSpacecraft Center that showedthat when the heater
assembly, the heater tube assembly, reached temperatures
like that it baked the Teflon-coated wires and destroyed
the insulation. And a little bit later I'll showyou some
samples of this insulation and what happens to it when it's
baked in an oxygen environment. Nowthe clincher is going
to be conducted at Beech Aircraft Corporation this week
wherein an actual flight tank will be cycled back through
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the sameseries of detanking operations that took place
on the oxygen tank no. 2 from Apollo 13. These tests
began yesterday with a normal detanking and will proceed
now into the special detanking. Following the tests, the
tank will be disassembled and the wiring damageexamined.

Another series of tests that are appearing important are
being carried out at the MannedSpacecraft Center, the
AmesResearch Center, and the Lewis Research Center relate

to the ignition and combustion processes in the tank. Now

the first tests on ignition of Teflon by means of an elec-

tric arc were run at the Ames Research Center; they demon-

strated very low ignition energies. In fact, the initial

test indicated less than I Joule of energy and the short

circuits that were measured in flight showed energies of

at least 20 times that --I0 to 20 times that. Subse-

quently, the values required to start an insulation fire

in the tank fluctuated a little bit, but generally seem

to show I joule or less minimum energy, if the fire or

ignition were by means of an electric arc. Just plain

heating takes a lot more energy, but an electric arc con-

centrates the heat. The most recent test at Ames has

shown that if the wire is baked in an oxygen environment

and damaged, it still ignites and burns much as if it were

in its original condition. Now, the test at the Lewis

Research Center was designed to check these phenomena in a

zero-g environment. Now, the way this is done is that

there's a facility at Lewis which consists of a tank which

is dropped from a 500-foot tower. Actually, it's dumped

into a 500-foot hole and I think you can get 5 seconds of

zero-g flight that way, and if you toss it up from the

bottom and let it get almost to the top and come back down

again you can get i0 seconds. Basically what they've

shown in the combustion rate or propagation rate tests is

that in one-g the rate of propagation of combustion along

a Teflon-insulated wire depends on whether it's traveling
up, down, or sideways because of the convective currents.

The direction which most nearly simulates zero-g is down,

and that is about twice the rate that really takes place

in zero-g. These are Just rough numbers, but they are

generally right and all of this information has been de-

termined since the beginning of this test program.

As far as the tank rupture is concerned, there has been a

lot of question about just how much of a rupture it was, and

the guesses have ranged all the way from a small half-inch

hole, which might have occurred if a conduit burned out at

the top of the tank, to total rupture. Now, here's why

that's important. We feel that we'd like to know how much
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the tank ruptured so that we can understand what caused
this rupture. Wecan readily conceive of a burnthrough
at the top of the tank because there are manywires that
cometogether at the top of the tank and run out through
this small conduit. This makessense to us. Tests were
just run here the other day that showedthat not only
might that small conduit burn through, but as muchas a
2-inch hole in this particular case could burn through
very rapidly.

Now, this ties into another series of tests, and that is
how the panel cameoff the service module. The pulse re-
quired to take that panel off has been under study at the
Langley Research Center with a very large crew of people
working on this problem. The service modulebay 4 has
been mockedup in about one-half scale, and so far I think
a series of about 15 tests has been run to attempt to pop
the panel off in a realistic way, and this has all been
scaled dynamically and structurally so that it does simu-
late the actual conditions. The first thing that was
found out was that if you pulse a very rapid pulse in a
local area, which simulated a very rapid, rather large
rupture of the tank, it tore a hole in the panel. But if
the pulse were just a little bit slower and gave sufficient
time for the gas to spread throughout the whole bay and
pressurized that panel fairly uniformly, it cameoff
completely, and it cameoff at about the pressure it was
designed for, which was between 20 and 25 psi. Now, there
was someproblem with these tests in the sense that the
slow pulse which took the panel off pressurized someof
the rest of the service module more than we think happened,
because under one condition the pressure could have sepa-
rated the commandmodule. The commandmodulewas designed
in such a way that if it had been pressurized at its heat
shield area to i0 psi about, it would have comeoff. So
we have been looking for a pulse that would take this panel
off more abruptly and get it all off and this was achieved
yesterday morning where we were running our second honey-
combreinforced panel. Prior to this test, the panels
were single sheets simulating the tensile strength and the
membraneproperties of the actual panel. Someof the stiff-
ness properties were injected the other day whenwe got
our first scale honeycombpanels. They have now comeoff
in total, not in one piece, but they've all comeoff with a
sharp local pulse of the type we think occurred.

Werve also been running extensive theoretical calculations
at Langley to try to relate the shape of the pressure wave
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CORTRIGHT:

QUERY:

CORTRIGHT:

and the total energy in it to what you might expect from

various size ruptures in the tank. We're getting close to

a match but we don't quite have it yet. Now if we've got

a 2-inch hole in the tank, and we're not sure we did get

it, just one test sample showed a hole about that size,

that would about give the right size pulse. If it was

something less, we might need an augmented pulse. There's

one way you can get an extra kick into that pulse, and

that is by burning of the Mylar insulation was right over

the top of the tank. There's a test being run at Langley

today to try to demonstrate that if the tank had burst,

flooded the Mylar insulation with liquid oxygen, or a

spray of liquid and gaseous oxygen, and had ignition

sources present (which would almost certainly have been

there with a burnthrough at the top of the tank) it would

in fact, ignite and supplement the pressure pulse from

the cold gas alone. Now this isn't quite pinned down yet.

Obviously, l'm giving you some information in advance of

conclusive results but l'm doing this so you'll understand

what we're about. I guess the last thing I would say then

is that the tests are all coming to a focus here this week.

It's going to be very difficult to get the report in by

next Monday. The Administrator is not putting me or the

Board under pressure to get that report in but rather is

urging us to take the time required to do a good job and

we're going to do that. So that if additional time is

required, we'll take it. I won't know for a few days yet.

That's what I thought I would tell you, except to answer

the questions.

Would you just summarize for us the probable sequence of

events that happened on Apollo 13 based on all the know-

ledge to date?

Where do you waist me to start?

When the problems developed, what had happened that lead

up to this problem on Apollo 13 ... based on the

investigation?

Well, I'Ii tell you part of it but I don't want to attempt

to give you the whole sequence because there's some steps

in it that we're still debating. In fact, I have to leave

here before too long to go back and participate in a

meeting with officials from the prime and subcontractor

who built this tank to discuss some of the events that

preceded the accident. But in a gross sense, it was be-

lieved to be something like this. The switches which

failed at the Cape, we think, were not rated to the voltage

levels to which they were subjected at the Cape. Normally
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they would not have been opened under these voltages at

the Cape, but they did so in the special detanking. This

higher voltage failed the switches in a manner in which

they could no longer function as protective thermostats.
This in turn resulted in the heaters operating for a

long period of time without interruption. The heater tube

assembly reached temperatures which we suspect, locally,

may have been as high as i000 ° F. We have demonstrated

that this seriously damages Teflon insulation. In flight,

when the fan motor wires were energized for a normal stir

of the oxygen, they short circuited at a point where the

insulation had been damaged by this heater cycle. The

short circuit was of such a nature that it created an

electric arc which, in turn, ignited the Teflon insulation.

The Teflon insulation burned towards the top of the tank.

When it reached the top of the tank it ignited additional

Teflon insulation around other wires which come together

there, creating a local furnace which burned through the

top of the tank in some manner. The high-pressure oxygen

rushed out into bay 4, pressurized it with a sharp quick

pulse, separated the panel, damaged the oxygen tank no. i

system, resulted in the total loss of oxygen and power

ultimately.

What evidence is there that this happened before launch?

The switches were damaged before launch?

The tests the other day showed- indicated that the

switches can weld closed when they attempt to interrupt

a current of the strength which was used at the Cape dur-

ing a detanking procedure. Now the details of that, with

regard to the actual rating of the switch, how it came to

have that rating, l'm not prepared to discuss that today.

How many times were the fans used before the explosion and

why?

I don't have that count, but they were used.

More than once?

Yes.

Who authorized this special procedure for detanking?

This was authorized through normal procedures at the

Kennedy Space Center with checks with responsible

indivi duals.

Had they ever been used before?
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No.

Do you know why they had trouble with these tanks?

We suspect a loose portion of a filter assembly in the tank

but l'd rather defer discussion of this aspect of it. I

think I will defer at about this point because there are

elements of it that are not yet clearly established and

they will be in the final report to the Administrator which
I'll make next week.

Why was the failure of switches not discovered early in
launch ?

The ground support equipment which monitored the tank did

not readily or visibly display the heater operation and
the operation of those two switches.

And was no special step made to check those switches due

to the fact that they had been taken above their rated

voit age s ?

No. I defer that question for the next time we get together.

Well, what kind of voltage did your tests show? What volt-
age did the switches draw?

65 volts dc.

When you said there was nothing on the ground support equip-

ment, what do you mean, there was no indicator or gage or
something, or what?

l'm not sure I understand your question.

You said there was nothing on the ground support equipment

that would indicate the heater operation and the operation
of the two switches?

The voltage of the equipment is recorded but as far as I

know, and this is one of the things we're checking into,
there is no convenient way that would illustrate the

cycling of those switches to the observer.

Do you have a detanking procedure which was not normal,

which had been described to us since is very strenuous,
hard on the equipment, etc.?
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There were tests run in support of that operation to deter-

mine whether or not it was a safe procedure to follow.

There was no mechanism hypothesized that could damage the

tanks.

No special tests were run after the procedure was completed
to back check the two switches?

I feel it's very important to be accurate in regards to

this switch malfunction because it probably was the final

thing that occurred during ground tests which caused the

accident. I think it'd be seriously wrong on my part to

speculate in any way.

Cortright, you say that welding occurred at 65 volts dc?

l'm not exactly sure of the exact number so l'd rather not

answer that.

Dr. Paine testified on May 19 before the Senate Appropria-

tions Committee that modifications are being made. Is that

true?

What does that mean?

It means that work is going ahead as planned.

But no nominal gain made, is that right?

The fix has not yet been authorized.

As I understand it, this heater switch business is some-

thing that you became fairly sure of last week, is that

correct?

Yes o

That would have been after Dr. Paine said that modifications

are being made, it raises a question of will this necessi-

tate further modifications?

This switch, I believe, had already been taken out for sub-

sequent flights prior to the accident, and the discovery

of the switch problem merely helps us be certain we knew

what happened. It doesn't change the approach to the fix.

What about pinning the fault of the explosion on the de-

tanking operation? Does this mean that whereas the detanking
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in the past has been sort of thought to have been a one-of-

a-kind failure and there may be some modifications coming

out of it now? Further modifications?

I don't believe that the normal detanking procedure will be

changed as a result of what we learned. Certainly the spe-

cial KSC detanking procedure will not be followed again.

This sounds like not an equipment failure, but human failure

in not using the equipment properly, is that right or not?

There appears to have been a mismatch between the ground

support equipment and the switches which were used on the

spacecraft, and what we're trying to pin down now is how
that occurred.

You're saying that the people conducting the test felt that

these switches could handle the current used in the test.

Did they use too much current?

It was too much for switches that were on board.

Are you saying in essence that you think it means they

know what kind of switches were on board?

Yes. They didn't know that the switches would not handle

that current.

Had there been a change in switch specs somewhere along
the line?

I understand why you want the answers to all these ques-

tions, but I am not prepared to give much more than this

today because I don't have all the answers yet. As I say,

we're meeting at 3 o'clock, to attempt to pin some of these

things down. If I attempt to answer any more questions

about these events, I'ii be changing the answers tomorrow...

... switches to be set, was this known?

It was known to some.

To the people operating the ground support equipment?

No, I said that they -

The people operating the ground support equipment.
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No, I said that they felt the switches were rated

at the level to which they were using them.

Has NASA called for or requested a change in switch speci-

fications anywhere along the way here?

What are the switches rated at? What were the switches

that were in there rated at? We've got 65 ...

We're double checking that, and we'll tell you when we

know.

You said that this thermostat switch had been taken off

in future flights?

I think so.

Do you know why?

Pardon?

Do you know why that it was taken off?

l'm not positive that I have all the information on it,

but normally those switches are never used. They would

normally be used in very unusual condition where the

oxygen in the tank got down to a few percent of maximum

during flight, and the tanks aren't used that way. But

they were used that way during this detanking procedure.

The switch removal then is not one of the steps that you

ordered as part of the fire proofing procedure?

No, sir.

These switches, are they inside the tank, outside, or where?

They are inside the tank, mounted on the inside of a heater

tube, near the top.

Then Apollo 13 would have been the last flight to the best

of your knowledge at this point in time that would have

had those switches in it?

l'm going to ask Brian Duff to check that for me. l'm

not certain. That's my recollection.

We've got one question from Washington. Wait a second.
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... and the mismatching of switches in GSE, etc., are you

coming to the conclusion that perhaps there has been

over a period of time ... a letdown in quality control

and attention to detail that's got to be shaped up?

We're not going to come to that conclusion today. We're

trying to reach conclusions so that we can make recommenda-

tions to the Administrator next week. I guess that will

have to be nTy answer for today. Let me say one other

thing in answer to that question. I have not detected any

letdown in quality assurance as set up for this program and

as carried out. In fact, we have found that the quality

assurance program is about the most rigorous we've ever

seen and that it's carried out to the letter. That does

not mean that the best systems can't let things slip

through occasionally.

You said that the ground support people didn't know that

that switch couldn't take that current but that some

people did know it. Were these some people that were at

the Cape that were involved in the procedures?

We're trying to determine today and this week who did and

who didn't know and what information was exchanged among
them.

You certainly have given an overall impressiom at least

that there was either a substandard switch involved or

that some documentation along the way didn't get passed

along, or that something in this area probably occurred.

Is that what you're looking at, at least is that possibility
you' re looking at?

I think it's clear that a mistake was made. That's what

we're looking for.

Does it look more like a hardware mistake or a documenta-
tion mistake?

l'm not certain just what aspects have been ... most

significant.

Then why ...

l'd rather not get into a discussion of this today, if you
don't mind.
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QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

Dr. Cortright, how did you cometo suspect the switches?
Wasit because the detanking procedure was a deviation
from the normal way of doing things, that an investigation
of this type you would normally look into a thing like that?

That's the first part of it. It was ar_abnormal thing.
The tank failure was abnormal. You try to put two and two
together. Wedid recognize immediately that if those
switches had not operated that the heaters could have gotten
quite hot, so we undertook with the MannedSpacecraft Center
to conduct tests to determine how hot the heaters might
have gotten. In the process of conducting those tests, the
switches actually failed in the manner I described. It
wasn't actually during the test of the switches themselves
but they did weld themselves shut and therefore pinned
downa key step in the whole process.

Well, do you feel that the sequencewas a failure? When
the switches failed at CapeKennedyand generated possibly
i000 degrees of temperature, this in effect did somebaking
of the insulation. Subsequently, use of the fans and the
heaters continued to bake and on April 13 the insulation
just gave way and arced. Is that what happened? After a
continual exposure to this high heat?

Weexpect that the insulation was in bad shape at launch
and just why it took as manyhours as it did to strike an
arc we don't know, but there are mechanismsthat you can
speculate on. For example, there are wires that are re-
latively free. They are loops in the tank, and these loops
no doubt do somemoving around each time the fans comeon
and stir the fluid. They conceivably get movedback to a
point where they had once been in contact with the heater
and were damaged,and if at the time they movedback they
were bare, partly bare because of the damage, it would
strike an arc. That's one way it could happen. Wemay
never know.

Do you have a certain amount of sloshing in those tanks by
just attitude changes? Do they slosh ... ?

Well, sloshing is not the right description, but a gentle
reactive motion.

The loops --the wires could movew!thin the tank in this
kind of motion?
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CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

Yes, but when the short circuits took place was immediately
following turnon of the fans.

Whenwas it first discovered that more voltage was applied
to the switches than should have been?

Last Wednesday. Wereported it to you last Thursday.

Wasthat just a studying of documentation of test at the
Cape? Is that right?

That was by having the switches fail during the ground
tests and attempting to understand why they failed.

Howdid you becomepositive that the switches were failed
at the time of launch? Is this hypothesis based on these
tests or was there somedocumentation that you could go
back to for the GSEto determine this?

The records l've seen to date indicate that the rating of
the switches was lower than the voltage supplied to them
and that this makes it seemrational that since they failed
in ground tests at the voltage used at the Cape, that they
in turn had failed at the Cape. Now, someof the tests
that are being run this week, and l'd like to makea strong
point of this, are to validate in fact that these switches
would normally fail at the applied voltages and that it
wasn't simply an odd occurrence here in a test at MSC.

That's the purpose of the voltage test for the flight
model?

Actually -- excuse me, I want to answer that question.
That isn't one of the main purposes of that test and I
don't know what configuration those switches are in in
that tank; they may, in fact, be wired closed. But
there will be more switches tested here to get a little
bit of statistical sample as to whether they would
always weld closed.

Would you run through in a very brief capsule summary,
the tests that were conducted, in the sequence in which
they were conducted and the place they were conducted
leading up to this day and this week, this month? MSC
switch failure found and pick up from there.
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CORTRIGHT:

QUERY:

C0RTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

QUERY:

CORTRIGHT:

CORTRIGHT:

QUERY:

QUERY:

CORTRIGHT:

I guess I won't try to do that because I don't have all
those dates and sequencesthat sharply in my mind. The

key test was here at MSC last Wednesday in which the
switches failed.

Is there any sensor ...

No. The thermal switch itself is set to open at 80 ° F

plus or minus i0 °.

Yeah ... thermal switches, is there any idea ... it's

two dimensional.

l'm not prepared to discuss the details of that. Now I

can guarantee you that there will be thought given to need

for such a measurement. I'm not sure if it's needed.

Plus or minus 80 degrees - plus or minus how much you can

handle ...

How did you decide that the insulation was in bad shape

or not? I would ...

Just happened to have. (Laughter.)

I intended to bring along and show the original condition

so you could imagine that. This is a piece of wire that

was baked for i hour at 752 ° F; the insulation is cracked

and opened up at various positions on the wire. That

represents i degree of insulation damage. Subsequent

movement of shaking and thermal stresses might have caused

pieces to flake off. Now at a little bit higher tempera-

ture, 860 ° F, you can see the insulation is largely gone.
That was after 1/2 hour. Now we know that we were quite

sure that some portions of the heater tube reached i000 °,

probably most of it didn't but it could have been local

damage perhaps as bad as this.

You'd call that thing cooked, wouldn't you?

Several hours, at the Cape at i000 ° and this burned off

in a half hour; how did he even get airborne? •

That's good question and I Just don't know the answer

to that question. We only have a few measurements in our

tests so far that give temperatures on that heater. One

of them went as high as I mentioned (1GO0 ° F) and it was
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QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

_]ERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

QUERY:

CORTRIGHT:

very close to the actual heater element. The temperature
dropped off fairly rapidly away from that element, l've
been led to believe. And therefore, the wires maynot
have approached these temperatures on most of their length.
All we have established really is that the potential was
there to destroy the insulation on the wires at least
locally.

Howclose is this fan wire adjacent ...

The lower fan motor wires run through the heaters through
a small conduit.

What's the material of this conduit?

Inconel. I think l'm going to have to limit you to about
one more question. Then I have to get back to the meeting.

Canyou even ball-park roughly how this 65 degree -- did
you say the voltage it was supposed to be in the switches
was two times as high, three times as high, four times as
high?

No. l'd rather not. I have an approximate number, but
we're checking that today.

Could you even just give us a rough thing like it was
quite a bit higher?

Waslarger.

Wasit quite a bit larger?

It was large enough, I think, to weld them.

Whatwas the material that ... checked?

• . . (Laughter.)
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STATUS REPORTS OF THE APOLLO 13 REVIEW BOARD

Status Report No. i

April 21, 1970

The first meeting of the Apollo 13 Review Board was convened by

Chairman Edgar M. Cortright at 8 p.m., c.s.t., April 21, at the Manned

Spacecraft Center, Houston, Texas. The Board adjourned at i0 p.m.

Present for the first meeting, in addition to the Chairman, were Board

Members Neil Armstrong, John F. Clark, Milton Klein, W. R. Hedrick, and

Charles W. Mathews. Cortright said the other Members of the Board,

which was appointed by NASA Administrator Thomas O. Paine yesterday,

intended to join the Board in Houston today. The Members unable to

attend last night's preliminary meeting were Dr. H. M. Mark, Robert F.

Allnutt, and Vincent L. Johnson.

The Board immediately set itself a work routine which will begin

with a 7 a.m. breakfast and end at 9 p.m.

In addition to its own planning meetings and fact-finding sessions,

Chairman Cortright allocated an important part of each day to coordinate

reviews with the Manned Spacecraft Center's Apollo 13 Investigation Team.

Cortright said the Board intended to rely heavily on the data-gathering

and analytical capabilities of the Apollo Program Office Team, while at

the same time insuring that the Review Board had within its own organi-

zation the competence and depth to make a completely independent assess-

ment of any findings or recommendations of the MSC team or any other

source.

In this regard, Cortright said the Review Board will wait until

later this week when it has had a chance to hear a detailed briefing

from the Apollo Program Office Team before it makes final decisions about

recruiting additional support or advisory assista#ice. He said it was too

early to know just where and what additional strength will be needed.
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Status Report No. 2
April 22, 1970

The Apo_lo 13 Review Board held its first full day of meetings at
the MannedSpacecraft Center today. The Board began the day by famil-
iarizing itself with the status of the investigation of the accident
currently underway by the engineers of the MannedSpacecraft Center and
its contractors.

Following this the Board took its first detailed look at the suspect
area of the liquid oxygen tanks in the service module. E. M. Cortright,
Board Chairman, stated that this review included a study of the telemetry
records and the anomalies which preceded the destructive event. A de-
tailed discussion of possible causes of failure followed, and the Board
membershad the opportunity to carefully examine specimens of the type
that failed.
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Status Report No. 3
April 23, 1970

The Apollo 13 Review Board settled into a routine today, which
Board Chairman Edgar M. Cortright expected would carry it at least
through next week without a break.

The entire membershipof the Board sat in as observers for an early-
morning status briefing by Apollo Spacecraft Program engineers on the
progress of all investigations and testing currently underway at NASA
installations or contractor plants.

Immediately afterward, Cortright called the Board and its supporting
experts into session to makethe assignments of responsibility as the
Board began to tackle in earnest its Job of determining what happened
to cripple the Apollo 13 service module, why it happened, and to recom-
mendcorrective action.

Board MemberNeil Armstrong, astronaut, was asked to oversee the
area of Mission Events. Mr. Frank Smith, Assistant Administrator,
University Affairs, NASAHeadquarters, was namedchairman of a panel of
supporting experts. Board MemberJohn Clark, Director of the NASAGoddard
SpaceFlight Center, was given responsibility for the area of manufac-
turing and test, and Mr. C. B. Schurmeier of the Jet Propulsion Labora-
tory was namedchairman of the supporting panel. Board MemberVincent L.
Johnson, NASAHeadquarters, was given responsibility for the area of
design, and Mr. S. C. Himmel, Assistant Director for Rockets and Vehicles,
Lewis Research Center, will chair the supporting panel. A study of
project managementaspects pertinent to the Apollo 13 incident will be
under the direction of Board MemberMilton Klein, Managerof the
AEC-NASASpace Nuclear Propulsion Office, and his supporting panel will
be headedby Mr. EdwardKilgore of the NASALangley Research Center.
Cortright requested the responsible Board Membersand their panel leaders
to determine quickly what kind of additional help they will need to
carry out their assignments and to submit their recommendationsfor his
approval.

Another of the Board Members,Brigadier General Walter R. Hedrick,
Jr., USAF,was given a special assignment to facilitate integration of
the various panels' activities.

Dr. HansMark, a Me_er of the ReviewBoard and Director of the NASA
AmesResearch Center, was given responsibility for special testing and
analyses and for identifying consultants if needed.
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Mr. Charles Mathews, NASAHeadquarters, was asked to supervise
liaison between the work of the Review Board and the investigations
being carried on by the Apollo Program Office.

Board MemberRobert Allnutt, a special assistant to the NASA
Administrator, was put in charge of documenting the Board's plans and
procedures, and planning the form of the Board's official report.

A fourth official observer was added to the Board today at the
direction of NASAAdministrator ThomasO. Paine. He is JamesE. Wilson,
technical consultant to the HouseCommitteeon Science and Astronautics.
Cortright said Wilson, like the other official observers, will sit in
on all Board activities.
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Status Report No. 4
April 24, 1970

Membersof the Apollo 13 Review Board and a numberof the Board's
supporting experts will makea 1-day field trip to the North American
Rockwell plant at Downey,California_ tomorrow.

Board Chairman Edgar Cortright said the purpose of the trip will
be to inspect available hardware with particular emphasison the equip-
ment in bay 4 of the service module; to inspect and review any tests
which are being conducted as a result of the Apollo 13 flight; and to
give the Board Membersa complete history of the oxygen system which
flew on the Apollo 13 spacecraft. North American Rockwell is the prime
contractor for both the Apollo commandand service modules.

Review Board Members,in addition to the Chairman, who will make
the trip are: Dr. John Clark, Dr. HansMark, Mr. Vincent Johnson,
Brigadier General Walter R. Hedrick, Jr. (USAF)_Mr. Milton Klein,
and Mr. Neil Armstrong.

Panel Chairmenmaking the trip will include: Mr. H. M. Schurmeier,
Mr. Frank Smith, and Mr. S. C. Himmel. Mr. Charles Mathews, who is
responsible for liaison between the Review Board and the Apollo Program,
will makethe trip, as will a numberof other supporting specialists and
staff members.

The Board plans to leave Houston via Air Force jet at 8 a.m. Sunday
morning and return to Houston late the sameday. The panel will be at
the North American Rockwell plant approximately 7 hours.
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Status Report No. 5

April 27, 1970

Apollo 13 Review Board panel chairman Harris M. Schurmeier will

accompany Apollo project engineers to the plant of the Beech Aircraft

Corporation in Boulder, Colorado, on Tuesday to witness the assembly of

an Apollo service module oxygen tank.

Beech builds the tank as a subcontractor to North American Rockwell.

Schurmeier said the primary purpose of his visit to Beech will be to

follow in detail the normal assembly procedures practiced during the

insertion of components inside the service module tank. Several Review

Board specialists and Apollo project engineers will make the trip also.

Schurmeier, of NASA's Jet Propulsion Laboratory, is chairman of a panel of

specialists which is assisting the Review Board in the area of manufac-

turing and test procedures.

Other Board and panel members broke up into working groups today

to continue their review of the available data concerning the destructive

incident which made it necessary to abort Apollo 13's mission to the Moon.
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Status Report No. 6
April 28, 1970

The Apollo 13 Review Board examined carefully processed photographs
of the damagedservice module today but found the pictures inconclusive.

"It is our opinion that the photographs, at their present stage of
processing and analysis, do not establish the condition of the number
two oxygen tank or even its presence," said Board ChairmanEdgar M.
Cortright.

The photographs were taken by the Apollo 13 astronauts after their
commandmodule had separated from the service module just before reentry.
The pictures, from 70-millimeter still photographs and frames of
16-millimeter motion picture footage, show the interior of the service
module's bay 4 which contained fuel cells and oxygen and hydrogen tanks.
The Board had hoped that the photographs would help establish the condi-
tion of the number2 oxygen tank, prime suspect in the Apollo 13 equip-
ment failure. Efforts to bring out further detail in the photography
with sophisticated enhancementtechniques continues here at the Manned
Spacecraft Center and elsewhere around the country. However, the pro-
ducts of this work will not be available to the Board until sometime
next week. Membersof the Board and Apollo Program engineers have said
from the beginning that the most valuable clues to what happenedin the
service module will comefrom the telemetered data received from the
spacecraft, rather than from photography.

Chairman Cortright said that the Board and the MSCteam investi-
gating the accident will makeinterim progress reports to NASADeputy
Administrator George Low on Friday morning at the MannedSpacecraft
Center. In the meantime, study of data by the various investigative
panels continues.
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Status Report No. 7

April 29, 1970

The Management Panel of the Apollo 13 Review Board scheduled inspec-

tion trips to the North American Rockwell plant at Downey, California,

today and to the Beech Aircraft Corp. plant at Boulder, Colorado, tomor-

row.

Panel Chairman Edward Kilgore, of the NASA Langley Research Center,

heads the Board's team of specialists. The Panel is charged with a

study of project management aspects pertinent to the Apollo 13 failure.
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Status Report No. 8

April 29, 1970

Dr. Charles D. Harrington, Chairman of the Aerospace Safety Advisory

Panel, a statuatory body created by Congress after the Apollo i fire,

arrived today for 2 days of briefing by the Apollo 13 Review Board

and Apollo Program engineers.

Dr. Harrington was accompanied by Mr. Carl Praktish, the Panel's

executive secretary, and Mr. R_nerson Harris, the Panel's deputy executive

secretary. Dr. Harrington in an official observer of the Review Board.

In addition, the Safety Panel has been asked by NASA Administrator

Thomas O. Paine to review the procedures and findings of the Apollo 13

Board, and the Board is required to keep the Safety Panel informed of

its work and progress.

Tonight (Wednesday) several members of the Review Board will experi-

ence, with fellow Board Member Neil Armstrong as a guide, what it was

like in the Apollo 13 command module at the moment when the crisis was

discovered. Armstrong said the command module training simulator at the

Manned Spacecraft Center will be used to try to give the Board Members

and some of the panelists a better appreciation of the failure from the

crewmen's point of view.

"The Board Members will see what indications of the incident were

available in the spacecraft and, particularly, how the positions of the

various crew members would affect their ability to interpret what was

taking place," Armstrong said.

"It is just one more way to reconstruct the _ncident," he added.
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Status Report No. 9

April 30, 1970

Members of the Apollo 13 Review Board and its Panels spent most of

today summarizing findings to date for an interim review of progress for

NASA Deputy Administrator George Low. Low will get a 3-hour combined

briefing from the Board and project officers.



Status Report No. i0
May 5, i970

The Apollo 13 Review Board and the MSCApollo 13 Investigation Team
will brief the Aerospace Safety Advisory Panel all day tomorrow.

Dr. Charles Harrington, Chairman of the Panel, and seven panel and
staff memberswill be given a complete review of the Apollo 13 failure
and the progress of the investigations so far, and will meet with indi-
vidual membersof the Board. The Harrington Panel also will inspect the
service module oxygen tank and associated equipment and will participate
in a simulator demonstration. The Aerospace Safety Advisory Panel is a
statuatory body created by Congress after the Apollo 1 fire. NASAAdmin-
istrator Thomas0. Paine has asked the Safety Panel to review all findings
and procedures of the Review Board.

Membersof the Board's Project ManagementPanel were at the Kennedy
SpaceCenter in Florida this week as part of a continuing study of all
aspects of government and contractor managementpertinent to the Apollo 13
failure. The Board worked through the past weekendand on Mondaytaking
progress reports from its four Panels - Mission Events, Design, Manufac-
turing and Test, and Project Management. The Board has been conferring,
too, with the Apollo ProgramTeamto determine the scope and variety of
tests to be conducted at NASAinstallations or at contractor plants to
further pinpoint the cause of the Apollo 13 failure and, eventually, to
validate proposed design changes.

Robert Wells, an electrical engineer from the NASALangley Research
Center, Joined the Design Panel this week.
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Status Report No. ii

May 7, 1970

The Apollo 13 Review Board will take its first break this weekend

since it went to work on April 21. Chairman Edgar M. Cortright said he

would adjourn the Board on Friday and not reconvene until Tuesday, May 12.

Most of the Board and Panel Members are from out of town and have not

had a chance to get home since the Board was convened.

After the Board reconvenes next Tuesday, Cortright plans to

stay in session until the end of the month in an effort to deliver

a finished report on the Apollo 13 failure to NASA Administrator Thomas

O. Paine by June i. The day-to-day work of the Board and its Panels

continues to be a detailed review of all available information on the

Apollo 13 accident, testing of principal hypotheses, and preliminary

work on individual segments of the report.
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Status Report No. 12
May 13, 1970

Apollo 13 Review Board Chairman Edgar Cortright will be in
Los Angeles tomorrow on business for the Langley Research Center,
where he is Director. Board memberVincent L. Johnson, Deputy Associate
Administrator for Engineering in NASA'sOffice of Space Science and
Applications, is acting chairman in Cortright's absence.

In the meantime, our Board Membersand Panel Chairmenworked to
have a final report ready for NASAAdministrator Thomas0. Paine by
June i. Today was spent interviewing persons with special knowledge
of the Apollo 13 mission or Apollo spacecraft systems and in refining
draft sections of the Board's report.
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Status Report No. 13

May 25, 1970

The Apollo 13 Review Board expects to make its final report on

June 8 instead of June i, Chairman Edgar M. Cortright said today.

The 1-week delay in the previously announced schedule is to allow

time for completion of special tests currently under way at NASA Centers

and contractor plants_ Cortright said. The Chairman said he informed

NASA Administrator Thomas 0. Paine of the need for the delay this

morning.

Cortright said that in view of the new schedule, the Board will

recess Wednesday evening and reconvene the following Monday morning.

He said he plans to deliver the final report to Paine and Deputy Admin-

istrator George Low in Washington on Monday_ June 8.
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Status Report No. 14

May 27, 1970

A special detanking procedure which was applied to the no. 2 oxygen

tank of the Apollo 13 service module before launch "probably resulted

in major damage to the wiring insulation in the tank," the Chairman of

the Apollo 13 Review Board said today.

Chairman Edgar M. Cortright said the probability that significant

damage occurred to the insulation during the detanking procedures

developed during tests conducted at the Manned Spacecraft Center in

Houston, Texas, over the last few days.

The detanking, a partial draining of the oxygen in the tank,

occurred during preflight preparations on the pad at the Kennedy Space

Center before the launch of Apollo 13.

Tests will continue over the next few days in an effort to substan-

tiate the findings so far, Cortright said, and the Review Board will

hear the results of this work when it reconvenes at the Manned Spacecraft

Center on Monday, June i.

In discussing the detanking tests, Cortright said it now appears

that two thermal switches, designed to protect the heaters in the tank

from overheating, may have failed. In such an event, other tests have

shown that the heater tube in the tank could have reached temperatures

of about i000 ° F and that such temperatures would seriously damage the

insulation around the heater wires, he said.

Cortright said such insulation damage could have resulted in the

arcing short circuits which are believed to have initiated the combus-

tion of insulation inside the tank during the flight. The burning, in

turn, raised the pressure of the supercritical oxygen and caused the

tank to rupture.

Another area of testing which the Board will hear about on Monday

seeks to determine the manner in which the tank finally failed and what

mechanism was needed to cause the outer panel of the service module to
blow off.

Cortright said the Board continues to expect to deliver its final

report to NASA Administrator Thomas O. Paine and Deputy Administrator

George M. Low on Monday, June 8, 1970.
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Status Report No. 15
June 5, 1970

Apollo 13 Review Board ChairmanEdgar M. Cortright said today that
he plans to send the final draft of the Board's report to the printer
about the middle of next week and deliver the full report to Dr. Thomas
O. Paine, _SA Administrator, in Washington on Monday,June 15, 1970.

H-61



This page left blank intentionally.

NASA -- MSC

H-62


