MSC-01855 Supplement 1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

APOLLO 12 MISSION REPORT

TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS

(NASA-TM-X-70272) APOLLO MISSION 12, TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS, VOLUME 1 (NASA) 113 p

N74-75212

Unclas 00/99 16552

DISTRIBUTION AND REFERENCING

This paper is not suitable for general distribution or referencing. It may be referenced only in other working correspondence and documents by participating organizations.

MANNED SPACECRAFT CENTER

HOUSTON, TEXAS 'August 1970 .

• , •

•

. .

MSC-01855 Supplement l

APOLLO 12 MISSION REPORT

• •

-

Ì

.

SUPPLEMENT 1

TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS

PREPARED BY

TRW Systems

APPROVED BY

James A. McDivitt Manager, Apollo Spacecraft Program

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS August 1970 -- TRW NOTE NO. 70-FMT-825

PROJECT APOLLO

TASK MSC/TRW A-50

APOLLO MISSION 12, TRAJECTORY RECONSTRUCTION AND POSTFLIGHT ANALYSIS VOLUME 1

24 APRIL 1970

Prepared for MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS NAS 9-8166

Approved by

Ś

rod

W. P. Girod, Manager MSC/TRW Task A-50

Approved by

J. E. Alexander, Manager Guidance and Control Systems Department

Approved by

H. I. Moore H. L. Moore, Manager MSC/TRW Task A-50

Approved by

D. G. Saile, Assistant Project Manager Guidance and Performance Mission Trajectory Control Program

15

R. P. Parten, Chief Mission Planning Support Office NASA Manned Spacecraft Center

Approved by /C. R. K. Petersburg, Mana Systems Evaluation Department

Approved by

ACKNOWLEDGEMENTS

- E. L. Barnett
- W. P. Girod
- S. C. Jankowski
- H. L. Moore
- J. B. Moore
- J. E. Scheppan
- S. L. Smith
- R. M. Thomas

FOREWORD

• . -

1

. ~

c

This report is submitted to the NASA Manned Spacecraft Center in accordance with MSC/TRW Task A-50 Contract NAS 9-8166. This report contains the postflight analysis performed in conjunction with the Apollo 12 mission and is issued as Supplement 1 to the Apollo 12 Mission Report.

The report is issued in two volumes. Volume I contains details of the analysis and results obtained, including appendices; Volume II contains a listing of the 45-Day Best Estimated Trajectory (BET) for the Apollo 12 mission in the NASA Apollo Trajectory (NAT) format. The listing is not generally distributed but is available from NASA/MSC upon request. Requests should be made to:

> NASA/MSC Computations and Analysis Division Central Metric Data File Code ED-5, Building 12, Room 133 Houston, Texas 77058

> > 111

TABLE OF CONTENTS

· ·

- 5

•

. .

-

5.1	INTROD	UCTION AND SUMMARY	5-1
5.2	PRELIM	INARY NAT	5-7
	5.2.1	CSM Segment 1 - TLI Burn Cutoff to Lunar SOI	5-7
	5.2.2	CSM Segment 2 - Lunar SOI to LOPC-1	5-7
	5.2.3	CSM Segment 3 - LOPC-1 to Lunar SOI	5-10
	5.2.4	CSM Segment 4 - Lunar SOI to Entry Interface	5-10
	5.2.5	CM Segment 1 - Preliminary Entry	5-10
	5.2.6	LM Segment 1 - Undock to PDI and Insertion to Impact	5-13
	5.2.7	LM Segment 2 - Real Time Powered Descent	5-16
	5.2.8	LM Segment 3 - Real Time Ascent	5-16
5.3	FINAL	NAT	5-19
	5.3.1	CSM LOI-1 and TEI Burn Trajectory Reconstruction	5-19
		5.3.1.1 LOI-1 Burn	5-19
		5.3.1.2 TEI Burn	5-19
	5.3.2	LM Powered Descent	5-21
		5.3.2.1 IMU Corrections and Trajectory Constraints	5-21
		5.3.2.2 Rev 14 Orbit Determination	5-26
	5.3.3	LM Ascent and Insertion to CSI Trajectories	5-26
		5.3.3.1 Ascent Trajectory	5-26
		5.3.3.2 Comparison of Insertion Conditions	5-27
		5.3.3.3 Free Flight Trajectory Insertion to CSI	5-30

v

Table of Contents (Continued)

	5.3.4	LM Ascent Stage Impact Trajectory	5-34
5.4	POWERE	D DESCENT TRAJECTORY ANALYSIS	5-35
	5.4.1	Rev. 14 Orbit Determination	5-35
	5.4.2	Analysis of Landing Radar Velocity Data	5–40
	5.4.3	Lunar Surface Altitude from LR Range	5-47
REFE	RENCES		R-1

- APPENDIX A
- APPENDIX B
- APPENDIX C
- APPENDIX D
- APPENDIX E
- APPENDIX F

TABLES

÷

•

•

•

•

5.1	Apollo Mission 12 Sequence of Events	5-2
5.2	Descent and Rendezvous Maneuver Summary for Apollo 12	5-4
5.3	Preliminary NAT CSM Segment 1 - Post TLI to Lunar SOI	5-8
5.4	Preliminary NAT CSM Segment 2 - Lunar SOI to LOPC-1	5-9
5.5	Preliminary NAT CSM Segment 3- LOPC-1 to Lunar SOI	5-11
5.6	Preliminary NAT CSM Segment 4 - Lunar SOI to Entry Interface	5-12
5.7	Comparison of Drogue Deploy, Main Deploy, and Splashdown Altitudes and the Main Chute Mean Descent Rate with Pre-	
	Mission Nominal Values	5-14
5.8	Preliminary NAT LM Segment 1 - Free Flight BET	5-15
5.9	Preliminary Estimates of LLS Coordinates	5-17
5.10	LOI-1 and TEI Powered Flight Trajectories	5-20
5.11	Comparison of Powered Flight and Free Flight Trajectory Conditions Near Insertion (142:11:51.77 GET)	5-28
5.12	Sensitivities of the State Vector at Orbit Insertion to the Coordinates of the LLS	5-29
5.13	Landing Radar Velocity Residual Statistics	5-44

vii

: -

ILLUSTRATIONS

•

-

-

. .

Page

5-1	Tracking Summary for Descent and Rendezvous	5-5
5-2	Two-Second PIPA Counts Near Landing Time	-5-23
5-3	Altitude and Descent Rate: Low Gate to Landing	5-24
5-4	LM Groundtrack from Low Gate to Landing	5-25
5-5	Converged SXT Shaft Residuals - Insertion to CSI	5-31
5-6	Converged SXT Trunnion Residuals - Insertion to CSI	5-32
5-7	Converged VHF Ranging Residuals - Insertion to CSI	5-33
5-8	LLS Coordinates	5-36
5-9	Two-Way Doppler Residuals in the Mare Nectaris Region LM Rev. 14 No Mascon	5-37
5-10	Two-Way Doppler Residuals in the Mare Nectaris Region LM Rev. 14 Mascon = 9E-6	5-38
5-11	Effect of MASCON Magnitude on Trajectory Determination	5-39
5-12	Landing Radar X-Antenna Velocity Residuals (Nominal Antenna Orientation)	5-41
5-13	Landing Radar Y-Antenna Velocity Residuals	5-42
5-14	Landing Radar Z-Antenna Velocity Residuals (Nominal Antenna Orientation)	5-43
5-15	X-Antenna Velocity Residuals (Corrected Antenna Orientation)	5-45
5-16	Z-Antenna Velocity Residuals (Corrected Antenna Orientation)	5-46
5-17	Lunar Surface Altitude	5-49
5-18	Groundtrack of LR Range Beam	5 - 51

SYMBOLS AND NOMENCLATURE

· •

•

•

--

AOS	acquisition of signal
APS	ascent propulsion system
BET	best estimated trajectory
CDH	constant delta height
CM	command module
CSI	coelliptic sequence initiation
CSM	command and service module
DOI	descent orbit insertion
DPS	descent propulsion system
ECI	earth centered inertial
GET	ground elapsed time
GMT	Greenwich mean time
IMU	inertial measurement unit
LGC	LM guidance computer
LLS	lunar landing site
LM	lunar module
LR	landing radar
LOI	lunar orbit insertion
LOPC	lunar orbit plane change
LOS	loss of signal
MCC	midcourse correction
MCI	moon centered inertial
MLR	mean lunar radius
MNBY	mean of nearest Besselian year
MSFN	Manned Space Flight Network
NAT	NASA Apollo Trajectories
PDI	powered descent initiation
PGNCS	primary guidance and navigation control subsystem
RCS	reaction control system
RR	rendezvous radar

Symbols and Nomenclature (Continued)

RTCC	Real-Time Computer Complex
SOI	sphere of influence
SXT	sextant
T&D	transposition and docking
TEI	transearth injection
TLI	translunar injection
TPI	terminal phase initiation
VHF	very high frequency
wrt	with respect to
$\Delta \mathbf{V}$	change in velocity caused by thrusting
ΔT	change in time
δR, δV	square root of the sum of the squares of the differences between position or velocity components

5.0 APOLLO 12 MISSION TRAJECTORY RECONSTRUCTION AND POSTFLIGHT REPORT

5.1 INTRODUCTION AND SUMMARY

Apollo 12 was the sixth manned flight of the Apollo series and the second manned lunar landing. The 10-day Apollo 12 mission has contributed and will continue to contribute to a greater scientific understanding of the lunar environment. The crew were Charles Conrad, Jr., Commander; Richard F. Gordon, Command Module Pilot; and Alan L. Bean, Lunar Module Pilot.

The space vehicle was launched from Kennedy Space Center, Florida, with range zero (the integral second before lift-off) occurring at 16:22:00 Greenwich Mean Time (GMT), November 14, 1969. A sequence of events list for the Apollo 12 mission is presented in Table 5.1.

The descent phase of the Apollo 12 mission was initiated on the thirteenth revolution of the moon at approximately 107 hours 54 minutes Ground Elapsed Time (GET). The Lunar Module (LM) successfully landed on the lunar surface at approximately 110 hours 32 minutes GET.

The rendezvous phase began with ascent ignition during Command and Service Modules (CSM) revolution 30 and ended with docking at 145 hours 36 minutes GET. A summary of the CSM and LM maneuvers performed during descent and rendezvous is presented in Table 5.2. Figure 5-1 shows the CSM and LM ground based and onboard tracking data that were available during the descent and rendezvous phases of the Apollo 12 mission.

The objective of the postflight analysis task is, in general, to generate trajectory parameters and data for the CSM and LM vehicles from S-IVB/CSM separation to the end of the mission. During the early Apollo missions this was accomplished by developing a best estimate of trajectory (BET) from available tracking and telemetry data. Comparisons of the BET and the Real-Time Computer Complex (RTCC) state vectors after the early Apollo missions indicated that the RTCC state vectors were of good quality and that, in general, only small differences existed between the two trajectory sources. Consequently, RTCC state vectors were used to generate the preliminary NAT's for Apollo's 9, 10 and 11. It was decided

TABLE 5.1. APOLLO MISSION 12 SEQUENCE OF EVENTS

	GET(h:m:s)	GMT(d:h:m:s)
Range Zero Translunar Injection ∆T = 341.3 ∆V = 10,515	2:47:22.7 2:53:14.0	14:16:22:00.0 14:19:09:22.7 14:19:15:14.0
S-IVB/Command Module Separation	3:18:04.9	14:19:40.04.9
First Docking	3:26:53.3	14:19:48:53.3
Spacecraft Ejection	4:13:00.9	14:20:35:00.9
Evasive Manuever (S-IVB APS) ΔT = 80	4:28:01.4 4:28:01.4	14:20:50:01.4 14:20:50:01.4
Midcourse Correction #1 $\Delta T = 9.2 \Delta V = 61.8$	30:52:44.4 30:52:53.6	15:23:14:44.4 15:23:14:53.6
Enter Moon's Sphere of Influence	68:30:00.	17:12:50:00.
Lunar Orbit Insertion #1 $\Delta T = 352.3 \Delta V = 2889.5$	83:25:23.4 83:31:15.7	18:03:47:23.4 18:03:53:15.7
Lunar Orbit Insertion #2 $\Delta T = 16.9$ $\Delta V = 165.2$	87:48:48.1 87:49:05.0	18:08:10:48.1 18:08:11:05.0
Undocking	107:54:02.3	19:04:16:02.3
CSM Active Separation $\Delta T = 14.4$ $\Delta V = 2.4$	108:24:36.8 108:24:51.2	19:04:46:36.8 19:04:46:51.2
Descent Orbit Insertion $\Delta T = 29 \qquad \Delta V = 72.4$	109:23:39.9 109:24:08.9	19:05:45:39.9 19:05:46:08.9
Powered Descent Initiation ΔT = 717	110:20:38.1	19:06:42:38.1
Touchdown	110:32:36.2	19:06:54:36.2
CSM Plane Change #1 $\Delta T = 18.2$ $\Delta V = 350$	119:47:13.2 119:47:31.4	19:16:09:13.2 19:16:09:31.4
Ascent ΔT = 423.2 ΔV = 6057	142:03:47.7	20:14:25:47.7
Insertion	142:10:50.9	20:14:32:50.9
Coelliptic Sequence Initiation $\Delta T = 41.1 \Delta V = 45$	143:01:51.0 143:02:32.1	20:15:23:51.0 20:15:24:32.1
Constant Differential Height $\Delta T = 13$ $\Delta V = 13.8$	144:00:02.6 144:00:15.6	20:16:22:02.6 20:16:22:15.6
Terminal Phase Initiation $\Delta T = 26$ $\Delta V = 29$	144:36:26. 144:36:52.	20:16:58:26. 20:16:58:52.
Lunar Docking	145:36:20.2	20:17:58:20.2
Lunar Module Jettison	147:59:31.6	20:20:21:31.6

TABLE 5.1.	APOLLO	MISSION	12	SEQUENCE	OF	EVENTS
		(Cor	n't))		

	GET (h:m:s)	GMT(d:h:m:s)
CSM Separation $\Delta T = 5.4 \Delta V = 1.0$	148:04:30.9 148:04:36.3	20:20:26:30.9 20:20:26:36.3
Lunar Module Deorbit $\Delta T = 82.1 \Delta V = 196.2$	149:28:14.8 149:29:36.9	20:21:50:14.8 20:21:51:36.9
Lunar Module Impact	149:55:16.4	20:22:17:16.4
CSM Plane Change #2 $\Delta T = 19.3 \Delta V = 382$	1 59:04: 45.5 1 59: 05:04.8	21:07:26:45.5 21:07:27:04.8
Transearth Injection $\Delta T = 130.3 \Delta V = 3042$	172:27:16.8 172:29:27.1	21:20:49:15.8 21:20:51:27.1
Midcourse Correction #2 $\Delta T = 4.4 \qquad \Delta V = 2.0$	188:27:15.8 188:27:20.2	22:12:49:15.8 22:12:49:20.2
Midcourse Correction #3 $\Delta T = 5.7$ $\Delta V = 2.4$	241:21:59.7 241:22:05.4	24:17:43:59.7 24:17:44:05.4
CM/SM Separation	244:07:20.1	24:20:29:20.1
Entry Interface	244:22:19.1	24:20:44:19.1

. . .

- v •

--

.

•

 ΔT burn duration in seconds ΔV velocity change in feet per second

Table 5.2 DESCENT AND RENDEZVOUS MANEUVER SUMMARY FOR APOLLO 12

Maneuver	Type of Maneuver	Ignition Time (h:M:S) GET	Cutoff Time (h:M:S) GET	T/M Coverage
Separation	CSM/RCS	108:24:36.8	108:24:51.2	Yes
100	LM/DPS	109:23:39.9	109:24:08.9	No
PDI	LM/DPS	110:20:38.1	110:32:35.1	Yes
Ascent	LM/APS	142:03:47.7	142:10:50.9	Yes
CSI	LM/RCS	143:01:51	143:02:32.1	No
СDН	LM/RCS	144:00:02.6	144:00:15.6	Yes
TPI	LM/RCS	144:36:26	144:36:52	No

;

Figure 5-1. Tracking Summary for Descent and Rendezvous

to utilize the RTCC state vectors again for generation of the Apollo 12 preliminary NAT (NASA Apollo Trajectory) and to limit Apollo 12 postflight trajectory reconstruction to the descent and rendezvous phases of the lunar mission. The bulk of the postflight analysis effort was then concentrated on reconstruction of the two periods of flight from LM/CSM undocking to LM touchdown (descent phase) and from LM ascent to LM/CSM docking (rendezvous phase), along with the LM trajectory from deorbit to lunar impact.

The final NAT was produced by updating the preliminary NAT to include reconstructions of critical maneuvers for which telemetered acceleration data was available and to reflect the results of the trajectory reconstruction efforts performed on the descent and rendezvous periods of the mission. These reconstructions will be discussed in detail in Section 5.3.

The mission was essentially nominal and the analysis was carried out in accordance with the postflight analysis plan. Data quality was satisfactory, and no special difficulties were encountered in the trajectory reconstruction.

RTCC Vector ID	Propagation Interval Hr:Min:Sec (GET) Start Sto	Interval c (GET) Stop	δR (ft)	δV (ft/sec)	Connents
HSRC 001	02:53:00	04:03:00		1	Post TLI to Ejection
BDAX 074	04:13:00	11:31:00	******	√ 	Ejection to Water Dump
MILX 163	11:38:00	30:48:00	10,028		Water Dump to MCC2
HSKX 236	30:52:52.5	42:18:00	19,920.	, t	MCC2 to 42:18
BDAX 326	42:20:00	68:28:00	21,766	0.2***	42:20 to Lunar SOI

Table 5.3 PRELIMINARY NAT CSM SEGMENT 1 - POST TLI TO LUNAR SOI

*The HSRC 001 segment is of low quality because HSRC 001 was a TLI cutoff vector which preceeded approximately 10 minutes of unmodeled S-IVB venting. Unmodeled T&D and Ejection maneuvers added to the AV also.

 $\star\star\Delta V$ due to the water dump is not modeled.

***Comparison is made with the first propagation interval of the 'CSM Segment 2' BET.

•

•

5.2 PRELIMINARY NAT

The CSM preliminary NAT was generated in four segments; the Command Module (CM) preliminary entry NAT in one segment; and the LM preliminary NAT in three BET segments. Each individual segment will be discussed in later sections.

Best Estimated Trajectory (BET) ephemerides for the CSM and LM vehicles were generated from the best RTCC trajectories determined during the mission (RTCC anchor vectors). A preliminary NAT for each vehicle was then formed by propagating and transforming these BET's into several standard Apollo coordinate systems. The LM preliminary NAT was augmented by the inclusion of the lunar powered descent and ascent trajectories which were reconstructed in near real time, and also by the deorbit to lunar impact trajectory.

The various preliminary NAT BET deliverables were generated in the form of magnetic tapes and listings (hard copy and 16 mm film) according to prescribed delivery schedules.

5.2.1 CSM Segment 1 - TLI Burn Cutoff to Lunar SOI

The "CSM Segment 1" free flight BET for the period from TLI burn cutoff to lunar SOI (sphere of influence) was generated from five selected RTCC state vectors which were propagated at 10-minute intervals. A summary of the five trajectory intervals is given in Table 5.3. As a check on the consistency of the segments, the RSS position and velocity differences (δR , δV) were computed at a common epoch for successive trajectory segments. Unless otherwise noted, δV has been corrected for known thrust velocity increments.

5.2.2 CSM Segment 2 - Lunar SOI to LOPC-1

ignored.

The "CSM Segment 2" free flight BET for the period from lunar SOI to lunar orbit plane change-1 (LOPC-1) was generated from 19 selected RTCC state vectors. The state vectors were propagated at 1-minute intervals in lunar orbit and at 10-minute intervals during the translunar coast prior to LOI-1. As an indicator of the consistency of the 19 trajectory segments, the RSS position and velocity differences (δR and δV (corrected for thrust velocity across burns)) are computed at a common epoch for successive segments. The 19 free flight intervals are defined in Table 5.4. NOTE: The selenographic orbit inclination in this segment (data word No. 56) was improperly coded in the NAT program and should be

	Propagation Interval	i Interval			
RTCC	Hr:Min:Sec (GET)	ic (GET)	δR	δV	
Vector ID	Start	Stop	(ft)	(ft/sec)	Comments
MILX 473	68:51:00	83:25:22.7*			Lunar SOI to LOI-1
HSKX 497	83:31:14.7	85:34:00	8 8 4 1	5 , 7 9	Rev 1
GWMX 504	85:35:00	87:48:47.4**	892	1.6	Rev 2
HAWX 519	87:49:04.4	89:39:00	3017	0 T	Rev 3
HSKX 524	89:40:00	91:39:00	L//3	2 r T	Rev 4
HSKX 530	91:40:00	93:39:00	2140	Т•/	Rev 5
NBEX 541	93:40:00	95:34:00	4906	ч. Г	Rev 6
ACNX 550	95:35:00	97:34:00	2300		Rev 7
BDAX 556	97:35:00	99:34:00	10/5	۲•۶ ۲	Rev 8
CYIX 564	99:35:00	101:29:00	4087		Rev 9
GDSX 575	101:30:00	103:29:00	4198	χ. Υ	Rev 10
GDSX 586	103:30:00	105:24:00	2/63	ۍ م م	Rev 11
HAWX 595	105:25:00	107:24:00	8494	0.0	Rev 12
NBEX 128	107:25:00	108:23:00	4/50	, t , t	Rev 13 to Sep.
CROX 609	108:24:00	111:19:00	2320	ç.2	Sep. Rev 13 through Rev 14
CROX 614	111:20:00	113:19:00	2886	4.3	Rev 15
CROX 618	113:20:00	115:19:00	3269	4.0	Rev 16
CROX 621	115:20:00	116:45:00	5534	0.9	Rev 17 (short)
HSKX 624	116:46:00	119:47:12.5	7086		Rev 18 to LOPC-1
			6617	1.1	

Table 5.4 PRELIMINARY NAT CSM SEGMENT 2 - LUNAR SOI TO LOPC-1

.

•

.

*LOI-1 ignition (ignore BET time points between ignition and cutoff) **LOI-2 ignition (ignore BET time points between ignition and cutoff)

5.2.3 CSM Segment 3 - LOPC-1 to Lunar SOI

The "CSM Segment 3" free flight BET for the period from LOPC-1 to lunar SOI was generated from 27 selected RTCC state vectors which were propagated at 1-minute intervals in lunar orbit and at 10-minute intervals during the transearth coast. As a check on the consistency of these vectors, the RSS position and velocity differences (δR , δV) were computed at a common epoch for successive trajectory segments.

The 27 propagation intervals are summarized in Table 5.5.

5.2.4 CSM Segment 4 - Lunar SOI to Entry Interface

The "CSM Segment 4" free flight BET for the period from lunar SOI to entry interface was generated from seven selected RTCC state vectors which were propagated at 10-minute intervals. A summary of the seven trajectory propagation intervals is given in Table 5.6. As a consistency check, the RSS position and velocity differences (δR , δV) are computed at a common epoch for successive segments. Only the ΔV for MCC 2 and MCC 3 are accounted for. The segments do not match as well as in the translunar phase because of unmodeled thrust incurred during numerous attitude maneuvers, water dump, fuel cell purge, and CM/SM separation.

The GWMS 147 vector yields an entry interface (Geodetic Altitude = 400,000 ft) time of 244:22:19.09 GET. Selected trajectory parameters at entry interface are as follows:

Inertial velocity	36116.618	ft/sec
Inertial flight path angle	-6.4834	deg
Inertial heading	98.1699	deg
Geodetic latitude	-13.7947	deg
Geodetic longitude	173.5279	deg

5.2.5 CM Segment 1 - Preliminary Entry

The "CM Segment 1" preliminary entry BET was reconstructed at 2-second intervals from PIPA acceleration data, using the GWMX 164 state vector (determined by RTCC) for initial conditions. The GWMX 164 vector was propagated to 244:22:25.59 GET to initialize the BET. The initial state in ECI (mean of NBY) coordinates at this time is:

X = 20,431,408.8 ft	X = 10,403.059 ft/sec
Y = -3, 193, 006.5	$\dot{Y} = -34,386.006$
Z = -5,077,174.6	$\dot{z} = -3,937.787$
Geodetic	Altitude = 371,820.4 ft

RTCC	Propagation Hr:Min:Sec		óR	٥v	
Vector ID	Start	Stop	(ft)	(ft/sec)	Comments
ACNX 634	119:47:30.7	121:14:00	3571	3.4	LOPC-1 through Rev 19
ACNX 637	121:15:00	123:14:00	1949	4.2	Rev 20
MILX 641	123:15:00	125:09:00	2612	1.8	Rev 21
MILX 644	125:10:00	127:09:00	3399	2.5	Rev 22
GDSX 650	127:10:00	129:09:00	3590	5.3	Rev 23
HAWX 654	129:10:00	131:04:00	2816	2.0	Rev 24
HAWX 659	131:05:00	133:04:00	2838	2.4	Rev 25
HSKX 663	133:05:00	134:59:00	2982	2.6	Rev 26
CROX 668	135:00:00	136:59:00	2593	4.2	Rev 27
HAWX 672	137:00:00	138:59:00	3579	3.8	Rev 28
HSKX 678	139:00:00	140:54:00	1731	1.4	Rev 29
CROX 680	140:55:00	142:54:00	1765	2.4	Rev 30
ACNX 687	142:55:00	145:36:00		3.8	Rev 31 to Dock
MADX 700	145:37:00	148:49:00	6015	5.7	Dock through Rev 33
MADX 702	148:50:00	150:49:00			Rev 34
GDSX 712	150:50:00	152:44:00	2365	6.9	Rev 35
HAWX 719	152:45:00	154:44:00	2967	2.1	Rev 36
ACNX 725	154:45:00	156:39:00	3813		Rev 37
GWMX 731	156:40:00	159:04:44.8	3451	3.4	Rev 38 to LOPC-2
GWMX 747	159:05:04.0	160:39:00		4.4	LOPC-2 through
			5686	6.3	Rev 39
GDSX 764	160:40:00	162:34:00	6173	2.4	Rev 40
HAWX 771	162:35:00	164:34:00	1573	2.2	Rev 41
CROX 776	164:35:00	166:34:00	1333	1.2	Rev 42
RIDX 783	166:35:00	168:29:00	1834	. 1.6	Rev 43
ACNX 794	168:30:00	170:29:00	4538	5.4	Rev 44
BDAX 800	170:30:00	172:27:16.1			Rev 45 to TEI
HSKX 866	172:29:26.1	186:28:00		l	TEI to Lunar SOI

Table 5.5 PRELIMINARY NAT CSM SEGMENT 3 - LOPC-1 TO LUNAR SOI

•

- **-**

•

-.

RTCC	Propagation Interval Hr:Min:Sec (GET)	n Interval ec (GET)	δR	٥V	
Vector ID	Start	Stop	(ft)	(ft/sec)	Comments
HSKX 855	186:38:00	188:18:00	607		Lunar SOI to MCC 5
HAWX 881	188:27:18.23	193:48:00	62999	1.2	P23 attitude maneuvers
MADX 909	193:58:00	200:58:00	40980		Urine dump @ ≈ 195:45
НSKX 960	201:08:00	217:18:00		,	P23 @ ≈ 213:00
MADX 012	217:28:00	223:28:00	22023	۲•۵	Water dump & fuel
			39939	1.3	cell purge @ ≈ 217:30
NBEX 127	223:38:00	241:21:47.5	1/070	-	Nominal MCC 7 time
GWMS 147	241:30:00	244:22:19.09	00001	+ +	Post MCC 7 to Entry Interface

Table 5.6 PRELIMINARY NAT CSM SEGMENT 4 -LUNAR SOI TO ENTRY INTERFACE

5-12

The IMU acceleration data has been corrected for a platform misalignment of 167.7 sec about the Y-axis. This is a "single error fit" which causes the altitudes at drogue deploy, main deploy, and splashdown to be near the nominally expected values and does not necessarily represent the accuracy of the pre-entry P52 alignment.

The coordinates of the spacecraft at drogue deployment are compared with the targeted values and the onboard navigated values, and they are as follows:

	Latitude (deg)	Longitude (deg)
BET	-15.831	-165.168
Target	-15.8125	-165.1740
Onboard Nav.	-15.836	-165.171

Drogue Deploy, 244:30:39.7 GET

Altitudes at drogue deploy, main deploy, and splashdown, and mean descent rate on the main chute are compared with the pre-mission nominal values in Table 5.7.

5.2.6 LM Segment I - Undock to PDI and Insertion to Impact

The "LM Segment 1" preliminary free flight BET, covering undock to PDI and insertion to lunar impact, was generated from seven selected RTCC state vectors which were propagated at one-minute intervals. As a check on the consistency of these vectors, the RSS velocity difference, δV , is computed at a common epoch for successive trajectory segments. The seven trajectory segments are summarized in Table 5.8.

The early (real-time) estimate of the Ascent stage impact time was 149:55:15.76 GET. The selenographic coordinates of the MILX 279 vector at this time are:

LAT = -3.9549 deg LONG = -21.1609 deg R = 937.7784 nm

Table 5.7	COMPARISON OF DROGUE DEPLOY, MAIN DEPLOY,
	AND SPLASHDOWN ALTITUDES AND THE MAIN CHUTE
	MEAN DESCENT RATE WITH PRE-MISSION NOMINAL
	VALUES

	BET	Pre-Mission Nominal
Drogue Deploy Altitude 244:30:39.7	23,735 ft	23,300 {+1600 ft -1600 ft
Main Deploy Altitude 244:31:30.2	10,892 ft	10,500 {+1000 ft -1050 ft
Splashdown - 27.4 sec, Altitude 244:35:57.59*	805 ft	770 ft
Mean Descent Rate of Main Chute	31.2 ft/sec	28 ft/sec

*The DSE ran out at this time - nominal altitude is based on nominal descent rate.

		LAG THURLY TANK		
RTCC	Propagation Interval Hr:Min:Sec (GET)	n Interval ec (GET)	٨ð	
Vector ID	Start	Stop	(ft/sec)	Comments
NBEX 128	107:45:00	109:23:39.4		Undock to DOI
PIRX 159	109:24:08.4	110:20:37	4.6	DOI to PDI
GWMX 234	142:11:48	142:01:40.6		Insertion to CSI
RIDX 245	143:02:31.7	144:00:01.5	6.8	CSI to CDH
ACNX 256	144:00:14.0	- 5i	0.4	CDH to TPI
RIDX 273	147:29:00	149:24:00		Jettison to Deorbit
MILX 279	149:26:02.4	149:55:15.76	0.0	Deorbit to Impact

Table 5.8 PRELIMINARY NAT LM SEGMENT 1 - FREE FLIGHT BET

- -

. .

•

•

5.2.7 LM Segment 2 - Real Time Powered Descent

The "LM Segment 2" Real Time LM Powered Descent BET was reconstructed at two-second intervals from LM IMU acceleration measurements transmitted through the MSFN communication network. Initial conditions prior to ullage were obtained from the best rev 14 trajectory determined by the RTCC.

The quality of the LGC downlink data was generally very good, in that only a few isolated dropouts occurred.

Altitudes above the lunar surface are computed with respect to the pre-flight estimate of the radius to Surveyor III. BET altitudes may be adjusted to the current best estimate of the LLS radius by <u>subtracting</u> 924 feet.

Indicated velocities relative to the lunar surface after landing are:

 V_x (vertical) = -0.321 ft/sec V_y (north) = -3.070 ft/sec V_z (west) = 1.500 ft/sec

The most probable causes of the -3.070 feet per second error in North direction are platform X-axis misalignment and out-of-plane errors in the rev 14 orbit. Correction for these types of errors will move the landing point approximately 2000 - 3000 feet to the North. Correction of the small westward velocity error will move the landing point approximately 1000 feet to the East. The net result of these corrections is to move the BET close to the real-time best estimate of the landing site.

Estimates of LLS coordinates from several sources are shown in Table 5.9.

5.2.8 LM Segment 3 - Real Time Ascent

The "LM Segment 3" Real Time LM Ascent BET, at two-second intervals, was initialized at 142:03:23.78 GET (23.22 sec before ignition) using the current best estimate of LLS coordinates. Table 5.9 PRELIMINARY ESTIMATES OF LLS COORDINATES

. --

. . .

•

•

Source of Estimate	Latitude (deg)	Longitude (deg)	Radius (n mi)
BET	-3.0442	-23.4286	937.31188 (-7179.8 ft wrt ML ^R)
Best Estimate (real time- Combination of LM P22 tracking and CSM P22 sightings)	-3.036	-23.418	937.3643 (-6861.3 ft wrt MLR)
P57A/T 2 (Least square fit of two alignments)	-3.069	-23.414	

***wrt - with respect to** MLR - mean lunar radius

LAT = -3.036 deg LONG = -23.418 deg R = 937.3643 nm

The trajectory was terminated at 142:12:15.78 GET (approximately 26 seconds after conclusion of the trim maneuver). The total thrust velocity accumulated by the PGNCS (uncorrected) between 142:03:45.78 and 142:11:49.78 is given below in platform coordinates:

 $\Delta V_x = 1326.776 \text{ ft/sec}$ $\Delta V_y = -1.064 \text{ ft/sec}$ $\Delta V_z = -5590.449 \text{ ft/sec}$ Selected orbit insertion parameters are listed below:

Perilune Altitude wrt LLS = 8.867 nm Apolune Altitude wrt LLS = 47.52 nm Selenographic Orbit Inclination = -14.568 deg

5.3 FINAL NAT

The final NAT was produced by updating the preliminary NAT to include reconstructions of critical maneuvers for which telemetered acceleration data was available and to reflect the results of the trajectory reconstruction efforts performed on the descent and rendezvous periods of the mission. These reconstructions will be discussed in detail later. Note that the preliminary NAT serves as the final NAT for those periods where no update was made.

5.3.1 CSM LOI-1 and TEI Burn Trajectory Reconstructions

Postflight trajectory reconstruction of the LOI-1 and TEI burns were delivered to MSC on 13 December 1969. These trajectories were generated to satisfy the special request from North American Rockwell to the MPSO Postflight Trajectory Office, and were not generally distributed.

5.3.1.1 LOI-1 Burn

For the pre-burn comparison, the RTCC vector (MILX 473) was propagated in the HOPE Program using the L1 potential model. The RTCC propagated vector, time tagged 18 November 1969, 03:47:23.40 GMT (83:25:23.40 GET), was compared to the BET vector which was reconstructed, using the HOPE Program, from MSFN data covering a time interval of 870 minutes starting at 17 November 1969, 13:00:00 GMT.

For the post-burn comparisons, the RTCC vector (HSKX 497) was propagated in the HOPE Program using the L1 potential model. The RTCC propagated vector, time tagged 18 November 1969, 03:53:19.40 GMT (83:31:19.40 GET), was compared to the BET vector which was reconstructed from PIPA acceleration data using the pre-burn BET vector for initial conditions.

Likewise, a rev 1 trajectory was reconstructed with the HOPE Program using MSFN data covering a time interval of 85 minutes starting at 18 November 1969, 04:06:00 GMT. This was compared to the BET vector shortly after burn cutoff.

The results of these comparisons are tabulated in Table 5.10.

5.3.1.2 TEI-Burn

No pre-burn comparison was made.

For the post-burn comparison, the RTCC vector (HSKX 866) was propagated in the HOPE Program using the Ll potential model. The RTCC propa-

Table 5.10. LOI-1 AND TEI POWERED FLIGHT TRAJECTORIES

le Longitude Angle Heading Velocity Inclination Deg Ft Deg 0eg fps 5eg Deg Ft Deg Deg fps 5eg 175.6237 502963.1 -8.4476 229.3447 8173.587 5eg 175.6237 501438.0 -8.4476 229.3475 8174.511 175.6053 501438.0 -8.4365 229.3475 8174.511 175.6053 501438.0 -8.4365 229.3475 8174.511 175.6053 501438.0 -8.4365 229.3475 8174.511 175.6053 501438.0 -8.4365 229.3104 5469.997 145.1314 1 153.8481 374824.8 5918 239.3104 5469.997 145.1314 1 153.8481 374824.8 5918 239.3104 5469.997 145.1314 1 - - .0021 - 2053 2450.321		Sele	Selenographic		Ĩ	Moon Inertial			Right		Radius	S
Deg Deg Ft Deg Deg fps 7eg "SFN FIT 5.7566 175.6237 502963.1 -8.4476 229.3447 8173.587 7eg 7ps "SFN FIT 5.7566 175.6237 502963.1 -8.4456 229.3447 8173.587 "Strvel" 175.6033 501438.0 -8.4365 229.3475 8173.587 +.0128 +.0184 +.1525.1 0111 0028 924 -1 -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1.6702 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1.6702 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314		Latitude	Longitude	Altitude	Path Angle		Velocity	Inclination	ξ	Perigee	Apolune	Perilune
-1 -1 <t< th=""><th></th><th>Deg</th><th>Deg</th><th>Ft</th><th>Deg</th><th></th><th>fps</th><th>Deg</th><th>Ded</th><th>Den</th><th>in N Ni</th><th>N N</th></t<>		Deg	Deg	Ft	Deg		fps	Deg	Ded	Den	in N Ni	N N
-1 -1 -1 -1 -229.347 8173.587 45FN FIT 5.7566 175.6237 502963.1 -8.4476 229.3475 8173.587 $$ 45FN FIT 5.7438 175.6053 501438.0 -8.4365 229.3475 8174.511 $$ -1 -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1 -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1 -0198 0021 -205.8 $+.02285$ 0248 324 0456 -16900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -16900 153.8481 374824.8 0288 0248 324 0298 -16900 153.8481 374824.8 5918 $2.39.3104$ 5469.997 145.1314 -16900 153.8481 374824.8 0288 0248 0286 0298 -169												. H.
WSFN FIT 5.7566 175.6237 502363.1 -8.4476 229.3477 8173.587 -1	PRE-LOI-1							_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BET MSFN FIT	5.7566	175.6237	502963.1	-8.4476	229.3447	8173.587					2000 0001
+ .0128 $+$.0184 $+$ 1525.1 $-$.0111 $-$.0028 $-$.924 $-$.012 21PA -1.6900 153.8481 374824.8 $-$.5918 239.3104 5469.997 145.1314 -1.6702 153.8481 374824.8 $-$.5918 239.3104 5469.997 145.1314 -1.6702 153.8481 374824.8 $-$.6203 239.3549 5470.321 145.1370 $-$.0198 $-$.0021 $-$ 205.8 $+$.0285 $-$.0445 $-$.324 $-$.0456 $-$.0198 $-$.0021 $-$ 205.8 $+$.0285 $-$.0445 $-$.324 $-$.0456 $-$.0198 $-$.0021 $-$ 205.8 $+$.0285 $-$.0445 $-$.324 $-$.0456 $-$.0097 153.8493 374824.8 $-$.5918 239.3104 5469.997 145.1314 $-$.0097 -1.6903 153.8493 374824.8 $-$.5918 239.3104 5469.997 145.1314 $-$.0097 $-$.0012 $-$.0012 $-$.0012 $-$.0919 $-$.00263 $-$.0256 $-$.0266 $-$.0298 $-$.0	RTCC	5.7438	175.6053	501438.0	-8.4365	229.3475	8174.511					1002 1005
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	+ .0128	+ .0184	+ 1525.1	1110	0028	924					1261. +
1 PA -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1.6702 153.8502 375030.6 6203 239.3549 5470.321 145.1700 0198 0021 205.8 $+.0285$ 0445 324 0456 0198 0021 205.8 $+.0285$ 0445 324 0456 -1.6900 153.8491 374824.8 5918 239.3104 5469.997 145.1314 -1.6900 153.8491 374824.8 5918 239.3104 5470.263 0456 0228 -1.6803 375122.2 6205 239.3416 5470.263 145.1612 0097 0012 -297.4 $+.0287$ 0238 441203.7 5.6417 242.3095 8327.470 0238 0238 $+.0238$ $+.0238$ $+.0238$ $+.0238$ $+.0238$ $+.0213$ $+.0238$ $+.0213$ $+.0213$ $+.0213$ $+.0238$ $+.0213$ $+.0213$ $+.0213$ $+.0213$ $+.0213$	POST LOI-1			•								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BET PIPA	-1.6900	153.8481	374824.8	5918	239.3104	5469.997	145.1314	163.6389	223.8094	1107 0664	00E0 000
0198 0021 - 205.8 + .0285 0445 324 0456 - IPA -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 163 -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 163 -1.6803 153.8493 375122.2 6205 239.3416 5470.263 145.1612 163 0097 0012 - 297.4 + .0287 0312 266 0298 - 0097 0012 - 297.4 + .0287 0312 266 0298 - IPA 7.1977 176.4330 441203.7 5.6417 242.3095 8327.470 - - 1PA 7.1780 176.4092 433891.5 5.6630 242.2076 8328.454 - - - + .0197 + .0238 + 1312.2 0713 + .0104 1 .364 - - - - - - - - - - - - -	RTCC	-1.6702	153.8502	375030.6	6203	239.3549	5470.321	145.1770	163.6594	224.3505	1107 5601	26/0.666
IPA -1.6900 153.8481 374824.8 5918 239.3104 5469.997 145.1314 -1.6803 153.8493 375122.2 6205 239.3416 5470.263 145.1314 0097 0012 297.4 + .0287 0312 0298 0298 1PA 7.1977 176.4330 441203.7 5.6417 242.3095 8327.470 0298 1PA 7.1780 176.4032 439891.5 5.6630 242.2076 8328.864 0298 + .0197 + .0238 0213 + .0114 1 7.104 0238 0014	٥	0198	0021	- 205.8	+ .0285	0445	324	0456	0205	5411	4937	+ .0719
-1.6803 153.8493 375122.2 6205 239.3416 5470.263 145.1612 0097 0012 - 297.4 + .0287 0312 0298 0298 0097 0012 - 297.4 + .0287 0312 0298 0298 0177 176.4330 441203.7 5.6417 242.3095 8327.470 + .0197 176.4032 439891.5 5.6630 242.2076 8328.854 + .0197 + .0238 + 1312.2 0713 + .010 1016 1016 1016	BET PIPA	-1.6900	153.8481	374824.8		239.3104	5469.997	145.1314	163.6389	223,8094	1107 0664	000 M702
IPA 7.197 176.4330 441203.7 5.6417 242.3095 8327.470 176.4330 441203.7 5.6417 242.2076 8327.470 176.4330 441203.7 5.6417 242.2076 8327.470 + .0197 + .0238 + 1312.2 0713 + .0104 1 3aA	MSFN	-1.6803	153.8493	375122.2	6205	239.3416	5470.263	145.1612	163.6620	224.3606	1107.5635	2010.000
TPA 7.1977 176.4330 441203.7 5.6417 242.3095 8327.470 7.1780 176.4092 439891.5 5.6630 242.2076 8328.854 + .0197 + .0238 + 1312.2 0213 + .0110 1 3aA 1 3aA	Δ	2600	0012	- 297.4	+ .0287	0312	266	0298	0231	5512	- 4971	+ 0575
1197 176.4330 441203.7 5.6417 242.3095 8327.470 7.1780 176.4092 439891.5 5.6630 242.2076 8328.854 + .0197 + .0238 + 1312.2 0213 + .1019 1 3 asA	POST TEI							1				
7.1780 176.4092 439891.5 5.6630 242.2076 8328.854 + .0197 + .0238 + 1312.2 0213 + .1019 1 384 134	BET PIPA	7.1977	176.4330	441203.7	5.6417	242.3095	8327.470					1001 7405
+ .0238 + 1312.2 - 0101 + 1013 + 1014	RTCC	7.1780	176.4092	439891.5	5.6630	242.2076	8328.854					1001 4603
	Φ	1610. +	+ .0238	+ 1312.2	0213	elol. +	- 1.384					.2802

NOTE: All RTCC vectors referred to here are those used in generation of the Preliminary Free Flight BET.

-,

•

-

Landing Site Radius is 937.3643 n.mi.

gated vector, time tagged 21 November 1969, 20:52:30.86 GMT (172:52:30.86 GET) was compared to the BET vector which was reconstructed from PIPA acceleration data using the propagated RTCC vector (BDAX 800) for initial conditions. The results are tabulated in Table 5.10.

5.3.2 LM Powered Descent

The "Final LM Powered Descent BET" update was delivered earlier than planned in response to requests for an improved surface relative trajectory during the visibility phase. The descent trajectory was initialized from the PIRX 159 vector determined by the RTCC and downrange/crossrange position errors are evident. Rev 14 trajectory determination subsequent to delivery of the BET improved the accuracy of the local solutions near PDI, causing the position errors at landing to decrease significantly. The relative trajectory, however, changed only slightly, and no further update to the BET was made.

The final version of the LM Powered Descent BET was initialized at 110:20:10.19 GET (2 seconds after Average G On). Initial conditions were taken from the PIRX 159 trajectory determined by the RTCC. The trajectory was reconstructed by integrating two-second IMU acceleration measurements with alignment corrections needed to satisfy the landing constraints.

5.3.2.1 IMU Corrections and Trajectory Constraints

In order to satisfy the velocity constraint at landing, the following set of alignment errors were used:

Error	Magnitude
PHIX (platform misalignment about X)	157.2 sec
PHIY (platform misalignment about Y)	-110.0 sec
XZMSL (X PIPA misalignment toward Z)	-53.8 sec
ZXMSL (Z PIPA misalignment toward X)	-59.5 sec

The "Best Estimate" of the coordinates of the Lunar Landing Site is derived from rev 15 rendezvous radar tracking of the CSM and rev 16 SXT sightings on the LM. The LM Ascent BET and the postflight processing of lunar surface alignment (P57) data are in close agreement with the "Best Estimate".

The coordinates of the Lunar Landing Site indicated by the BET are compared to the "Best Estimate" as follows:

LLS COORDINATES

Source	Latitude	Longitude	Altitude (With respect to MLR)
Powered Descent BET	-3.027 deg	-23.426 deg	-6354. ft
Best Estimate	-3.043 deg	-23.416 deg	-6861, ft

The unit error sensitivities of the state vector (in platform coordinates) at landing with respect to PHIX and PHIY (in sec) are as follows: Units are feet and feet per second.

	^{ΔX} LLS	^{ΔY} LLS	^{ΔZ} LLS	∆x [⊥] LLS	<u><u><u>AY</u>LLS</u></u>	^{∆ż} lls
PHIX	0	-11.4	0	0	-0.025	0
PHIY	12.8	0	2.1	0.033	0	0.011

The unit error sensitivities of the state vector (platform coordinates) at landing with respect to the initial state (near PDI) are as follows: Units are feet and feet per second.

	^{ΔX} LLS	ΔY _{LLS}	^{∆Z} LLS	^{∆x} LLS	∆Ŷ _{LLS}	
$\Delta \mathbf{X}_{PDI}$	1.54	0	-0.09	1.60 E-3	0	0
$\Delta \mathbf{Y}_{PDI}$	0	0.75	0	0	-0.63 E-3	0
^{∆Z} PDI	-0.11	0	0.77	0	0	-0.61 E-3
∆	885.1	0	-11.5	1.57	0	-0.02
∆Ÿ _{pdi}	0	686.7	0	0	0.75	0
∆ż _{pdi}	-12.9	0	688.3	-0.03	0	0.75

The position error in the LLS indicated by the BET is thus seen to be within reasonably expected error bounds for the PIRX 159 trajectory at PDI.

Two-second PIPA counts in the vicinity of landing are shown in Figure 5-2. The impulse caused by impact is evident in the interval 110:32:36.19 - 110:32:38.19 GET, indicating that the vehicle became stationary within this period. Altitude and descent rate from low gate to landing are shown in Figure 5-3, and the groundtrack is shown in Figure 5-4.

Figure 5-2. Two-Second PIPA Counts Near Landing Time

5.3.2.2 Rev 14 Orbit Determination

Subsequent to the delivery of the BET, landing radar and high speed doppler data have been included in the HOPE Program orbit determination. The results are believed to indicate an improved local solution near PDI for the following reasons: 1) lower high speed doppler residuals; 2) LLS coordinates are closer to the "Best Estimate". The results of this further analysis of the LM powered descent trajectory is presented in Section 5.4.

5.3.3 LM Ascent and Insertion to CSI Trajectories

The postflight reconstruction of the LM trajectory from liftoff to CSI was delivered to MSC on 13 January 1969. This iteration superceeds the earlier (real time) version described in Section 5.2.8.

5.3.3.1 Ascent Trajectory

The powered flight trajectory (liftoff to orbit insertion) was reconstructed by integrating IMU acceleration data with corrections for known errors. The initial conditions were taken from the best available estimate of the LLS coordinates.*

LAT = -3.036 deg LONG = -23.418 deg R = 937.3643 nm

The powered flight reconstruction begins at 142:03:23.78 GET (APS ignition is 142:03:47.68) and ends at 142:11:51.78 (about 6 seconds after completion of RCS trim). Accumulated thrust velocities in platform coordinates (obtained from corrected IMU data) are as follows:

GET	^{∆V} x <u>ft/sec</u>	۵۷ _Y ft/sec	^{∆V} z <u>ft/sec</u>
142:03:47.78 (APS Ignition)	0	0	0
142:11:01.78 (APS Off)	1306.53	-5.66	5625.49
142:11:51.78 (End RCS Trim)	1313.12	-4.48	5595.18

*At the time of writing, the coordinates of the LLS were revised to LAT = -3.043 deg, LONG = -23.416 deg, R = 937.365 nm (Reference 1).

IMU Errors: The following corrections were made to the telemetered IMU acceleration data:

Accelerometer Bias	BX BY BZ		0.15 0.20 -0.29	cm/sec ² cm/sec ² cm/sec ²	(153 μg) (204 μg) (-296 μg)
Platform Misalignment	PHIY PHIZ	*	-21.6 -43.2	sec sec	

The PIPA bias changes are computed from free orbit data on rev 14 (prior to PDI) and rev 30 (after insertion). The bias change is believed to be a result of removing power to the IMU.

Platform misalignments prior to liftoff have been estimated from lunar surface alignment (P57) data (Reference 14). The values obtained are as follows:

Misalignment Angle	Mean	RMS Uncertainty
^ф х	-0.013 deg	0.025 deg
φ _Y	-0.010 deg	0.025 deg
φ _Z	-0.007 deg	0.025 deg

The misalignments used in the BET were chosen so as to produce best agreement of insertion conditions with the free flight trajectory. They are well within the $l\sigma$ uncertainties of the P57 estimates.

5.3.3.2 Comparison of Insertion Conditions

Comparison of the powered flight trajectory reconstruction and the free flight trajectory near orbit insertion is given in Table 5.11. The time of the comparison is 142:11:51.77 GET.

The inertial platform is aligned such that $X \approx$ vertical, $Y \approx$ crossrange, $Z \approx$ downrange at liftoff. The sensitivities of the state vector at orbit insertion to the coordinates of the LLS are given in Table 5.12. All quantities are in feet and feet per second in platform coordinates.

It can be seen that the crossrange position difference will become insignificant if the LLS is moved approximately 1000 feet (.01 deg) to the South. This is consistent with the revised estimates of the LLS coordinates.

Trajectory Parameter	Powered Flight Trajectory	Free Flight Trajectory	Delta (Powered Flight-F.F.)
X	5604697.1 ft	5604377.1 ft	320 ft
platform Y	736.1 ft	-293.3 ft	1029 ft
Coordinates Z	1317309.3 ft	1316757.5 ft	552 ft
VX	-1227.864 ft/sec	-1227.995 ft/sec	0.13 ft/sec
N _V	-1.051 ft/sec	-0.878 ft/sec	-0.17 ft/sec
ν ^z	5401.836 ft/sec	5403.272 ft/sec	-1.44 ft/sec
Perilune Altitude (above LLS)	8.9513 nm	8.9183 nm	199 ft
Apolune Altitude (above LLS)	50.9877 nm	51.7589 mm	-4696 ft
Selenographic Orbit Inclination	165.4679 deg	165.4698 deg	0019 deg
Inertial Flight Path	0.4205 deg	0.4179 deg	.0026 deg
Inertial Heading	-55.3418 deg	-55.3403 deg	0015 deg

 Table 5.11
 COMPARISON OF POWERED FLIGHT AND FREE FLIGHT

 TRAJECTORY CONDITIONS NEAR INSERTION (142:11:51.77 GET)

	^{ΔX} INS	^{AY} INS	^{∆Z} INS	∆× ins	^{∆Y} INS	∆ż _{ins}
^{AX} LLS	1.250	0	0.012	0.0010	0	0.0001
ΔY _{LLS}	0	0.882	0	0	-0.0005	0
∆z _{LLS}	0.010	0	0.883	0	0	-0.0004

Table 5.12SENSITIVITIES OF THE STATE VECTOR AT ORBIT
INSERTION TO THE COORDINATES OF THE LLS

. • •

.

-

-

. •

Units are in ft and ft/sec

5.3.3.3 Free Flight Trajectory Insertion to CSI

The free flight LM trajectory from insertion to CSI was determined from 557 MSFN doppler observations, 22 SXT sightings, 14 VHF ranging observations, and 2 rendezvous radar marks. The converged residual statistics are summarized as follows:

Station	Type	No. Obs.	Mean	Sigma
HSK	MSFN	83	.070 cps	.477 cps
GWM	MSFN	195	027 cps	.558 cps
NBE	MS FN	195	018 cps	.555 cps
CRO	MSFN	84	.044 cps	.540 cps
CSM	SXT Shaft	22	002 deg	.022 deg
CSM	SXT Trunnion	22	006 deg	.007 deg
CSM	VHF Ranging	14	-232. ft	200. ft
LM	RR Range	2	323. ft	13. ft
LM	RR Range Rate	2	380 ft/sec	.157 ft/sec
LM	RR Shaft	2	.015 deg	.020 deg
LM	RR Trunnion	2	043 deg	.020 deg

Plots of the SXT and VHF ranging residuals are shown in Figures 5-5, 5-6, and 5-7.

The purpose of reconstructing the free flight trajectory is to obtain insertion conditions as accurately as possible. Since the bulk of the relative observations occur after rev 30 LOS, the MSFN data dominates the fit. This is reflected in the VHF range residuals which show a clearly defined trend. As a check on the quality of the onboard data, a fit was made without the MSFN. The residual statistics show substantial improvement:

Data Type	Mean	Sigma
SXT Shaft	002 deg	.022 deg
SXT Trunnion	.0003 deg	.004 deg
VHF Range	-37.8 ft	58.3 ft

The two trajectories agree very well just before LOS, since this region is included in both the MSFN and onboard data spans. Comparison of MCI state vectors (Relative - BET) at 142:25:00 GET yields:

Figure 5-5. Converged SXT Shaft Residuals - Insertion to CSI

5-31

Figure 5-7. Converged VHF Ranging Residuals - Insertion to CSI

$\Delta \mathbf{X}$	$\Delta \mathbf{Y}$	$\Delta \mathbf{Z}$	ΔX	ΔÝ	ΔŻ
-255 ft	334	202		-0.62	-0.39
			sec	2	

5.3.4 LM Ascent Stage Impact Trajectory

The postflight trajectory for the LM on rev 34 (including the impact burn) is the final version of the rev 34 LM trajectory and superceeds the preliminary version of 25 November 1969.

The rev 34 (deorbit) trajectory for the LM was reconstructed from MSFN doppler data from RID (Madrid, 2-way), MIL, ACN (100 observations pre-burn and 159 observations post-burn), 5 SXT shaft angles, 2 SXT trunnion angles, 7 VHF ranging points, and the thrust profile of the deorbit burn obtained from IMU accelerometer data.

The converged residual statistics for all of the observations used in the fit are as follows:

No. OBS.	Station	Туре	Mean	Sigma
86	RID	MSFN	.348 cps	1.404 cps
87	MIL	MSFN	.235 cps	1.416 cps
86	ACN	MSFN	.342 cps	1.356 cps
5	CSM	SXT Shaft	.001 deg	.019 deg
2	CSM	SXT Trunnion	.033 deg	.128 deg
7	CSM	VHF Range	-470 ft	506 ft

The accumulated thrust velocities in IMU platform coordinates due to the deorbit burn are:

```
\Delta V_{\chi} = -188.57 \text{ ft/sec}
\Delta V_{\chi} = 54.15 \text{ ft/sec}
\Delta V_{\chi} = -6.21 \text{ ft/sec}
```

The time of impact is estimated to be 149:55:16.46 GET. The selenographic coordinates of the impact point are:

> LATITUDE = -3.944 deg LONGITUDE = -21.196 deg RADIUS = 5697847 ft

Selenographic Orbit Inclination =-14.531 degRelative Velocity Magnitude =5517.2 ft/secRelative Flight Path Angle =3.717 deg

5.4 POWERED DESCENT TRAJECTORY ANALYSIS

5.4.1 Rev. 14 Orbit Determination

Attempts to reconstruct the Rev. 14 trajectory from lo-speed doppler data yielded results not significantly different from PIRX-159 which was used to generate the Final BET (Section 5.3.2). The option for including Landing Radar velocity data in the HOPE orbit determination became available during the Apollo XII postflight period. All available trajectory data sources have now been used to determine the LM trajectory from AOS to Landing. These data include:

> MSFN Lo-Speed (6 sec): AOS to PDI MSFN Hi-Speed (compacted to 2 sec): PDI to Landing Landing Radar Velocity Thrust Acceleration Profile from LGC Telemetry.

The principal discrepancy in the Final BET is the large downrange position error at time of landing. ("Error" is defined as difference from the Best Estimate of the LLS.) As illustrated in Figure 5-8, the trajectory determination employing hi-speed doppler and landing radar reduces both the downrange and crossrange errors by about half. No further attempts were made to refine the crossrange error. Examination of the doppler residuals (2-way and 3-way) revealed a pattern similar to that of Figure 5-9. The time interval 110:04 - 110:13, containing the large "wiggle," is just the period in which the LM is passing over the Mare Nectaris. (The relative position of the LM during this period is listed in Appendix F.)

The nominal coordinates of the Mascon in the Mare Nectaris are: 15 deg S, 34 deg E, 100 km below MLR. The Mascon term with these coordinates was added to the Ll potential model. The size of the Mascon was varied in several trajectory fits in order to find the effects on: (a) the doppler residual pattern; and, (b) the state vector at PDI. These results are summarized in Figure 5-11.

 (a) The peak-to-peak "wiggle" amplitude (i.e., the difference in the residuals at 110:10:09 and 110:06:57) was chosen as an indicator of the effectiveness of this fit technique.

Figure 5-8 LLS COORDINATES

Figure 5-11

The amplitude is seen to decrease linearly with Mascon size over the range of values used. The best fit was achieved with a value of 9E-6 lunar mass units. The 2-way doppler residuals from this fit are plotted in Figure 5-10.

(b) The only significant effect on the state vector at PDI is in the downrange position component. This quantity is seen to decrease linearly with Mascon size (Figure 5-11). The landing site resulting from the trajectory fit using a Mascon size of 9E-6 is shown in Figure 5-8. The downrange position component is in very close agreement with the Best LLS Estimate. The IMU errors required to null the relative velocity at landing are:

> PHIX = 85.9 sec PHIY = -98.4 sec ZXMSL = -40.7 sec XZMSL = -30.0 sec

5.4.2 Analysis of Landing Radar Velocity Data

The analysis of the landing radar velocity data consisted of inspection of residuals (difference between observed measurement and computed measurement) obtained from selected LM trajectories.

The landing radar data were obtained by processing the downlink telemetry data with a special purpose computer program which outputs onboard observations on punched cards in a HOPE-compatible format.

The HOPE Program was used to compute simulated landing radar observables from the LM trajectories and from auxiliary information such as REFSMAT, gimbal angles, and radar operating mode. The LM trajectories were generated by the HOPE Program utilizing telemetered acceleration data in the IGS burn option to model the descent burn. Residuals were then formed by subtracting the computed from the actual observable value.

The trajectory used as an independent reference to evaluate these data was obtained from the PIRX159 state vector and associated platform misalignment corrections published as the final A-50 NAT (Section 5.3). This state vector was obtained in the RTCC from lo-speed MSFN doppler data obtained from AOS (acquisition of signal) to PDI on rev. 14. The

Figure 5-13 LANDING RADAR Y-ANTENNA VELOCITY RESIDUALS

	V _{XA} (fps)	V _{YA} (fps)	V _{ZA} (fps)	
Mean	1.09	-1.81	4.77	
St. Dev.	3.04	11.52	6.36	Nominal Antenna Orientation
Noise	3.13	11.32	5.22)	
Mean	-1.74	-1.81	1.11	
St. Dev.	3.11	11.52	4.91	Y-Antenna Axis Misalignment Corrected
Noise	3.11	11.32	5.20)	Misarighment Corrected

TABLE 5.13 LANDING RADAR VELOCITY RESIDUAL STATISTICS

5-46

postflight reconstructions discussed in paragraph 5.4.3 were obtained using hi-speed MSFN doppler and mode 2 landing radar observations.

Figures 5-12, 5-13 and 5-14 show the velocity residuals computed from the PIRX159 trajectory. Note that a few values fell outside the specification limits plotted. The V_{YA} residuals are considerably more erratic than V_{XA} or V_{ZA} . This can be seen in the residual plot as well as in the high standard deviation listed in Table 5.13. The noise estimates listed in Table 5.13 indicate that this erratic residual pattern in V_{YA} (and to a lesser extent in V_{ZA}) is caused more probably by random noise than by a systematic measurement error.

Postflight analysis performed by other TRW tasks posed the possibility that the landing radar may have been misaligned by .2 degrees about the Y-antenna axis. When the nominal orientation figures are changed to reflect this misalignment, the residuals plotted in Figures 5-15 and 5-16 are produced. Notice that the V_{XA} and V_{ZA} mean values are significantly altered (Table 5.13). The resulting statistics are more desirable than those obtained with the nominal orientation values.

In conclusion, the landing radar velocity observation obtained from the Apollo 12 mission do not appear to be as good qualitatively as the Apollo 11 data (Reference 15). The residual statistics are significantly higher than corresponding Apollo 11 statistics, even when the apparent antenna misalignment is corrected.

5.4.3 Lunar Surface Altitude from LR Range

Landing Radar range residuals were used to compute surface altitude along the ground-track of the pierce point. The results are plotted in Figure 5-12. The time tags on the data points are in the LGC clock time (TLGC = GET - 0.68 sec).

The ground-track of the range beam pierce point is plotted on Lunar Map ORB-I-7 in Figure 5-18. The time ticks correspond to the 2-sec range measurement times indicated in Figure 5-17 and the time tags are in min:sec after 110 hours LGC time. The small ellipses show the approximate size

of the range beam. The endpoint of the ground-track is located relative to the "Snowman" formation as shown in Reference 1, and the ground-track is plotted relative to this point. A full listing of surface altitude relative to LLS, latitude and longitude of range beam pierce point, central angle from LLS, and time may be obtained from the Task A-50 Monitor. These data are based on the MASCON = 9E-6 trajectory fit which yields the best absolute estimates of latitude and longitude. Note that these coordinates do not correspond to the grid markings on the ORB-I-7 map.

A very flat terrain over the final 2 deg. of the approach to the LLS is indicated by the contour map and verified by the Landing Radar data. The downhill slope between the final 2-3 deg. of the approach is also indicated by the radar, but it is difficult to make any quantitative comparisons. A very rough terrain is indicated over the first 3 deg. after range beam lock-on. Unfortunately, no suitable contour maps of this region are currently available.

5-49

-

•

- -

:

Figure 5-18 GROUNDTRACK OF LR RANGE BEAM

5-51

-

APPENDIX A

SUPPLEMENTARY DATA

Appendix A contains supplementary information which did not appear in the main body of the report. This information includes a summary of ground based and onboard data weights used in the HOPE Program, a summary of the components used in the L1 lunar potential model, and a summary of the USBS station locations.

Table A.I lists the data weights used in the HOPE Program for ground based radar data and Table A.2 lists the data weights used in the HOPE Program for onboard data by type and observable.

Table A.3 lists the terms of the Ll potential model.

Table A.4 lists the S-band tracking stations and their locations as used in the Apollo 12 postflight analysis. All locations are referenced to the Fischer Ellipsoid of 1960. The surface refractivity for the month of November is also listed.

WEIGHTING
DATA
RADAR
BASED
GROUND
Table A.1

DATA TYPE	RADAR	WEIGHTING
Range	USB: 30-ft antenna 85-ft antenna	600 ft.
Doppler (2-way)	USB: 30-ft antenna 85-ft antenna	0.1 cycle/sec.
Doppler (3-way)	USB: 30-ft antenna 85-ft antenna	0.1 cycle/sec.

TableA.2 NOMINAL ONBOARD RADAR DATA WEIGHTING

DATA TYPE	SHAFT	TRUNNION	RANGE	RANGE RATE	٧v	V V	L L
					4	1	7
Rendezvous Radar	.01	.01	30.	1.			
Sextant	.001	.001					
VHF Ranging			30.				
Landing Radar			50.		г.	.1	.1

TERM	VALUE
J2	2.07108×10^{-4}
J3	-2.1×10^{-5}
C22	2.0716×10 ⁻⁵
C31	3.4×10^{-5}
С33	2.583×10^{-6}
L	All other harmonics are zero

Table A.3 L1 LUNAR POTENTIAL MODEL

. . .

. .

-

- **·**

Table A.4 USBS Station Locations

Station	Antenna	Identification	Latitude* (deg)	Longitude* (deg)	Altitude* (ft)	Surface Refractivity
A - + 1 A	30 ft	ANC	17 01692	708 74715	80 171	372
Will Tgua	JU 11					}
Ascension	30 ft	ACN	-7.95479	345.67287	1784.78	355
Bermuda	30 ft	BDA	32.35129	295.34182	68.90	345
Canary Island	30 ft	CYI	27.76454	344.36519	567.59	343
Honeysuckle Creek	85 ft	HSK	-35.58349	148.97829	3755.25	300
Carnarvon	30 ft	CRO	-24.90658	113.72546	65.62	329
Goldstone	85 ft	GDS	35.34159	243.12680	2976.05	276
Grand Bahama	30 ft	GBM	26.63286	281.76234	16.40	364
Guam	30 ft	GWM	13.31058	144.73692	301.84	375
Guaymas	30 ft	GYM	27.96321	249.27915	62.34	328
Hawali	30 ft	HAW	22.12631	200.33433	3776.25	304
Madrid	85 ft	MAD	40.45499	355.83201	2553.81	299
Merritt Island	30 ft	MIL	28.50827	279.30658	32.81	349
Texas	30 ft	TEX	27.65375	262.62153	32.81	336
Honeysuckle Creek						
Wing	85 ft	NBE	-35.40099	148.98176	2196.85	300
Goldstone Wing	85 ft	PIR	35.38957	243.15103	3186.02	276
Madrid Wing	85 ft	RID	40.42829	355.75147	2527.56	299

*All quantities are referenced to the Fischer Ellipsoid of 1960.

APPENDIX B

ORBITAL PARAMETERS AT CERTAIN EVENT TIMES

Appendix B contains selected orbital parameters which were obtained by propagating RTCC state vector solutions or Task A-50 BET solutions to desired event times.

Table B.1 contains conditions for the desired events which were within the earth's SOI (sphere of influence). Table B.1 contains the following information: vector source, event, event time (GET), latitude, longitude, altitude, apogee, perigee, velocity, flight path angle, and heading angle. Apogee and perigee distances are referenced to the center of the earth.

Table B.2 contains the same information as Table B.1 with the exception that the desired events were within the lunar SOI. Altitude, apolune, and perilune distances are referenced to the Apollo 12 landing site radius (937.3643 N. Mi.).

The conditions at T_{CA} (time of closest approach to the moon) for a free-return circumlunar mission were obtained from an RTCC vector at 4 hours 13 minutes 09.96 seconds GET (TLI cutoff vector HSRC001 propagated through approximately 10 minutes of venting) and are given below:

TIME	83 hours 42 minutes 05.51 seconds GET
LATITUDE	25.33 S
LONGITUDE	172.51 E
ALTITUDE	470.7 N. M1.
APOLUNE	N/A
PERI LUNE	470.7 N. Mi.
VELOCITY	7172.3 FPS
FLIGHT PATH	0.000 DEG
HEADING	-112.10 DEG

In Table B.1 the listed values are referenced to an earth centered inertial (ECI), mean of nearest Besselian year coordinate system and in Table B.2 the values are referenced to a selenocentric, mean of nearest Besselian year coordinate system.

B-1

Table B.I APOLLO 12 EARTH SOI ORBITAL PARAMETERS

63.90 HEADING 105.29 120.80 100.1 114.52 120.05 91.35 91.36 ANGLE 105.92 98.17 96.00 96.01 DEG FLIGHT PATH ANGLE 8.603 45.096 75.833 49.896 60.941 -68.540 76.597 -78.444 -78.404 -68.547 -36.454 - 6.483 DEG 12082.9 29029.1 12084.7 36116.2 3036.0 VELOCITY 24862.9 3035.6 35390.1 22535.1 16451.1 4317.4 4297.5 FPS 233313.5 3559.8 228963.2 3559.9 228894.9 3560.0 229584.5 3559.5 229852.2 3545.9 228278.0 3146.6 286198.5 2731.8 286180.0 2712.3 276203.7 3469.1 275925.5 3465.5 279020.0 3465.1 285902.1 3463.8 PER* N.M. APO* N.M. 199.5 12506.3 25059.0 3820.1 5337.7 116935.4 180029.0 65.8 ALTITUDE 116929.1 180031.2 25048.3 1949.5 N.M. LONGITUDE DEG E,W 79.76W 58.77W 63.05W 71.01W 137.71E 154.28W 63.09W 137.70E 92.17E 92.15E 117.25E 173.52E LATITUDE DEG N,S 16.19N 1.11S 1.11S 15.97N 28.91N 26.70N 14.87N 18.59N 15.97N 0.32N 14.86N 13.80S 03:18:04.9 04:13:00.9 03:26:53.3 30:52:44.4 30:52:53.6 188:27:15.8 188:27:20.2 241:21:59.7 241:22:05.4 244:07:20.1 Entry Interface 244:22:19.1 02:53:14 TIME GET First Docking S-IVB/CM SEP S/C Ejection CM/SM_SEP MCC1 C/0 MCC2 C/0 MCCI IGN MCC2 IGN MCC3 C/0 MCC3 IGN TLI C/O EVENT SOURCE HSRC001 BDAX074 VILX163 HSKX236 NBEX127 ISKX366 GWAS147 HAWX881 GWIS147 GW4S147 HSRCOOL HSRC001

B-2

^{*} Referenced to earth center

					UTTAWA 144				
SOURCE	EVENT		LATITUDE DEG N,S	LONGITUDE DEG E.W	ALTITUDE* N.M.	APO* PER* N.M. N.M.	VELOCITY FPS	FLIGHT PATH ANGLE DEG	HEADING ANGLE DEG
BET	L01-1 IGN	83:25:23.4	5.76N	175.62E	83.91	NA 64.94	8173.6	-8.447	-130.66
BET	L01-1 C/0	83:31:15.7	1.62S	154.03E	62.91	170.20 61.66	5470.1	-0.630	-120.70
GWMX504	L01-2 IGN	87:48:48.1	1.675	151.67E	62.79	170.37 61.42	5470.6	-0.662	-120.72
HAWX519	L01-2 C/0	87:49:05	1.885	150.85E	62.74	66.10 54.59	5331.4	0.301	-120.50
NBEX128	Undocking	107:54:02.3	13.525	86.96E	63.02	63.08 56.91	5329.0	-0.034	- 92.75
NBEX128	CSM SEP IGN	108:24:36.8	6.61S	7.441	59.22	63.91 56.99	5350.0	-0.177	- 54.83
CR0X609	CSM SEP C/O	108:24:51.2	6.455	8.14W	59.15	64.06 56.58	5350.5	-0.204	- 54.85
BET	DOI IGN	109:23:39.9	6.64N	172.21E	60.52	63.27 57.25	5343.0	0.172	-125.19
PIRX159	DOI C/0	109:24:08.9	6.29N	170.76E	61.52	61.53 8.70	5263.0	-0.024	-125.15
PIRX159	PDI IGN	110:20:38.1	6.76S	7.82W	7.96	62.30 7.96	5566.4	-0.025	- 54.86
HSKX624	CSM LOPC-1	119:47:13.2	14.01S	77. 6 8E	62.20	62.50 57.61	5333.5	-0.068	- 90.73
BET	Insertion	142:10:50.9	0.545	33.05W	9.97	51.93 9.21	5542.5	0.336	- 54.94
BET	CSI IGN	143:01:51	5.16N	164.68E	51.46	52.51 9.94	5310.3	0.055	-125.57
BET	CSI C/0	143:02:32.1	4.65N	162.64E	51.48	51.49 41.76	5354.9	0.015	-125.71
BET	TPI IGN	144:36:26	14.57N	128.99W	44.50	44.73 40.91	5382.5	0.052	-102.07
MADX700	Lunar Docking	145:36:20.2	14.535	46.98E	58.14	63.43 58.04	5357.1	-0.040	- 75.71
BET	CSM SEP	148:04:30.9	1.40N	43.34W	59.94	64.66 59.08	5347.4	0.153	- 55.81
BET	LM Deorhit IGN	149:28:14.8	14.325	62.86E	57.62	63.52 57.94	5361.8	-0.116	- 87.63
BET	LM Deorhit C/O	149:29:36.9	14.47S	58.62E	57.42	57.59 -63.15	5176.8	-0.274	- 84.10
BET	LM Lunar Impact	149:53:16.4	3.955	21.20W	0.38	57.89 -63.79	5502.6	-3.728	- 54.14
GWMX731	CSM LOPC-2 IGN	159:04:45.5	6.655	110.34F	58.70	64.23 56.58	5353.2	-0.196	-118.68
GWNX747	CSM LOPC-2 C/O	159:05:04.8	6.82S	109.40E	58.90	64.66 56.81	5353.0	-0.199	-114.18
BDAX800	TEI IGN	172:27:16.0	8.73N	170.26W	64.60	66.00 55.68	5322.9	-6.202	-115.73
HSKX866	TEI C/O	172:29:27.1	N17.7	178.60W	66.00	NA 64.10	8350.4	2.718	-116.45
-::	Referenced to la	anding site radius (437.3643 N.M.)	adius (937	.3643 N.Y.)					

Table B.2 APOLLO 12 LUNAR SOI ORBITAL PARAMETERS

:

· `.

•

B-3

.

APPENDIX C

APOLLO 12 RELATIVE TRAJECTORY LISTING

A HOPE listing of the trajectories for both the LM and the CSM during periods of separated free flight was delivered to the Task Monitor on 5 February 1970. The trajectories used in generating this print were obtained from the best available fits using all available data types.

Table C.1 lists the trajectories by segment, the propagation interval, vector source, and RSS total position and velocity comparisons. The position and velocity deltas listed are comparisons between adjacent segments. Where a maneuver was performed between the segments, the ΔV produced by that maneuver has been removed from the RSS velocity differences (DOI = 72.4 ft/sec, CSI = 45 ft/sec). Note that all the comparisons are reasonable with the largest difference being between the CSM fits made on revs 13 and 14. This difference is partially attributable to the limited tracking coverage on rev 14 (see Figure 5-1, page 5-5). The residual statistics obtained from the CSM and LM trajectories are summarized in Tables C.2 and C.3.

CSM Trajectories

Note that the rev 13 CSM trajectory was obtained from a fit using low speed MSFN data and using the IGS burn option in HOPE to model the separation burn. No explanation was readily apparent for the high MSFN residual statistics. Since the requirement for a NAT update did not exist and task requirements were more immediate, an in-depth analysis was not performed. It was felt, however, that the trajectory obtained still represented the best overall fit of the data. The rev 14 CSM trajectory was obtained from a free flight fit using low speed MSFN data.

C-1

The trajectories used for the CSM on revs 30 and 31 were those obtained in real time by the RTCC. The rev 30 trajectory was from as SS2 type fit (solution constrained to the input inclination). It was necessary to use this fit technique because of the extremely poor tracking coverage (see Figure 5-1, page 5-5). The RTCC trajectories were used because no significant improvements were made in postflight fits (note the residual statistics in Table C.2).

LM Trajectories

The LM trajectory for the undock to DOI period was of good quality due to the good MSFN tracking. Table C.3 lists residual statistics obtained with the trajectory.

The trajectory from DOI to PDI was obtained from a fit which used CSM sextant, VHF ranging, high speed MSFN, and landing radar data. The fit also used telemetered accelerometer data to model the powered descent. The trajectory generated by this fit in the free flight segment (DOI to PDI) was considered the best available and, therefore, was chosen for the relative trajectory print. Although the relative trajectory extended only through free flight periods, the residual statistics listed in Table C.3 were taken from the entire data arc and do include observations taken during powered descent. (This trajectory was not published as a BET.)

The trajectories used for the insertion to CSI and CSI to TPI segments used both onboard relative (CSM sextant, VHF ranging, LM rendezvous radar) and ground based MSFN tracking data. As was stated in Reference 2, the presence of MSFN data caused the relatively large residual statistics for the onboard data types (especially in the CSI to TPI period where the onboard and ground based data arcs are coincident). Statistics obtained from free flight fits using only onboard data are listed in Table C.4 as a gross indication of data quality.

The insertion to CSI trajectory was obtained from a free flight fit and the CSI to TPI trajectory was obtained from a fit which modeled the

C-2

CDH maneuver with the HOPE IGS burn option. Since no tracking data were available after TPI, no trajectories after that point were included in the deliverable.

Note that the above-mentioned trajectories were not necessarily published as a BET. However, they represent the best trajectories obtained before Task A-50 was directed by MSC to de-emphasize rendezvous analysis.

. :

-

. .

	Propagation Interval	i Interval	_	RSS Comparisons	arisons
Segment	Start (d:h:m:s GMT)	Stop (d:h:m:s CMT)	Vector Source	∆R (feet)	(fps)
Pre Sep to DOI	19:04:45:00	19:05:45:39.9	CSM - Rev 13 IGS fit LM - Rev 13 Free Flight Fit	8524	2.3
DOI to PDI	19:05:46:08.9	19:06:42:38.1	CSM - Rev 14 Free Flight Fit LM - Rev 14 IGS Fit	3812	1.4
Insertion to CSI	20:14:32:50.9	20:15:23:51.0	CSM - RTCC Rev 30 (CROX 680) LM - Rev 30 Free Flight Fit	>1765	2.4
CSI to TPI	20:15:24:32.1	20:16:58:26.0	CSM - RTCC Rev 31 (ACNX 687) LM - Rev 31 IGS Fit	2287	.04

TABLE C.1 RELATIVE TRAJECTORY SECMENT SUMMARY

C-4

-

CSM Rev 13 Fit

. .

- `

-

•

•

Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (GDS) Range (GDS) 3 way doppler (HAW) 3 way doppler (MIL)	133 17 110 98	0233 cps -345. feet 0074 cps 0387	1.09 cps 8.26 feet 1.08 cps 1.04
	CSM Rev 14 Fit		
Data Type (station)	Number of Obs.	Mean	Std. Dev.

Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (HSK)	143	.0251 cps	.560 cps
3 way doppler (GDS)	142	.0056	.564
3 way doppler (CRO)	29	.1051	.259

CSM Rev 30 (RTCC CROX 680)

Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (HSK)	242	.134 cps	.415 cps
3 way doppler (CRO)	76	.065	.186

CSM Rev 31 (RTCC ACNX 687)

Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 and 3 way doppler (HSK)	66	.088 cps	.582 cps
2 way doppler (MAD)	73	.015	.545
3 way doppler (GWM)	118	033	.505
3 way doppler (CRO)	111	.035	.536
3 way doppler (ACN)	21	003	.188

TABLE C.3 LM FIT RESIDUAL STATISTICS

LM Undock to DOI (Rev 13)

Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (PIR)	116	.001 cps	.616 cps
3 way doppler (BDA)	115	015	.617
3 way doppler (HAW)	91	.071	.629
3 way doppler (MIL)	94	005	.622
3 way doppler (NBE)	43	.088	.376
3 way doppler (GWM)	45	118	.502
LM DOI to PDI	(Rev 14 - DOI to L	anding Fit)	
Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (PIR)	695	.004 cps	.889 cps
3 way doppler (GWM)	702	047	.862
3 way doppler (NBE)	695	.043	.854
3 way doppler (MIL)	288	004	.852
3 way doppler (HAW)	700	014	.855
CSM sextant shaft	3	002 deg.	.062 deg.
CSM sextant trunnion	3	.443	.035
CSM VHF Ranging	6	687. feet	248. feet
LM Ins	ertion to CSI (Rev	30)	
Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (HSK)	83	.070 cps	.477 cps
3 way doppler (GWM)	195	027	.558
3 way doppler (NBE)	195	018	.555
3 way doppler (CRO)	84	.044	.540
CSM sextant shaft	22	002 deg.	.022 deg.
CSM sextant trunnion	22	006	.007
CSM VHF Ranging	14	-232. feet	200. feet
LM RR shaft	2	.015 deg.	.020 deg.
LM RR trunnion	2	043	.020
LM RR range	2	323. feet	13. feet
LM RR range rate	2	380 fps.	.157 fps.
LM	CSI to TPI (Rev 31)		
Data Type (station)	Number of Obs.	Mean	Std. Dev.
2 way doppler (RID)	134	061 cps	.950 cps
3 way doppler (NBE)	64	641	.788
3 way doppler (CRO)	112	034	.914
3 way doppler (GWM)	76	. 309	.845
3 way doppler (ACN)	20	.699	.377
CSM sextant shaft	31	078 deg	.095 deg
CSM sextant trunnion	31	040	.028
CSM VHF ranging	32	-277. feet	63.2 feet
LM RR shaft	53	.011 deg	.026 deg
LM RR trunnion	5 <u>3</u>	120	.072
LM RR range	53	-122. feet	97.6 feet
LM RR range rate	53	331 fps	.285 fps

C-6

TABLE C.4 ONBOARD DATA FREE FLIGHT FIT RESIDUAL STATISTICS

Insertion to CSI

. .

. .

-

. • •

•

SM sextant shaft 22 002 deg .002 deg CSM sextant trunnion 22 .0003 .004 CSM vHF ranging 14 -37.8 feet 53.3 feet LM RR shaft 2 .030 deg .019 deg LM RR trunnion 2 041 .017 LM RR range 2 .251.7 feet 8.81 feet LM RR range rate 2 .476 fps .227 fps CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 .010 CSM sextant trunnion 35 007 .010 CSM sextant trunnion 30 .050 deg .017 deg LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 10.8 feet 251. feet LM RR range rate 30 .060 .007 deg CSM sextant shaft 8 .001 deg .007 deg <tr< th=""><th>)ata Type (station)</th><th>Number of Obs.</th><th>Mean</th><th>Std. Dev.</th></tr<>)ata Type (station)	Number of Obs.	Mean	Std. Dev.
CSM VHF ranging 14 -37.8 feet 53.3 feet LM RR shaft 2 .030 deg .019 deg LM RR shaft 2 .030 deg .017 LM RR trunnion 2 041 .017 LM RR range 2 251.7 feet 8.81 feet LM RR range rate 2 476 fps .227 fps CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM vHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR range 30 10.8 feet 251. feet LM RR range rate 30 10.8 feet 251. feet LM RR range rate 30 .063 .006 CSM sextant shaft 8 .001 deg .007 deg	CSM sextant shaft	22	002 deg	.022 deg
LM RR shaft 2 .030 deg .019 deg LM RR shaft 2 .041 .017 LM RR range 2 .041 .017 LM RR range 2 .051.7 feet 8.81 feet LM RR range rate 2 .476 fps .227 fps CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 .010 CSM sextant trunnion 35 007 .010 CSM vHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR shaft 30 .050 deg .017 deg LM RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CDH to TPI Data Type (station) Number of Obs. CDH to TPI <td< td=""><td>CSM sextant trunnion</td><td>22</td><td>.0003</td><td>.004</td></td<>	CSM sextant trunnion	22	.0003	.004
LM RR trunnion 2 041 .017 LM RR range 2 251.7 feet 8.81 feet LM RR range rate 2 476 fps .227 fps CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 deg .034 deg CSM sextant trunnion 35 007 .010 CSM VHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant	CSM VHF ranging	14	-37.8 feet	53.3 feet
LM RR range 2 251.7 feet 8.81 feet LM RR range rate 2 476 fps .227 fps CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 deg .034 deg CSM sextant trunnion 35 007 .010 CSM sextant trunnion 35 007 .010 CSM vHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant trunnion 8 .001 deg .007 deg CSM sextant trunnion 8 .003 .006 CSM sextant trunnion 8 .003 .006 CSM sextant trunnion	LM RR shaft			-
LM RR range rate 2 476 fps .227 fps CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 deg .034 deg CSM sextant trunnion 35 007 .010 CSM sextant trunnion 35 007 .010 CSM VHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 .003 .006	LM RR trunnion			
CSI to CDH Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 deg .034 deg CSM sextant trunnion 35 007 .010 CSM vHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR shaft 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Std. Dev. .001 deg .007 deg CSM sextant shaft 8 .001 deg .007 deg CSM sextant shaft 8 .003 .006 CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 .003 .006 CSM sextant trunnion 8 .003 .006 CSM sextant shaft 23 .083 deg .016 deg LM RR shaft 23 .083 .028 LM RR trunnion	LM RR range			
Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 35 007 deg .034 deg CSM sextant trunnion 35 007 .010 CSM VHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant shaft 8 .001 deg .007 deg CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 003 .006 CSM VHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028	LM RR range rate	2	476 fps	.227 fps
CSM sextant shaft 35 007 deg .034 deg CSM sextant trunnion 35 007 .010 CSM VHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI		CSI to CDH		
CSM sextant trunnion 35 007 .010 CSM vHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR trunnion 30 672 fps .390 fps LM RR range rate 30 672 fps .390 fps Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 003 .006 CSM sextant trunnion 8 003 .006 CSM VHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR shaft 23 082 .028 LM RR range 23 29.9 feet 53.5 feet	Data Type (station)	Number of Obs.	Mean	Std. Dev.
CSM sextant trunnion 35 007 .010 CSM VHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 003 .006 CSM sextant trunnion 8 003 .006 CSM sextant trunnion 23 .083 deg .016 deg LM RR shaft 23 .082 .028 LM RR range 23 29.9 feet 53.5 feet	CSM sextant shaft	35	007 deg	.034 deg
CSM VHF ranging 34 -25.2 feet 177. feet LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 003 .006 CSM VHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet	•••••			.010
LM RR shaft 30 .050 deg .017 deg LM RR trunnion 30 075 .051 LL RR range 30 10.8 feet 251. feet LM RR range rate 30 672 fps .390 fps CDH to TPI Data Type (station) Number of Obs. Mean Std. Dev. CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 003 .006 CSM VHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet		34	-25.2 feet	177. feet
In Alt Crumiton3010.8 feet251. feetLL RR range30672 fps.390 fpsLM RR range rate30672 fps.390 fpsCDH to TPIData Type (station)Number of Obs.MeanStd. Dev.CSM sextant shaft8.001 deg.007 degCSM sextant trunnion8003.006CSM VHF ranging10-85.5 feet30.2 feetLM RR shaft23.083 deg.016 degLM RR trunnion23082.028LM RR range2329.9 feet53.5 feet	0 0	30	.050 deg	.017 deg
LM RR range rate30672 fps.390 fpsCDH to TPIData Type (station)Number of Obs.MeanStd. Dev.CSM sextant shaft8.001 deg.007 degCSM sextant trunnion8003.006CSM VHF ranging10-85.5 feet30.2 feetLM RR shaft23.083 deg.016 degLM RR trunnion23082.028LM RR range2329.9 feet53.5 feet	LM RR trunnion	30	075	.051
CDH to TPIData Type (station)Number of Obs.MeanStd. Dev.CSM sextant shaft8.001 deg.007 degCSM sextant trunnion8003.006CSM VHF ranging10-85.5 feet30.2 feetLM RR shaft23.083 deg.016 degLM RR trunnion23082.028LM RR range2329.9 feet53.5 feet	LL RR range	30		
Data Type (station)Number of Obs.MeanStd. Dev.CSM sextant shaft8.001 deg.007 degCSM sextant trunnion8003.006CSM VHF ranging10-85.5 feet30.2 feetLM RR shaft23.083 deg.016 degLM RR trunnion23082.028LM RR range2329.9 feet53.5 feet	LM RR range rate	30	672 fps	.390 fps
CSM sextant shaft 8 .001 deg .007 deg CSM sextant trunnion 8 003 .006 CSM vHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet		CDH to TPI		
CSM sextant trunnion 8 003 .006 CSM VHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet	Data Type (station)	Number of Obs.	Mean	Std. Dev.
CSM sextant trunnion 8 003 .006 CSM VHF ranging 10 -85.5 feet 30.2 feet LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet	CSM sextant shaft	8	.001 deg	.007 deg
LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet		8	003	.006
LM RR shaft 23 .083 deg .016 deg LM RR trunnion 23 082 .028 LM RR range 23 29.9 feet 53.5 feet	CSM VHF ranging	10	-85.5 feet	30.2 feet
LM RR range 23 29.9 feet 53.5 feet	0 0	23	.083 deg	.016 deg
	LM RR trunnion	23		.028
LM RR range rate 23434 fps .292 fps	LM RR range			
	LM RR range rate	23	434 fps	.292 fps

C-7

APPENDIX D

LM RENDEZVOUS RADAR DATA, CSM VHF RANGING DATA AND CSM SEXTANT (APOLLO 12)

The LM rendezvous radar data that was used in the analysis are listed in the two card format of the HOPE orbit determination program. The first card specifies the vehicle taking the observation, the vehicle that is being observed, the time of the observation (year (mod 1900), month, day, hour, minute, and second (GMT)), three code numbers, shaft observable, trunnion observable, range observable, and range rate observable. The second card specifies the inner, middle, and outer gimbal angles. The units are feet, degrees, and seconds.

The CSM VHF ranging data are also listed in the same format. The card format differences are the following: 1) vehicle ID's are reversed, 2) code numbers are different, 3) range is the only observable, and 4) gimbal angles are not needed to process the ranging data.

The CSM sextant data are also listed. The card format is also similar to the rendezvous radar cards.

0
٩
2
-
20

VEH1	V EH2	YYMMUDHHMMSS.SSS XF SHAFT(UEG) INNER(DEG)	SHAFT (DEG) INNER (DEG)	TRUN(DEG) MIDDLE(DEG)	RANGE(FT) Outer(deg)	RRATE(FPS)
C S M	LEM	691119 55424.539 62	61726.	20.376901	0910008 7	
CSM	LEM	691119 55427 . 398 62		20.511484		
CSM	LEM	691119 55513.129 62	220.2114044 252686 222 7112750	22.648325	1110710•L	
CSM	LEM	69 1119 55543.867114	0074111 -070	0761116.6	50978-608	•
CSM	LEM	691119 55646.348114			55049.606	
C S M	LEM	691119 55752.566114			59485.170	• •
CSM	ĽEM	691119 55853.609114			63616.929	
CSM	LEM	691119 6 5 6.078114		5	95091 • 206055	
CSM	LEM	691119 6 7 3.359114		1	108701.7	• •

ISISISISISISISISISISISISI -347.8011 -331.4781 RRATE (FPS) •5822754 1133013•250 1205892.8 .0330 1176552.2 .0989 359.8242187 1151849.203 .0983770 359.7912598 1089751.297 1.2524414 1.3623047 1039137.265 .6042480 1114724.141 1.7358398 1.3623047 1.1865234 1r70550.781 OUTER(DEG) RANGE(FT) MIDDLE (DEG) .0483770 359.7363 2.8784 22.044077 22.645578 359.4177 16.7322 21.934213 .2307129 22.631845 .3955078 .7470703 .9008789 .5822754 22.033090 22.016611 22.447824 19.918222 .5822754 21.950693 .4443848 23.005380 TRUN(DEG) 358.7036 304.9036 359.066162 359.011230 299.8169 62.7429199 359.978027 359.673410 57.2387695 52.1411133 359.615479 50.7897949 .451426 49.9658203 .780029 359.0H81 62.8198242 60.3918457 .087891 1.153564 45.5273437 43.9672852 .256631 SHAFT (DEG) INNER(UEG) 62 YY MMUDHHMMSS.SSS XF 11 62 62 62 52 691120145128.984114 691120145212. £33 £2 691120145330.516114 **691120145458.312114** 62 691120145553.977 62 691120144847.130 11 691120145229.437114 **69112014**5610.414114 691120145345.875 62 62 691120145816.805114 691120145721.773 **691120145040.914** 691120145013.727 691120145042.953 691120145127.680 691120145413.934 **691120145**c25.648 691120145515.219 VEH2 CSM LEM LEM CSM LEM LEM LEM LEM LEM LEM LEM L E M LEM LEM LEM LEM LEM LEM VEH1 LEM LEM CSM **C**SM CSM

C SI **INS 10**

:

`.

•

•

CSM	LEM	691120145918.023114	39.8913574	•4064941	• 9448242 1025101• 437
CSM	LEM	69112015 019.258114			1011916.266
CSM	E E	69112015 120•703114			999399°469
CSM	LEM	691120145815.936 62	•28564	23.063059	
CSM	LEM	69112015 124.430 62	59.43969	n • 4	606210.
CSM	LEM	69112015 720.234114	Co. 8000400	107	• 100010 940 339• 625
CSM	LEM	69112015 828.758114			932622.961
CSM	I. E.M	69112015 831.000 62	359.549561	23.499765	7207666 1
CSM	LEM	69112015 93C.328114	~~~~~	100700	925756.945
CSM	LEM	69112015 832.273 62	9.52758	23.508005	
CSM	LEM	69112015 933.789 62	• (22,730722	
C S M	LEM	69112015 953.695 62	641206.49 11411.	22.406626	
CSM	LEM	691120151345.430114	CI1111C*8CC	0016670*1	660°101816
CSM	LEM	691120151023.086 62	176137 176137	22.173166	
CSM	LEM	691120151146.125114		001 4 5 70 • 1	912389.492
CSM	LEN	691120151048.984 62	359.49462	22.442331	
CSM	LEM	691120151148.656 62	355.4736328 359.143066		1.9226074
CSM	LEM	691120144736.453 62	351.7272949 .043945	1.922607 22.00562	2.0214844
		1	72.7734375	35.9	359.3078613
CSM	LEM	691120144744.875 62	359.835205 73 3660636	ט גרי ש יז	360 1760 256
CSM	LEM	691120144830.258 62	358.593750	`	
			69.6862793	359.4396973	358.6247090

CST TO COH

:

-

21212 2 -111.1211 -80.3581 -92.9141 -95.4261 -102.9591 -108-6091 -77.8471 -83.4971 -90.4031 -75.3361 -81.6141 -86.0091 -97.3091 -106.098 -1CC - 448 RRATE (FPS) 736292.5 .3186 715281.3 .3625 767133.9 729463.8 359.7363 722719.2 359.5166 708002.4 700498.4 359.1650 789270.7 •5164 784017.9 359.3738 778465.0 772837.0 359.8792 .6152 754977.4 .9009 749124.3 742821.0 359.5386 .5603 359.0771 294.9060059 359.4177246 359.2309570 797900.3 359.1211 .7031 53268.891 OUTER(DEG) RANGE(FT) œ 359.2090 .8130 .3516 1.5820 359.3138 .8130 3.2410 4.4934 .3296 359.6265 359.4617 1.3403 22.368173 MI DDLE (UEG) 357.1545 359.4727 .5713 .0549 358.1433 359.3079 359.5386 359.0112 .1208 359.4946 359.4177 . 7910 358.4399 357.2754 .8020 358.0884 359.8242 . 7581 TRUN(DEG) . 560303 359.3958 89.6045 .8789 .0769 .0220 85.6934 359.7253 .1648 359.0332 .2087 .2856 118.4436 359.8352 115.5542 359.8572 112.2144 106.1829 101.3049 .1208 58.8220 95.5042 92.2742 359.8572 359.6375 79.2773 130.8801 126.4197 121.8823 359.1541 82.6172 SHAFT (UEG) INNER (DEG) 11 11 **691120152938.155114** 62 11 69112016 042.453 11 11 ХF 11 11 11 11 1 11 11 11 11 Π 2.727 6911201556 7.109 691120155534.453 6911201547 6.156 691120155139.508 **691120155826.53**9 691120154558.156 691120154813.977 **691120154921.914** 691120155350.523 691120155459.148 691120155715.109 YYMMUDHHMMSS.SSS 691120154257.062 691120154449.758 691120155243.75 6911201530 V E H 2 CSM CSM CSM CSM CSM CSM CSM CSM LEN LEM CSM CSM CSM CSM CSM CSM CSM VEH1 LEN CSM CSM LEM LEM LEM Ē LEM LEM LEM LEM LEM E M LEM LEM LEN LEM

CSM	LEM	691120153038.289114			849197.891
CSM	LEM	6911201530 6.680 62	.538330 .538330	22.403879	350 2080844
CSM	E E	691120153039.117 62		22.640085	751750 055175
CSM	LEM	691120153139.508114	6060061.262	76166	845066.133
CSM	LEM	691120153111.516 62	•626221 •626221	21.439829	366 0787716
CSM	LEM	691120153136.094 62	4 C 0	22, 758188	
CSM	LEM	6911 20153239.687114	2		841022*898
CSM	LEM	6911201532 5.750 62	359.912109		368 044355
CSM	LEM	691120153244.727 62	.58227 .58227	22.500009 22.500009	707067 036
CSM	LEM	691120153341.703114	CCCCC40C •007	7410000 •600	836863.383
CSM	LEM	69 11 20 1 53 44 1 • 90 6 1 1 4			832792.383
CSM	LEM	691120153542.250114			828660•625
CSM	LEM	691120153611.453 62	•549316 •549316	22,392893	3735353
CSM	LEM	691120153643.727114			824468.102
CSM	LEM	691120153613.406 62	494385 • • • • • • • • • •	22.368173	1705808
CSM	LEM	691120153745.219114	• 6 6 76	10100	820154.062
CSM	LEM	6911201537 8,953 62	358.901367	21.923480	359, 24 101 40
CSM	LEM	691120153751.758 62	359.692383	22.07154	350.8352051
CSM	LEM	691120153821.656 62	359.187012		359, 5775879
CSM	LEM	691120154226.484 62	. 032959 . 032959	21.85456	358 7475586
CSM	LEM	691120154228.906 62	n n o	21.	

D-6

			258.C2292	238384	358.7255459
C S M	2	2 511-115451021169	oz 300.440312 255.52r0145	359's	358.3190918
CSM	LEN	691120154342.375 (62 354.846436	Ń	
			, v	359	358.4069324
CSM	L F M	0 +4C •0 C+G1071169	oz 209.8950195 249.8950195	35 8	357.8576660
CSM	LEM	591120155311•883 (62 359.725342	N	
))	1			359	358.6047363
CSM	LEM	691120155314.523	62 359.736328	2	
				359	358.6157227
CSM	LEM	691120155339.063	62 359.802246		
			ŗ	6 G C	358. (050133
503	С Ц Ц	600 +6610711 -0	02 233.7655312	359	358.7585449
CSM	LEM	691120155444.312	62 359.725342	2	
•				359	358.9562988
CSM	LEM	6911201555 9.789	62 359.934082	N	
			-	359	359.2749023
CSM	LEM	691120155522.258	62 .560303	2	
				359	.1647949
CSM	μEM	6911201557 7.297	62 1.186523	2	
			214.6838379	359	.7800293
CSM	LEM	691120155845.258	62 359.454629	2	
			209.5751953		.2087402
CSM	LEM	691120155916.258	62 359.725342	2	
			207.8063965		.5603027
CSM	LEM	691120155943.305	62 359.714355	2	
					.6811523
CSM	LEM	69112016 020.562	62 359.626465	2	
				(0000000
CSM	Ψ Ψ	69112016 513.633	62 .834961	~ ~	CEFCOB C
			191.435/6/		+611266.2
CSM	LEM	69112016 545.68C	359.67041	∼.	Ċ
			189.837695	-	2.2302240
CSM	LEM	69112016 618.477	.92309	~	
			188.37158		2.8015137
CSM	L E M	69112016 7 7.328	8.92334	~	
			185.69091	~ •	2.5921134
CSM	LEM	69112016 756.773	-90087	~ -	~

:

•

٠

•

.

CSM	LEM	69112016 850.	344 62	•67016	2.21711		
LEM	CSM	69112016 229.	648 11	58.98925	9.28588	+∠∪04 67•03	-114.8871
LEM	CSM	69112016 312.	633 11	80	1.7907715 359.670410	•4943848 683389•273	-116.7711
LEM	CSM	69112016 417.	75C 11	2.729492 59.23095	•120605 •26367	.098877 75735.19	2 -119.2821
E M	CSM	69112016 543.	266 11	.400634 .12085	• 472168 9.95605	9.505615 65379.67	2 -123-0491
LEM	CSM	12010 65	34 1	4.423828 58.44487	1.439209 59.35180	24218	1 25 560
X L	M S C	759		775878	1.944580	.373535	
			 	8.073730	2.109375	• 560302	644 • 1 7
۲ ۲	C S M	69112016 9 5.	844 11	.51635 .338378	9.37377 581787	791 . 03 406494	-129.9551 2
LEM	CSM	691120161012.	656 11	.86816 822509	59.57153 9.648437	011.35	-133.0941
L E M	CSM	691120161120.	453 11	9.03320	359.30786	931.51	-134.9771
LEM	CSM	691120161253.	234 11	• 1 6 2 0 3 0 4 • • • • • • • • • • • • • • • • • •	9.8901.50 .39550	• • ••••••••••••••••••••••••••••••••••	-138.1161
1			•	307861	.439453	.340820	
	E < >	691120101337.	016 11	8.69262 .264160	1.41772 560302	03171.51 296630	-139.9991
LEM	CSM	691120161356.	430 11	9.35180	.87890	600470.07	-139.9991
LEM	CSM	691120161415.	773 11	• 693115 9•75830	25585 50561	so m	-140.6271
	N U U	367171061	-	396728	.537841	.197753	
	5	•66410107	11 661	3.31402 836181	• 801513	• < 9 9 6 9 9 9	1 662.141- 2
LEM	CSM	691120161455.	016 11	.35180	.12109	592290.71	-141.9931
CSM	LEM	69112016 255.	398114	,935546	• 92 2607	•5712891 685203•539	7 7
CSM	LEM	69112016 6 3.4	828114			662721 . 906	- - - -
CSM	LEM	69112016 7 6.	258114			654944.484	~ - ~
CSM	LEM	69112016 818.	625114			645708.789	~ ~ ~
CSM	LEM	69112016 920°	953114			637749.078	7

629364.039	621282.805	815657.734	811161.414	806604.320	801925.719	797247.109	792386.211	787768.367	782 907.477	753863•641	748273。617	741893.695	735696.055	729559.180	723240.023	716738.578	709994.086	703188.836	696140.547
691120161023.766114	691120161124.219114	691120153848.539114	691120153952.227114	691120154055.733114	691120154159.312114	6911201543 2.594114	6911201544 5.766114	6911201545 5.953114	6911201546 8.094114	691120155149.227114	691120155250°023114	691120155358.336114	6911201555 2.383114	6911201556 4.484114	6911201557 7.406114	6911201558 5.836114	691120155912.156114	69112016 016.039114	69112016 114.930114
LFM	LEM	L EM	LEM	L EM	LEM	LEM,													
CSM																			

. .

. • •

-

-

. • •

IPI
10
CDH

VEHI	V EH2	ҮҮММИЙННММSS.SSS	ΧF	SHAFT(DEG) Inner(Deg)	TR UN (DEG) MI ODLE (DEG)	RANGE(FT) OUTER(DEG)	RRATE(FPS)
CSM	L EM	691120162813.687	62	359.637451	2.6428		1
				5.024414	.10913	4.9218750	2
CSM	LEM	691120162816.266	62	59.62646	2.6538		
				.881591	.14208	4.9658203	2
CSM	LEM	69112016283 3.239	62	59.46167	2.7417		7
				. 673095	•44970	5.3063965	2
CSM	LEM	691120162920.258	62	59.84619	2.4670		
				218	3.7133789	5.8996582	2 ·
CSM	L F M	691120163453.703	62	.83496	2.2363		(
				2177	.54882	4.8339844	2
CSM	LEM	691120163454.688	62	•84594	2.2473		4
				6259	.53784	4.8339844	2
CSM	LEM	691120163658.812	62	34057	2.2912		7
				9423	.47192	4.4055176	2
CSM	LEM	69112016372C.227	62	13183	2.0935		1
				0.129394	.49389	.26269	2
LEM	CSM	691120162423.500	11	57.89062	9.0551	71.5	-143.1381
				3.491210	•40625	166+	-
LEM	CSM	691120162525+055	11	3969	5273	1.8	-142.5111
				.008789	.60400	2109	2
LEM	CSM	691120162633.000	11	Ŷ,	7802	490911.680	-142.5111
				. 668945	.36181	9.85717	
LEM	CSM	691120162746.733	11	41772	1 86 7	81.1	-141.8831
				.285156	• 68066	9.45068	
LEM	CSM	691120162852.859	11	.30761	5635	71026.0	-142.5111
			•••	73	.16455	06591	
LEM	CSM	69-11-20-16-30 .758	11	59.14306	9.3188	95.9	-141.8831
				6.242675	.77954	29663	
LEM	CSM	6911201631 8.758	11	619	~	51815.8	-141.2551
				2.320556	.P0151	9.48364	2
LEM	CSM	691120163251.203	11	274	59.7033	3740	-141.2551
				0078	8.626709	. 93408	
LEN	CSM	691120163326.563	11	36303	51660	32380.47	-140.6271
				. 332763	8.330078	.1867676	2

ークークークークークー -140.6271 \sim -139.9991 -139.3721 -138.7441 -138.1161 -138.1161 -136.8601 -136.2331 -136.2331-135.6051 -141.255 -140.627 -140.627 -137.488 429679.039 .3625488 426977.598 359.5385742 417747.680 359.3847656 359.7253418 398987.680 .5932617 389382.559 359.6374512 380002.559 .2197266 370547.520 361242.559 351862.559 342482.559 408367.680 359.2639160 .0109863 359.3298340 .4174805 333252.637 359.2309570 324022.719 388203.016 314792.797 .7031259 492408.395 464215.219 396648.816 . 3076172 433470.074 424538.187 354359.051 357.3962402 359.033203 359.263916 356.7810059 .131836 358.0224609 .235645 2.1643066 2.2302246 359.252930 .483398 1.6259766 357.8466797 2.0983887 1.9116211 359.450684 1.1096191 .384521 359.714355 3.5156250 .351563 2.4279785 359.417725 3.0541992 359.000244 1.9445801 339.0380859 344.0258789 344.2675781 .120850 340.7519531 335.7531738 .197754 328.2934570 359.132080 359.956055 .527344 358.714600 358.945312 332.3653848 321.6796875 359.472656 319.9108887 317.2521973 .164795 310.5065918 359.318848 308.2543945 359.850137 359.219971 359.022217 326.4257812 .714111 313.2641602 11 1 1 11 11 11 11 1 11 691120162940.383114 691120163841.805114 11 11 11 691120163318.148114 691120163421.930114 69112016374C.617114 691120164246.789114 1 7 691120162621.65611 691120163510.656 691120163345.945 5.250 691120163018.516 691120163833.680 691120163941.680 691120154157.578 691120164629.688 691120164737.750 6911201o3725.436 **691120164049.594** 691120164413.797 691120164521.367 5.547 6911201c34 6911201643 CSM LEM LEM ЧШ LEM LEM LEM N U LEM LEM LEM LEM LEN LEM LEM LEM LEM LEM LEN LEM LEM LEN CSM CSM CSM CSM CSM CSM CSM

-

٠

-

691120164348•323114

LEM

CSM

691120164449.297114

LEM

CSM

691120164550.555114

LEM

CS M

~~~~~

LM DEORBIT

. -

- •

۳

-

. -

| VEHI | VEH2  | YYMMUDHHMMSS.SSS XF        | SHAFT(DEG)<br>INNEK(DEG)  | TRUN(DEG)<br>MIDDLE(DEG) | RANGE(FT)<br>UUTER(DEG) | RRATE(FPS) |
|------|-------|----------------------------|---------------------------|--------------------------|-------------------------|------------|
| CSM  | Ē     | 691120215126.367114        |                           |                          | 25094.357               |            |
| CSM  | LEM   | 691120215356.12 114        |                           |                          | 53287.532227            |            |
| CSM  | μŝ    | <b>691120215441.2</b> 6 62 | 356.132812                | 22.192392                | 357.4401855             |            |
| CSM  | LEM   | 6911202155 .016114         | 21201620                  |                          | 65318.241               |            |
| CSM  | L E M | 6911202156 3.E3 114        |                           |                          | 77105-904297            |            |
| CSM  | L EM  | 691120215610•12 62         | 357.6C4980<br>212.2668457 | 21.541452<br>14.8974609  | 357.4182129             |            |
| CSM  | LEM   | 691120215615.48 62         | 357.868652                | 21.519480                |                         |            |
| CSM  | LEM   | 691120215636.40 62         | 357.121582                | 21.464548                |                         |            |
| CSM  | LEM   | 691120215714.91 114        |                           |                          | 89987.269531            |            |
| CSM  | LEM   | 691120215830.547 62        | 356.528320                | 22.428598                | 357,2204590             |            |
| CSM  | LEM   | 69112022 018.797114        | 5407710+TTZ               |                          |                         |            |
| CSM  | LEM   | 69112022 420.445114        |                           |                          | 162839.893              |            |

### APPENDIX E

#### APOLLO 12 LANDING RADAR DATA

The LM landing radar data that was used in the analysis is listed in the two card format of the HOPE orbit determination program. The first card specifies the vehicle, the time of the observation (year (mod 1900), month, day, hour, minute, and second), three code numbers,  $V_{\rm XA}$  measurement,  $V_{\rm YA}$  measurement,  $V_{\rm ZA}$  measurement, and the slant range measurement ( $\rho$ ). The second card specifies the inner, middle, and the outer gimbal angles. The units are feet and feet per second.

- `

LANDING RADAR DBSERVATIONS

| VEH1 | YYMMUUUHHMSS.SS             | SSS XF        | VX(FPS)<br>INNER(JEG)                   | VY(FPS)<br>MIDDLE(DEG)     | VZ(FPS)<br>OUTER(DEG)      | RANGE(FT)                                                                                   |
|------|-----------------------------|---------------|-----------------------------------------|----------------------------|----------------------------|---------------------------------------------------------------------------------------------|
| LEM  | 691119 646 4.18712          | 187125        |                                         |                            |                            | 47438.2341                                                                                  |
| LEM  | 691119 646 6.68712          | 687125        | 83.3422852                              | 359.0222168<br>-244.823999 | 358.1433105                | 1 2                                                                                         |
| LEM  | 691119 646 6-               | 6-187125      | 83.1335449                              | 359.0881348                | 358.0554199                | 2<br>2<br>47718 7741                                                                        |
|      | )<br>- ,<br>                |               | 83.1555176                              | 359.0441895                | 358.0773926                | 2                                                                                           |
|      | 119 646                     | 8.797125      | 83.1005859                              | 359.2309570                | 2126.260376<br>358.0334473 | <b>1</b><br>2                                                                               |
| LEM  | <b>691119 646 8.</b>        | 8.187125      |                                         |                            |                            | 47956.1551                                                                                  |
| LEM  | 691119 64610.               | 64610.797125- | 83.0017090<br>2947.201569               | 359.1760254                | 358.0334473                | - 7                                                                                         |
| E M  | 691119 6461 7. 18712        | 187125        | 83.1005859                              | 359.1430664                | 357.9895020                | 2 2463 2461                                                                                 |
|      |                             |               | 83.0017090                              | 359.1320801                | 357.9785156                | 2                                                                                           |
| LEM  | 691119 64612.79712          | 797125        |                                         | -284.819996                |                            |                                                                                             |
|      | CI201 C1999 OI1109          | 301201        | 82.9467773                              | 359.0661621                | 357.9895020                |                                                                                             |
|      | •71040 4TTT40               | 671/01        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                            |                            | 4/432.8391                                                                                  |
| LEM  | 691119 64614-79712          | 797125        | 4818616.28                              | 1602660.4666               | 351.9895020<br>2106 937103 | 2 -                                                                                         |
|      |                             |               | 82.7160645                              | 359,0991211                | 357.9455566                | - ~                                                                                         |
| LEM  | 691119 64614.187125         | 197125        |                                         |                            |                            | 47476.0001                                                                                  |
| 1    |                             |               | 82.8149414                              | 359.0551758                | 357,9565430                | 2                                                                                           |
|      | -621/6/01040 611160         |               | 2865.928772                             |                            |                            | (                                                                                           |
| LEM  | 691119 64616.18712          | 187125        | •                                       | 6611616.666                | 1160716 • 100              | 2<br>46445.5551                                                                             |
| 1    |                             |               | 82.4414062                              | 59.373779                  | 357.9345703                | 5                                                                                           |
| LEM  | 691119 64618.79712          | 797125        | 1010326 00                              | -257.913597                | 30000 63                   |                                                                                             |
| LEN  | <b>691119</b> 64618.18712   | 187125        | N I                                     | 12220.46                   | 0620048 1 66               | 2<br>46256,7291                                                                             |
|      |                             |               | 82.2106934                              | 359.2199707                | 357.9016113                | 2                                                                                           |
| LEM  | 691119 64620 <b>.</b> 86712 | 867125        | 01 0161066                              |                            | 080.31997                  |                                                                                             |
| LEM  | 691119 6462C.18712          | 187125        | CC01(10•10                              | 01 16001 .000              | 1166716 • 1 66             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| LEN  | 691119 64622.797125-        |               | 82.0129395<br>2805.779144               | 358.8684082                | 357.9235840                | 2<br>1                                                                                      |

|       |         |                               | 81.5844727                | 358.8474219  | 357.9125977                | ~               |
|-------|---------|-------------------------------|---------------------------|--------------|----------------------------|-----------------|
| LEM   | 611169  | 64622.187125                  |                           |              |                            | 45754.9951      |
| 1     | 011107  | 1200 76777                    | 81.7163086                | 358.8134766  | 357.9125977                | ~ -             |
|       | 611160  | 71100 • + 70+0                | 81.5625000                | 359.1101074  | 357.8906250                | - ~             |
| LEM   | 611169  | 64624.187125                  |                           |              |                            | 45868.2901      |
| LEM   | 691119  | 64626.859125                  | 1 66 66 84 • 18           | 358.9782715  | 357.9016113<br>2062.637268 | 1               |
| 3     |         |                               | 81.3977051                | 359.3078613  | 357.8027344                | t<br>t          |
|       | 67116   | 64626•18/125                  | 81.3757324                | 359.1870117  | 357.8137207                | 45781.9701<br>2 |
| LEM   | 611169  | 64628.879125-                 | 2735.067                  |              |                            |                 |
| LEM   | 611169  | 64628.187125                  | 6012166.08                | 2000214.400  | +011601 •105               | 45760.3901      |
|       | 011107  | 21286 02333                   | 80.9582520                | 359.3627930  | 357.7587891                |                 |
| 2     |         | 77 1 00 00 00 00 00           | 80.9582520                | 359.4287109  | 357.8686523                | - ~             |
| ĻEM   | 611169  | 64630.187125                  |                           |              |                            | 45037.4591      |
|       |         |                               | 80.8374023                | 359.4396973  | 357.8247070                | 2               |
| L L M | 611169  | <b>646</b> 32 <b>.</b> 879125 | 81.1560059                | 359-0441895  | 2012.536209<br>358.0554199 | ~               |
| LEM   | 6011169 | 64632.187125                  |                           |              |                            | 44584.2801      |
|       |         |                               | 81.1120605                | 359.2529297  | 358.0114746                |                 |
|       | 611169  | <b>646</b> 34•906125-         | 2694.882355<br>80.9912109 | 358. 9782715 | 358,2002285                | ~               |
| LEM   | 611169  | 64634.187125                  |                           |              |                            | 44951.1401      |
|       |         |                               | 81.2658691                | 359.0222158  | 358.1982422                |                 |
| LEM   | 611169  | 64636.879125                  |                           | -225.674400  |                            | 1               |
|       | 011107  | 1201 26373                    | 80.5197988                | 359.2749023  | 358.3410645                | 300 706         |
|       | 671172  | 71101 •0 0040                 | 80.8703613                | 359.2199707  | 358.3190918                | 202002264       |
| LEM   | 611169  | 64638.879125                  |                           |              | 0.80261                    |                 |
| F F M | 611169  | 64638.187125                  | 061616160.08              | 4000646-606  | 474474<br>4                | 2 239-5201      |
| 1     |         |                               |                           | 359.6923828  | 358.4179687                |                 |
| LEM   | 691119  | 64640.879125-                 | 2587.591949<br>79.7607422 | - 2636719    | 358.4948730                | - ~             |
| LEM   | 611169  | 119 64640.187125              |                           |              |                            | 44406.245I      |
|       | 611104  | 64662 887125                  | 79.8266602                | -100.405100  | 358.4729004                | - 5             |
|       |         |                               | 79.7058105                | 359.8681641  | 358.4948730                | 7               |

-

- -

-

•

. .

|       | 691119 | 64642-1361          | 25                           |             |                            | 44368.4791          |
|-------|--------|---------------------|------------------------------|-------------|----------------------------|---------------------|
| 1     | 011109 | 44444 8701          | 79.5080566                   | 359.9780273 | 358.4729004<br>1975.957260 | ~ -                 |
|       | 611160 |                     | 79.7607422                   | 359,5605469 | 358.4619141                |                     |
| LEM   | 611169 | 64644.18712         | 5 70 663003                  | 360 5005405 | 35.0 4300414               | 44023.2001          |
| LEM   | 691119 | 64646.879125        | - 2                          |             |                            | 4 4                 |
|       |        |                     |                              | 359.5385742 | 358.4179687                |                     |
| L E M | 691119 | 64646.1871          | 25<br>79 <b>-</b> 7277832    | 359.5275879 | 358, 3959961               | 43420.6451<br>2 2   |
| LEM   | 611169 | <b>64648</b> •87912 | 5 70 706010                  | 179.86079   |                            | 0                   |
| LEM   | 691119 | 64648.18712         | ŝ                            |             |                            | 43785.8201          |
|       |        |                     |                              | 359.5715332 | 358.3630371                | - 2                 |
| LEM   | 691119 | 64653•99612         | 25<br>79.6289362             | 359.1430664 | 1916.668132<br>358.2861328 | - ~                 |
| LEM   | 691119 | 64650.187125        |                              |             |                            | 43699.5001          |
| :     |        |                     | r<br>L                       | 359.3518066 | 228.3081036                | ~ -                 |
| E E   | 691119 | 21188.24040         | 29-2410.952153<br>79.0965762 | 358.6596680 | 358.2421875                | - ~                 |
| LEM   | 611169 | 64652.1871          |                              |             |                            | 43505.2801          |
|       |        |                     |                              | 358.8024902 | 358.2861328                | · 5                 |
| LEM   | 691119 | 64654.98712         | 25 70 1725257                | -249.429600 | 358 3410645                | ~                   |
| M H H | 691119 | 64654-18712         | 2                            |             |                            | 43327.2451          |
|       |        |                     |                              | 358.8354492 | 358.3190918                |                     |
| LEM   | 611169 | 64650.87912         | 5                            |             | - 006<br>-                 | (                   |
|       |        |                     |                              | 359.3078613 | 358,3850098                | 000 2900            |
| LEM   | 691119 | 64656.1871          | 25<br>78.6840820             | 358.9892578 | 358.3740234                | 4.3 6 0 1 • 8 4 4 4 |
| LEM   | 611169 | 64658-8791          | 25-2428.523956               |             | )<br>)<br>)                | (                   |
| :     |        |                     |                              | 9606686.866 | 1944646 .866               | 207                 |
| LEM   | 611169 | 64658•18712         | 25<br>78.7170410             | 359.5275879 | 358.3850098                | 2                   |
| LEM   | 691119 | 647 .87912          | 5                            | -195.131998 | ·                          |                     |
|       |        | <br> <br> <br>      |                              | 359.7143555 | 358, 3850098               |                     |
| L.EM  | 611169 | 647 .1881           | 25<br>78 0038086             | 350 6071878 | ואססקסר אקר                | 42620.5001          |
| LEM   | 611169 | 647 2.87912         | 5                            |             | 2 0 1 0<br>1 0 1           | <b> </b> (          |
| LEM   | 691119 | 647 2.18812         | 25                           |             | 201002.00                  | 42571.9451          |

|        |        |                       | 79.3542480                  | 359.8571777                | 358.3410645                | 2                       |
|--------|--------|-----------------------|-----------------------------|----------------------------|----------------------------|-------------------------|
| LEN    | 611169 | 647 4.90612           | 5-2390.656769<br>74.0136719 | 359.7143555                | 358,2092285                | - ~                     |
| LEM    | 611169 | 647 4.137125          | -                           |                            |                            | 42625.8951              |
| X<br>L | 611169 | 647 6-887125          | 79.4311523                  | 359.7692871<br>-196.343998 | 358.2312012                | 2                       |
|        |        |                       | 78.3764648                  | 359.7912598                | 358.1323242                |                         |
| LEM    | 611169 | 647 6.137125          | 72 8760043                  | 360 7673165                | 358 1657837                | 42496.4151<br>2         |
| LEM    | 611169 | 647 8.879125          |                             |                            | יסי                        | ۱                       |
| LEM    | 61119  | 647 8.187125          | 11.1502441                  | 359.9890137                | 358.0773926                | 41967.7051              |
|        |        | 4 71 0 - B 791 2      | 77.9370117                  | 359.8132324                | 358.0773926                | ~ ~                     |
|        |        |                       | J                           | .1538086                   | 358.0114746                |                         |
| LEM    | 691119 | 64710.187125          | 77.2558594                  | .0329590                   | 358.0114746                | 41595.4501<br>2         |
| LEM    | 611169 | 64712.379125          |                             | -193.192799                |                            | <b>, (</b>              |
| LE M   | 61119  | 64712.187125          | 77.9589844                  | • 0329590                  | 357.9455566                | 2<br>41212.4051         |
|        |        |                       | 77.4206543                  | .0988770                   | 357.9345703                |                         |
| LEM    | 611169 | 64714.879125          |                             |                            |                            | - ,                     |
|        | 011109 | 361701 21734          | 79.1015625                  | 359.8901367                | 357.857660                 | 2                       |
|        |        | 71.01.+11+0           | 73.6071777                  | .0549316                   | 357.8956250                | 41401.6691<br>2         |
| LEM    | 611169 | 64716.87912           | 5-2304.489563               | FC 057177                  | COCFC 10 535               |                         |
| E M    | 011109 | 44714.187125          | -                           | 1111168-666                | 1071518 •165               | 7                       |
|        |        |                       | 80.0683594                  | 359.9563547                | 357.8576660                |                         |
| LEM    | 611169 | 64713.937125          |                             | -209.191198                |                            |                         |
| LEM    | 691119 | 64718.187125          | 1/82416.8/                  | 1401808.645                | 4611691 •16F               | 2<br>41854.4101         |
|        |        |                       | 79.3981934                  | 359.6594238                | 357.8027344                | 2                       |
| LEM    | 611169 | 64720.879125          | 77.0351328                  | -5053711                   | 1754.229828<br>357.7697754 | - ~                     |
| LEM    | 611169 | 64727.187125          |                             |                            |                            | 41136.8751              |
| LEM    | 691119 | 64722.379125          | 77.5964355<br>-2169.362366  | .1977539                   | 351.1917480                | 7                       |
|        |        |                       |                             | •406494 <b>1</b>           | 357.8966250                | 2                       |
| LEN    | 691119 | 64722 <b>.</b> 187125 | 76.1452402                  | .4504395                   | 357.7478027                | 40424 <b>。7341</b><br>2 |

•

•

. .

| LEN     | 691119 | 64724.887125  |                           | -150.530399                           |                            | c                        |
|---------|--------|---------------|---------------------------|---------------------------------------|----------------------------|--------------------------|
| LEM     | 691119 | 64724.137125  |                           | CCC+1/*AC                             | 242041 •0C                 | 40041.6891               |
| LEM     | 691119 | 64726.879125  |                           | 168400.                               | 358.01/3926<br>1647.960144 | ~ ~ ~                    |
| LEM     | 691119 | 64726.147125  | 6814606.81                | 00006440.406                          | 1126064.866                | 2<br>40322.2291          |
| LEM     | 611169 | 64728.879125- | 78.3544922<br>2131.857552 | 359.6154785                           | 358.3740234                | 2                        |
| LEM     | 691119 | 64728.187125  | 77.4865723                | .0109863                              | 358. 6596680               | 2<br>40246.7001          |
| LEM     | 641119 | . 91812       | 78.1347656                | 359,9780273                           | 358.6157227<br>1645.533112 |                          |
| LEM     | 61116  | 64732.187125  | <b>77.2</b> 44873C        | • 0659180                             | 358.9672852                | 2<br>39361 <b>.</b> 9191 |
| LEM     | 611169 | 64734.879125- | 83<br>76                  | m                                     | 58.901367                  |                          |
| LEM     | 691119 | 64734.187125  | .816162                   | .021972                               | 59.033203                  | 2<br>39475.2151          |
| LEM     | 691119 | 64738.969125  | 365722                    | 359.9890137                           | 358.9892578<br>1606.353745 | ~ ~ ~                    |
| LEM     | 691119 | 64738.187125  | 1466646.01                | 6440607.                              | 7687106 .866               | 2<br>39011.2451          |
| L EM    | 691119 | 64740.887125- | 77.0141602                | .4724121                              | 359.0222168                | - 7                      |
| LEM     | 691119 | 64740.187125  | 75.1794434                | .1428223                              | 358.8134766                | 2<br>38363.8451          |
| LEM     | 691119 | 64742.837125  | 838623                    | •1208496<br>-155.620798               | 58.879394                  | 2 1 0                    |
| LEM     | 61119  | 64742.188125  | 10•2231447                | 0                                     |                            | 37975.4051               |
| LEM     | 611169 | 64744.879125  | 1+00000 C1                | 350 7033601                           | 1530.422073                | v v                      |
| LEM     | 611169 | 64744.187125  | 76.8166063                | ADE 184 .03                           | CCCCCC                     | 38142.6491<br>3          |
| L. F.M. | 611169 | 64746.906125- | 1963.040787<br>76.8164062 |                                       | 58.42895                   | u ∩                      |
| LEM     | 691119 | 64746.187125  |                           |                                       |                            | 38148.0441               |
| LEM     | 61119  | c4743.887125  | 7001610.11                | • • • • • • • • • • • • • • • • • • • | +1+666+•066                | 7                        |

|      |        |                        | 75.3332520                | .2526855                   | 358.3520508                       | 0<br>r                                       |
|------|--------|------------------------|---------------------------|----------------------------|-----------------------------------|----------------------------------------------|
| LEN  |        | 64 / 48 • 18 / 12      | 75.9045410                | • 51 63 574                | 358.4179687                       | 2                                            |
| LEM  | 611169 | <b>64750.887125</b>    | 76.7175293                | .3076172                   | 1502.164383<br>358.2202148        |                                              |
| LEM  | 611169 | <b>64750.187125</b>    | 76.3879345                | - 4064941                  | 358,2751465                       | 37058.2541<br>2                              |
| LEM  | 611169 | 64752•879125-1         | 1909.975159<br>76.9372559 |                            | 358.1762695                       | 0                                            |
| LEM  | 611169 | 64752.187125           | . ຕ                       | 359,8791504                | 358.1542969                       | 37149 <b>.</b> 9701<br>2                     |
| LEM  | 611169 | 64756.887125           | 5 6                       | 359.0332031                | 1460.904709<br>358.0114746        | 2                                            |
| LEM  | 611169 | 64756.187125           | 79.07                     | 780273                     | 358,034473                        | 36448.6201<br>2                              |
| LEM  | 611169 | <b>64758 887125</b>    | 1841.968781<br>76.6625977 | 359.5166016                | 57.923584                         | 2 1 2                                        |
| LEM  | 611169 | 64758 <b>.</b> 187125  |                           |                            |                                   | 36324.5351                                   |
| LEM  | 611169 | 648 .949125            | 76.7724609                | 359.1760254<br>-110.776799 | 357.9895020                       | 7                                            |
|      |        |                        | 76.2780762                | 1.4611816                  | 357.9235840                       | 2                                            |
| LEM  | 691119 | <b>648 .1</b> 88125    | 76.7504883                | .7910156                   | 357. 9565430                      | 36346•1121<br>2                              |
| LEM  | 611169 | 648 2.887125           | 74-9047852                | 1.1425781                  | 1428.833115<br>357.8466797        | 5 <b>-</b> 1                                 |
| LEM  | 611169 | 648 2.188125           |                           |                            | 6637070 <b>6</b> 36               | 35801.2201                                   |
| LEN  | 691119 | 648 4.879125-          | 5.2845<br>68.295          | 1-202421                   | 010100000100                      | <b>,                                    </b> |
| L F. | 61116  | 648 4.187125           | 6821264 • 61              | 6086010 ·                  | 0101420-100                       | 34981.1801                                   |
|      |        |                        | 74.5971680                | .0439453                   | 357.7478027                       | 2,                                           |
| LEM  | 611169 | <b>648 6.687125</b>    | 76.5527344                | -154.166399<br>.0439453    | 357.9455566                       | -                                            |
| LER  | 691119 | 648 6.187125           | 74 2121542                | 0118800                    | 357,9125977                       | 35612•3951<br>2                              |
| LEM  | 611169 | 648 8.879125           | 5 6                       | .8239746                   | <b>1382.199265</b><br>357.9785156 | . – 0                                        |
| LEM  | 611169 | 648 8.187125           |                           |                            | 3 E J 0117 776                    | 35412.7801<br>2                              |
| LEM  | 691119 | £4810 <b>.</b> 879125- | 1662562891<br>73.6562891  | 1.0101422<br>4943848       | 57.                               | 5 <b>-</b> 7                                 |

-

- **`**,

~

- `

| LEM    | 691119 | 64810.187125         |                           |                                |                            | 34786.9591                     |
|--------|--------|----------------------|---------------------------|--------------------------------|----------------------------|--------------------------------|
| LEM    | 691119 | 64812,887125         | 6601611.41                | • 42 84 66 8<br>- 96 • 232 799 | <b>n</b>                   | 7                              |
| LEM    | 611169 | 64812.187125         | 75.0416074                | 1.2634277                      |                            | <b>2</b><br>34436.28 <b>51</b> |
| LEM    | 691119 | 64814.918125         | 74.4104004                | .791015                        | 357。9345703<br>1348。567429 | - 2                            |
| ¥<br>U | 691119 | 64814.187125         | 74.2565918                | 359.6704102                    | 357.8576660                | 2<br>34468,6551                |
|        | 691119 |                      | 74.3334961<br>1637.176788 | .3295898                       | 357. 8356934               |                                |
|        | 611169 | 187125               | 74.6740723                | 359.5825195                    | 357.7697754                | 2<br>2<br>34146,5351           |
|        |        |                      | 74.5052773                | 359.6484375                    | 357.8137207                | •                              |
|        | 611160 | 671/00.001040        | 74.2016602                | -123.800399<br>.9228516        | 357.7807617                | - ~                            |
| L EM   | 691119 | 64818.137125         | 74.7399902                | 7821387                        | 447,802744                 | 34123.3751<br>2                |
| LEM    | 611169 | 64820-687125         | 77 6612676                | ) d                            | 1318.749496                | , <b>-</b> ,                   |
| LEM    | 691119 | 64820.187125         |                           | 1410401.1                      |                            | 33972.3141                     |
| N U    | 611169 | 64822 - 879125-1     | 73.8830566                | • 9667969                      | 357.7587891                | -                              |
|        |        | u                    |                           | .1977539                       | 357.8686523                |                                |
|        | 611160 | 671101 • 77040       | 72-8283691                | .1428233                       | 357.7917480                | 1066.42666                     |
| LEM    | 691119 | <b>64824.</b> 979125 |                           | 16                             |                            | 1                              |
| N H    | 611169 | 64824-187125         | 73.7402344                | 359.8352051                    | 357.9016113                | 2<br>33141 4851                |
|        |        |                      | 73.3886719                | •0109863                       | 357.8796387                | •                              |
| L EM   | 691119 | <b>64826.887125</b>  | 73.7622070                | 359.9340820                    | 1238.657181<br>357.9016113 | - ~                            |
| LEM    | 611169 | 64826.187125         |                           |                                |                            | 33146.8801                     |
| LEM    | 611169 | 64828° 949125-1      | 1504.899170               |                                | 351.9235840                | ~ -                            |
| LEM    | 611169 | 64828.187125         | 8/nch7c •c/               | 1861240.                       | 1850618-165                | 33065.9551                     |
| LEM    | 691119 | 64830.887125         | 19.9529199                |                                | 357.9345703                | <b>7</b> – 7                   |
| LEM    | 691119 | 64830.137125         | CEU0544.61                | 8510000.1                      | 2001402.005                | 2<br>32925 <b>•6851</b>        |

|      |        |                        | 73.3776855                | • 7910156                | 58.022460                 | 2                     |
|------|--------|------------------------|---------------------------|--------------------------|---------------------------|-----------------------|
|      | 611160 | 21610-2                | 73.3007812                | .7360840                 | $\sim \infty$             |                       |
| LEN  | 691119 | 64832.187125           | 72-8613281                | . 7580566                | 358.7036133               | 32413•1001<br>2       |
| LEM  | 611169 | £4834.879125-          | 1421-694382               | .3295398                 | 59.516601                 | - 2                   |
| LEM  | 691119 | 64834.187125           | 73 8043045                | . u                      | 47 80 C F                 | 32008.5351<br>2       |
| LEM  | 611169 | 64836.879125           | 700 COVO • 71             | -81.931199<br>7010156    | 03950                     |                       |
| LEM  | 61116  | 64835.187125           |                           | 470208                   | 359 8701506               | 31501.4051            |
| LEM  | 611169 | 64838.977125           | 7677006 • 11              | 51722<br>05127           | 226.001<br>226.001        | <b>.</b> – <i>v</i>   |
| LE M | 691119 | 64838,187125           | J 4                       | 109619                   | 351562                    | 31053.6201<br>2       |
| LEM  | 611169 | 6484 <u>0</u> ,887125- | 1361.158386<br>72.7404785 | .889648                  | 845947                    | - 0                   |
| LEM  | 611169 | 64840.187125           | 71 6308506                |                          | 0<br>(*                   | 31026.6451<br>2       |
| LEM  | 611169 | 64842.949125           | 316231                    | 5,99039<br>5,99039       |                           |                       |
| LEM  | 691119 | 64842.188125           | 72 1342305                | 0007550                  | .955810                   | 31032.0401            |
| LEM  | 691119 | 64845.000125           | 41                        | . 7910156                | 980                       | 2                     |
| LEM  | 691119 | 64844.187125           | 71.5429687                | .6811523                 | 1.1755371                 | 30568.0701<br>2       |
| LEM  | 611169 | 64846.898125-          | 1268.422379<br>70.6091309 | 05                       | 1.1206055                 | 1<br>2                |
| LEM  | 61116  | 64846.187125           | 71.3122559                | 1.1275055                | 1.2084961                 | 30373.8501<br>2       |
| LEM  | 691119 | <b>64848.</b> 89812    | 70.9497070                | - 90.415200<br>. 9553105 | .9887695                  | •                     |
|      | 691119 | 64848.18712            | 70.4882812                | .5053711                 | 1.0546875                 | 30093.31012<br>2<br>2 |
| LEN  | 691119 |                        | 72.5537109                | 1.0137422                | -1010200.001<br>- 1910156 |                       |
| LEM  | 691119 | 64850.187125           | 71.6857910                | •9837695                 | .8569336                  | 30087.9151<br>2       |

•

•

-

| LEM         | 01110  | 64 85 2 • 88 <b>7</b> 1 2 5- | 1231.5855                  |                         |              | 1               |
|-------------|--------|------------------------------|----------------------------|-------------------------|--------------|-----------------|
| 1           | 011107 | ( <b>  2</b>   1             | 7763                       | 1.4282227               | • 5273438    |                 |
|             | 611160 |                              | 72.1032715                 | 1.7028809               | -6252207     | 200 23•1121     |
| LEM         | 611169 | 64854 <b>.</b> 949125        | . <b>I</b>                 | 6                       |              |                 |
| LEM         | 611169 | 64854.187125                 | 0164545460                 | . 966 / 969             | • 1208495    | 2<br>29640-1301 |
|             |        |                              | 70.6420898                 | 1.2854004               | •            |                 |
| LEM         | 601119 | 64856.887125                 | 52223                      | 503617                  | 1062.696793  |                 |
| LEM         | 611169 | 64855.187125                 |                            | 100                     | 706760*66    | 29149.1851      |
| Z<br>L      | 611169 | -44454-879125-               | 69.5544434<br>-1153.919189 | .9228516                | 359.8352051  | ~ -             |
|             |        |                              | 4                          | 2.2412139               | 359.4396973  | -               |
| LEM         | 611169 | 64858.187125                 |                            |                         |              | 29052.0751      |
| LEM         | 611169 | 649 .887125                  | 10-1141401                 | -66,660000              | 359.4067383  | 7               |
| 1           |        |                              | 76.7519531                 | 1.2194824               | 359.3957520  |                 |
| LEM         | 691119 | 649 .138125                  | 70.5541992                 | <b>1</b> - 8566895      | 359.4177246  | 29030.4951      |
| LEM         | 691119 | 649 2.857125                 |                            | •                       | 994.21958    | 4 <b></b> 1     |
|             |        |                              | 70.4663086                 | .3735352                | 359.3957520  | 2               |
| LEM         | 691119 | 649 2.188125                 |                            |                         |              | 28685.2151      |
| LEM         | 691119 | 649 4.859125-                | 70.74C966d<br>-1110.127182 | .9667969                | 359.4396973  | - 7             |
|             |        |                              | 70.6201172                 | 1.4362500               | 359.4177246  |                 |
| LEM         | 601116 | 649 4.137125                 | 100007                     | 071627                  | C 1766 0 0 3 | 28490.9951      |
| LEN         | 611169 | 649 6.867125                 | • • • •                    | -76.1136.00             | 6011824-6CC  | ~ ~             |
| 3<br>1<br>1 |        |                              | 70.5981445                 | .9228516                | 359.3737793  | r               |
|             | 611140 | C44 0. 18/122                | 70.8538301                 | 1.8676758               | 359.3957520  | 28441.8351      |
| LEM         | 691119 | 649 8.357125                 |                            |                         | 957.8139     |                 |
| LEM         | 691119 | 649 3.187125                 | 69.6572656                 | .0983770                | 359.3957520  | 2<br>27913-7301 |
|             |        | )<br> <br> <br> <br>         | 79                         | .4364941                | 359.3078613  |                 |
| LEM         | 691119 | 64910.898125-                | ·1064.473183<br>69.466657  | 2775285                 | 350 5056153  | -1 c            |
| LEM         | 611169 | 64910.187125                 | ) L                        |                         | •            | 27784.2501      |
| LEM         | 611169 | 64412.854125                 | 09. 14 19492               | 1.0766502<br>-84.355200 | 64711240     | 2<br>1          |

| 3             |              |                              | 68.1701660                | 1.1975098               | 359.5166016                                  |                              |
|---------------|--------------|------------------------------|---------------------------|-------------------------|----------------------------------------------|------------------------------|
|               | 611169       | 04712•101123<br>24612 046135 | 68 <b>.</b> 1042480       | 1.2414551               | 359.4946289<br>956 252766                    | 10000-712-17<br>2            |
|               | 611103       |                              | 68.0163574                | 1.7023809               | 359.4946239                                  | 1<br>2<br>32 <b>706 1761</b> |
|               | 611160       |                              | 67.2253418                | 1.1545508               | 359.4946283                                  |                              |
|               | 611160       | -671668.01643                |                           | 2.2332246               | 359.4836426                                  | - ~                          |
| LEM           | 611169       | 6491n.187125                 |                           |                         |                                              | 26694.4601                   |
| LEM           | 611169       | 64918.867125                 | 1+44004.10                | - 97. 929600            | 000000000000000000000000000000000000000      | <b>v</b> v                   |
| E R           | 611169       | 64918.187125                 | 66.9946289                | • 3 0 2 5 4 8 8         | 359.4836426                                  | 2<br>26396 <b>.</b> 9451     |
| LEM           | 691119       | 64920                        | 67.1344922                | .6701660                | 359.4177246<br>921.755104                    | 2                            |
| L F M         | 691119       | 64920.18712                  | 67.4450684                | • 6042480               | 359.5385742                                  | 2<br>25971 <b>.</b> 5301     |
|               | 011104       | 44922 HATI2                  | 66.6210937                | 359.6923828             | 359.4506836                                  |                              |
|               |              |                              |                           | 1.8566895               | 359.5495605                                  | • ~                          |
| LEM           | 611169       | 64922.187125                 |                           | 522C38C 1               | <b>1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26025•4801                   |
| LEM           | 611169       | 64924.867125                 | 016 0160 •00              | -84.355200              |                                              | <b>v</b>                     |
| M H           | <b>61119</b> | 64924-147125                 | 66.7309570                | . 9338379               | 359.4396973                                  | 2<br>25825.8651              |
|               | 7<br>7       |                              | 68.0053711                | .8679199                | 359.4616099                                  |                              |
| L E N         | 611169       | 64926.867125                 | 65.1049305                | 1.3732910               | <b>913.433</b> 830<br>359.5495605            | <b>-</b><br>7                |
| LEM           | 611169       | 64926.187125                 |                           |                         |                                              | 25065.1701                   |
| LEM           | 691119       | 64928-898125                 | 65.4565430<br>-953.892784 |                         | 359.4726562                                  | 7                            |
| <b>X</b><br>1 | 611194       | 71741 FC044                  | 67.2802734                | 1.5820313               | 359.7692871                                  | 2<br>25054-3801              |
|               |              |                              | 66.8627930                | 1.4392090               | 354.1253414                                  |                              |
| Ē             | 691119       | 64930.867125                 | 67.0356152                | -60.357600<br>1.1975798 | 359.9450084                                  | ~                            |
| LEM           | 611169       | 119.64930.187125             | 7192200.84                | 1.0766602               | 350,89,1307                                  | 249(3.3201<br>2              |
| LEM           | 691119       | 64932•85912 <b>5</b>         | 64.8522949                | 1.28540.04              | 878.5x3470<br>.1208440                       | 5 - 1 - 1                    |

• - •

• •

.

| LEM    | 61119  | 119 64932•187125     |                            |                                       |                        | 24254.3401      |
|--------|--------|----------------------|----------------------------|---------------------------------------|------------------------|-----------------|
| LEM    | 691119 | 64934•80 <b>7125</b> | -889.621582                | 1.0000001                             | • UCUTE OU             | u → c           |
| LEM    | 611169 | 64934.187125         |                            |                                       |                        | 23808.1351      |
| LEM    | 691119 | 64936.859125         | 0066611.40                 | - 74- 659200                          | • 10 380 80            | <b>y</b>        |
|        |        |                      | 65.8300781                 | .2856445                              | .1647949               | Ċ               |
| L F    | 641116 | 64936.197125         | 65.7421875                 | .3515625                              | .1647949               | 23640•8901<br>2 |
| LEM    | 611169 | 64938.918125         |                            |                                       | 825.366959             | ~ ~             |
| LEM    | 611169 | 64938.187125         | 1611/6/ •60                | 1064807•1                             | • 104 1 44             | 23435.8801      |
|        |        |                      |                            | 1.1315918                             | .2087402               | - 2             |
| LEM    | 611169 | 671668.04649         | - 883. 032 188             | 1.4282227                             | .C769043               | - 2             |
| LEM    | 611169 | 119 64940.187125     | 46 7461603                 | 1 7768525                             | 1 44 7040              | 23042•0451<br>2 |
| LEN    | 691119 | 64942 . 859125       | 2007401-00                 | -84.112799                            |                        | <b></b>         |
|        |        |                      | 65.3356934                 | .7141113                              | 359.9230957            |                 |
| LEM    | 611169 | 64942.188125         |                            |                                       |                        | 22766.9001      |
| N L    | 61119  | 64944- 867125        | 0620765.60                 | 1 • 5 4 6 9 6 9 6 1                   | .0000000<br>795.722389 | 7 -1            |
|        |        |                      | 64.2041316                 | 359.6374512                           | 359.7033691            |                 |
| LEM    | 691119 | 64944.187125         |                            |                                       |                        | 22405,4351      |
| L E M  | 691119 | 119 64940.898125     | -821.743988                | .1538086                              | 359. 7583008           | 7               |
| i<br>I |        |                      | 63.5229492                 | .9558105                              | 359.6813965            |                 |
| LEM    | 611169 | 64946.137125         | וטוזככ כ                   | 6676763                               | 360 4154706            | 21844.3551      |
| LEM    | 691119 | 64948.859125         | 0141055.50                 | -55-994400                            | 01+070+60              | <b>-</b>        |
|        |        |                      | 63.3361816                 | •                                     | 359.7802734            |                 |
| LEM    | 691119 | 64948.187125         | 63-0615234                 | 1 - 8566895                           | 359.7033691            | 21596.1851<br>2 |
| LEM    | 611169 | 64950.859125         |                            | · · · · · · · · · · · · · · · · · · · |                        |                 |
| 1      | 61110  | 110 66050 187125     | 63.4240723                 | 1.9775391                             | 359.8461914            | 2 21256.3001    |
|        |        |                      | 63.0944824                 | 2.0214844                             | 359.8132324            | 2               |
| LEM    | 691119 | 64952•859125         | - 799.075188<br>63.5998535 | 1.3952637                             | 359.8461914            | 2               |
| LEM    | 611169 | 64952.187125         |                            |                                       |                        | 23948.7851      |

|        |         |                                         | 63.3361816                      | 1.4282227               | 359.8571777               | 2               |
|--------|---------|-----------------------------------------|---------------------------------|-------------------------|---------------------------|-----------------|
|        | 041114  | 621668 • 46643                          | 63.7426758                      | -75.628799<br>1.0546875 | 359.8022461               | - 7             |
| LEM    | 691119  | 64954.187125                            |                                 | -                       |                           | 20754.5651      |
| LEM    | 611169  | 64956.859125                            | 63.5118809                      | • 85 0 93 36            | 359.8242187<br>728.805435 | - 7             |
| N LL   | 011109  | <b>4495</b> 4_187125                    | 63.7866211                      | 1.4282227               | 359.7143555               | 2               |
|        |         |                                         | 63.7366211                      | .9118652                | 359.7583008               | 20441.0012      |
| LEM    | 6011169 | 64958.859125                            | 72.54238                        | 7 3631073               |                           |                 |
| LEM    | 691119  | 64958.187125                            |                                 | 6161262.2               | 4161040 °665              | 20128.7451      |
| LEM    | 611169  | £50 <b>.</b> 859125                     | 63.8305664                      | 1.6369629<br>-32.481600 | 359.7473145               | - 2             |
| WU<br> | 611169  | 650 18812                               | 62.8637695                      | 3.2080078               | .1647949                  | 2               |
|        |         |                                         | 63.4240723                      | 2.6477051               | • 0439453                 | 17154•1201<br>2 |
| LEM    | 611169  | 119 650 2.867125                        | 61 6002187                      | 1170715 5               | 710.429268                |                 |
| L. EM  | 611169  | 650 2.188125                            | 1017/10.10                      | 110110.                 |                           | 2<br>19362.6551 |
| 3      | 011107  | ( t ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | 62.3364258                      | 3.3068848               | .3076172                  | 2               |
|        | 671160  | 621868.4 000                            | - /25.401588<br>61.9848633      | 1.5380859               | • 4064941                 | ~               |
| LEM    | 691119  | 650 4.187125                            |                                 |                         |                           | 18995.7951      |
| LEM    | 61119   | 119 650 6.867125                        | 62.1826172                      | 2.1962793<br>-62.296800 | •4064941                  | - 5             |
| 1      |         | )<br>)<br>}                             | 62.1496582                      | 1.0546875               | • 4234668                 | • ~             |
| LEM    | 691119  | bb0 6.137125                            |                                 |                         |                           | 18574.9851      |
| LEM    | 691119  | 650 8.867125                            | 62.8088379                      | •9118652                | .4284668<br>661.715111    | - 7             |
| LEN    | 691119  | 650 8-187125                            | 62.2595215                      | 2.6257324               | .4833984                  | 2<br>18375,2351 |
| 20     | 011107  | 2 E O I O 87 7 1 3                      |                                 | 2.3400879               | .4943848                  |                 |
|        | 611160  | 671/08 • () T () C 2                    | - 571 - 184 190<br>61 - 2597556 | 2.1802793               | •4394531                  | 2               |
| LEM    | 611169  | <b>119 65010.187125</b>                 | 62.1386719                      | 2.8894043               | .5053711                  | 17970.7451<br>2 |
| LEM    | 611169  | 119 65012.879125                        | <b>60 176301</b> 3              | -61.327199              | 00023406                  | ı (             |
| LEM    | 611169  | 65012.147125                            |                                 |                         | 4000047 •                 | 17405.1951      |
|        |         |                                         | 1691164.00                      | 1.41/2363               | 6126486.                  | 2               |

•

.

•

| LEM | 691119 | 65214-567125          |                           |                         | 629.816372                          | 1                        |
|-----|--------|-----------------------|---------------------------|-------------------------|-------------------------------------|--------------------------|
| LEM | 611169 | 65C <b>14.1</b> 87125 | 61.1938477                | 112699.1                | • 1598655                           | 17145.3101               |
| LEM | 691119 | 65016.867125          | 60.8203125<br>-672.851189 | •                       | .1867676                            | ~ ~ ~                    |
| LEM | 611169 | 65016.187125          | 62.1057129                | 2.5438281               | • 1098633                           | 2<br>16956.4851          |
|     | 61119  | 55718.867125          | 62.068359                 | 2.8564453<br>-62.054400 | .1098633                            | - 7                      |
|     |        |                       | 61.1718750                | 1.1975098               | .1318359                            |                          |
| LEM | 61119  | 65013.187125          | 61.3916016                | 1.8996484               | .1208496                            | 1070+41091<br>2          |
| LEM | 691119 | 65020-859125          | 61.8200684                | 1.6918345               | 587.517036<br>.1757813              | <b>1</b><br>2            |
| LEM | 611169 | 65020.187125          | 017505.                   | .538085                 | .1641949                            | 16147.2351<br>2          |
| LEM | 61119  | 65022+898125          | -650-311195               | 438964                  | 3295898                             |                          |
| LEM | 611169 | 65022 <b>•1</b> 87125 |                           | 010(0(1-2               | 2107246                             | 15866.6951               |
| LEM | 611169 | 65024.867125          | t ,                       | 3.75520                 | 0021612.                            | 4 <b>- 1</b> (           |
| LEM | 611169 | 65024.187125          | 60.49741211               | 6601161.6               | • 1800295                           | 2<br>15521.4151          |
| LEM | 691119 | 65026.867125          | .314697                   | .823486                 | • 5932617<br>569.487595             | 2 T 1                    |
| LEM | 61116  | 65026.187125          | 59.9853516                | 3.5156250               | l.2194824                           | 2<br>15003.4951          |
| LEM | 611169 | ¢5028.867125          | 77348398                  | 8                       | 1.07666ù2                           | 2                        |
| M U | 61119  | 65028-187125          | 60.5736133                | 2.7136230               | 1.4611316                           | 2<br>14739 <b>.</b> 1401 |
| L R | 691119 | £5030.86712           | 60.0073242                | 2.8234863<br>-23.270400 | 1.3732910                           |                          |
| LEM | 611169 | 65030.187125          | 61.0620117                | 2.2412109               | 1.6589355                           | 2<br>14415•4401          |
| LEM | 691119 | 65032.867125          | 60.0000.00<br>FCT311A.CA  | 2.8234843               | 1.000010<br>515.225914<br>1.8457031 |                          |
| LEM | 61119  | 65032.187125          | J Ó                       | - 285156<br>- 285156    | 1_7747452                           | 14016.2101<br>2          |
| LEM | 611169 | 65034.867125          | 5.17439                   |                         |                                     | J                        |

| 3     |         |                     | 59.6118164                            | 3.5156250                | 2.0104980                          | 2<br>13633 1661  |
|-------|---------|---------------------|---------------------------------------|--------------------------|------------------------------------|------------------|
|       |         | 71101 • • • • • • • | 59.8425293                            | 3.2080078                | 1.9775391                          |                  |
| EM    | 611169  | 65035.467125        | 59.8205566                            | -28.845600               | 1.9885254                          | 5 -              |
| LEM   | 611169  | 65036.187125        | 59, 7935840                           | 2.6586914                | 2-0214844                          | 13217•7501<br>2  |
| LEM   | 691119  | 65038+867125        | 50 0143457                            | 1.439200                 | 481.247353<br>1.8896484            |                  |
| LEM   | 691119  | 65038.137125        |                                       | 1 503/176                |                                    | 12921.0251       |
| LEM   | 601119  | 65040,906125        | - 537.095993                          | 1242828-1                | 120110                             | 1-1              |
| L E M | 6011169 | 65040 • 187125      |                                       | 356714                   | 1 8237305                          | 12511.0051       |
| LEM   | 691119  | 65042.867125        | 0766766.46<br>7666670 03              | -10.180800               |                                    | u — c            |
| LEM   | 611169  | 65042.188125        |                                       |                          | р <b>с</b>                         | 12187.3051       |
| LEM   | 691119  | 65044.867125        | CEU064.                               | 064000000 0              | 3.1081                             | γ <del>Γ</del> γ |
| LEM   | 611169  | 65044.187125        | 1216460.90                            |                          | 607666 •                           | 11863.6051       |
| LEM   | 691119  | 65046.867125        | -512.108788                           | 146611.                  | 601101C •1                         | v — r            |
| LEN   | 691119  | 65046.187125        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1200010.1                | 04172C0•1                          | 11583.0651       |
| LEM   | 691119  | 65048.867125        | 60.5918457<br>50.565384               | -21.573600<br>-21.573600 | 1.1809234<br>7757977               | ~ ~ ~            |
| LEM   | 611169  | 65048.187125        |                                       | <b>7</b> 01030           | 7660730                            | 11210.8101<br>2  |
| LEM   | 611169  | <b>65050.867125</b> | 0761101-200                           | 2.451262.2               | • 0207070<br>408•089436<br>5052711 | u − v            |
| LEM   | 691119  | 65059.187125        | 0171302-03                            |                          | 1110000                            | 10822.3701<br>2  |
| LEM   | 691119  | 65052.859125        | -480.166393<br>-480.166393            | n r~                     | 4174805                            | 7 - 1            |
| LEM   | 611169  | 65052.187125        | 0955201.03                            | 617870-                  | 4614258                            | 10455.5101       |
| LEM   | 611169  | 65054.359125        | . 699462                              | 2.12000<br>.999267       | .2966309                           | 5 1              |

- -

. U. .

.

۹

.

| LEM    | 61119  | 65(54.137125        |                           |                         |                        |                     |
|--------|--------|---------------------|---------------------------|-------------------------|------------------------|---------------------|
|        |        |                     | 63.1062012                | 3.1970215               | .3405762               |                     |
|        | 611160 | 671668.96063        | 61-9519043                | 7.434444                | 337.531918<br>1208495  |                     |
| LEM    | 641119 | 65056.167125        |                           |                         |                        | 9813.5051           |
| LEM    | 691119 | 65058.898125        | 61.1718750<br>-468.059196 | 2.6357188               | .1867676               | ~ -                 |
|        |        |                     | 62.2155762                | 2.5817871               | 359.9450684            | • 0                 |
| LEM    | 691119 | 65053.187125        |                           |                         |                        | 9495.2001           |
| LEW    | 61116  | 651 .867125         | 61.6592137                | 2.5488281<br>-18.180000 | • 000000               | ~ -                 |
| X<br>L | 661110 | 461 190176          | 60.4687500                | 2.0434570               | 359.7802734            | 5                   |
|        | 11110  | 71001 • 10          | 60.6005859                | 2.1802793               | 359.7912598            | 9128.3401<br>2      |
| LEM    | 611169 | 651 2.867125        |                           |                         | 315.86191              |                     |
| X U    | 61119  | 651 2.158125        | 6666716•66                | 2.53/8418               | 359.8791504            | 2                   |
|        |        | 210010-1/0          | 59.1503906                | 2.1203613               | 359.8132324            | 1666.1608<br>2      |
| L E M  | 691119 | 651 4.867125        | -421.919996               |                         |                        |                     |
| LEM    | 601110 | 051 4.187125        |                           | 2.8304493               | • 0000000              | 2 8 2 9 7 - 5 1 0 1 |
|        |        |                     | 59.0295410                | 2.8344727               | 359.9780273            | 2                   |
| LEM    | 691119 | 651 6.867125        |                           | -15.028800              |                        | ı•                  |
| 3      |        |                     | 58.9196777                | 1.9555664               | .0329590               |                     |
|        | 611140 | 621/61.0 ICO        |                           |                         |                        | 7979.2051           |
| LEM    | 611169 | <b>651 8.859125</b> | 7941408-80                | 2.1912656               | .0329590<br>272.001835 | - 2                 |
|        |        |                     | 59.2932129                | 1.7578125               | 000000                 | 5                   |
| LEM    | 691119 | 651 8.137125        |                           |                         |                        | 7579.9751           |
| LEM    | 691119 | 65120,750125        | 58.9526367<br>-301.391994 | 1.4002500               | .0109863               | - 2                 |
|        |        | 4 E 1 2 2 1 2 2 1 2 | 26.9824219                | .8239746                | 3.1530762              | 4 2                 |
|        | 611160 | 621181.02100 411    | 27-2680664                | .8129883                | 3-1311035              | 5341.0501           |
| LEM    | 611169 | 119 65122.867125    |                           | -21.573600              |                        | v                   |
| 1      | 0      |                     | 27.4658203                | 1.1865234               | 2.9992676              | 5                   |
|        | 611160 | 671/81.57163        | 77.485.44 TC              | 1 7570175               |                        | 5049.7201           |
| LEM    | ó91119 | 65124.867125        |                           | 6710161•1               | 256.572796             | 7                   |
| L E M  | 611169 | 119 65124•167125    | 2619669.12                | l • 54 90 723           | 2.8344727              | 2<br>4774.5751      |
|        |        |                     |                           |                         |                        |                     |

|               | 0-0           | 4504.8251   | v — r                    | 4240.4701   | <b>7 7 7</b>                           | 4019.2751   | ~ ~ ~                                   | 3781.8951    | ~ - ~             | 3555,3051    | ~ -                     |            | 3328.7151<br>2      | 2                         | 3134.4951<br>2 | 7 -1            | 2929.4851<br>2 |              |                                                  | 2773.0301<br>2 | 1                   |
|---------------|---------------|-------------|--------------------------|-------------|----------------------------------------|-------------|-----------------------------------------|--------------|-------------------|--------------|-------------------------|------------|---------------------|---------------------------|----------------|-----------------|----------------|--------------|--------------------------------------------------|----------------|---------------------|
| · .<br>-<br>- | 2.9003906     |             | 2.1020301                |             | 2.35.942959<br>235.942959<br>2.8564453 | C T Y Y Z   | 140386                                  |              | .889434           | • 121.2      | 3.C102539<br>219.993839 | 9882       | 2,0212402           | .812500                   | .878418        | 559814          | .647705        | 6.99183      | .460937                                          | 2.4279785      | .780029             |
|               | 1.1138672     |             | -25.694400               |             | 6406661•1<br>1019071-1                 |             | 1.3243431<br>1 1846234                  |              | -21.089800        | 669/886.     | • 4943848               | 1.2524414  | 0119467             | 2 2                       | 7690430        | -25.936800      |                |              |                                                  |                | 6.421 00<br>.296142 |
|               | 27            | 10 66 1 1   | • 8613                   | 016061.     | 1175624 95                             |             | 28.1469/2/<br>-252.834396<br>20.5074121 | 1714166 .07  | 8.410644          | 28.6633301   | 28.5205078              | 28.7841797 | 021302 0            | -225.915195<br>28.6523437 | n a            |                 | C 40040 A      |              | - 202 • 602396<br>- 202 • 602396<br>28 • 8061523 | CP ( T         | 9.201660            |
|               | 126.879125 -  | 5126.187125 | 5128.867125              | 5128.187125 | 55130-867125                           | 5130.187125 | 65132.867125 -                          | 65132.187125 | 65134.867125      | 65134.187125 | 46134 006125            |            | <b>65136.187125</b> | 65138-867125              | 65138.187125   | 65140.379125    | 65140.187125   | 65142.867125 | 65144.758125                                     | 65142.188125   | 65146.879125        |
| •<br>•        | 691119 6      | 9 61116 9   | 911169                   | 691119 6    | 691119 6                               | 691119 6    | 611169                                  | 691119 6     | 611169            | 01119        | 0                       | r<br>#     | 611169              | 611169                    | 611169         | 611169          | 691119 (       | 691119 (     | 611169                                           | 691119         | 691119              |
| •<br>•        | LEM           | LEM         | LEM                      | LEM         | LEM                                    | LEM         | LEM                                     | LEM          | LEM               | LEM          | 3                       |            | LEM                 | LEM                       | LEM            | LEM             | LEM            | LEM          | LEM                                              | LEM            | L E A               |
|               |               |             |                          |             |                                        |             |                                         |              |                   |              | E-1                     | 7          |                     |                           |                |                 |                |              |                                                  |                |                     |
|               | 2.702<br>2.30 |             | 101-21<br>18.42<br>2.002 |             | 1-999                                  | 076 6       | 2,395                                   |              | 1. / 5/<br>-25.20 | 4. 440       | 3.427                   | 3.581      | 5, 933              | 3.175                     | 3.240          | -18.66<br>3.625 | 3.383          |              | 3.515                                            | 2.680          | 2.983               |

| 2461.1991<br>63 2461.1991 |                        | 344 2310-1391 |                           |                         | 2161.2371<br>37 2 | 91 2                    | 2039 <b>.3101</b> | 99 1<br>36 2              | 1917.383<br>1        |                         |             | 0           | 1<br>2     | 1678.9241  | 8<br>9<br>1               | 1578.5771   | 6             | 0 1471-7561 | 1                       | 9 1383      |                        | 5 200.9581          |
|---------------------------|------------------------|---------------|---------------------------|-------------------------|-------------------|-------------------------|-------------------|---------------------------|----------------------|-------------------------|-------------|-------------|------------|------------|---------------------------|-------------|---------------|-------------|-------------------------|-------------|------------------------|---------------------|
| 2.285156                  | 190.002                | 357.8027      | 358.0444336               | 358.0114746             | 357.71484         | 357.75878               | 357.923584        | 179.427599<br>357.3413086 | 357.593994           | <b>67</b> 06760         | 20106-10    | 357.890625  | 357.692871 |            | 357.6818848<br>163.478479 | 357.4621582 | 357.418212    | 357.7917480 | 357.8027344             | 358.154296  | 57.989502<br>152.73016 | 358 <b>.</b> 341064 |
| 1.2744141                 |                        | 4.1857910     | 3.2629395                 | 3.7902832               | 3.6584473         | -25.452000<br>3.9001465 | 3.9550781         | 4.3725586                 | 4.6472168            | 6177301 4               | 6111061.    | 4.3835449   | 3.6474609  |            | 3.6364746                 | 3.0761719   | 3.1860352     | 2.6037598   | 2.8784180<br>-19.634400 | 2.6367188   | • 724609               | 2.9003906           |
| 28.6962891                |                        | 28.2348633    | 28.3117675<br>-178.774397 | 28.3557129              | 27.9332324        | 28.3447266              | 28.7072754        | 27.6145605                | 28.3776855           | 6-23439<br>883300       |             | 27.8942871  | 28.3117676 | t t        | 28.1030273                | 27.9821777  |               | 27.5976562  | 27-6306152              | 27.4328613  | ~                      | 25.8837891          |
| 5146.187125               | 5148.879125            | 5148.187125   | 3150.367125 ·             |                         | • 18/12           |                         | N                 | N                         | j154 <b>•</b> 187125 | i156.898125 -           | ;156.137125 | 154 867176  |            | 158.187125 | 12 .867125                | ,2 .188125  | 12 2.867125 - | 2 2.188125  | i2 4.859125             | 12 4.187125 | 32 6.867125            | 12 6.137125         |
| 268.6711                  | ~ ~                    |               | 257.8811<br>2             | -1 ~                    | 248.I701<br>2     | 1 - 0                   | 237.3801          | . – .                     | 231.9851             | 7                       | 2 -         | - 7         | 157.5341   | 7          |                           | 2           | 1 24 0751     | 2           | 1 23 0041               | 000.00      | L<br>2<br>111_1371     |                     |
|                           | 340.4418021            | 345.7067871   | 345.9704590               | 7.281120<br>346.8603516 | 345 4518555       | ר ער                    | 346.2890625       | i ut                      |                      | 341.0301328<br>8.321280 | 347.4755859 | 344.4323730 |            | 7.974560   | 348.4533691               | 346.0363770 | 359.0441895   | 355.0891113 | 7.4487305               | 2.2521973   | 1.801200<br>9.7668457  | 9.6459961           |
|                           | 24•28/1094<br>1.454400 |               | 55.5725098                | 54-6716309              |                   |                         | . 6               | 11.635200                 |                      | +0.144330               |             | 3.1311035   | F0C//03    |            | 2.9992676                 | 3.1530762   | 2.7136230     | . 5708008   | -1.939200               | 2.6586914   | 1.7578125              | 1.8896484           |

| 1              | 011107 | 463 8 84 <b>7136</b> | 26.5759277<br>-112 957598 | 2.7026367               | 358.1542969                       | ~-                                      |
|----------------|--------|----------------------|---------------------------|-------------------------|-----------------------------------|-----------------------------------------|
|                |        |                      | 24.8071289                | 2.2302246               | 358,3081055                       | 202                                     |
|                |        | 71101.               | 24.9938965                | 2.1313477               | 358.4289551                       |                                         |
| LEM            | 691119 | 65210.867125         | 22.6577539                | -18.422400<br>2.0933887 | 358,3959961                       | - ~                                     |
| LEM            | 611169 | 65210.187125         |                           |                         | L.                                | 1126.4761<br>3                          |
| LEM            | 691119 | 65212•867125         | +00+++                    | 0<br>r<br>t             | 148.22279                         | -                                       |
| LEM            | 611169 | 65212•187125         | 22.2253418                | 1.9995117               | 358. 2531 738                     | 2<br>1057.4261                          |
| LEM            | 691119 | 65214.867125         | 22.2802734<br>-94.539198  | 2.3400879               | 358.2421875                       | - 2                                     |
|                | 61119  | 65214.187125         | 22.9724121                | 2.3950195               | 356.7590332                       | 2<br>987.2851                           |
|                |        |                      | 22.8845215                | 1.7578125               | 358.0334473                       |                                         |
| L E M          | 611169 | 621108.01269         | 23.5327148                | -25.209600              | 354.3200684                       | - 2                                     |
| LEM            | 611169 | 65216.187125         |                           |                         |                                   | 923.6241                                |
| LEM            | 611169 | 65218-867125         | 23.2410703                | 3.4211344               | <b>354.</b> 5007812<br>131.926958 | 7 -                                     |
|                |        |                      | 23.6535645                | 3.5815430               |                                   |                                         |
| LEM            | 611169 | 65218.187125         | 23.4118652                | 3, 9331 055             | 354.0563965                       | 869.6741<br>2                           |
| LEM            | 611169 | 65220.867125         | -85.265598<br>23.8183594  | 175048                  | 354.3640137                       |                                         |
| LEM            | 611169 | 65220.187125         |                           |                         | )                                 | 816.8031                                |
| - FM           | 611169 | 65222,898125         | 23.8403320                | 3.2409668<br>-18.664800 | 354 <b>. 7</b> 485352             | 2                                       |
| 1              |        | 45333 18710          | 24.6203613                | 3.6254883               | 353.9685059                       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|                | 611107 | 21/01 - 22260        | 24.6313477                | 3.3837891               | 354.1992187                       |                                         |
|                | 611160 | 71660+17763          | 24.5983887                | 3.3947754               | 354.0563965                       |                                         |
| <u>ع</u><br>لل | 611169 | 65224•18/12          | 24.4226074                | 3.5150250               | 353•8476562                       | 2                                       |
| LEM            | 691119 | <b>65226</b> •859125 | -74.059999<br>24.1040C39  | 2.6806541               | 354.3090820                       | 2                                       |
| LEM            | 611169 | 65226.187125         | 24.1479492                | 2.9832813               | 354.3533273                       | 671.1381<br>2                           |

• .

-

.

| LEM            | 611169  | £5223 <b>.</b> 867125         |                          |                         |                                    |               |
|----------------|---------|-------------------------------|--------------------------|-------------------------|------------------------------------|---------------|
| LEM            | 611169  | 65223.137125                  |                          | 0002161-2               |                                    | 633.3731      |
| LEN            | 61119   | <b>65230.867125</b>           | 24.2138672               | S I                     | 354 • 64 96 58 2<br>107 • 82 99 20 |               |
| LEM            | 691119  | 65230.137125                  | 24.2907715               | I•9006348               | 354. 2980957                       | 2<br>594.5291 |
| LEM            | 691119  | 65232.867125                  | 24.1259766<br>-64.271199 | 2.0544434               | 354.0893555                        | 7             |
| LEM            | 691119  | <ul> <li>N</li> </ul>         | 24.4226074               | 1.3073730               | 354.5397949                        | 560-0011      |
| L EM           |         | 5234-87912                    | 24.0380859               | 1.6918945<br>-11.392800 | 354 • 5397949                      |               |
| . <b>∑</b><br> |         | 01751.2564                    | 25.7629395               | .1538096                | 354.9462891                        | 21 047        |
|                | 0.71110 | 71167 • 4676                  | 25.2355957               | .3295898                | 354,8034668                        | 2             |
| L E A          | 691119  | <b>65236.8</b> 79 <b>1</b> 25 | 27.6942871               | 359.9670410             | 90.667279<br>354.9682617           | - 2           |
| LEM            | 611169  | 65230.187125                  |                          |                         |                                    | 500.6561      |
| LEM            | 611169  | 65238.867125                  | 21.8283691<br>-59.763199 | 67161.666               | 11/5088.465                        | 2<br>1        |
| N<br>N         | 691119  | 65238-187125                  | 27.6745605               | 359.8352051             | 355.0671387                        | 2 2 471, 5231 |
| 1              |         |                               | 27.5317383               | • 0329590               | 355.1440430                        | 1<br>\<br>}   |
|                | 611160  | 671/00 * ( + 760              | 27.0553262               | -10.180800              | 355.1660156                        | - ~           |
| LEM            | 691119  | 65240.187125                  |                          |                         |                                    | 457.4961      |
| LEM            | 611169  | <b>65242879125</b>            | 21.2460938               | 3103916.966             | 355.1000977<br>75.584959           | - 5           |
| X<br>L         | 611194  | 45747,188125                  | 26.6857910               | 359.1870117             | 355.0451660                        | 2<br>231 7581 |
|                |         |                               | 27.2241211               | 359.0002441             | 355.1000977                        |               |
| LEM            | 691119  | <b>65244.</b> 859125          | -48.042399<br>25.8947754 | 359.5055152             | 353-3203125                        | ~             |
| LEM            | 611169  | 65244.137125                  |                          |                         |                                    | 403.5461      |
| LEM            | 611169  | <b>65246.</b> 859125          | 6296IN.                  | -10.423200              | - 805466                           | ~ - ~         |
| LEM            | 61116   | 65246.ld7125                  | 0746664.C2               |                         | 1/8/166.166                        | 2<br>388.4401 |
| LEM            | 61116   | <b>65249.</b> 066125          | 1101160-62               | 6146040 .               | 63.2764.10<br>63.2764.10           | 7             |

| 1           |        |                       | 26.0375977               | .7141113                | 351.1340332 | 2 241 2461    |
|-------------|--------|-----------------------|--------------------------|-------------------------|-------------|---------------|
|             | 611160 | 71 101 004760         | 26.0375977               | .8239746                | 351,0351562 |               |
| LEM         | 691119 | 65251•258125          | -35.291200<br>26.8066406 | 1.2524414               | 350.9252930 | 7             |
| LEM         | 611169 | 65250.187125          |                          |                         |             | 351.7541      |
| 1           | 611169 | <b>45253, 289125</b>  | 26•9604492               | - 6-90430<br>- 6-544800 | c166012•1C6 | 7             |
| 1           |        |                       | 27.3669434               | 2.9992676               | 351.1010742 | 2             |
| LEM         | 611169 | 65252.187125          | 27-0593262               | 2.2521973               | 351,0461426 | 345.2801<br>2 |
| LEM         | 611169 | 65255.289125          | L L                      | 022110                  | 49.92768    | . — .         |
| L fr M      | 691119 | 65254.187125          |                          | 161132606               |             | 335.5691      |
| LEM         | 691119 | 65257.297125          | 27.4987793<br>-27.5c3200 | 3.7463379               | 350.8813477 | 7             |
| 1           | 011109 |                       | 27.3229980               | 3.9660645               | 349.6948242 | 2<br>323,7061 |
|             |        |                       | 27.5317383               | 3.8452148               | 350.9033203 |               |
| LEM         | 611169 | <b>65259</b> , 309125 |                          | -3.151200               |             | ,             |
|             | 011107 | 46760 107             | 51095CT0-12              | 2005421.05              | 341•34T434  | 2<br>215_CAR1 |
|             | 611160 | 71/01 *06763          | 27.1582031               | 3.9770508               | 349.4091797 |               |
| LEM         | 691119 | <b>653 1.289125</b>   | 6666303 36               | 776FF63 6               | 36.058879   | ~             |
| LEN         | 691119 | 653 .188125           | C111060*07               | ****                    |             | 309.6731      |
| 1           |        |                       | 26.8505859               | 3 <b>.</b> 77929¤9      | 346.8754199 | 2             |
| Σ           | 691119 | 653 3.289125          | -20.736799<br>25.6716797 | 4703595                 | 7628272-725 | - ~           |
| LEM         | 611169 | 653 2.188125          | ∎<br>N                   |                         |             | 302.1201      |
| :           |        |                       | 26.1254883               | . 8898926               | 346.4538574 | - 2           |
| E LI        | 611169 | 621682.6 600          | 25.6420898               | 1.404400<br>359.6484375 | 346.5527344 | - ~           |
| LEM         | 611169 | 653 4.187125          |                          |                         |             | 289.1721      |
| 1           | 011107 | 7 534                 | 25.7849121               | .1208496                | 346.5307617 | - 7           |
|             | 611160 |                       | 27.0263672               | 355.4846191             | 346.5527344 | • ~           |
| LEM         | 611169 | 653 6.187125          |                          |                         |             | 279.4611      |
|             | 911194 | 653 9.379125          | 26.7956543<br>-13.524000 | 358.8354492             | 346.6625977 | - 2           |
| -<br>-<br>- |        | )<br> <br>            | 23.2580566               | 354.8583984             | 346.1901855 | 2             |

· •

-

.

£.

.

| LEN    | 611169 | 653 8.187125                                                                                |               |                         |                         | 268.6711            |
|--------|--------|---------------------------------------------------------------------------------------------|---------------|-------------------------|-------------------------|---------------------|
| LEM    | 611169 | 65311.297125                                                                                | 26.6748047    | 354.2871094<br>1.454400 | 346.4978327             | - 2                 |
| M 11   | 611199 | .18712                                                                                      | 16.3256836    | 356.5283203             | 345.7067871             | 2<br>257.8811       |
|        |        |                                                                                             | 20.2587891    | 355.5725098             | 345.9704590             |                     |
|        | 611169 | 621682.61660                                                                                | 14.3920898    | 354.6716309             | 7.281120<br>346.8603516 | ~ ~                 |
| LEM    | 691119 | 65312.187125                                                                                | 15 2370508    | 366 6612703             | 346 461 B555            | 248.I701            |
| LEM    | 691119 | 65315+297125                                                                                | -6.182400     |                         |                         | v (                 |
| LEM    | 61116  | 65314.187125                                                                                | 18/ 5765 • 21 | 341.42119141            | 668661 <b>4 • 1 4 E</b> | 237.3801            |
| 2<br>  | 611169 | 65315, 297125                                                                               | 12.6342773    | 350.4528809             | 346.2890625             | - 2                 |
|        |        | / · · · · · · · · · · · · · · · · · · ·                                                     | 12.3925781    | 347.2119141             | 347.4755859             |                     |
| LEM    | 611169 | 65316.187125                                                                                | 10.8764648    | 965 4407 - 945          | 347,0361328             | 231.9851<br>2       |
| LEM    | 691119 | 65315.297125                                                                                |               |                         | 8.321280                |                     |
|        |        |                                                                                             | 12.3925781    | 347.2119141             | 347.4755859             | 2                   |
| LEM    | 691119 | <b>65340.7</b> 19125                                                                        |               | -7.514400               | 0666667 776             | <b>-</b> - <b>-</b> |
| M L L  | 611169 | 65340.187125                                                                                | 1466012*0     | CC011C1+C               | 0010204-440             | 157.5341            |
|        |        | <br> -<br> <br> <br> <br> <br> <br>                                                         | 3.5375977     | 3.5046387               | 344.3994141             |                     |
| LEM    | 691119 | 65342.879125                                                                                |               |                         | 7.97456                 |                     |
| 1      | 011107 | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | 3.8122559     | 2.9992616               | 348.4533691             | 2                   |
|        | 611160 |                                                                                             | 3.9660645     | 3.1530762               | 346.0363770             |                     |
| LEM    | 611169 | 65345.047125                                                                                | -6.955200     |                         |                         | 1                   |
|        |        |                                                                                             | 3.6254883     | 2.7136230               | 359.0441895             | 1                   |
| LEM    | 611169 | 65344.18/125                                                                                | 3.3618164     | 2.5708008               | 355.0891113             | 134•8751<br>2       |
| LEM    | 611169 | 65347.199125                                                                                |               | -1.939200               |                         | 1                   |
| 3<br>L |        |                                                                                             | 3.7023926     | 2.1643066               | 7.4487305               |                     |
|        | 671179 | 621181.94669                                                                                | 3.6694336     | 2 • 6586914             | 2.2521973               | 123.0061<br>2       |
| LEM    | 611169 | 65349.289125                                                                                |               |                         | 7.801200                | - 1                 |
|        | 011103 | 1201 0713                                                                                   | 4.4055176     | 1.7578125               | 9.7668457               |                     |
|        | 611160 | 71                                                                                          | 4.1967773     | 1.8896484               | 9.6459961               | 2                   |
| LEM    | 691119 | 65351.359125                                                                                | - 5.409600    |                         |                         |                     |

|      |        |                       | 4.2736816                                    | 1.4941406            | 9.4592285                                                                                   | 2            |
|------|--------|-----------------------|----------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|--------------|
|      | 611160 | 21101-0000            | 4.3725586                                    | 1.5820313            | 9. 3657227                                                                                  | 1            |
|      | 61119  | 621482.66666          | 4.4055176                                    | 242400<br>1.6809082  | 9.4702148                                                                                   | - 2          |
| LEM  | 611169 | 65352.187125          | 4 4 46030                                    | 1,6149902            | 8.9428711                                                                                   | 86.3201<br>2 |
| LEM  | 691119 | 65355•309125          |                                              |                      | 5.203800<br>5.203800                                                                        | 1 0          |
| LEM  | 611169 | 65354.187125          |                                              | 1. 2600366           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 77.6981      |
| LEM  | 611169 | 65356.187125          |                                              |                      |                                                                                             | 71.2141      |
| LEM  | 611169 | <b>65357.</b> 289125  | -3.348800                                    | 1. 4006348           | •                                                                                           | ~ ~ ~        |
| LEM  | 611169 | 65357.289125          | C++0.14.                                     |                      | 7015055.4<br>Careero                                                                        | v — r        |
| LEM  | 611169 | £5357.289125          | C++ 0216 * C                                 | n a                  | 4.5073                                                                                      | v v          |
| LEM  | 61119  | 654 8.859125          | 6 <b>.</b> 1.                                | 1.7687988            | 9.33837                                                                                     | ~ - ~        |
| LEM  | 611169 | 654 8.187125          | •136219                                      | 0G21EN1.             | 0.421/J.1C                                                                                  | 26.1081      |
| LEM  | 61119  | 65410.957125          | • 296142                                     | -7580566<br>969600   | 51.793212<br>51 037150                                                                      | 0 - 0        |
| LEM  | 611169 | 65410 <b>.</b> 187125 | 202002                                       |                      | • • • •                                                                                     | 55.0291      |
| LEM  | 611169 | 65413.090125          | 262802.                                      | 0200208.             |                                                                                             | ~ - ~        |
| LEM  | 691119 | 65412.187125          | COC2612+2                                    | u 0<br>1 t           | 17867 13                                                                                    | 45.3181      |
| L EM | 61119  | 65415.199125          | <pre>&lt; 1043030 -1.2889333 2.5488281</pre> | +c1228c.<br>368[η7α. | 0014020.1CC                                                                                 |              |
| LEM  | 011190 | 05414.187125          | HLOL(7                                       | 7360840              | 51 286718                                                                                   | 43.1601      |
| LEM  | 611169 | 65417.297125          | 897641.                                      | 1.5490723            | 51 963994                                                                                   | 1-1-1        |
| LEM  | 611169 | 65416.187125          | C 2 4 0 0 4 2                                | 34410                | 51 881103                                                                                   | 43.1601      |
| LEM  | 691119 | 65419.309125          |                                              |                      | 52                                                                                          | 5 T ¢        |

- .-.

---

•

-

ی م ر

| L FM   | 011109 | 4541 g                |                             |                             |                                 | •            |
|--------|--------|-----------------------|-----------------------------|-----------------------------|---------------------------------|--------------|
|        | •      | 31101 00 10 10 10 10  | 355.8142090                 | 1.6809082                   | 352,2656250                     | 45.3181<br>2 |
| LEM    | 61119  | 65421.297125          | - 2                         |                             |                                 |              |
| LEM    | 611169 | 65420-187125          | 359.5935059                 | .6701660                    | 352.3315430                     | 2 20         |
|        |        |                       | 354.5617676                 | 1.1425781                   | 351.9909668                     | 28•8441<br>2 |
| LĘN    | 691119 | 65423.367125          |                             | • (                         |                                 |              |
| LEM    | 691119 | 65422.187125          | 0618411.4                   | 1888682.666                 | 352.3315430                     | 33-4401      |
| 1      |        |                       | 3.9550781                   | 359.5715332                 | 352.6611328                     | 2            |
|        | 611169 | 65425.297125          | 1167110 1                   |                             | (<br>)                          |              |
| LEM    | 611169 | 65424.187125          | 1170116 • 1                 | 277.0204048                 | 11/8/00.266                     | 2<br>18•3431 |
| LEM    | 691119 | ć5427 <b>.</b> 289125 | 4 - 3066406<br>- 1 - 288000 | 359.5385742                 | 352.1008301                     |              |
| :      |        |                       | 1.6149902                   | 359.5715332                 | 351.8701172                     | - ~          |
| C tr M | 691119 | 65426.187125          | 1 - 0546875                 | 350 6376513                 | 361                             | 15.1061      |
| LEM    | 691119 | 65429.297125          |                             |                             | •100                            | ~ ~          |
|        |        |                       | 358.9343262                 | 359.6923828                 | 351.6503906                     | • ~          |
| LEM    | 691119 | 65428.187125          |                             |                             |                                 | 25.8961      |
|        | 011107 | ( <b>100</b> )        | .9777832                    | 359.4616699                 | 351.7712402                     | 2            |
|        | 611160 | c2421•287125          | 355.6384277                 | 359,8022661                 | 14.215520<br>351.4636230        | r            |
| LEM    | 611169 | 65430.187125          |                             |                             |                                 | 49-6341      |
|        |        |                       | 357.0227051                 | 359.8022461                 | 351.4416504                     |              |
| LEM    | 691119 | 65433.277125          | ~                           |                             |                                 | 1            |
|        | 011104 | <u>ر</u>              | 354.9462891                 | 359.9340820                 | 351.6064453                     | 2            |
| 2      | 611160 | 671/01-76460          | 355,3967285                 | 359-9653695                 | 361 6176316                     | 56.1081      |
| LEM    | 611169 | 65434.187125          |                             |                             | 38.84                           | 344 I        |
|        |        |                       | 356.9128 3                  | 58.6157 3                   | 51.4636                         |              |
|        | 611160 | 671167 • 66465        | 357.4841309                 | 358.5498047                 | -2.080320                       | <b>→</b> (   |
| LEM    | 691119 | 65435.297125          | 1.545600                    | •                           | ~ * * * * * * * * *             | 7 1          |
|        | 011104 | 46436 307136          | 357.4841309                 | 358.5498047                 | 351.2219238                     | 5            |
| 5      |        | 21162.0               | 357.4841309                 | - 2. 908800<br>358. 5498047 | 351.2219238                     | - ~          |
| LEM    | 611169 | 65436.187125          |                             |                             |                                 | 6.4741       |
| LEN    | 611169 | £5435•297125          | 357.5720215                 | 358.7145996                 | <b>351.1560059</b><br>-2.080320 | 2            |
|        |        |                       | 357.4841309                 | 358.5498047                 | 351.2219238                     | ~ ~          |

## APPENDIX F LM FREE FLIGHT TRAJECTORY, REV. 14 REGION OF MARE NECTARIS

-

-

~. 、

,

| ALTITUDE  | SELENOGRAPHIC | SELENOGRAPHIC | GE      | т      |
|-----------|---------------|---------------|---------|--------|
| ABOVE MLR | LATITUDE      | LONGITUDE     |         |        |
| (FEFT)    | (DEGREES)     | (DEGREES)     | (HR-MN- | SEC)   |
| 158129.0  | -15.1012      | 67.9194       | 109 58  | .008   |
| 153844.2  | -15-1773      | 66.2583       |         | 30.008 |
| 149594.1  | -15.2414      | 64.5937       | 109 59  | .008   |
| 145382.2  | -15.2934      | 62.9257       |         | 30.008 |
| 141211.8  | -15.3331      | 61.2546       | 110 0   | .008   |
| 137086.3  | -15.3604      | 59.5807       |         | 30.008 |
| 133009.0  | -15.3754      | 57.9040       | 110 1   | .008   |
| 128983.2  | -15.3779      | 56.2249       | 110 1   | 30.008 |
| 125012.1  | -15.3678      | 54.5435       | 110 2   | .008   |
| 121099.0  | -15.3452      | 52.8601       | 110 2   | 30.008 |
| 117247.1  | -15.3099      | 51.1749       | 110 3   | .008   |
| 113459.5  | -15.2621      | 49.4882       | 110 3   | 30.008 |
| 109739.3  | -15.2016      | 47.8002       | 110 4   | •008   |
| 106089.5  | -15.1285      | 46.1111       | 110 4   | 30.008 |
| 102513.3  | -15.0428      | 44.4212       | 110 5   | .008   |
| 99013.5   | -14.9446      | 42.7306       | 110 5   | 30.008 |
| 95593.0   | -14.8339      | 41.0397       | 110 6   | .008   |
| 92254.7   | -14.7107      | 39.3486       | 110 6   | 30.008 |
| 89001.4   | -14.5752      | 37.6576       | 110 7   | .008   |
| 85835.8   | -14.4275      | 35.9669       | 110 7   | 30.008 |
| 82760.5   | -14.2677      | 34.2767       | 110 8   | .008   |
| 79778.2   | -14.0958      | 32.5871       | 110 8   | 30.008 |
| 76891.3   | -13.9120      | 30.8985       | 110 9   | .008   |
| 74102.2   | -13.7166      | 29.2110       | 110 9   | 30.008 |
| 71413.4   | -13.5095      | 27.5248       | 110 10  | •008   |
| 68827.1   | -13.2911      | 25.8400       | 110 10  | 30.008 |
| 66345.6   | -13.0614      | 24.1569       | 110 11  | .008   |
| 63970.8   | -12.8207      | 22.4755       | 110 11  | 30.008 |
| 61705.0   | -12.5693      | 20.7960       | 110 12  | .008   |
| 59549.9   | -12.3072      | 19.1186       | 110 12  | 30.008 |
| 57507.5   | -12.0348      | 17.4434       | 110 13  | .008   |
| 55579.4   | -11.7522      | 15.7704       |         | 30.008 |
| 53767.5   | -11.4599      | 14.0999       | 110 14  | .008   |
| 52073.2   | -11.1579      | 12.4318       | 110 14  |        |
| 50497.9   | -10.8465      | 10.7663       | 110 15  | .008   |
| 49043.2   | -10.5262      | 9.1034        | 110 15  | 30.008 |
| 47710.2   | -10.1970      | 7.4432        | 110 16  | •008   |
| 46500.0   | -9.8594       | 5.7857        | 110 16  | 30.008 |
| 45413.9   | -9.5136       | 4.1310        | 110 17  | .008   |
| 44452.6   | -9.1600       | 2.4791        | 110 17  | 30.008 |
| 43617.1   | -8.7988       | .8299         | 110 18  | .008   |
| 42908.1   | -8.4304       | 8164          | 110 18  | 30.008 |
| 42326.2   | -8.0551       | -2.4600       | 110 19  | •008   |
| 41872.0   | -7.6733       | -4.1008       | 110 19  | 30.008 |
| 41464.3   | -7.1521       | -6.2940       | 110 20  | 9.500  |
|           |               |               |         |        |

F-1

-

## REFERENCES

- "Apollo 12 Descent Postflight Analysis," MSC Memo 69-FM22-324, to D. J. Incerto from Landing Analysis Branch, dated 19 December, 1969.
- 2. Girod, W. P., "Task A-50 BET Delivery LM Ascent and Insertion to CSI Trajectory," TRW IOC 70:7254.3-6, dated 16 January 1969.
- 3. Girod, W. P., "Task A-50 BET Delivery CSM Segment 1 (Post TLI to Lunar SOI)," TRW IOC 69:7254.3-106, dated 20 November 1969.
- 4. Girod, W. P., "Task A-50 BET Delivery Real Time LM Powered Descent," TRW IOC 69:7254.3-108, dated 21 November 1969.
- 5. Girod, W. P., "Task A-50 BET Delivery Real Time LM Ascent," TRW IOC 69:7254.3-109, dated 21 November 1969.
- 6. Girod, W. P., "Task A-50 BET Delivery CSM Segment 2 (Lunar SOI to LOPC-1)," TRW IOC 69:7254.3-111, dated 25 November 1969.
- 7. Girod, W. P., "Task A-50 BET Delivery CSM Segment 3 (LOPC-1 to Lunar SOI)," TRW IOC 69:7254.3-113, dated 26 November 1969.
- 8. Girod, W. P., "Task A-50 BET Delivery Preliminary LM Free Flight BET," TRW IOC 69:7254.3-115, dated 26 November 1969.
- Girod, W. P., "Task A-50 BET Delivery CSM Segment 4 (Lunar SOI to Entry Interface)," TRW IOC 69:7254.3-117, dated 2 December 1969.
- Girod, W. P., "Task A-50 BET Delivery: Preliminary Entry," TRW IOC 69:7254.3-126, dated 22 December 1969.
- Girod, W. P., "Task A-50 BET Delivery LM Ascent Stage Impact Trajectory," TRW IOC 70:7254.3-4, dated 9 January 1970.
- Girod, W. P., "Task A-50 BET Delivery Final LM Powered Descent," TRW IOC, dated 6 February 1970.

- 13. Moore, J. B., "Task A-50 BET Delivery LOI-1 and TEI Powered Flight Trajectories, TRW IOC 70:7254.3-6, dated 19 January 1970.
- "Support to the Postflight Analysis of the GN&C Systems on Apollo 12," TRW Letter 69:7254.3-124, to J. F. Hanaway (EG7) from D. L. Rue, dated 18 December 1969.
- 15. TRW Document 11176-H508-R0-00, "Apollo Mission 11, Trajectory Reconstruction and Postflight Analysis, Volume I," dated 16 March 1970

R-1

.