NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

APOLLO 12 MISSION REPORT

TRAJECTORY RECONSTRUCTION AND POSTF LIGHT ANALYSIS

```
(NASA-TM-X-70272) APOLLO MISSION 12. 'IRAJECTORY BECONSTRUCTION AND POSTELIGHT ANALYSIS, VOLUQE 1 (NASA) 113 p
``` N74-75212


DISTRIBUTION AND REFERENCING
This paper is not suitable for general distribution or referencing. It may be referenced only in other working correspondence and documents by participating organizations.

MANNED SPACECRAFT CENTER
HOUSTON,TEXAS
August 1970

\title{
APOLLO 12 MISSION REPORT
} SUPPLEMENT 1

\section*{PREPARED BY}

TRW Systems

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFI CENTER
HOUSTON, TEXAS
August 1970

TRW NOTE NO. 70-FMT-825

PROJECT APOLLO
TASK MSC/TRW A-50

\section*{APOLLO MISSION 12, TRAJECTORY \\ RECONSTRUCTION AND POSTFLIGHT ANALYSIS \\ VOLUME 1}

24 APRIL 1970

Prepared for
MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS
NAS 9-8166

E. L. Barnett
W. P. Girod
S. C. Jankowski
H. L. Moore
J. B. Moore
J. E. Scheppan
S. L. Smith
R. M. Thomas

This report is submitted to the NASA Manned Spacecraft Center in accordance with MSC/TRW Task A-50 Contract NAS 9-8166. This report contains the postflight analysis performed in conjunction with the Apollo 12 mission and is issued as Supplement 1 to the Apollo 12 Mission Report.

The report is issued in two volumes. Volume I contains details of the analysis and results obtained, including appendices; Volume II contains a 1isting of the 45-Day Best Estimated Trajectory (BET) for the Apollo 12 mission in the NASA Apollo Trajectory (NAT) format. The listing is not generally distributed but is available from NASA/MSC upon request. Requests should be made to:

NASA/MSC Computations and Analysis Division Central Metric Data File
Code ED-5, Building 12, Room 133 Houston, Texas 77058

\section*{TABLE OF CONTENTS}
Page
5.1 INTRODUCTION AND SUMMARY 5-1
5.2 PRELIMINARY NAT 5-7
5.2.1 CSM Segment 1 - TLI Burn Cutoff to Lunar SOI 5-7
5.2.2 CSM Segment 2 - Lunar SOI to LOPC-1 5-7
5.2.3 CSM Segment 3 - LOPC-1 to Lunar SOI 5-10
5.2.4 CSM Segment 4 - Lunar SOI to Entry Interface 5-10
5.2.5 CM Segment 1 - Preliminary Entry 5-10
5.2.6 LM Segment 1 - Undock to PDI and Insertion to Impact 5-13
5.2.7 LM Segment 2 - Real Time Powered Descent 5-16
5.2.8 LM Segment 3-Real Time Ascent 5-16
5.3 FINAL NAT 5-19
5.3.1 CSM LOI-1 and TEI Burn Trajectory Reconstruction 5-19
5.3.1.1 LOI-1 Burn 5-19
5.3.1.2 TEI Burn 5-19
5.3.2 LM Powered Descent 5-21
5.3.2.1 IMU Corrections and Trajectory Constraints 5-21
5.3.2.2 Rev 14 Orbit Determination 5-26
5.3.3 LM Ascent and Insertion to CSI Trajectories 5-26
5.3.3.1 Ascent Trajectory 5-26
5.3.3.2 Comparison of Insertion Conditions 5-27
5.3.3.3 Free Flight Trajectory Insertion to CSI 5-30

\section*{Table of Contents (Continued)}
5.3.4 LM Ascent Stage Impact Trajectory 5-34
5.4 POWERED DESCENT TRAJECTORY ANALYSIS 5-35
5.4.1 Rev. 14 Orbit Determination 5-35
5.4.2 Analysis of Landing Radar Velocity Data 5-40
5.4.3 Lunar Surface Altitude from LR Range 5-47
REFERENCES R-1
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F5

Page
5.1 Apollo Mission 12 Sequence of Events 5-2
5.2 Descent and Rendezvous Maneuver Summary for Apollo 12 5-4
5.3 Preliminary NAT CSM Segment 1 - Post TLI to Lunar SOI 5-8
5.4 Preliminary NAT CSM Segment 2 - Lunar SOI to LOPC-1 5-9
5.5 Preliminary NAT CSM Segment 3- LOPC-1 to Lunar SOI 5-11
5.6 Preliminary NAT CSM Segment 4 - Lunar SOI to Entry Interface 5-12
5.7 Comparison of Drogue Deploy, Main Deploy, and Splashdown Altitudes and the Main Chute Mean Descent Rate with Pre- Mission Nominal Values 5-14
5.8 Preliminary NAT LM Segment 1 - Free Flight BET 5-15
5.9 Preliminary Estimates of LLS Coordinates 5-17
5.10 LOI-1 and TEI Powered Flight Trajectories 5-20
5.11 Comparison of Powered Flight and Free Flight Trajectory Conditions Near Insertion (142:11:51.77 GET) 5-28
5.12 Sensitivities of the State Vector at Orbit Insertion to the Coordinates of the LLS 5-29
5.13 Landing Radar Velocity Residual Statistics 5-44
\begin{tabular}{|c|c|c|}
\hline & & Page \\
\hline 5-1 & Tracking Summary for Descent and Rendezvous & 5-5 \\
\hline 5-2 & Two-Second PIPA Counts Near Landing Time & 5-23 \\
\hline 5-3 & Altitude and Descent Rate: Low Gate to Landing & 5-24 \\
\hline 5-4 & LM Groundtrack from Low Gate to Landing & 5-25 \\
\hline 5-5 & Converged SXT Shaft Residuals - Insertion to CSI & 5-31 \\
\hline 5-6 & Converged SXT Trunnion Residuals - Insertion to CSI & 5-32 \\
\hline 5-7 & Converged VHF Ranging Residuals - Insertion to CSI & 5-33 \\
\hline 5-8 & LLS Coordinates & 5-36 \\
\hline 5-9 & Two-Way Doppler Residuals in the Mare Nectaris Region LM Rev. 14 No Mascon & 5-37 \\
\hline 5-10 & Two-Way Doppler Residuals in the Mare Nectaris Region LM Rev. 14 Mascon \(=9 \mathrm{E}-6\) & 5-38 \\
\hline 5-11 & Effect of MASCON Magnitude on Trajectory Determination & 5-39 \\
\hline 5-12 & Landing Radar X-Antenna Velocity Residuals (Nominal Antenna Orientation) & 5-41 \\
\hline 5-13 & Landing Radar Y-Antenna Velocity Residuals & 5-42 \\
\hline 5-14 & Landing Radar Z-Antenna Velocity Residuals (Nominal Antenna Orientation) & 5-43 \\
\hline 5-15 & X-Antenna Velocity Residuals (Corrected Antenna Orientation) & 5-45 \\
\hline 5-16 & Z-Antenna Velocity Residuals (Corrected Antenna Orientation) & 5-46 \\
\hline 5-17 & Lunar Surface Altitude & 5-49 \\
\hline 5-18 & Groundtrack of LR Range Beam & 5-51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AOS & acquisition of signal \\
\hline APS & ascent propulsion system \\
\hline BET & best estimated trajectory \\
\hline CDH & constant delta height \\
\hline CM & command module \\
\hline CSI & coelliptic sequence initiation \\
\hline CSM & command and service module \\
\hline DOI & descent orbit insertion \\
\hline DPS & descent propulsion system \\
\hline ECI & earth centered inertial \\
\hline GET & ground elapsed time \\
\hline GMT & Greenwich mean time \\
\hline IMU & Inertial measurement unit \\
\hline LGC & LM guidance computer \\
\hline LLS & lunar landing site \\
\hline LM & lunar module \\
\hline LR & landing radar \\
\hline LOI & lunar orbit insertion \\
\hline LOPC & lunar orbit plane change \\
\hline LOS & loss of signal \\
\hline MCC & midcourse correction \\
\hline MCI & moon centered inertial \\
\hline MLR & mean lunar radius \\
\hline MNBY & mean of nearest Besselian year \\
\hline MSFN & Manned Space Flight Network \\
\hline NAT & NASA Apollo Trajectories \\
\hline PDI & powered descent initiation \\
\hline PGNCS & primary guidance and navigation control subsystem \\
\hline RCS & reaction control system \\
\hline RR & rendezvous radar \\
\hline
\end{tabular}

Symbols and Nomenclature (Continued)
\begin{tabular}{ll}
RTCC & Real-Time Computer Complex \\
SOI & sphere of influence \\
SXT & sextant \\
T\&D & transposition and docking \\
TEI & transearth injection \\
TLI & translunar injection \\
TPI & terminal phase initiation \\
VHF & very high frequency \\
wrt & with respect to \\
\(\Delta V\) & change in velocity caused by thrusting \\
\(\Delta T\) & \begin{tabular}{l}
change in time \\
\(\delta R, \delta V\)
\end{tabular} \\
& \begin{tabular}{l}
square root of the sum of the squares \\
of the differences between position or \\
velocity components
\end{tabular}
\end{tabular}

\subsection*{5.0 APOLLO 12 MISSION TRAJECTORY RECONSTRUCTION \\ AND POSTFLIGHT REPORT}

\subsection*{5.1 INTRODUCTION AND SUMMARY}

Apollo 12 was the sixth manned flight of the Apollo series and the second manned lunar landing. The 10 -day Apollo 12 mission has contributed and will continue to contribute to a greater scientific understanding of the lunar environment. The crew were Charles Conrad, Jr., Commander; Richard F. Gordon, Command Module Pilot; and Alan L. Bean, Lunar Module Pilot.

The space vehicle was launched from Kennedy Space Center, Florida, with range zero (the integral second before lift-off) occurring at 16:22:00 Greenwich Mean Time (GMT), November 14, 1969. A sequence of events list for the Apollo 12 mission is presented in Table 5.1.

The descent phase of the Apollo 12 mission was initiated on the thirteenth revolution of the moon at approximately 107 hours 54 minutes Ground Elapsed Time (GET). The Lunar Module (LM) successfully landed on the lunar surface at approximately 110 hours 32 minutes GET.

The rendezvous phase began with ascent ignition during Command and Service Modules (CSM) revolution 30 and ended with docking at 145 hours 36 minutes GET. A summary of the \(\operatorname{CSM}\) and LM maneuvers performed during descent and rendezvous is presented in Table 5.2. Figure \(5-1\) shows the CSM and LM ground based and onboard tracking data that were available during the descent and rendezvous phases of the Apollo 12 mission.

The objective of the postflight analysis task is, in general, to generate trajectory parameters and data for the CSM and LM vehicles from S-IVB/CSM separation to the end of the mission. During the early Apollo missions this was accomplished by developing a best estimate of trajectory (BET) from available tracking and telemetry data. Comparisons of the BET and the Real-Time Computer Complex (RTCC) state vectors after the early Apollo missions indicated that the RTCC state vectors were of good quality and that, in general, only small differences existed between the two trajectory sources. Consequently, RTCC state vectors were used to generate the preliminary NAT's for Apollo's 9,10 and 11 . It was decided

TABLE 5.1. APOLLO MISSION 12 SEQUENCE OF EVENTS
\begin{tabular}{|c|c|c|}
\hline & GET(h:m:s) & GMT (d:h:m:s) \\
\hline Range Zero & & 14:16:22:00.0 \\
\hline Translunar Injection & 2:47:22.7 & 14:19:09:22.7 \\
\hline \(\Delta T=341.3 \quad \Delta V=10,515\) & 2:53:14.0 & 14:19:15:14.0 \\
\hline S-IVB/Command Module Separation & 3:18:04.9 & 14:19:40.04.9 \\
\hline First Docking & 3:26:53.3 & 14:19:48:53.3 \\
\hline Spacecraft Ejection & 4:13:00.9 & 14:20:35:00.9 \\
\hline Evasive Manuever (S-IVB APS) & 4:28:01.4 & 14:20:50:01.4 \\
\hline \(\Delta T=80\) & 4:28:01.4 & 14:20:50:01.4 \\
\hline Midcourse Correction \#1 & 30:52:44.4 & 15:23:14:44.4 \\
\hline \(\Delta T=9.2 \quad \Delta V=61.8\) & 30:52:53.6 & 15:23:14:53.6 \\
\hline Enter Moon's Sphere of Influence & 68:30:00. & 17:12:50:00. \\
\hline Lunar Orbit Insertion 非1 & 83:25:23.4 & 18:03:47:23.4 \\
\hline \(\Delta \mathrm{T}=352.3 \quad \Delta \mathrm{~V}=2889.5\) & 83:31:15.7 & 18:03:53:15.7 \\
\hline Lunar Orbit Insertion \#2 & 87:48:48.1 & 18:08:10:48.1 \\
\hline \(\Delta \mathrm{T}=16.9 \quad \Delta \mathrm{~V}=165.2\) & 87:49:05.0 & 18:08:11:05.0 \\
\hline Undocking & 107:54:02.3 & 19:04:16:02.3 \\
\hline CSM Active Separation & 108:24:36.8 & 19:04:46:36.8 \\
\hline \(\Delta T=14.4 \quad \Delta V=2.4\) & 108:24:51.2 & 19:04:46:51.2 \\
\hline Descent Orbit Insertion & 109:23:39.9 & 19:05:45:39.9 \\
\hline \(\Delta \mathrm{T}=29 \quad \Delta \mathrm{~V}=72.4\) & 109:24:08.9 & 19:05:46:08.9 \\
\hline Powered Descent Initiation
\[
\Delta T=717
\] & 110:20:38.1 & 19:06:42:38.1 \\
\hline Touchdown & 110:32:36.2 & 19:06:54:36.2 \\
\hline CSM Plane Change \#1 & 119:47:13.2 & 19:16:09:13.2 \\
\hline \(\Delta T=18.2 \quad \Delta V=350\) & 119:47:31.4 & 19:16:09:31.4 \\
\hline \[
\begin{aligned}
& \text { Ascent } \\
& \Delta T=423.2 \quad \Delta V=6057
\end{aligned}
\] & 142:03:47.7 & 20:14:25:47.7 \\
\hline Insertion & 142:10:50.9 & 20:14:32:50.9 \\
\hline Coelliptic Sequence Initiation & 143:01:51.0 & 20:15:23:51.0 \\
\hline \(\Delta T=41.1 \quad \Delta V=45\) & 143:02:32.1 & 20:15:24:32.1 \\
\hline Constant Differential Height & 144:00:02.6 & 20:16:22:02.6 \\
\hline \(\Delta T=13 \quad \angle V=13.8\) & 144:00:15.6 & 20:16:22:15.6 \\
\hline Terminal Phase Initiation & 144:36:26. & 20:16:58:26. \\
\hline \(\Delta T=26 \quad \Delta V=29\) & 144:36:52. & 20:16:58:52. \\
\hline Lunar Docking & 145:36:20.2 & 20:17:58:20.2 \\
\hline Lunar Module Jettison & 147:59:31.6 & 20:20:21:31.6 \\
\hline
\end{tabular}

TABLE 5.1. APOLLO MISSION 12 SEQUENCE OF EVENTS (Con't \(^{\prime}\))
\begin{tabular}{|c|c|c|}
\hline & GET (h:m:s) & GMT (d:h:m:s) \\
\hline CSM Separation & 148:04:30.9 & 20:20:26:30.9 \\
\hline \(\Delta T=5.4 \quad \Delta V=1.0\) & 148:04:36.3 & 20:20:26:36.3 \\
\hline Lunar Module Deorbit & 149:28:14.8 & 20:21:50:14.8 \\
\hline \(\Delta T=82.1 \quad \Delta V=196.2\) & 149:29:36.9 & 20:21:51:36.9 \\
\hline Lunar Module Impact & 149:55:16.4 & 20:22:17:16.4 \\
\hline CSM Plane Change \#2 & 159:04:45.5 & 21:07:26:45.5 \\
\hline \(\Delta T=19.3 \quad \Delta V=382\) & 159:05:04.8 & 21:07:27:04.8 \\
\hline Transearth Injection & 172:27:16.8 & 21:20:49:15.8 \\
\hline \(\Delta T=130.3 \quad \Delta V=3042\) & 172:29:27.1 & 21:20:51:27.1 \\
\hline Midcourse Correction \#2 & 188:27:15.8 & 22:12:49:15.8 \\
\hline \(\Delta \mathrm{T}=4.4 \quad \Delta \mathrm{~V}=2.0\) & 188:27:20.2 & 22:12:49:20.2 \\
\hline Midcourse Correction \#3 & 241:21:59.7 & 24:17:43:59.7 \\
\hline \(\Delta \mathrm{T}=5.7 \quad \Delta \mathrm{~V}=2.4\) & 241:22:05.4 & 24:17:44:05.4 \\
\hline CM/SM Separation & 244:07:20.1 & 24:20:29:20.1 \\
\hline Entry Interface & 244:22:19.1 & 24:20:44:19.1 \\
\hline
\end{tabular}

\footnotetext{
\(\Delta T\) burn duration in seconds
\(\Delta V\) velocity change in feet per second
}
Table 5.2 DESCENT AND RENDEZVOUS MANEUVER SUMMARY FOR APOLLO 12
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{\text { ® }}{\sim}\) & \(\stackrel{8}{2}\) & \(\stackrel{\text { ® }}{\sim}\) & \(\stackrel{\sim}{\sim}\) & \({ }^{\circ}\) & \(\stackrel{\text { ® }}{\sim}\) & \(\stackrel{\circ}{2}\) \\
\hline & & \[
\begin{aligned}
& o \\
& \infty \\
& 0 \\
& \ddot{\sim} \\
& \ddot{\sim} \\
& \ddot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \vec{n} \\
& \ddot{\ddot{n}} \\
& \ddot{\ddot{~}} \\
& \ddot{ت}
\end{aligned}
\] & \(\dot{9}\)
\(\dot{n}\)
\(\ddot{0}\)
\(\ddot{ت}\)
\(\underset{\sim}{-}\) & & \[
\begin{aligned}
& \dot{0} \\
& \underset{\sim}{g} \\
& \ddot{g} \\
& \dot{寸}
\end{aligned}
\] & \[
\begin{aligned}
& \tilde{N} \\
& \ddot{\sim} \\
& \ddot{\sim} \\
& \underset{\sim}{寸}
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \infty \\
& \stackrel{\infty}{\dot{~}} \\
& \ddot{\sim} \\
& \ddot{\sim} \\
& \ddot{\infty} \\
& \underset{-}{\circ}
\end{aligned}
\] & & & \[
\begin{aligned}
& \underset{\sim}{\sim} \\
& \ddot{\tilde{\sigma}} \\
& \ddot{\sim} \\
& \underset{\sim}{J}
\end{aligned}
\] & \[
\begin{aligned}
& \ddot{n} \\
& \ddot{-} \\
& \ddot{ت} \\
& \ddot{\sim}
\end{aligned}
\] & & \[
\begin{aligned}
& \stackrel{0}{\dddot{~}} \\
& \ddot{\sim} \\
& \underset{\sim}{寸} \\
& \underset{\sim}{\prime}
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \tilde{\sim} \\
& \sum_{0}^{2} \\
& \sum_{i N O}^{\prime}
\end{aligned}
\] & \[
\stackrel{\text { N }}{\underset{\sim}{n}}
\] & & & \[
\begin{aligned}
& \text { n } \\
& \underset{\sim}{\mathbb{Z}} \\
& \sum_{i}
\end{aligned}
\] & \(\sum_{3}^{\substack{0 \\ \sim}}\) & 式 \\
\hline \[
\begin{aligned}
& \text { H } \\
& \stackrel{\rightharpoonup}{u} \\
& \stackrel{\rightharpoonup}{u} \\
& \stackrel{\tilde{\omega}}{2}
\end{aligned}
\] & & & & & W & 픙 & 总 \\
\hline
\end{tabular}

to utilize the RTCC state vectors again for generation of the Apollo 12 preliminary NAT (NASA Apollo Trajectory) and to limit Apollo 12 postflight trajectory reconstruction to the descent and rendezvous phases of the lunar mission. The bulk of the postflight analysis effort was then concentrated on reconstruction of the two periods of flight from LM/CSM undocking to LM touchdown (descent phase) and from LM ascent to LM/CSM docking (rendezvous phase), along with the LM trajectory from deorbit to lunar impact.

The final NAT was produced by updating the preliminary NAT to include reconstructions of critical maneuvers for which telemetered acceleration data was available and to reflect the results of the trajectory reconstruction efforts performed on the descent and rendezvous periods of the mission. These reconstructions will be discussed in detail in Section 5.3.

The mission was essentially nominal and the analysis was carried out in accordance with the postflight analysis plan. Data quality was satisfactory, and no special difficulties were encountered in the trajectory reconstruction.
Table 5.3 PRELIMINARY NAT CSM SEGMENT 1 - POST TLI TO LUNAR SOI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|c}
\text { RTCC } \\
\text { Vector ID }
\end{array}
\] & \multicolumn{2}{|l|}{Propagation Interval Hr:Min:Sec (GET)} & \[
\begin{gathered}
\delta R \\
(\mathrm{ft})
\end{gathered}
\] & \[
\begin{gathered}
\delta V \\
(\mathrm{ft} / \mathrm{sec})
\end{gathered}
\] & Comments \\
\hline HSRC 001 & 02:53:00 & 04:03:00 & & & Post TLI to Ejection \\
\hline BDAX 074 & 04:13:00 & 11:31:00 & & & Ejection to Water Dump \\
\hline MILX 163 & 11:38:00 & 30:48:00 & 056 & .5** & Water Dump to MCC2 \\
\hline HSKX 236 & 30:52:52.5 & 42:18:00 & ,928 & & MCC2 to 42:18 \\
\hline BDAX 326 & 42:20:00 & 68:28:00 & 20.419 & & 42:20 to Lunar SOI \\
\hline & & & 21,766 & 0.2*** & \\
\hline
\end{tabular}
*The HSRC 001 segment is of low quality because HSRC 001 was a TLI cutoff vector which preceeded approximately 10 minutes of unmodeled S-IVB venting. Unmodeled T\&D and
\(* * \Delta V\) due to the water dump is not modeled.
***Comparison is made with the first propagation interval of the 'CSM Segment 2' BET.

\subsection*{5.2 PRELIMINARY NAT}

The CSM preliminary NAT was generated in four segments; the Command Module (CM) preliminary entry NAT in one segment; and the LM preliminary NAT in three BET segments. Each individual segment will be discussed in later sections.

Best Estimated Trajectory (BET) ephemerides for the CSM and LM vehicles were generated from the best RTCC trajectories determined during the mission (RTCC anchor vectors). A preliminary NAT for each vehicle was then formed by propagating and transforming these BET's into several standard Apollo coordinate systems. The LM preliminary NAT was augmented by the inclusion of the lunar powered descent and ascent trajectories which were reconstructed in near real time, and also by the deorbit to lunar impact trajectory.

The various preliminary NAT BET deliverables were generated in the form of magnetic tapes and listings (hard copy and 16 mm film) according to prescribed delivery schedules.

\subsection*{5.2.1 CSM Segment 1-TLI Burn Cutoff to Lunar SOI}

The "CSM Segment 1" free flight BET for the period from TLI burn cutoff to lunar SOI (sphere of influence) was generated from five selected RTCC state vectors which were propagated at 10 -minute intervals. A summary of the five trajectory intervals is given in Table 5.3. As a check on the consistency of the segments, the RSS position and velocity differences (\(\delta \mathrm{R}, \delta \mathrm{V}\)) were computed at a common epoch for successive trajectory segments. Unless otherwise noted, \(\delta V\) has been corrected for known thrust velocity increments.

\subsection*{5.2.2 CSM Segment 2-Lunar SOI to LOPC-1}

The "CSM Segment 2" free flight BET for the period from lunar SOI to lunar orbit plane change-1 (LOPC-1) was generated from 19 selected RTCC state vectors. The state vectors were propagated at 1 -minute intervals in lunar orbit and at 10 -minute intervals during the translunar coast prior to LOI-1. As an indicator of the consistency of the 19 trajectory segments, the RSS position and velocity differences (\(\delta R\) and \(\delta V\) (corrected for thrust velocity across burns)) are computed at a common epoch for successive segments. The 19 free flight intervals are defined in Table 5.4.
NOTE: The selenographic orbit inclination in this segment (data word No. 56) was improperly coded in the NAT program and should be ignored.
Table 5.4 PRELIMINARY NAT CSM SEGMENT 2 - LUNAR SOI TO LOPC-1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RTCC } \\
\text { Vector ID }
\end{gathered}
\] & Propaga
Hr:Mi
Start & \[
\begin{aligned}
& \text { aterval } \\
& \text { (GET) } \\
& \quad \text { Stop }
\end{aligned}
\] & \[
\begin{gathered}
\delta R \\
(f t)
\end{gathered}
\] & \[
\begin{gathered}
\delta V \\
(\mathrm{ft} / \mathrm{sec})
\end{gathered}
\] & Comments \\
\hline MILX 473 & 68:51:00 & 83:25:22.7* & & & Lunar SOI to LOI-1 \\
\hline HSKX 497 & 83:31:14.7 & 85:34:00 & & & Rev 1 \\
\hline GWMX 504 & 85:35:00 & 87:48:47.4** & 892 & 1.6 & Rev 2 \\
\hline HAWX 519 & 87:49:04.4 & 89:39:00 & 3017 & 1.0 & Rev 3 \\
\hline HSKX 524 & 89:40:00 & 91:39:00 & 1773 & 1.8 & Rev 4 \\
\hline HSKX 530 & 91:40:00 & 93:39:00 & 2146 & 1.7 & Rev 5 \\
\hline HSKX 530 & 93.40.00 & 95:34:00 & 4906 & 9.1 & Rev 6 \\
\hline NBEX 541 & 93.40 .00 & & 3366 & 5.0 & \\
\hline ACNX 550 & 95:35:00 & 97:34:00 & & & Rev 7 \\
\hline BDAX 556 & 97:35:00 & 99:34:00 & 3701 & 2.9 & Rev 8 \\
\hline CYIX 564 & 99:35:00 & 101:29:00 & 4087 & 3.3 & Rev 9 \\
\hline GDSX 575 & 101:30:00 & 103:29:00 & 4198 & 3.8 & Rev 10 \\
\hline GDSX 586 & 103:30:00 & 105:24:00 & 2763 & 6.9 & Rev 11 \\
\hline HAWX 595 & 105:25:00 & 107:24:00 & 8494 & 3.0 & Rev 12 \\
\hline NBEX 12 & 107:25:00 & 108:23:00 & 4750 & 4.4 & Rev 13 to Sep. \\
\hline CROX 609 & 108:24:00 & 111:19:00 & 2326 & 2.3 & Sep. Rev 13 through Rev 14 \\
\hline CROX 614 & 111:20:00 & 113:19:00 & 2886 & 4.3 & Rev 15 \\
\hline CROX 618 & 113:20:00 & 115:19:00 & 3269 & 4.0 & Rev 16 \\
\hline CROX 621 & 115:20:00 & 116:45:00 & 5534 & 6.0 & Rev 17 (short) \\
\hline HSKX 624 & 116:46:00 & 119:47:12.5 & 7086 & 3.3 & Rev 18 to LOPC-1 \\
\hline & & & 6617 & 1.1 & \\
\hline
\end{tabular}

\footnotetext{
*LOI-1 ignition (ignore BET time points between ignition and cutoff)
**LOI-2 ignition (ignore BET time points between ignition and cutoff)
}

\subsection*{5.2.3 CSM Segment 3 - LOPC-1 to Lunar SOI}

The "CSM Segment 3" free flight BET for the period from LOPC-1 to lunar SOI was generated from 27 selected RTCC state vectors which were propagated at 1 -minute intervals in lunar orbit and at 10 -minute intervals during the transearth coast. As a check on the consistency of these vectors, the RSS position and velocity differences (\(\delta R, \delta V\)) were computed at a common epoch for successive trajectory segments.

The 27 propagation intervals are summarized in Table 5.5.

\subsection*{5.2.4 CSM Segment 4- Lunar SOI to Entry Interface}

The "CSM Segment 4 " free flight BET for the period from lunar SOI to entry interface was generated from seven selected RTCC state vectors which were propagated at 10 -minute intervals. A summary of the seven trajectory propagation intervals is given in Table 5.6. As a consistency check, the RSS position and velocity differences (\(\delta\) R, \(\delta V\)) are computed at a common epoch for successive segments. Only the \(\triangle V\) for MCC 2 and MCC 3 are accounted for. The segments do not match as well as in the translunar phase because of unmodeled thrust incurred during numerous attitude maneuvers, water dump, fuel cell purge, and CM/SM separation.

The GWMS 147 vector yields an entry interface (Geodetic Altitude = \(400,000 \mathrm{ft}\)) time of \(244: 22: 19.09 \mathrm{GET}\). Selected trajectory parameters at entry interface are as follows:
\begin{tabular}{lrl}
Inertial velocity & 36116.618 & \(\mathrm{ft} / \mathrm{sec}\) \\
Inertial flight path angle & -6.4834 & deg \\
Inertial heading & 98.1699 & deg \\
Geodetic latitude & -13.7947 & deg \\
Geodetic longitude & 173.5279 & deg
\end{tabular}

\subsection*{5.2.5 CM Segment 1 - Preliminary Entry}

The "CM Segment 1 " preliminary entry BET was reconstructed at 2-second intervals from PIPA acceleration data, using the GWMX 164 state vector (determined by RTCC) for initial conditions. The GWMX 164 vector was propagated to \(244: 22: 25.59\) GET to initialize the BET. The initial state in ECI (mean of NBY) coordinates at this time is:
\[
\begin{array}{rlrl}
X & =20,431,408.8 \mathrm{ft} & \dot{X} & =10,403.059 \mathrm{ft} / \mathrm{sec} \\
Y & =-3,193,006.5 & \dot{Y} & =-34,386.006 \\
Z=-5,077,174.6 & \dot{Z} & =-3,937.787 \\
\text { Geodetic Altitude } & =371,820.4 \mathrm{ft} \\
5-10 &
\end{array}
\]

Table 5.5 PRELIMINARY NAT CSM SEGMENT 3 - LOPC-1 TO LUNAR SOI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RTCC } \\
& \text { Vector ID }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Propagat } \\
& \text { Hr:Min } \\
& \text { Start }
\end{aligned}
\] & \begin{tabular}{l}
erval \\
GT) \\
Stop
\end{tabular} & \[
\begin{gathered}
\delta R \\
(f t)
\end{gathered}
\] & \[
\begin{gathered}
\delta V \\
(\mathrm{ft} / \mathrm{sec})
\end{gathered}
\] & Comments \\
\hline ACNX 634 & 119:47:30.7 & 121:14:00 & 3571 & 3.4 & LOPC-1 through Rev 19 \\
\hline ACNX 637 & 121:15:00 & 123:14:00 & 1949 & 4.2 & Rev 20 \\
\hline MILX 641 & 123:15:00 & 125:09:00 & 2612 & 1.8 & Rev 21 \\
\hline MILX 644 & 125:10:00 & 127:09:00 & 3399 & 1.8 & Rev 22 \\
\hline GDSX 650 & 127: 10:00 & 129:09:00 & & & Rev 23 \\
\hline HAWX 654 & 129:10:00 & 131:04:00 & 3590 & 5.3 & Rev 24 \\
\hline HAWX 659 & 131:05:00 & 133:04:00 & 2816 & 2.0 & Rev 25 \\
\hline HSKX 663 & 133:05:00 & 134:59:00 & 2838 & 2.4 & Rev 26 \\
\hline CROX 668 & 135:00:00 & 136:59:00 & 2982 & 2.6 & Rev 27 \\
\hline HAWX 672 & 137:00:00 & 138:59:00 & 2593 & 4.2 & Rev 28 \\
\hline HSKX 678 & 139:00:00 & 140:54:00 & 3579 & 3.8 & Rev 29 \\
\hline CROX 680 & 140:55:00 & 142:54:00 & 1731 & & Rev 30 \\
\hline ACNX 687 & 142:55:00 & 145:36:00 & 1765 & & Rev 31 to Dock \\
\hline MADX 700 & 145:37:00 & 148:49:00 & 6015 & 5.7 & Dock through Rev 33 \\
\hline MADX 702 & 148:50:00 & 150:49:00 & & & Rev 34 \\
\hline GDSX 712 & 150:50:00 & 152:44:00 & & & Rev 35 \\
\hline HAWX 719 & 152:45:00 & 154:44:00 & 2967 & 2.1 & Rev 36 \\
\hline ACNX 725 & 154:45:00 & 156:39:00 & 3813 & & Rev 37 \\
\hline GWMMX 731 & 156:40:00 & 159:04:44.8 & 3451 & & Rev 38 to LOPC-2 \\
\hline GWMX 747 & 159:05:04.0 & 160:39:00 & & & LOPC-2 through \\
\hline & & & 5686 & 6.3 & Rev 39 \\
\hline GDSX 764 & 160:40:00 & 162:34:00 & & & Rev 40 \\
\hline HAWX 771 & 162:35:00 & 164:34:00 & & & Rev 41 \\
\hline CROX 776 & 164:35:00 & 166:34:00 & & & Rev 42 \\
\hline RIDX 783 & 166:35:00 & 168:29:00 & & & Rev 43 \\
\hline ACNX 794 & 168:30:00 & 170:29:00 & 1834 & & Rev 44 \\
\hline BDAX 800 & 170:30:00 & 172:27:16.1 & 4538 & 5.4 & Rev 45 to TEI \\
\hline HSKX 866 & 172:29:26.1 & 186:28:00 & & & TEI to Lunar SOI \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline RTCC & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Propagation Interval } \\
\text { Hr:Min:Sec (GET) }
\end{gathered}
\]} & \(\delta \mathrm{R}\) & ¢V & \multirow[t]{2}{*}{Comments} \\
\hline Vector ID & Start & Stop & (ft) & (ft/sec) & \\
\hline HSKX 855 & 186:38:00 & 188:18:00 & & & Lunar SOI to MCC 5 \\
\hline HAWX 881 & 188:27:18.23 & 193:48:00 & 4832
62999 & 0.4
1.2 & P23 attitude maneuvers \\
\hline MADX 909 & 193:58:00 & 200:58:00 & 40980 & 1.1 & \[
\begin{aligned}
& \text { Urine dump } @ \approx \\
& 195: 45
\end{aligned}
\] \\
\hline HSKX 960 & 201:08:00 & 217:18:00 & & & P23 @ \(213: 00\) \\
\hline MADX 012 & 217:28:00 & 223:28:00 & 22023
39939 & 1.6
1.3 & Water dump \& fuel cell purge \(@ \approx\) 217:30 \\
\hline NBEX 127 & 223:38:00 & 241:21:47.5 & & & Nominal MCC 7 time \\
\hline GWMS 147 & 241:30:00 & 244:22:19.09 & 16838 & 1.4 & Post MCC 7 to Entry Interface \\
\hline
\end{tabular}

The IMU acceleration data has been corrected for a platform misalignment of 167.7 sec about the Y-axis. This is a "single error fit" which causes the altitudes at drogue deploy, main deploy, and splashdown to be near the nominally expected values and does not necessarily represent the accuracy of the pre-entry P52 alignment.

The coordinates of the spacecraft at drogue deployment are compared with the targeted values and the onboard navigated values, and they are as follows:

Drogue Deploy, 244:30:39.7 GET
Latitude (deg) Longitude (deg)
\begin{tabular}{lll}
BET & -15.831 & -165.168 \\
Target & -15.8125 & -165.1740 \\
Onboard Nav. & -15.836 & -165.171
\end{tabular}

Altitudes at drogue deploy, main deploy, and splashdown, and mean descent rate on the main chute are compared with the pre-mission nominal values in Table 5.7.

\subsection*{5.2.6 LM Segment I - Undock to PDI and Insertion to Impact}

The "LM Segment l" preliminary free flight BET, covering undock to PDI and insertion to lunar impact, was generated from seven selected RTCC state vectors which were propagated at one-minute intervals. As a check on the consistency of these vectors, the RSS velocity difference, \(\delta V\), is computed at a common epoch for successive trajectory segments. The seven trajectory segments are summarized in Table 5.8.

The early (real-time) estimate of the Ascent stage impact time was 149:55:15.76 GET. The selenographic coordinates of the MILX 279 vector at this time are:
\[
\text { LAT }=-3.9549 \mathrm{deg} \quad \text { LONG }=-21.1609 \mathrm{deg} \quad R=937.7784 \mathrm{~nm}
\]

Table 5.7 COMPARISON OF DROGUE DEPLOY, MAIN DEPLOY, and splashdown altitudes and the main chute mean descent rate with pre-mission nominal VALUES
\begin{tabular}{|l|c|c|}
\hline & BET & \begin{tabular}{c}
Pre-Mission \\
Nominal
\end{tabular} \\
\hline \begin{tabular}{l}
Drogue Deploy Altitude \\
\(244: 30: 39.7\)
\end{tabular} & \(23,735 \mathrm{ft}\) & \(23,300\left\{\begin{array}{l}+1600 \mathrm{ft} \\
-1600 \mathrm{ft} \\
\text { Main Deploy Altitude } \\
244: 31: 30.2\end{array}\right.\) \\
\begin{tabular}{l}
Splashdown - 27.4 sec, \\
Altitude 244:35:57.59* \\
Mean Descent Rate of \\
Main Chute
\end{tabular} & \(10,892 \mathrm{ft}\) & \(10,500\left\{\begin{array}{l}+1000 \mathrm{ft} \\
-1050 \mathrm{ft}\end{array}\right.\) \\
\hline
\end{tabular}
*The DSE ran out at this time - nominal altitude is based on nominal descent rate.
Table 5.8 PRELIMINARY NAT LM SEGMENT 1 -
\begin{tabular}{|c|c|c|c|c|}
\hline RTCC & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Propagation Interval
Hr:Min:Sec (GET)
Start}} & \[
\delta \mathrm{V}
\] & \multirow[t]{2}{*}{Comments} \\
\hline Vector ID & & & (ft/sec) & \\
\hline NBEX 128 & 107:45:00 & 109:23:39.4 & & Undock to DOI \\
\hline PIRX 159 & 109:24:08.4 & 110:20:37 & 4.6 & DOI to PDI \\
\hline GWMX 234 & 142:11:48 & 142:01:40.6 & \multirow[t]{3}{*}{6.8
0.4} & Insertion to CSI \\
\hline RIDX 245 & 143:02:31.7 & 144:00:01.5 & & CSI to CDH \\
\hline ACNX 256 & 144:00:14.0 & 144:36:29.4 & & CDH to TPI \\
\hline RIDX 273 & 147:29:00 & 149:24:00 & 6.0 & Jettison to Deorbi \\
\hline MILX 279 & 149:26:02.4 & 149:55:15.76 & 6.0 & Deorbit to Impact \\
\hline
\end{tabular}

\subsection*{5.2.7 LM Segment 2-Real Time Powered Descent}

The "LM Segment 2" Real Time LM Powered Descent BET was reconstructed at two-second intervals from LM IMU acceleration measurements transmitted through the MSFN communication network. Initial conditions prior to ullage were obtained from the best rev 14 trajectory determined by the RTCC.

The quality of the LGC downlink data was generally very good, in that only a few isolated dropouts occurred.

Altitudes above the lunar surface are computed with respect to the pre-flight estimate of the radius to Surveyor III. BET altitudes may be adjusted to the current best estimate of the LLS radius by subtracting 924 feet.

Indicated velocities relative to the lunar surface after landing are:
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}(\text { vertical }) \\
& =-0.321 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{y}}(\text { north }) \\
& =-3.070 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{z}}(\text { west })
\end{aligned}=1.500 \mathrm{ft} / \mathrm{sec}
\]

The most probable causes of the -3.070 feet per second error in North direction are platform X-axis misalignment and out-of-plane errors in the rev 14 orbit. Correction for these types of errors will move the landing point approximately 2000 - 3000 feet to the North. Correction of the small westward velocity error will move the landing point approximately 1000 feet to the East. The net result of these corrections is to move the BET close to the real-time best estimate of the landing site.

Estimates of LLS coordinates from several sources are shown in Table 5.9.

\subsection*{5.2.8 LM Segment 3-Real Time Ascent}

The "LM Segment 3" Real Time LM Ascent BET, at two-second intervals, was initialized at 142:03:23.78 GET (23.22 sec before ignition) using the current best estimate of LLS coordinates.
Table 5.9 PRELIMINARY ESTIMATES OF LLS COORDINATES
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline \[
\begin{aligned}
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \infty \\
& \underset{\sim}{N} \\
& \underset{\sim}{N} \\
& \underset{i}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\infty}{\vec{~}} \\
& \stackrel{\rightharpoonup}{\mathrm{~N}} \\
& \stackrel{1}{2}
\end{aligned}
\] & \[
\begin{gathered}
\underset{\sim}{J} \\
\underset{\sim}{\sim} \\
\underset{\sim}{\prime}
\end{gathered}
\] \\
\hline & \[
\begin{aligned}
& \underset{\sim}{\Psi} \\
& \mathbb{O} \\
& \dot{i}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \dot{1}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \dot{0}
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { H } \\
& \text { 品 }
\end{aligned}
\] & & \\
\hline
\end{tabular}
*wrt - with respect to
MLR - mean lunar radius

5-17
```

LAT = -3.036 deg LONG = -23.418 deg R = 937.3643 nm

```

The trajectory was terminated at 142:12:15.78 GET (approximately 26 seconds after conclusion of the trim maneuver). The total thrust velocity accumulated by the PGNCS (uncorrected) between 142:03:45.78 and 142:11:49.78 is given below in platform coordinates:
\(\Delta V_{x}=1326.776 \mathrm{ft} / \mathrm{sec} \quad \Delta V_{y}=-1.064 \mathrm{ft} / \mathrm{sec} \quad \Delta V_{z}=-5590.449 \mathrm{ft} / \mathrm{sec}\)
Selected orbit insertion parameters are listed below:
Perilune Altitude wrt LLS \(=8.867 \mathrm{~mm}\)
Apolune Altitude wrt LLS \(=47.52 \mathrm{~mm}\)
Selenographic Orbit Inclination \(=-14.568 \mathrm{deg}\)

\subsection*{5.3 FINAL NAT}

The final Nat was produced by updating the preliminary NAT to include reconstructions of critical maneuvers for which telemetered acceleration data was avallable and to reflect the results of the trajectory reconstruction efforts performed on the descent and rendezvous periods of the mission. These reconstructions will be discussed in detail later. Note that the preliminary NAT serves as the final NAT for those periods where no update was made.

\subsection*{5.3.1 CSM LOI-1 and TEI Burn Trajectory Reconstructions}

Postflight trajectory reconstruction of the LOI-1 and TEI burns were delivered to MSC on 13 December 1969. These trajectories were generated to satisfy the special request from North American Rockwell to the MPSO Postflight Trajectory Office, and were not generally distributed.

\subsection*{5.3.1.1 LOI-1 Burn}

For the pre-burn comparison, the RTCC vector (MILX 473) was propagated in the HOPE Program using the L potential model. The RTCC propagated vector, time tagged 18 November 1969, 03:47:23.40 GMT (83:25:23.40 GET), was compared to the BET vector which was reconstructed, using the HOPE Program, from MSFN data covering a time interval of 870 minutes starting at 17 November 1969, 13:00:00 GMT.

For the post-burn comparisons, the RTCC vector (HSKX 497) was propagated in the HOPE Program using the L1 potential model. The RTCC propagated vector, time tagged 18 November 1969, 03:53:19.40 GMT (83:31:19.40 GET), was compared to the BET vector which was reconstructed from PIPA acceleration data using the pre-burn BET vector for initial conditions.

Likewise, a rev 1 trajectory was reconstructed with the HOPE Program using MSFN data covering a time interval of 85 minutes starting at 18 November 1969, 04:06:00 GMT. This was compared to the BET vector shortly after burn cutoff.

The results of these comparisons are tabulated in Table 5.10.

\subsection*{5.3.1.2 TEI-Burn}

No pre-burn comparison was made.
For the post-burn comparison, the RTCC vector (HSKX 866) was propagated in the HOPE Program using the Ll potential model. The RTCC propa-
Table 5.10. LOI-1 and tei powered flight trajectories
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{Selenographic} & \multirow[t]{2}{*}{Altitude} & \multicolumn{3}{|l|}{Moon Inertial} & \multirow[t]{2}{*}{Inclination} & \multirow[t]{2}{*}{\begin{tabular}{l}
Right \\
Ascension Node
\end{tabular}} & \multirow[t]{2}{*}{Argument 'erigee} & \multicolumn{2}{|l|}{Radius} \\
\hline & Latitude & Longitude & & Path Angle & Heading & Velocity & & & & Apolune & Perilune \\
\hline & Deg & Deg & Ft & Deg & Deg & fps & jeg & Deg & Deg & \(\mathrm{N} . \mathrm{Mi}\). & N. Mi. \\
\hline PRE-LOI-1 & & & & & & & & & & & \\
\hline bet msfn fit & 5.7566 & 175.6237 & 502963.1 & -8.4476 & 229.3447 & 8173.587 & --------- & --------- & --------- & ---------- & 1002.2976 \\
\hline RTCC & 5.7438 & 175.6053 & 501438.0 & -8.4365 & 229.3475 & 8174.511 & --------- & --..-.-.-- & ----...... & --.-----.-- & 1002.1005 \\
\hline \(\triangle\) & +. 0128 & + . 0184 & + 1525.1 & -. 0111 & - . 0028 & - .924 & --------- & -.---.---- & --- & & + . 1971 \\
\hline POST LOI-1 & & & & & & & & & & & \\
\hline BET PIPA & -1.6900 & 153.8481 & 374824.8 & -. 5918 & 239.3104 & 5469.997 & 145.1314 & 163.6389 & 223.8094 & 1107.0664 & \\
\hline RTCC & -1.6702 & 153.8502 & \(\underline{375030.6}\) & -. 6203 & \(\underline{239.3549}\) & 5470.321 & 145.1770 & 163.6594 & 224.3505 & 1107.5601 & 999.0073 \\
\hline \(\triangle\) & - . 0198 & - . 0021 & - 205.8 & + . 0285 & - . 0445 & - .324 & - . 0456 & - . 0205 & - . 5411 & - .4937 & + . 0719 \\
\hline BET PIPA & -1.6900 & 153.8481 & 374824.8 & - . 5918 & 239.3104 & 5469.997 & 145.1314 & 163.6389 & 223.8094 & 1107.0664 & 999.0792 \\
\hline MSFN & \(\underline{-1.6803}\) & 153.8493 & 375122.2 & -. 6205 & 239.3416 & 5470.263 & 145.1612 & 163.6620 & 224.3606 & 1107.5635 & 999.0217 \\
\hline \(\stackrel{\Delta}{\square}\) & - . 0097 & - . 0012 & - 297.4 & +. 0287 & - . 0312 & - .266 & - . 0298 & - . 0231 & - . 5512 & - . 4971 & + . 0575 \\
\hline POST TEI & & & & & & & & & & & \\
\hline BET PIPA & 7.1977 & 176.4330 & 441203.7 & 5.6417 & 242.3095 & 8327.470 & --------- & & & & 1001.7405 \\
\hline RTCC & 7.1780 & 176.4092 & 439891.5 & 5.6630 & 242.2076 & 8328.854 & --..-.-.-. & --........ & & & 1001.4603 \\
\hline \(\triangle\) & +. 0197 & + .0238 & + 1312.2 & -. 0213 & + 1019 & - 1.384 & & & & & . 2802 \\
\hline
\end{tabular}
NOTE: All RTCC vectors referred to here are those used in generation of the Preliminary Free Flight BET. Landing Site Radius is \(937.3643 \mathrm{n} . \mathrm{mi}\).
gated vector, time tagged 21 November 1969, 20:52:30.86 GMT (172:52:30.86 GET) was compared to the BET vector which was reconstructed from PIPA acceleration data using the propagated RTCC vector (BDAX 800) for initial conditions. The results are tabulated in Table 5.10.

\subsection*{5.3.2 LM Powered Descent}

The "Final LM Powered Descent BET" update was delivered earlier than planned in response to requests for an improved surface relative trajectory during the visibility phase. The descent trajectory was initialized from the PIRX 159 vector determined by the RTCC and downrange/crossrange position errors are evident. Rev 14 trajectory determination subsequent to delivery of the BET improved the accuracy of the local solutions near PDI, causing the position errors at landing to decrease significantly. The relative trajectory, however, changed only slightly, and no further update to the BET was made.

The final version of the LM Powered Descent BET was initialized at 110:20:10.19 GET (2 seconds after Average G On). Initial conditions were taken from the PIRX 159 trajectory determined by the RTCC. The trajectory was reconstructed by integrating two-second IMU acceleration measurements with alignment corrections needed to satisfy the landing constraints.

\subsection*{5.3.2.1 IMU Corrections and Trajectory Constraints}

In order to satisfy the velocity constraint at landing, the following set of alignment errors were used:

\section*{Error}

PHIX (platform misalignment about X) PHIY (platform misalignment about Y) XZMSL (X PIPA misalignment toward 2) ZXMSL (Z PIPA misalignment toward \(X\))

\section*{Magnitude}
\[
157.2 \text { sec }
\]
-110.0 sec
-53.8 sec
-59.5 sec

The "Best Estimate" of the coordinates of the Lunar Landing Site is derived from rev 15 rendezvous radar tracking of the CSM and rev 16 SXT sightings on the LM. The LM Ascent BET and the postflight processing of lunar surface alignment (P57) data are in close agrement with the "Best Estimate".

The coordinates of the Lunar Landing Site indicated by the BET are compared to the "Best Estimate" as follows:
\begin{tabular}{llll}
\multicolumn{1}{c}{ Source } & Latitude & Longitude & \begin{tabular}{c}
Altitude \\
\multicolumn{1}{c}{} \\
Powered Descent BET
\end{tabular} \\
(With respect to MLR)
\end{tabular}

The unft error sensitivities of the state vector (in platform coordinates) at landing with respect to PHIX and PHIY (in sec) are as follows: Units are feet and feet per second.
\begin{tabular}{lcccccc}
& \(\frac{\Delta X_{\text {LLS }}}{}\) & \(\frac{\Delta Y_{\text {LLS }}}{}\) & \(\frac{\Delta Z_{\text {LLS }}}{-11.4}\) & \(\frac{\Delta \dot{\mathrm{X}}_{\text {LLS }}}{0}\) & \(\frac{\Delta \dot{Y}_{\text {LLS }}}{0}\) & \(\frac{\Delta \dot{Z}_{\text {LLS }}}{-0.025}\) \\
PHIX & 0 & & 0 & 0 \\
PHIY & 12.8 & 0 & 2.1 & 0.033 & 0 & 0.011
\end{tabular}

The unit error sensitivities of the state vector (platform coordinates) at landing with respect to the initial state (near PDI) are as follows: Units are feet and feet per second.
\begin{tabular}{ccccccc}
& \(\frac{\Delta X_{L L S}}{1.54}\) & \(\frac{\Delta Y_{\text {LLS }}}{0}\) & \(\frac{\Delta Z_{\text {LLS }}}{-0.09}\) & \(\frac{\Delta \dot{X}_{\text {LLS }}}{1.60}\) & \(\frac{\Delta \dot{\mathrm{Y}}_{\text {LLS }}}{}\) & \(\frac{\Delta \dot{Z}_{\text {LLS }}}{0}\) \\
\(\Delta X_{\text {PDI }}\) & 1.54 & 0 & 0 \\
\(\Delta Y_{\text {PDI }}\) & 0 & 0.75 & 0 & 0 & \(-0.63 \mathrm{E}-3\) & 0 \\
\(\Delta Z_{\text {PDI }}\) & -0.11 & 0 & 0.77 & 0 & 0 & \(-0.61 \mathrm{E}-3\) \\
\(\Delta \dot{X}_{\text {PDI }}\) & 885.1 & 0 & -11.5 & 1.57 & 0 & -0.02 \\
\(\Delta \dot{Y}_{\text {PDI }}\) & 0 & 686.7 & 0 & 0 & 0.75 & 0 \\
\(\Delta \dot{Z}_{\text {PDI }}\) & -12.9 & 0 & 688.3 & -0.03 & 0 & 0.75
\end{tabular}

The position error in the LLS indicated by the BET is thus seen to be within reasonably expected error bounds for the PIRX 159 trajectory at PDI.

Two-second PIPA counts in the vicinity of landing are shown in Figure 5-2. The impulse caused by impact is evident in the interval 110:32:36.19110:32:38.19 GET, indicating that the vehicle became stationary within this period. Altitude and descent rate from low gate to landing are shown in Figure 5-3, and the groundtrack is shown in Figure 5-4.

Figure 5-2. Two-Second PIPA Counts Near Landing Time
110：30：38．19 GET
 110：30：38． 19

\section*{110：31：08．19}

\section*{陆北}

䒼

110：31：38．19

\subsection*{5.3.2.2 Rev 14 Orbit Determination}

Subsequent to the delivery of the \(B E T\), landing radar and high speed doppler data have been included in the HOPE Program orbit determination. The results are believed to indicate an improved local solution near PDI for the following reasons: 1) lower high speed doppler residuals; 2) LLS coordinates are closer to the "Best Estimate". The results of this further analysis of the LM powered descent trajectory is presented in Section 5.4.

\subsection*{5.3.3 LM Ascent and Insertion to CSI Trajectories}

The postflight reconstruction of the LM trajectory from liftoff to CSI was delfvered to MSC on 13 January 1969. This iteration superceeds the earlier (real time) version described in Section 5.2.8.

\subsection*{5.3.3.1 Ascent Trajectory}

The powered flight trajectory (liftoff to orbit insertion) was reconstructed by integrating IMU acceleration data with corrections for known errors. The inftial conditions were taken from the best avallable estimate of the LLS coordinates.*
\[
\text { LAT }=-3.036 \text { deg } \quad \text { LONG }=-23.418 \mathrm{deg} \quad R=937.3643 \mathrm{~nm}
\]

The powered flight reconstruction begins at 142:03:23.78 GET (APS ignition is \(142: 03: 47.68\)) and ends at \(142: 11: 51.78\) (about 6 seconds after completion of RCS trim). Accumulated thrust velocities in platform coordinates (obtained from corrected IMU data) are as follows:
\begin{tabular}{|c|c|c|c|}
\hline GET & \[
\begin{gathered}
\Delta V_{X} \\
\mathrm{ft} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\Delta V_{\mathrm{Y}} \\
\mathrm{ft} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\Delta V_{Z} \\
\mathrm{ft} / \mathrm{sec} \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{142:03:47.78} \\
\hline (APS Ignition) & 0 & 0 & 0 \\
\hline \multicolumn{4}{|l|}{142:11:01.78} \\
\hline (APS Off) & 1306.53 & -5.66 & 5625.49 \\
\hline \multicolumn{4}{|l|}{142:11:51.78} \\
\hline (End RCS Trim) & 1313.12 & -4.48 & 5595.18 \\
\hline
\end{tabular}

\footnotetext{
*At the time of writing, the coordinates of the LLS were revised to LAT \(=-3.043 \mathrm{deg}, \operatorname{LONG}=-23.416 \mathrm{deg}, \mathrm{R}=937.365 \mathrm{~nm}\) (Reference 1).
}

IMU Errors: The following corrections were made to the telemetered IMU acceleration data:
\begin{tabular}{ll}
Accelerometer & \(B X=0.15 \mathrm{~cm} / \mathrm{sec}^{2}(153 \mu \mathrm{~g})\) \\
Bias & \(B Y=0.20 \mathrm{~cm} / \mathrm{sec}^{2}(204 \mu \mathrm{~g})\) \\
& \(B Z=-0.29 \mathrm{~cm} / \mathrm{sec}^{2}(-296 \mu \mathrm{~g})\) \\
Platform & PHIY \(=-21.6\) sec \\
Misalignment & PHIZ \(=-43.2 \stackrel{\mathrm{sec}}{ }\)
\end{tabular}

The PIPA bias changes are computed from free orbit data on rev 14 (prior to PDI) and rev 30 (after insertion). The bias change is believed to be a result of removing power to the IMU.

Platform misalignments prior to liftoff have been estimated from lunar surface alignment (P57) data (Reference 14). The values obtained are as follows:
\begin{tabular}{|c|c|c|}
\hline Misalignment Angle & Mean & RMS Uncertainty \\
\hline \(\phi_{\mathrm{X}}\) & -0.013 deg & 0.025 deg \\
\hline \(\phi_{Y}\) & -0.010 deg & 0.025 deg \\
\hline \(\phi_{Z}\) & -0.007 deg & 0.025 deg \\
\hline
\end{tabular}

The misalignments used in the BET were chosen so as to produce best agreement of insertion conditions with the free flight trajectory. They are well within the \(1 \sigma\) uncertainties of the P57 estimates.

\subsection*{5.3.3.2 Comparison of Insertion Conditions}

Comparison of the powered flight trajectory reconstruction and the free flight trajectory near orbit insertion is given in Table 5.11. The time of the comparison is 142:11:51.77 GET.

The inertial platform is aligned such that \(X=\) vertical, \(Y=\) crossrange, \(Z=\) downrange at liftoff. The sensitivities of the state vector at orbit insertion to the coordinates of the LLS are given in Table 5.12. All quantities are in feet and feet per second in platform coordinates.

It can be seen that the crossrange position difference will become insignificant if the LLS is moved approximately 1000 feet (. 01 deg) to the South. This is consistent with the revised estimates of the LLS coordinates.
Table 5.11 COMPARISON OF POWERED FLIGHT AND FREE FLIGHT
Table 5.11 TRAJECTORY CONDITIONS NEAR INSERTION (142:11:51.77 GET)
\begin{tabular}{|c|c|c|c|}
\hline Trajectory Parameter & Powered Flight Trajectory & Free Flight Trajectory & Delta
(Powered Flight-F.F.) \\
\hline X & 5604697.1 ft & 5604377.1 ft & 320 ft \\
\hline Platform Y & 736.1 ft & \(-293.3 \mathrm{ft}\) & 1029 ft \\
\hline Coordinates \(Z\) & 1317309.3 ft & 1316757.5 ft & 552 ft \\
\hline \(\mathrm{V}_{\mathrm{X}}\) & -1227.864 ft/sec & -1227.995 ft/sec & \(0.13 \mathrm{ft} / \mathrm{sec}\) \\
\hline \(\mathrm{V}_{\mathrm{Y}}\) & -1.051 ft/sec & -0.878 ft/sec & -0.17 ft/sec \\
\hline \(\mathrm{V}_{\mathrm{Z}}\) & \(5401.836 \mathrm{ft} / \mathrm{sec}\) & \(5403.272 \mathrm{ft} / \mathrm{sec}\) & -1.44 ft/sec \\
\hline Perilune Altitude (above LLS) & 8.9513 mm & 8.9183 nm & 199 ft \\
\hline Apolune Altitude (above LLS) & 50.9877 nm & 51.7589 mm & -4696 ft \\
\hline Selenographic Orbit Inclination & 165.4679 deg & 165.4698 deg & -. 0019 deg \\
\hline Inertial Flight Path & 0.4205 deg & 0.4179 deg & . 0026 deg \\
\hline \begin{tabular}{l}
Inertial \\
Heading
\end{tabular} & -55.3418 deg & -55.3403 deg & -. 0015 deg \\
\hline
\end{tabular}

Table 5.12 SENSITIVITIES OF THE STATE VECTOR AT ORBIT INSERTION TO THE COORDINATES OF THE LLS
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \(\Delta X_{\text {INS }}\) & \(\Delta Y_{\text {INS }}\) & \(\Delta Z_{\text {INS }}\) & \(\Delta \dot{\mathrm{X}}_{\text {INS }}\) & \(\Delta \dot{Y}_{\text {INS }}\) & \(\Delta \dot{Z}_{\text {INS }}\) \\
\hline\(\Delta X_{\text {LLS }}\) & 1.250 & 0 & 0.012 & 0.0010 & 0 & 0.0001 \\
\(\Delta Y_{\text {LLS }}\) & 0 & 0.882 & 0 & 0 & -0.0005 & 0 \\
\(\Delta Z_{\text {LLS }}\) & 0.010 & 0 & 0.883 & 0 & 0 & -0.0004 \\
\hline
\end{tabular}

Units are in \(f t\) and \(f t / s e c\)

\subsection*{5.3.3.3 Free Flight Trajectory Insertion to CSI}

The free flight LM trajectory from insertion to CSI was determined from 557 MSFN doppler observations, 22 SXT sightings, 14 VHF ranging observations, and 2 rendezvous radar marks. The converged residual statistics are summarized as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline Station & Type & No. Obs. & Mean & Sigma \\
\hline HSK & MSFN & 83 & . 070 cps & .477 cps \\
\hline GWM & MSFN & 195 & -. 027 cps & . 558 cps \\
\hline NBE & MSFN & 195 & -. 018 cps & .555 cps \\
\hline CRO & MSFN & 84 & . 044 cps & . 540 cps \\
\hline CSM & SXT Shaft & 22 & -. 002 deg & . 022 deg \\
\hline CSM & SXT Trunnion & 22 & -. 006 deg & . 007 deg \\
\hline CSM & VHF Ranging & 14 & -232. ft & 200. ft \\
\hline LM & RR Range & 2 & 323. ft & 13. ft \\
\hline LM & RR Range Rate & 2 & -. \(380 \mathrm{ft} / \mathrm{sec}\) & . \(157 \mathrm{ft} / \mathrm{sec}\) \\
\hline LM & RR Shaft & 2 & . 015 deg & .020 deg \\
\hline LM & RR Trunnion & 2 & -. 043 deg & .020 deg \\
\hline
\end{tabular}

Plots of the SXT and VHF ranging residuals are shown in Figures 5-5, 5-6, and 5-7.

The purpose of reconstructing the free flight trajectory is to obtain insertion conditions as accurately as possible. Since the bulk of the relative observations occur after rev 30 LOS, the MSFN data dominates the fit. This is reflected in the VHF range residuals which show a clearly defined trend. As a check on the quality of the onboard data, a fit was made without the MSFN. The residual statistics show substantial improvement:
\begin{tabular}{lcl}
Data Type & \(\underline{\text { Mean }}\) & Sigma \\
SXT Shaft & -.002 deg & .022 deg \\
SXT Trunnion & .0003 deg & .004 deg \\
VHF Range & -37.8 ft & 58.3 ft
\end{tabular}

The two trajectories agree very well just before LOS, since this region is included in both the MSFN and onboard data spans. Comparison of MCI state vectors (Relative - BET) at 142:25:00 GET yields:

(930) NOINNחYID

Figure 5-7. Converged VHF Ranging Residuals - Insertion to CSI
\[
\begin{array}{cccccc}
\frac{\Delta X}{-255} \mathrm{ft} & \frac{\Delta Y}{334} & \frac{\Delta Z}{202} & \frac{\Delta \dot{X}}{0.50} \frac{\Delta \dot{\mathrm{ft}}}{\mathrm{sec}} & -0.62 & \frac{\Delta \dot{Z}}{-0.39}
\end{array}
\]

\subsection*{5.3.4 LM Ascent Stage Impact Trajectory}

The postflight trajectory for the LM on rev 34 (including the impact burn) is the final version of the rev 34 LM trajectory and superceeds the preliminary version of 25 November 1969.

The rev 34 (deorbit) trajectory for the LM was reconstructed from MSFN doppler data from RID (Madrid, 2-way), MIL, ACN (100 observations pre-burn and 159 observations post-burn), 5 SXT shaft angles, 2 SXT trunnion angles, 7 VHF ranging points, and the thrust profile of the deorbit burn obtained from IMU accelerometer data.

The converged residual statistics for all of the observations used in the fit are as follows:
\begin{tabular}{cccccc}
No. OBS. & Station & & Type & Mean & \\
\cline { 1 - 1 } & & & Sigma \\
86 & RID & & MSFN & .348 cps & 1.404 cps \\
87 & MIL & & MSFN & .235 cps & 1.416 cps \\
86 & ACN & & MSFN & .342 cps & 1.356 cps \\
& & & & \\
5 & CSM & SXT Shaft & .001 deg & .019 deg \\
2 & CSM & SXT Trunnion & .033 deg & .128 deg \\
7 & CSM & VHF Range & -470 ft & 506 ft
\end{tabular}

The accumulated thrust velocities in IMU platform coordinates due to the deorbit burn are:
\[
\begin{aligned}
& \Delta \mathrm{V}_{\mathrm{X}}=-188.57 \mathrm{ft} / \mathrm{sec} \\
& \Delta \mathrm{~V}_{\mathrm{Y}}=54.15 \mathrm{ft} / \mathrm{sec} \\
& \Delta \mathrm{~V}_{\mathrm{Z}}=-6.21 \mathrm{ft} / \mathrm{sec}
\end{aligned}
\]

The time of impact is estimated to be 149:55:16.46 GET. The selenographic coordinates of the impact point are:
\[
\begin{aligned}
& \text { LATITUDE }=-3.944 \mathrm{deg} \\
& \text { LONGITUDE }=-21.196 \mathrm{deg} \\
& \text { RADIUS }=5697847 \mathrm{ft}
\end{aligned}
\]

Selenographic Orbit Inclination \(=-14.531 \mathrm{deg}\)
Relative Velocity Magnitude = \(5517.2 \mathrm{ft} / \mathrm{sec}\)
Relative Flight Path Angle \(=\quad 3.717 \mathrm{deg}\)

\subsection*{5.4 POWERED DESCENT TRAJECTORY ANALYSIS}

\subsection*{5.4.1 Rev. 14 Orbit Determination}

Attempts to reconstruct the Rev. 14 trajectory from lo-speed doppler data yielded results not significantly different from PIRX-159 which was used to generate the Final BET (Section 5.3.2). The option for including Landing Radar velocity data in the HOPE orbit determination became available during the Apollo XII postflight period. All available trajectory data sources have now been used to determine the LM trajectory from AOS to Landing. These data include:

MSFN Lo-Speed (6 sec): AOS to PDI MSFN Hi-Speed (compacted to 2 sec) : PDI to Landing Landing Radar Velocity

Thrust Acceleration Profile from LGC Telemetry.
The principal discrepancy in the Final BET is the large downrange position error at time of landing. ("Error". is defined as difference from the Best Estimate of the LLS.) As illustrated in Figure 5-8, the trajectory determination employing hi-speed doppler and landing radar reduces both the downrange and crossrange errors by about half. No further attempts were made to refine the crossrange error. Examination of the doppler residuals (2-way and 3-way) revealed a pattern similar to that of Figure 5-9. The time interval 110:04-110:13, containing the large "wiggle," is just the period in which the LM is passing over the Mare Nectaris. (The relative position of the LM during this period is listed in Appendix F.)

The nominal coordinates of the Mascon in the Mare Nectaris are: 15 deg S, 34 deg \(E, 100 \mathrm{~km}\) below MLR. The Mascon term with these coordinates was added to the L1 potential model. The size of the Mascon was varied in several trajectory fits in order to find the effects on: (a) the doppler residual pattern; and, (b) the state vector at PDI. These results are summarized in Figure 5-11.
(a) The peak-to-peak "wiggle" amplitude (i.e., the difference in the residuals at 110:10:09 and 110:06:57) was chosen as an indicator of the effectiveness of this fit technique.

Figure 5-8 LLS COORDINATES

5-36

Figure 5-9 TWO-WAY DOPPLER RESIDUALS IN THE
MARE NECTARIS REGION LM REV. 14
NO MASCON

Figure 5-11 EFFECT OF MASCON MAGNITUDE ON TRAJECTORY DETERMINATION

Figure 5-11

The amplitude is seen to decrease linearly with Mascon size over the range of values used. The best fit was achieved with a value of \(9 \mathrm{E}-6\) lunar mass units. The 2 -way doppler residuals from this fit are plotted in Figure 5-10.
(b) The only significant effect on the state vector at PDI is In the downrange position component. This quantity is seen to decrease 1inearly with Mascon size (Figure 5-11). The landing site resulting from the trajectory fit using a Mascon size of \(9 E-6\) is shown in Figure 5-8. The downrange position component is in very close agreement with the Best LLS Estimate. The IMU errors required to null the relative velocity at landing are:
\[
\begin{aligned}
& \text { PHIX }=85.9 \mathrm{sec} \\
& \text { PHIY }=-98.4 \mathrm{sec} \\
& \text { ZXMSL }=-40.7 \mathrm{sec} \\
& \text { XZMSL }=-30.0 \mathrm{sec}
\end{aligned}
\]

\subsection*{5.4.2 Analysis of Landing Radar Velocity Data}

The analysis of the landing radar velocity data consisted of inspection of residuals (difference between observed measurement and computed measurement) obtained from selected LM trajectories.

The landing radar data were obtained by processing the downlink telemetry data with a special purpose computer program which outputs onboard observations on punched cards in a HOPE-compatible format.

The HOPE Program was used to compute simulated landing radar observables from the LM trajectories and from auxiliary information such as REFSMAT, gimbal angles, and radar operating mode. The LM trajectories were generated by the HOPE Program utilizing telemetered acceleration data in the IGS burn option to model the descent burn. Residuals were then formed by subtracting the computed from the actual observable value.

The trajectory used as an independent reference to evaluate these data was obtained from the PIRX159 state vector and associated platform misalignment corrections published as the final A-50 NAT (Section 5.3). This state vector was obtained in the RTCC from lo-speed MSFN doppler data obtained from AOS (acquisition of signal) to PDI on rev. 14. The

(03S/LA) \({ }^{\boldsymbol{X}} \boldsymbol{\Lambda} \boldsymbol{\nabla}\)

Figure 5-13 LANDING RADAR Y-ANTENNA VELOCITY RESIDUALS

(03S/Ld) \({ }^{2} \Lambda\)

10:33:00

\section*{get (hr:min:Sec) \\ LANDING RADAR Z-ANTENNA VELOCITY RESIDUALS (NOMINAL ANTENNA ORIENTATION) \\ Figure 5-14}

TABLE 5.13 LANDING RADAR VELOCITY RESIDUAL STATISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{V}_{\mathrm{XA}}(\mathrm{fps})\) & \(V_{Y A}(f p s)\) & \(V_{Z A}(f p s)\) & \\
\hline Mean & 1.09 & -1.81 & 4.77 & \multirow{3}{*}{Nominal Antenna Orientation} \\
\hline St. Dev. & 3.04 & 11.52 & 6.36 \} & \\
\hline Noise & 3.13 & 11.32 & 5.22) & \\
\hline Mean & -1.74 & -1.81 & 1.11 & \multirow{3}{*}{\begin{tabular}{l}
Y-Antenna Axis \\
Misalignment Corrected
\end{tabular}} \\
\hline St. Dev. & 3.11 & 11.52 & 4.91 \} & \\
\hline Noise & 3.11 & 11.32 & 5.20) & \\
\hline
\end{tabular}

10:33:00
postflight reconstructions discussed in paragraph 5.4 .3 were obtained using hi-speed MSFN doppler and mode 2 landing radar observations.

Figures 5-12, 5-13 and 5-14 show the velocity residuals computed from the PIRX159 trajectory. Note that a few values fell outside the specification limits plotted. The \(V_{Y A}\) residuals are considerably more erratic than \(V_{X A}\) or \(V_{Z A}\). This can be seen in the residual plot as well as in the high standard deviation listed in Table 5.13. The noise estimates listed in Table 5.13 indicate that this erratic residual pattern in \(V_{Y A}\) (and to a lesser extent in \(\mathrm{V}_{\mathrm{ZA}}\)) is caused more probably by random noise than by a systematic measurement error.

Postflight analysis performed by other TRW tasks posed the possibility that the landing radar may have been misaligned by .2 degrees about the Y-antenna axis. When the nominal orientation figures are changed to reflect this misalignment, the residuals plotted in Figures 5-15 and 5-16 are produced. Notice that the \(V_{X A}\) and \(V_{Z A}\) mean values are significantly altered (Table 5.13). The resulting statistics are more desirable than those obtained with the nominal orientation values.

In conclusion, the landing radar velocity observation obtained from the Apollo 12 mission do not appear to be as good qualitatively as the Apollo 11 data (Reference 15). The residual statistics are significantly higher than corresponding Apollo 11 statistics, even when the apparent antenna misalignment is corrected.

\subsection*{5.4.3 Lunar Surface Altitude from LR Range}

Landing Radar range residuals were used to compute surface altitude along the ground-track of the pierce point. The results are plotted in Figure 5-12. The time tags on the data points are in the LGC clock time \((\) TLGC \(=\) GET \(-0.68 \mathrm{sec})\).

The ground-track of the range beam pierce point is plotted on Lunar Map ORB-I-7 in Figure 5-18. The time ticks correspond to the \(2-s e c\) range measurement times indicated in Figure 5-17 and the time tags are in min:sec after 110 hours LGC time. The small ellipses show the approximate size
of the range beam. The endpoint of the ground-track is located relative to the "Snowman" formation as shown in Reference 1 , and the ground-track is plotted relative to this point. A full listing of surface altitude relative to LLS, latitude and longitude of range beam pierce point, central angle from LLS, and time may be obtained from the Task A-50 Monitor. These data are based on the MASCON \(=9 E-6\) trajectory fit which yields the best absolute estimates of latitude and longitude. Note that these coordinates do not correspond to the grid markings on the ORB-I-7 map.

A very flat terrain over the final 2 deg. of the approach to the LLS is indicated by the contour map and verified by the Landing Radar data. The downill slope between the final 2-3 deg. of the approach is also indicated by the radar, but it is difficult to make any quantitative comparisons. A very rough terrain is indicated over the first 3 deg. after range beam lock-on. Unfortunately, no suitable contour maps of this region are currently available.

\section*{APPENDIX A}

\section*{SUPPLEMENTARY DATA}

Appendix A contains supplementary information which did not appear in the main body of the report. This information includes a summary of ground based and onboard data weights used in the HOPE Program, a summary of the components used in the Ll lunar potential model, and a summary of the USBS station locations.

Table A.I lists the data weights used in the HOPE Program for ground based radar data and Table A. 2 lists the data weights used in the HOPE Program for onboard data by type and observable.

Table A. 3 lists the terms of the L 1 potential model.
Table A. 4 lists the S-band tracking stations and their locations as used in the Apollo 12 postflight analysis. All locations are referenced to the Fischer Ellipsoid of 1960 . The surface refractivity for the month of November is also listed.
Table A. 1 ground based radar data weighting
\begin{tabular}{|l|l|l|}
\hline DATA TYPE & RADAR & WEIGHTING \\
\hline Range & USB: \begin{tabular}{l}
\(30-\mathrm{ft}\) antenna \\
\(85-\mathrm{ft}\) antenna
\end{tabular} & 600 ft. \\
Doppler (2-way) & USB: \begin{tabular}{l}
\(30-\mathrm{ft}\) antenna \\
\(85-\mathrm{ft}\) antenna
\end{tabular} & \(0.1 \mathrm{cyc} 1 \mathrm{e} / \mathrm{sec}\). \\
Doppler (3-way) & USB: \begin{tabular}{l}
\(30-\mathrm{ft}\) antenna \\
\(85-\mathrm{ft}\) antenna
\end{tabular} & \(0.1 \mathrm{cycle} / \mathrm{sec}\). \\
\hline
\end{tabular}
Tablea. 2 nominal onboard radar data weighting
\begin{tabular}{|c|c|}
\hline \(>^{N}\) & \(\because\) \\
\hline \(>^{*}\) & \(\because\) \\
\hline \(>^{x}\) & \(\because\) \\
\hline \[
\begin{aligned}
& \text { W } \\
& \text { N } \\
& \text { N } \\
& \text { W } \\
& \stackrel{4}{4}
\end{aligned}
\] & \(\sim\) \\
\hline \[
\begin{aligned}
& \text { W } \\
& \text { 岂 }
\end{aligned}
\] & \(\dot{\sim}\) \\
\hline \[
\begin{aligned}
& \text { zo } \\
& \stackrel{1}{z} \\
& \underset{\sim}{z} \\
& \underset{\sim}{2}
\end{aligned}
\] & - 2. \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Table A. 3 LI LUNAR POTENTIAL MODEL
\begin{tabular}{|c|c|}
\hline TERM & VALUE \\
\hline J2 & \(2.07108 \times 10^{-4}\) \\
J3 & \(-2.1 \times 10^{-5}\) \\
C22 & \(2.0716 \times 10^{-5}\) \\
C31 & \(3.4 \times 10^{-5}\) \\
C33 & \(2.583 \times 10^{-6}\) \\
& All other harmonics are zero \\
\hline
\end{tabular}
suoffejot uoffeas SaSn \(7^{\circ} \forall\) atqed
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Station & Antenna & Identification & \[
\begin{gathered}
\text { Latitude* } \\
\text { (deg) } \\
\hline
\end{gathered}
\] & Longitude* (deg) & \[
\begin{aligned}
& \text { Altitude* } \\
& \text { (ft) } \\
& \hline
\end{aligned}
\] & Surface
Refractivity \\
\hline Antigua & 30 ft & ANG & 17.01692 & 298.24715 & 141.08 & 372 \\
\hline Ascension & 30 ft & ACN & -7.95479 & 345.67287 & 1784.78 & 355 \\
\hline Bermuda & 30 ft & BDA & 32.35129 & 295.34182 & 68.90 & 345 \\
\hline Canary Island & 30 ft & CYI & 27.76454 & 344.36519 & 567.59 & 343 \\
\hline Honeysuckle Creek & 85 ft & HSK & -35.58349 & 148.97829 & 3755.25 & 300 \\
\hline Carnarvon & 30 ft & CRO & -24.90658 & 113.72546 & 65.62 & 329 \\
\hline Goldstone & 85 ft & GDS & 35.34159 & 243.12680 & 2976.05 & 276 \\
\hline Grand Bahama & 30 ft & GBM & 26.63286 & 281.76234 & 16.40 & 364 \\
\hline Guam & 30 ft & GWM & 13.31058 & 144.73692 & 301.84 & 375 \\
\hline Guaymas & 30 ft & GYM & 27.96321 & 249.27915 & 62.34 & 328 \\
\hline Hawali & 30 ft & HAW & 22.12631 & 200.33433 & 3776.25 & 304 \\
\hline Madrid & 85 ft & MAD & 40.45499 & 355.83201 & 2553.81 & 299 \\
\hline Merritt Island & 30 ft & MIL & 28.50827 & 279.30658 & 32.81 & 349 \\
\hline Texas & 30 ft & TEX & 27.65375 & 262.62153 & 32.81 & 336 \\
\hline Honeysuckle Creek Wing & 85 ft & NBE & -35.40099 & 148.98176 & 2196.85 & 300 \\
\hline Goldstone Wing & 85 ft & PIR & 35.38957 & 243.15103 & 3186.02 & 276 \\
\hline Madrid Wing & 85 ft & RID & 40.42829 & 355.75147 & 2527.56 & 299 \\
\hline
\end{tabular}

\section*{APPENDIX B}

ORBITAL PARAMETERS AT CERTAIN EVENT TIMES

Appendix \(B\) contains selected orbital parameters which were obtained by propagating RTCC state vector solutions or Task A-50 BET solutions to desired event times.

Table \(B . l\) contains conditions for the desired events which were within the earth's SOI (sphere of influence). Table B.l contains the following information: vector source, event, event time (GET), latitude, longitude, altitude, apogee, perigee, velocity, flight path angle, and heading angle. Apogee and perigee distances are referenced to the center of the earth.

Table B. 2 contains the same information as Table B.l with the exception that the desired events were within the lunar SOI. Altitude, apolune, and perilune distances are referenced to the Apollo 12 landing site radius (937.3643 N. Mi.).

The conditions at \(T_{C A}\) (time of closest approach to the moon) for a free-return circumlunar mission were obtained from an RTCC vector at 4 hours 13 minutes 09.96 seconds GET (TLI cutoff vector HSRCOOI propagated through approximately 10 minutes of venting) and are given below:
\begin{tabular}{ll}
TIME & 83 hours 42 minutes 05.51 seconds GET \\
LATITUDE & 25.33 S \\
LONGITUDE & 172.51 E \\
ALTITUDE & \(470.7 \mathrm{~N} . \mathrm{Mi}\). \\
APOLUNE & \(\mathrm{N} / \mathrm{A}\) \\
PERILUNE & \(470.7 \mathrm{~N} . \mathrm{Mi}\). \\
VELOCITY & 7172.3 FPS \\
FLIGHT PATH & 0.000 DEG \\
HEADING & -112.10 DEG
\end{tabular}

In Table B.l the listed values are referenced to an earth centered inertial (ECI), mean of nearest Besselian year coordinate system and in Table B. 2 the values are referenced to a selenocentric, mean of nearest Besselian year coordinate system.
Table B.I APOLLO 12 EARTH SOI ORBITAL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE & EVENT & \[
\begin{aligned}
& \text { TIMI } \\
& \text { GET }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LATITUDE } \\
& \text { DEG } N, S
\end{aligned}
\] & \[
\begin{aligned}
& \text { LONGITUDE } \\
& \text { DEG E,W }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ALTITUDE } \\
& \text { N.M. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { APO* } \\
& \text { N.M. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PER* } \\
& \text { N.M. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { VELOCITY } \\
& \text { FPS }
\end{aligned}
\] & FLIGHT PATH ANGLE DEG & \[
\begin{gathered}
\text { HEADING } \\
\text { ANGLE } \\
\text { DEG } \\
\hline
\end{gathered}
\] \\
\hline HSRCOOL & TLI C/O & 02:53:14 & 16.19N & 154.28w & 199.5 & 233313.5 & 3559.8 & 35390.1 & 8.603 & 63.90 \\
\hline HSRCOOL & S-IVB/CM SEP & 03:18:04.9 & 28.91N & 79.76W & 3820.1 & 228963.2 & 3559.9 & 24862.9 & 45.096 & 100.1; \\
\hline HSRCOO1 & First Docking & 03:26:53.3 & 26.70N & 71.01W & 5337.7 & 228894.9 & 3560.0 & 22535.1 & 49.896 & 105.29 \\
\hline BDAX074 & S/C Ejection & 04:13:00.9 & 13.59 N & 58.77 W & 12506.3 & 229584.5 & 3559.5 & 16451.1 & 60.941 & 114.52 \\
\hline MILX163 & MCCI ICN & 30:52:44.4 & 1.11S & 63.05 W & 116929.1 & 229852.2 & 3545.9 & 4317.4 & 75.833 & 120.80 \\
\hline HSKX2 36 & \(\mathrm{MCCl} \mathrm{C} / 0\) & 30:52:53.6 & 1.11 S & 63.09N & 116935.4 & 228278.0 & 3146.6 & 4297.5 & 76.597 & 120.05 \\
\hline HSKX866 & MCC2 IGN & 188:27:15.8 & 15.97N & 137.71E & 180031.2 & 286180.0 & 2712.3 & 3035.6 & -73.444 & 91.35 \\
\hline HAWX891 & MCC2 \(\mathrm{C} / 0\) & 188:27:20.2 & 15.97 N & 137.70E & 180029.0 & 286198.5 & 2731.8 & 3036.0 & -78.404 & 91.36 \\
\hline NBEX 127 & MCC3 IGN & 241:21:59.7 & 14.86 iV & 92.17E & 25059.0 & 276203.7 & 3469.1 & 12082.9 & -68.540 & 96.00 \\
\hline GWIS147 & McC3 \(\mathrm{C} / 0\) & 241:22:05.4 & 14.87 N & 92.15 E & 25048.3 & 275925.5 & 3465.5 & 12084.7 & -68.547 & 96.01 \\
\hline GKT1S 147 & CM/SM SEP & 244:07:20.1 & 0.32 N & 117.25 E & 1949.5 & 279020.0 & 3465.1 & 29029.1 & -36.454 & 105.92 \\
\hline GNMS147 & Entry Interface & 244:22:19.1 & 13.805 & 173.52E & 65.8 & 285902.1 & 3463.8 & 36116.2 & - 6.483 & 98.17 \\
\hline
\end{tabular}
* Referenced to earth center
Table B. 2 APOLLO 12 LUNAR SOI ORBITAL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE & EVEST & & \[
\begin{aligned}
& \text { LATITUDE } \\
& \text { DE } \mathrm{N}, \mathrm{~s}
\end{aligned}
\] & \[
\begin{aligned}
& \text { LONGITUDE } \\
& \text { DEG; } \mathrm{F}, \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ALTITUDEぇ } \\
& \text { ‥M. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { APO* } \\
& \text { N.M. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PER* } \\
& \text { N.M. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { VELOCITY } \\
& \text { FPS }
\end{aligned}
\] & FLIGHT PATH
ANGLE
DEG & HEADING ANGLE DEG \\
\hline BET & LOI-1 IGN & 83:25:23.4 & 5.76 N & 175.62E & 83.91 & & 64.94 & 8173.6 & -8.447 & -130.66 \\
\hline BET & LOI-1 C/O & 83:31:15.7 & 1.62 S & 154.03 E & 62.91 & 170.20 & 61.66 & 5470.1 & -0.630 & -120.70 \\
\hline GWMX 504 & LOI-2 IGN & 87:48:48.1 & 1.67 S & 151.67 E & 62.79 & 170.37 & 61.42 & 5470.6 & -0.662 & -120.72 \\
\hline HANs 519 & LOI-2 c/o & 87:49:05 & 1.88 S & 150.85 E & 62.74 & 66.10 & 54.59 & 5331.4 & 0.301 & -120.50 \\
\hline NBEX128 & Undocking & 107:54:02.3 & 13.52 S & 86.96 E & 63.02 & 63.08 & 56.91 & 5329.0 & -0.034 & - 92.75 \\
\hline NBEXI28 & CSM SEP ISIN & 108:24:36.8 & 6.61 S & 7.44W & 59.22 & 63.91 & 56.99 & 5350.0 & -0.177 & - 54.83 \\
\hline CROX609 & CSM SEP C/O & 108:24:51.2 & 6.45 S & 8.14W & 59.15 & 64.06 & 56.58 & 5350.5 & -0.204 & - 54.85 \\
\hline BET & DOI IGN & 109:23:39.9 & 6.64 N & 172.21 E & 60.52 & 63.27 & 57.25 & 5343.0 & 0.172 & -125.19 \\
\hline PIRX159 & DOI c/o & 109:24:08.9 & 6.29 N & 170.76 E & 61.52 & 61.53 & 8.70 & 5263.0 & -0.024 & -125.15 \\
\hline PIRX159 & PDI IGN & 110:20:38.1 & 6.76 S & 7.82 W & 7.96 & 62.30 & 1.96 & 5566.4 & -0.025 & - 54.86 \\
\hline HSKX624 & CSM LOPC-1 & 119:47:13.2 & 14.015 & 77.68 E & 62.20 & 62.50 & 57.61 & 5333.5 & -0.068 & - 90.73 \\
\hline BET & Insertion & 142:10:50.9 & 0.545 & 33.05w & 9.97 & 51.93 & 9.21 & 5542.5 & 0.336 & - 54.94 \\
\hline BET & CSI IGN & 143:01:51 & 5.16 N & 164.68 E & 51.46 & 52.51 & 9.94 & 5310.3 & 0.055 & -125.57 \\
\hline BET & CSI C/O & 143:02:32.1 & 4.65 N & 162.64 E & 51.48 & 51.49 & 41.76 & 5354.9 & 0.015 & -125.71 \\
\hline BET & TPI IGN & 144:36:26 & 14.57 N & 128.99W & 44.50 & 44.73 & 40.91 & 5382.5 & 0.052 & -102.07 \\
\hline MADX700 & Lunar Docking & 145:36:20.2 & 14.53 S & 46.98 E & 58.14 & 63.43 & 58.04 & 5357.1 & -0.040 & - 75.71 \\
\hline BET & CS: 1 SEP & 148:04:30.9 & 1.40 N & 43.34W & 59.94 & 64.66 & 59.08 & 5347.4 & 0.153 & - 55.81 \\
\hline BET & LY Deorbit IGN & 149:28:14.8 & 14.325 & 62.86 F & 57.62 & 63.52 & 57.94 & 5361.8 & -0.116 & - 87.63 \\
\hline BET & LM Deorbit C/O & 149:29:36.9 & 14.475 & 58.62 E & 57.42 & 57.59 & -63.15 & 5176.8 & -0.274 & - 84.10 \\
\hline BET & LM Lunar Impact & 149:53:16.4 & 3.955 & 21.20 W & 0.38 & 57.89 & -63.79 & 5502.6 & -3.728 & - 54.14 \\
\hline GIVMX731 & CSM LOPC-2 IGN & 159:04:45.5 & 6.655 & 110.34 F & 58.70 & 64.23 & 56.58 & 5353.2 & -0.196 & -118.68 \\
\hline Cunx 747 & CSM LOPC-2 C/O & 159:05:04.8 & 6.82 .5 & 109.40 F & 58.90 & 64.66 & 56.81 & 5353.0 & -0.199 & -114.18 \\
\hline BDAX800 & TEI IGN & 172:27:16.u & 8.73 N & 170.26 W & 64.60 & 66.00 & 55.68 & 5322.9 & -6. 202 & -115.73 \\
\hline HSKX866 & TEI (1) & 172:29:27.1 & 7.77N & 178.60w & 66.00 & & 64.10 & 8350.4 & 2.718 & -116.45 \\
\hline
\end{tabular}

\footnotetext{
\(\therefore \quad\) Referenced to landiner site radius \(1437.36 / 3 \mathrm{N}. \mathrm{\%}\).)
}

\section*{APPENDIX C}

APOLLO 12 RELATIVE TRAJECTORY LISTING

A HOPE listing of the trajectories for both the LM and the CSM during periods of separated free flight was delivered to the Task Monitor on 5 February 1970. The trajectories used in generating this print were obtained from the best avallable fits using all avallable data types.

Table C. 1 lists the trajectories by segment, the propagation interval, vector source, and RSS total position and velocity comparisons. The position and velocity deltas listed are comparisons between adjacent segments. Where a maneuver was performed between the segments, the \(\Delta V\) produced by that maneuver has been removed from the RSS velocity differences (DOI \(=72.4 \mathrm{ft} / \mathrm{sec}, \mathrm{CSI}=45 \mathrm{ft} / \mathrm{sec}\)). Note that all the comparisons are reasonable with the largest difference being between the CSM fits made on revs 13 and 14. This difference is partially attributable to the limited tracking coverage on rev 14 (see Figure 5-1, page 5-5). The residual statistics obtained from the CSM and LM trajectories are summarized in Tables C. 2 and C. 3.

\section*{CSM Trajectories}

Note that the rev 13 CSM trajectory was obtained from a fit using low speed MSFN data and using the IGS burn option in HOPE to model the separation burn. No explanation was readily apparent for the high MSFN residual statistics. Since the requirement for a NAT update did not exist and task requirements were more immediate, an in-depth analysis was not performed. It was felt, however, that the trajectory obtained still represented the best overall fit of the data. The rev 14 CSM trajectory was obtained from a free flight fit using low speed MSFN data.

The trajectories used for the CSM on revs 30 and 31 were those obtained in real time by the RTCC. The rev 30 trajectory was from as SS2 type fit (solution constrained to the input inclination). It was necessary to use this fit technique because of the extremely poor trackIng coverage (see Figure 5-1, page 5-5). The RTCC trajectories were used because no significant improvements were made in postflight fits (note the residual statistics in Table C.2).

\section*{LM Trajectories}

The LM trajectory for the undock to DOI period was of good quality due to the good MSFN tracking. Table C. 3 lists residual statistics obtained with the trajectory.

The trajectory from DOI to PDI was obtained from a fit which used CSM sextant, VHF ranging, high speed MSFN, and landing radar data. The fit also used telemetered accelerometer data to model the powered descent. The trajectory generated by this fit in the free flight segment (DOI to PDI) was considered the best available and, therefore, was chosen for the relative trajectory print. Although the relative trajectory extended only through free flight periods, the residual statistics listed in Table C. 3 were taken from the entire data arc and do include observations taken during powered descent. (This trajectory was not published as a BET.)

The trajectories used for the insertion to CSI and CSI to TPI segments used both onboard relative (CSM sextant, VHF ranging, LM rendezvous radar) and ground based MSFN tracking data. As was stated in Reference 2, the presence of MSFN data caused the relatively large residual statistics for the onboard data types (especially in the CSI to TPI period where the onboard and ground based data arcs are coincident). Statistics obtained from free flight fits using only onboard data are listed in Table C. 4 as a gross indication of data quality.

The insertion to CSI trajectory was obtained from a free flight fit and the CSI to TPI trajectory was obtained from a fit which modeled the

CDH maneuver with the HOPE IGS burn option. Since no tracking data were available after TPI, no trajectories after that point were included in the deliverab1e.

Note that the above-mentioned trajectories were not necessarily published as a BET. However, they represent the best trajectories obtained before Task A-50 was directed by MSC to de-emphasize rendezvous analysis.
table c. 1 RELATIVE TRAJECTORY SEGMENT SUMMARY

C-4

TABLE C. 2 CSM FIT RESIDUAL STATISTICS
\begin{tabular}{lccc}
& CSM Rev 13 Fit & & \\
Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline 2 way doppler (GDS) & 133 & -.0233 cps & 1.09 cps \\
Range (GDS) & 17 & -345.0 feet & 8.26 feet \\
3 way doppler (HAW) & 110 & -.0074 cps & 1.08 cps \\
3 way doppler (MIL) & 98 & -.0387 & 1.04
\end{tabular}

\section*{CSM Rev 14 Fit}
\begin{tabular}{|c|c|c|c|}
\hline Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline 2 way doppler (HSK) & 143 & . 0251 cps & . 560 cps \\
\hline 3 way doppler (GDS) & 142 & . 0056 & . 564 \\
\hline 3 way doppler (CRO) & 29 & . 1051 & . 259 \\
\hline
\end{tabular}

CSM Rev 30 (RTCC CROX 680)
\begin{tabular}{lccc}
Data Type (station) & Number of Obs. & & Mean \\
\begin{tabular}{lll}
2 way doppler (HSK) & 242 & .134 cps \\
3 way doppler (CRO) & 76 & .065
\end{tabular} & .415 cps \\
& & .186
\end{tabular}

CSM Rev 31 (RTCC ACNX 687)
\begin{tabular}{lccc}
Data Type (station) & Number of Obs. & & Mean
\end{tabular}\(\quad\)\begin{tabular}{l}
Std. Dev. \\
2 and 3 way doppler (HSK)
\end{tabular}

TABLE C. 3 LM FIT RESIDUAL STATISTICS
LM Undock to DOI (Rev 13)
\begin{tabular}{lccc}
Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
2 way doppler (PIR) & 116 & .001 cps & .616 cps \\
3 way doppler (BDA) & 115 & -.015 & .617 \\
3 way doppler (HAW) & 91 & .071 & .629 \\
3 way doppler (MIL) & 94 & -.005 & .622 \\
3 way doppler (NBE) & 43 & .088 & .376 \\
3 way doppler (GWM) & 45 & -.118 & .502
\end{tabular}

LM DOI to PDI (Rev 14 - DOI to Landing Fit)
\begin{tabular}{lccc}
Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline 2 way doppler (PIR) & 695 & .004 cps & .889 cps \\
3 way doppler (GWM) & 702 & -.047 & .862 \\
3 way doppler (NBE) & 695 & .043 & .854 \\
3 way doppler (MIL) & 288 & -.004 & .852 \\
3 way doppler (HAW) & 700 & -.014 & .855 \\
CSM sextant shaft & 3 & -.042 deg. & .062 deg. \\
CSM sextant trunnion & 3 & .443 & .035 \\
CSM VHF Ranging & 6 & 687. feet & 248. feet
\end{tabular}

LM Insertion to CSI (Rev 30)
\begin{tabular}{|c|c|c|c|}
\hline Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline 2 way doppler (HSK) & 83 & . 070 cps & .477 cps \\
\hline 3 way doppler (GWM) & 195 & -. 027 & . 558 \\
\hline 3 way doppler (NBE) & 195 & -. 018 & . 555 \\
\hline 3 way doppler (CRO) & 84 & . 044 & . 540 \\
\hline CSM sextant shaft & 22 & -. 002 deg . & . 022 deg \\
\hline CSM sextant trunnion & 22 & -. 006 & . 007 \\
\hline CSM VHF Ranging & 14 & -232. feet & 200. feet \\
\hline LM RR shaft & 2 & . 015 deg. & . 020 deg \\
\hline LM RR trunnion & 2 & -. 043 & . 020 \\
\hline LM RR range & 2 & 323. feet & 13. feet \\
\hline LM RR range rate & 2 & -. 380 fps . & . 157 fps \\
\hline
\end{tabular}

LM CSI to TPI (Rev 31)
\begin{tabular}{|c|c|c|c|}
\hline Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline 2 way doppler (RID) & 134 & -. 061 cps & . 950 cps \\
\hline 3 way doppler (NBE) & 64 & -. 641 & . 788 \\
\hline 3 way doppler (CRO) & 112 & -. 034 & . 914 \\
\hline 3 way doppler (GWM) & 76 & . 309 & . 845 \\
\hline 3 way doppler (ACN) & 20 & . 699 & . 377 \\
\hline CSM sextant shaft & 31 & -. 078 deg & . 095 deg \\
\hline CSM sextant trunnion & 31 & -. 040 & . 028 \\
\hline CSM VHF ranging & 32 & -277. feet & 63.2 feet \\
\hline LM RR shaft & 53 & .011 deg & . 026 deg \\
\hline LM RR trunnion & 53 & -. 120 & . 072 \\
\hline LM RR range & 53 & -122. feet & 97.6 feet \\
\hline LM \(R\) R range rate & 53 & -. 331 fps & . 285 fps \\
\hline
\end{tabular}

TABLE C. 4 ONBOARD DATA FREE FLIGHT FIT RESIDUAL STATISTICS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Insertion to CSI} \\
\hline)ata Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline JSM sextant shaft & 22 & -. 002 deg & . 022 deg \\
\hline CSM sextant trunnion & 22 & . 0003 & . 004 \\
\hline CSM VHF ranging & 14 & -37.8 feet & 53.3 feet \\
\hline LM RR shaft & 2 & .030 deg & . 019 deg \\
\hline LM RR trunnion & 2 & -. 041 & . 017 \\
\hline LM RR range & 2 & 251.7 feet & 8.81 feet \\
\hline LM RR range rate & 2 & -. 476 fps & . 227 fps \\
\hline
\end{tabular}

\section*{CSI to CDH}
\begin{tabular}{|c|c|c|c|}
\hline Data Type (station) & Number of Obs. & Mean & Std. Dev. \\
\hline CSM sextant shaft & 35 & -. 007 deg & . 034 deg \\
\hline CSM sextant trunnion & 35 & -. 007 & . 010 \\
\hline CSM VHF ranging & 34 & -25.2 feet & 177. feet \\
\hline LM RR shaft & 30 & . 050 deg & . 017 deg \\
\hline LM RR trunnion & 30 & -. 075 & . 051 \\
\hline LL RR range & 30 & 10.8 feet & 251. feet \\
\hline LM RR range rate & 30 & -.672 fps & . 390 fps \\
\hline
\end{tabular}

\section*{CDH to TPI}
\begin{tabular}{lc}
Data Type (station) & Number of Obs. \\
CSM sextant shaft & 8 \\
CSM sextant trunnion & 8 \\
CSM VHF ranging & 10 \\
LM RR shaft & 23 \\
LM RR trunnion & 23 \\
LM RR range & 23 \\
LM RR range rate & 23
\end{tabular}
\begin{tabular}{cc}
\(\frac{\text { Mean }}{.001} \mathrm{deg}\) & Std. Dev. \\
-.003 & .007 deg \\
-85.5 feet & 30.2 feet \\
.083 deg & .016 deg \\
-.082 & .028 \\
29.9 feet & 53.5 feet \\
-.434 fps & .292 fps
\end{tabular}

The LM rendezvous radar data that was used in the analysis are listed in the two card format of the HOPE orbit determination program. The first card specifies the vehicle taking the observation, the vehicle that is being observed, the time of the observation (year (mod 1900), month, day, hour, minute, and second (GMT)), three code numbers, shaft observable, trunnion observable, range observable, and range rate observable. The second card specifies the inner, middle, and outer gimbal angles. The units are feet, degrees, and seconds.

The CSM VHF ranging data are also listed in the same format. The card format differences are the following: 1) vehicle ID's are reversed, 2) code numbers are different, 3) range is the only observable, and 4) gimbal angles are not needed to process the ranging data.

The CSM sextant data are also listed. The card format is also similar to the rendezvous radar cards.
DOI TD POI
VEHI VEH2 YYMMUOHHMMSS.SSS XF SHAFT(UEG) TRUN(DEG) RANGE(FTI RRATE(FPS)
 \(\rightarrow N \rightarrow N-N\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{INS TO CSI} \\
\hline VEHI & VEH2 & VYMMISDHHMMSS.SSS XF & \begin{tabular}{l}
SHAFT(DEG) \\
INNER(UEG)
\end{tabular} & \begin{tabular}{l}
TRIJN(LEG) \\
MIDDLE(DEG)
\end{tabular} & RANGE(FT) OUTER(DEG) & RRATE(FPS) \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{691120144847.13011} & 358.7036 & 359.4177 & 1205892.8 & -347.8011 \\
\hline & & & 304.9036 & 16.7322 & . 0330 & 2 \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{691120145013.72711} & 359.0481 & 359.7363 & 1176552.2 & -331.4781 \\
\hline & & & 299.8169 & 2.3784 & . 0989 & 2 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145040.91462} & 359.066162 & 22.044077 & & \\
\hline & & & 62.8198242 & . 0983770 & 359.8242187 & 2 \\
\hline CSM & LEM & 691120145128.984114 & & & 1151849.203 & 1 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145042.95362} & 359.011230 & 22.016611 & & \\
\hline & & & 62.7429199 & . 0988770 & 359.7912598 & 2 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145127.68062} & 359.978027 & 21.934213 & & 1 \\
\hline & & & 60.3918457 & . 2307129 & . 5822754 & 2 \\
\hline CSM & LEM & 691120145227.437114 & & & 1133013.250 & 1 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145212.633 tc} & 359.673410 & 22.631845 & & 1 \\
\hline & & & 57.2387695 & . 3955078 & . 6042480 & 2 \\
\hline CSM & LEM & 691120145330.516114 & & & 1114724.141 & 1 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145345.87562} & \[
.087891
\] & 22.645578 & & 1 \\
\hline & & & \[
52.1411133
\] & . 7470703 & 1.3623047 & 2 \\
\hline CSM & LEM & 691120145458.312114 & & & 1089751.297 & 1 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145413.99462} & 359.615479 & 22.447824 & & 1 \\
\hline & & & 50.7897949 & .9008789 & 1.2524414 & 2 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145515.21962} & .451426 & 19.918222 & & 1 \\
\hline & & & 49.9658203 & . 5822754 & 1.1865234 & 2 \\
\hline CSM & LEM & 691120145610.414114 & & & 1070550.781 & 2 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145553.97762} & 1.153504 & 21.950693 & & 2 \\
\hline & & & 45.5273437 & . 5822754 & 1.7358398 & 2 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \(691120145 t 25.64862\) & . 780029 & 22.033090 & & 1 \\
\hline & & & 43.9672852 & .4443848 & 1. 36.23047 & 2 \\
\hline CSM & LEM & 691120145810.095114 & & & 1739137.260 & 1 \\
\hline CSM & LEM & 691120145721.77352 & .296631 & 23.605380 & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(C S M\) & LEM & 691120145918.023114 & 39.8913574 & .4064941 & \[
\begin{array}{r}
.9448242 \\
1025101.437
\end{array}
\] \\
\hline CSM & LEM & 69112015 C14.258114 & & & 1011916.266 \\
\hline CSM & LEM & 69112015120.703114 & & & 999399.469 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120145815.95662} & .285645 & 23.063059 & \\
\hline & & & 36.8371582 & . 3295898 & . 8129883 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{69112015} & 359.439697 & 22.590647 & \\
\hline & & & 26.8066406 & .5932617 & . 5163574 \\
\hline CSM & LEM & 69112015720.234114 & & & 940339.625 \\
\hline CSM & LEM & \(69112 C 15828.758114\) & & & 932622.961 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{IEM} & \multirow[t]{2}{*}{69112015} & 359.549561 & 23.499765 & \\
\hline & & & 2. 6654297 & 1.5820313 & 1. 9226074 \\
\hline CSM & LEM & \(6911201593 C .328114\) & & & \[
925756.945
\] \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{69112015} & 359.527588 & 23.508005 & \\
\hline & & & 1.9885254 & 1.5820313 & 1.9006348 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{69112215} & .878906 & 22.730722 & \\
\hline & & & 359.3627930 & 1.6259766 & 2.8234863 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{69112015} & \[
.714111
\] & \[
22.406626
\] & \\
\hline & & & \[
358.5717773
\] & \[
1.6259766
\] & 2.6477051 \\
\hline CSM & LEM & 691120151045.430114 & & & 918101.039 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120151723.08662} & \(.1 \cap 9863\) & 22.173166 & \\
\hline & & & 357.1755137 & 1.6259766 & \[
2.2302246
\] \\
\hline CSM & LEM & 691120151146.125114 & & & 912389.492 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120151048.98462} & \[
359.494629
\] & \[
22.442331
\] & \\
\hline & & & \[
355.4736328
\] & \[
1.6918945
\] & 1.9226074 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120151148.65662} & 359.143066 & 22.901010 & \\
\hline & & & 351.7272949 & 1.9226074 & 2.0214844 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120144736.45362} & . 043945 & 22.005625 & \\
\hline & & & 72.7734375 & 359.2419434 & 359.3078613 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120144744.87562} & 359.835205 & \[
21.957172
\] & \\
\hline & & & 72.3669434 & 359.2529297 & 359.1760254 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & 691120144831.25862 & 358.593750 & 22.222605 & \\
\hline & & & 69.6862793 & 359.4396973 & 359.62 .57090 \\
\hline
\end{tabular}
RRATE (FPS)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VEHL & VEH2 & YYMMUDHHMMSS.SSS & XF & \begin{tabular}{l}
SHAFT(DEG) \\
INNER(DEG)
\end{tabular} & \begin{tabular}{l}
TKUN(DEG) \\
MI ODLE(UEG)
\end{tabular} & RANGE(FT) OUTER(DEG) \\
\hline LEM & CSM & 691120154257.062 & 11 & \[
\begin{array}{r}
.1648 \\
130.8801
\end{array}
\] & \[
\begin{array}{r}
.7910 \\
357.1545
\end{array}
\] & \[
\begin{aligned}
& 797900.3 \\
& 359.1650
\end{aligned}
\] \\
\hline LEM & CSM & 691120154449.758 & 11 & 359.0332 & 359.4727 & 789270.7 \\
\hline & & & & 126.4197 & 358.4399 & . 5164 \\
\hline LEM & CSM & 691120154558.156 & 11 & . 2087 & . 5713 & 784017.9 \\
\hline & & & & 121.8823 & 357. 2754 & 359.3738 \\
\hline LEM & CSM & 69112015476.150 & 11 & . 2856 & . 8020 & 778465.0 \\
\hline & & & & 118.4436 & 358.0884 & 359.1211 \\
\hline LEM & CSM & 691120154813.977 & 11 & 359.8352 & . 0549 & 772837.0 \\
\hline & & & & 115.5542 & 358.1433 & 359.8792 \\
\hline LEM & CSM & 691120154921.914 & 11 & 359.8572 & 359.3079 & 767133.9 \\
\hline & & & & 112.2144 & 359.5386 & . 6152 \\
\hline LEM & CSM & 691120155139.508 & 11 & 359.1541 & 359.0112 & 754977.4 \\
\hline & & & & 106.1829 & 359.8242 & . 9009 \\
\hline LEM & CSM & 691120155243.75 & 11 & . 8789 & 359.2090 & 749124.3 \\
\hline & & & & 101.3049 & . 8130 & . 7031 \\
\hline LEM & CSM & 691120155350.523 & 11 & . 1208 & .3516 & 742821.0 \\
\hline & & & & 98.8220 & 1.5820 & 359.5386 \\
\hline LEM & CSM & 691120155459.148 & 11 & . 0769 & 359.3188 & 736292.5 \\
\hline & & & & 95.5042 & . 8130 & . 5603 \\
\hline LEM & CSM & 69112015567.109 & 11 & . 0220 & . 1208 & 729463.8 \\
\hline & & & & 92.2742 & 3.2410 & 359.7363 \\
\hline LEM & CSM & 691120155715.109 & 11 & 359.3958 & 359.4946 & 722710.2 \\
\hline & & & & 89.6045 & 4.4934 & . 3186 \\
\hline LEM & CSM & 691120155826.530 & 11 & 359.8572 & . 3296 & 715281.3 \\
\hline & & & & 85.6934 & 359.6265 & 359.5166 \\
\hline LEM & CSM & 691120155934.453 & 11 & 359.6375 & 359.4617 & 708002.4 \\
\hline & & & & 82.6172 & 1.3403 & - 3625 \\
\hline LEM & CSM & 69112016042.453 & 11 & 359.7253 & . 7581 & 700498.4 \\
\hline & & & & 79.2773 & 359.4177 & 359.0771 \\
\hline CSM & LEM & 691120152938.1551 & 114 & & & 853268.891 \\
\hline CSM & LEM & 69112015302.727 & 62 & . 560303 & 22.368173 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CSM & LEM & 691120153038.289114 & & & 849197.891 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{\(6911201530 \quad 6.680 \quad 62\)} & . 538330 & 22.403879 & \\
\hline & & & 294.6752930 & 359.4177246 & 359.2089844 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153039.11762} & . 351563 & 22.640085 & \\
\hline & & & 292.7966309 & 359.3957520 & 359.0551758 \\
\hline CSM & LEM & 691120153139.508114 & & & 845066.133 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153111.51662} & . 626221 & 21.439829 & \\
\hline & & & 292.3461914 & 359.1979980 & 358.9782715 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153136.09462} & . 417480 & 22.758188 & \\
\hline & & & 289.7973633 & 359.4067383 & 359.1320801 \\
\hline CSM & LEM & 691120153239.687114 & & & 841055.898 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{69112015325.75062} & 359.912109 & 22.749948 & \\
\hline & & & 288.3032227 & 359.4506836 & 358.8464355 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153244.72762} & . 582275 & 22.500009 & \\
\hline & & & 286.5893555 & 359.5385742 & 359.4396973 \\
\hline CSM & LEM & 691120153341.703114 & & & 836863.383 \\
\hline CSM & LEM & 691120153441.906114 & & & 832792.383 \\
\hline CSM & LEM & 691120153542.250114 & & & 828660.625 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153611.45362} & . 549316 & 22.392893 & \\
\hline & & & 276.3061523 & .1867676 & .3735352 \\
\hline CSM & LEM & 691120153643.727114 & & & 824468.102 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153613.40662} & .494385 & 22.368173 & \\
\hline & & & 276.2292480 & . 1867676 & . 3295898 \\
\hline CSM & LEM & 691120153745.219114 & & & 820154.062 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{6911201537 8،953 62} & 358.901367 & 21.920480 & \\
\hline & & & 273.9001465 & . 1538086 & 359.2639160 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153751.75862} & 359.692383 & 22.071543 & \\
\hline & & & 271.6040039 & -1977539 & 359.8352051 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120153821.65062} & 359.187012 & 22.129221 & \\
\hline & & & 270.0549316 & . 2087402 & 359.5275879 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120154226.48462} & . 032959 & 21.854563 & \\
\hline & & & 258.1237793 & 359.1979980 & 358.7475586 \\
\hline CSM & LEM & 691120154228.90662 & 359.978027 & 21.857309 & \\
\hline
\end{tabular}

629364.039
621282.805
\(\rightarrow \varepsilon L \bullet L S 9 G T 8\)
\(\downarrow\) リッフ9IIT8
\(028 \bullet ヶ 09908\)
\(6 I L \cdot G 26108\)
\(60 T^{\circ} \angle \downarrow 2 \angle 61\)
IIて・98を26L L9E•89LL8L
\(L 27^{\circ} L 0628 L\)
It9 \({ }^{\circ}\) ع 98 CSL \(L I 9^{\circ} \varepsilon \angle Z 8 \nleftarrow L\) \(569^{\circ}\) E68T \(\geqslant 1\) \(S 50^{\circ} 969 G E L\) \(081 * 65562 L\) とてO•Oヶてもてし \(8 \angle G^{\circ} 8 \varepsilon \angle 91 L\) \(L \nleftarrow G * O ヶ I 969\)
\(9 \varepsilon 8^{*} 88 \mathrm{IEOL}\)
\(980^{\bullet}\) • 66602 691120161023.766114 691120161124.219114 691120153848.539114

\[
\rightarrow 119 \varepsilon 8^{\circ} 5 \text { 8SGIOZII69 }
\]
\[
\rightarrow 1190 ヶ{ }^{\circ} L \text { LSSIORII } 69
\]
\[
ヶ I I ヶ 8 \vdash \bullet \mapsto \rightarrow ร \subseteq I O Z I I 69
\]
\[
\text { ャIIEZO USZSSIOZII } 69
\]
\[
\text { ヶII992*G ヶャรโO2II } 69
\]
\[
\mapsto 1 I \neg 65^{\circ} 2 \quad \varepsilon \mapsto 5 I O Z I I 69
\]
\[
\begin{aligned}
& \pm \\
& \underset{\sim}{1} \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& 0 \\
& \pm \\
& 0 \\
& \sim \\
& \sim \\
& a \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \pm \\
& \vec{a} \\
& 0 \\
& 0 \\
& 0 \\
& - \\
& a \\
& a \\
& 0 \\
& a \\
& 0 \\
& \vdots \\
& a \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{array}{ll}
x & x \\
j & y
\end{array}
\]
\[
\operatorname{CSM}
\]

CSM
CSM
CSM
CSM CSM CSM CSM 5 CSM CSM
\[
691120154159.312114
\]
\[
6911201545 \quad 5.953114
\]
\[
69112015468.094114
\]
\[
691120155358.336114
\]
\[
6911201555 \quad 2.383114
\] \(\underset{y}{2}\) \(\underset{3}{3}\) \(\underset{y}{\Sigma}\) \(\stackrel{5}{3}\) CSM CSM CSM
RRATE(FPS)
\(\rightarrow N \rightarrow N=N \rightarrow N \rightarrow N \rightarrow N \rightarrow N m N=\)
 IIIS・てャI\begin{tabular}{cc}
\(m\) & \(n\) \\
\(m\) & \(m\) \\
\(\infty\) & \(n\) \\
\(\infty\) & \(\vdots\) \\
\(\cdots\) & \multirow{1}{n}{} \\
\(\cdots\) & 1
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VEHI & VEH2 & YYMMUDHHMM S S.SSS & XF & \begin{tabular}{l}
SHAFT(DEG) \\
INNER(DEG)
\end{tabular} & \[
\begin{aligned}
& \text { TR UN (DEG) } \\
& \text { MIDDLE (DEG) }
\end{aligned}
\] & RANGE(FT) OUTER(DEG) \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120162813.687} & 62 & 359.637451 & 22.642832 & \\
\hline & & & & 125.0244141 & 3.1091309 & 4.9218750 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120162816.266} & 62 & 359.626465 & 22.653818 & \\
\hline & & & & \[
124.8915918
\] & \[
3.1420898
\] & 4.9658203 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{\(69112016283 \rightarrow .239\)} & 62 & 359.461670 & 22.741709 & \\
\hline & & & & 123.6730957 & 3.4497070 & 5.3063965 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{\(69112016292 n .258\)} & 62 & 359.846191 & 22.467050 & \\
\hline & & & & 121.9721875 & 3.7133789 & 5.8996582 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120163453.703} & 62 & \[
.834961
\] & 22.236337 & \\
\hline & & & & \[
106.7321777
\] & \[
2.5488281
\] & 4.8339844 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120163454.688} & 62 & .845947 & 22.247324 & \\
\hline & & & & 106.6662598 & 2.5378418 & 4.8339844 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120163658.812} & 62 & . 340576 & 22.291269 & \\
\hline & & & & 10C.9094238 & 2.4719238 & 4.4055176 \\
\hline \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{691120163726.227} & 62 & \[
.131836
\] & 22.093515 & \\
\hline & & & & 100.1293945 & 2.4938965 & 4.2626953 \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{691120162423.500} & 11 & 357.890625 & 359.055176 & 509371.520 \\
\hline & & & & 13.4912109 & 1.4062500 & . 5493164 \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{091120162525.055} & 11 & \[
359.439697
\] & . 527344 & \[
500591.836
\] \\
\hline & & & & \[
9.0087891
\] & 1.6040039 & \[
359.1210937
\] \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{091120162633.200} & 11 & 359.549561 & 359.780273 & 490911.680 \\
\hline & & & & 5.6089453 & \[
3.3018164
\] & \[
359.8571777
\] \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{691120162746.703} & 11 & 359.417725 & .186768 & 480481.117 \\
\hline & & & & 2.2851563 & 2.6806641 & 359.4506836 \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{691120162852.859} & 11 & \[
.3 C 7617
\] & \[
359.593506
\] & \[
471026.078
\] \\
\hline & & & & \[
358.2531738
\] & \[
1.1645508
\] & \[
.0659180
\] \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{6911201630} & 11 & \[
359.143066
\] & \[
359.318848
\] & \[
461495.996
\] \\
\hline & & & & \[
356.2426758
\] & \[
2.7795410
\] & \[
.2966309
\] \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{65112016318.758} & 11 & 359.846191 & . 164795 & 451815.836 \\
\hline & & & & 352.3205566 & 2.9015137 & 359.4836426 \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & \multirow[t]{2}{*}{691120163251.203} & 11 & \[
.274658
\] & 359.703369 & \[
437408.156
\] \\
\hline & & & & 347. 1800781 & 358.6267090 & \[
359.9340820
\] \\
\hline \multirow[t]{2}{*}{LEM} & \multirow[t]{2}{*}{CSM} & 691120163326.563 & 11 & 358.363037 & 359.516602 & 432380.477 \\
\hline & & & & 347.3327637 & 358.3300781 & . 1867670 \\
\hline
\end{tabular}


```

NmN=Nm

```
 345913.250
337588.973
329264.695
 \(\begin{array}{lll}\text { CSM } & \text { LEM } & 691120164348.023114 \\ \text { CSM } & \text { LEM } & 691120164449.297114 \\ \text { CSM } & \text { LEM } & 691120164550.555114\end{array}\)
LM DEORBIT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VEHI & VEHZ & YYMMODHHMMSS.SSS XF & \begin{tabular}{l}
SHAFT(DEG) \\
INNEK(UEG)
\end{tabular} & \[
\begin{aligned}
& \text { TRUN(DEG) } \\
& \text { MIDDLE (DEG) }
\end{aligned}
\] & \begin{tabular}{l}
RANGE(FT) \\
UUTER(DEG)
\end{tabular} & RRATE (FPS) \\
\hline CSM & LEM & 691129215126.367114 & & & 25094.357 & \\
\hline CSM & LEM & 691129215356.12114 & & & 53287.532227 & \\
\hline CSM & LEM & \(691123215441 \cdot 2662\) & \[
\begin{array}{r}
350.132812 \\
211.9812012
\end{array}
\] & \[
\begin{array}{r}
22.192392 \\
14.3481445
\end{array}
\] & 357.4401855 & \\
\hline CSM & LEM & 6911202155.016114 & & & 65318.241 & \\
\hline CSM & LEM & \(69112 \% 2156\) 3.E3 114 & & & \(77105 \cdot 904297\) & \\
\hline CSM & LEM & 691120215610.12 t2 & \[
\begin{array}{r}
357.664980 \\
212.2668457
\end{array}
\] & \[
\begin{array}{r}
21.541452 \\
14.8974609
\end{array}
\] & 357.4182129 & \\
\hline CSM & LEM & 691120215015.48 e2 & \[
\begin{array}{r}
357.868652 \\
212.2778320
\end{array}
\] & \[
\begin{array}{r}
21.519480 \\
14.8974609
\end{array}
\] & 357.4951172 & \\
\hline CSM & LEM & \(691120215636.40 \quad 62\) & \[
\begin{array}{r}
357.121582 \\
212.3657227
\end{array}
\] & \[
\begin{array}{r}
21.464548 \\
15.1831055
\end{array}
\] & 357.1325684 & \\
\hline CSM & LEM & 691120215714.91114 & & & 89987.269531 & \\
\hline CSM & LEM & 691120215830.54762 & \[
\begin{array}{r}
356.528320 \\
211.6735840
\end{array}
\] & \[
\begin{array}{r}
22.428598 \\
16.3146973
\end{array}
\] & 357.2204591 & \\
\hline CSM & LEM & 69112022018.797114 & & & 122129.920 & \\
\hline CSM & LEM & 69112022420.445114 & & & 162839.893 & \\
\hline
\end{tabular}

\section*{APPENDIX E}

\section*{APOLLO 12 LANDING RADAR DATA}

The LM landing radar data that was used in the analysis is listed in the two card format of the HOPE orbit determination program. The first card specifies the vehicle, the time of the observation (year (mod 1900), month, day, hour, minute, and second), three code numbers, \(\mathrm{V}_{\mathrm{XA}}\) measurement, \(V_{Y A}\) measurement, \(V_{Z A}\) measurement, and the slant range measurement (\(\rho\)). The second card specifies the inner, middle, and the outer gimbal angles. The units are feet and feet per second.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\(69111904642.188125 \quad 795080566359.97802733584729004\)}} \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{641119} & 64644.879125 & & & 1975.957260 \\
\hline & & 79.7607422 & 359.5605469 & 358.4619141 \\
\hline \multirow[t]{2}{*}{691119} & \(64644 \cdot 167125\) & & & \\
\hline & & 79.5520020 & 359.5445605 & 358.4399414 \\
\hline \multirow[t]{2}{*}{691119} & 64646.879125 & 546.891174 & & \\
\hline & & 79.8156738 & 359.5385742 & 358.4179687 \\
\hline \multirow[t]{2}{*}{691119} & 64646.187125 & & & \\
\hline & & 79.7277832 & 359.5275879 & 358.3959961 \\
\hline \multirow[t]{2}{*}{691119} & 64648.879125 & & -179.860798 & \\
\hline & & 79.7058105 & 359.4506836 & 358.3410645 \\
\hline \multirow[t]{2}{*}{691119} & 64648.187125 & & & \\
\hline & & 79.8046875 & 359.5715332 & 358.3630371 \\
\hline \multirow[t]{2}{*}{691119} & 64650.906125 & & & 1916.668152 \\
\hline & & 79.6289062 & 359.1430664 & 358.2861328 \\
\hline \multirow[t]{2}{*}{691119} & 64650.187125 & & & \\
\hline & & 79.848632 & 359.3518066 & 358.3081055 \\
\hline \multirow[t]{2}{*}{691119} & 64652 & 476.952759 & & \\
\hline & & 79.0965762 & 358.6596680 & 358.2421875 \\
\hline \multirow[t]{2}{*}{691119} & 64652.187125 & & & \\
\hline & & 79.4750977 & 358.8C24902 & 358.2861328 \\
\hline \multirow[t]{2}{*}{691119} & 64654.987125 & & -249.429600 & \\
\hline & & 79.1235352 & 358.9453125 & 358.3410645 \\
\hline \multirow[t]{2}{*}{691119} & 64654.187125 & & & \\
\hline & & 79.1894531 & 358.8354492 & 358.3190918 \\
\hline \multirow[t]{2}{*}{691119} & 64650.879125 & & & 1900.545670 \\
\hline & & 78.8928223 & 359.3072613 & 358.3850098 \\
\hline \multirow[t]{2}{*}{691119} & 64650.187125 & & & \\
\hline & & 78.6840820 & 358.9892578 & 358.3740234 \\
\hline \multirow[t]{2}{*}{691119} & 64658.879125 & 428.523956 & & \\
\hline & & 78.9587402 & 359.5935059 & 358.3959961 \\
\hline \multirow[t]{2}{*}{691119} & 64658.187125 & & & \\
\hline & & 78.7170410 & 359.5275879 & 358.3850098 \\
\hline \multirow[t]{2}{*}{691119} & 647.879125 & & -195.131998 & \\
\hline & & 79.1015625 & 359.7143555 & 358.3850098 \\
\hline \multirow[t]{2}{*}{691119} & 647 . 188125 & & & \\
\hline & & 78.9038086 & 359.6923828 & 358.3959961 \\
\hline \multirow[t]{2}{*}{691119} & 6472.879125 & & & 1818.719727 \\
\hline & & 79.2993164 & 359.7583008 & 358.2861328 \\
\hline 091119 & 6472.188125 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 & L208LわL＊ 25 & Stとってらゅ＊ & て0ヶでった91 & & \\
\hline 【わとく・わてわいか & & & & GフIL४I・くてくカ9 & 611159 \\
\hline 乙 & C．S29068＊L5ع & 「ヶ6ヶ9へか・ & 9 9をカサロく・91 & & \\
\hline 1 & & & & & 611169 \\
\hline 2 & & 6ع¢LL6 \({ }^{*}\) & GGEカ965＊L & & \\
\hline Iちく8＊9をIリ & & & & SてIく8I•CてLャ9 & 611159 \\
\hline 2 & ＊S L \(1691^{\circ}\) LSE & IILESOS＊ & 8てを19を0＊LL & & \\
\hline 1 & 82862でャちんT & & & ¢てleん8＊（iてLヶ9 & 611169 \\
\hline 2 & ササとLくつ8＊ 25 & \(88 て ち ¢ ち 9^{\circ} 65 ¢\) & & & \\
\hline ICIヶ＊ヶら8Iか & & & & らてTく8【•8【くカ9 & 611169 \\
\hline 2 & ヶS L \(1692 \cdot L S E\) & & TL825IS \({ }^{\text {PL }}\) & & \\
\hline I & & 861161＊602－ & & らて【くを6・を1くヵ9 & 6III69 \\
\hline \(己\) & \(0999158^{*}\) LSع & \(1 ヶ G C 956{ }^{\circ} 65\) & \(\rightarrow 65889008\) & & \\
\hline さみCI•9をらTゅ & & & & GこIL8I＊91くカ9 & 6III69 \\
\hline 2 & LOZLE18＊LGE & LLLTLG8＊6GE & \(92686 \varepsilon 9^{*}\) 的L & & \\
\hline I & & & とのG68ャ・ゅフをて & －52I6L8•912ヵ9 & 6III69 \\
\hline 2 & OG29お68＊LSE & \(9 \mathrm{TE6} \mathrm{\% 50*}\) & LLLIL09＊ 2 L & & \\
\hline 16てで10ヶで & & & & Gて【L8I・ャTんヶ9 & 611169 \\
\hline 2 & 0999LS \({ }^{\circ} \mathrm{LSE}\) & L9ع1068 \({ }^{\circ} 65\) & Sて9SIOI＊6L & & \\
\hline 1 & 905S18＊Lわし & & & ¢てI618・ヶ12ヶヲ & 611169 \\
\hline 2 & とOLSカع6＊LSE & OLL8860 \({ }^{\circ}\) & をャら90てカ・LL & & \\
\hline 150ヶ＊2121ヵ & & & & ¢2128I＊2TLヵ9 & 611169 \\
\hline 2 & 995¢5ヶ6＊L¢ع & 06G6280＊ & わサ86856 \({ }^{\circ} \mathrm{L}\) & & \\
\hline 1 & & 66126T＊E6I－ & & らて16くと・て【くが & 6III69 \\
\hline 2 & 9ヶLヶT10＊8らを & O6G6280＊ & カ6S8S¢て＊LL & & \\
\hline IOGヶ＊G6らTゅ & & & & ら2TL81＊Cl」の & 6III69 \\
\hline Z & 9ヶLヶI10＊85を & 9808ESI＊ & を行9をGヶ・LL & & \\
\hline I & & & EG6IGて＊GLてZ & & 611169 \\
\hline \(z\) & 926EL20＊8GE & \(\rightarrow\) ¢عZE18＊6GE & LIIOLE6＊L & & \\
\hline 150ぐL96Iヶ & & & & SてIL81＊8 4 － & 6IIT69 \\
\hline 2 & 926EL20＊8SE & LE10686＊658 & IカャてこらじLL & & \\
\hline I & S60268＊カカロ & & & S216L8•日 2 ¢9 & 611169 \\
\hline 2 & 2ع82591＊8Sع & & \(E \rightarrow 06728 \cdot 8 L\) & & \\
\hline 151ヶ＊96ヶで & & & & ¢てILEI•9 & 611169 \\
\hline 2 & てヵてとてと！ 8 ¢¢ & 86521610658 & \(8 \rightarrow 9 ャ 9<\varepsilon \cdot 8 L\) & & \\
\hline 1 & & 866Eヶを＊961－ & & G 2TLER•9 2 ¢9 & 611169 \\
\hline 2 & て102IEて・85ع & T \(182691{ }^{\circ} 65\) ¢ & をてらITをヶ＊ 6 L & & \\
\hline 1568＊ 529 てヤ & & & & らてTLをI＊＊ & 6III69 \\
\hline 2 & ¢8てZ60て＊85E & SSSEわ1L＊6SE & 6TL9ETO＊AL & & \\
\hline 1 & & & 691949006EZ & －乌て【906＊＊ & 611169 \\
\hline 2 & くヶ90エヶを＊8らを & LLLILS8＊6SE． & 08ヶてわらと＊6L & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{691119} & & 75.3332520 & .2526855 & 358.3520508 \\
\hline & 64748.187125 & & & \\
\hline & & 75.9045410 & . 5163574 & 358.4179687 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{64750.887125} & & & 1502.164383 \\
\hline & & 76.7175293 & .3076172 & 358.2202148 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{c4750.187125} & & & \\
\hline & & 76.3879345 & . 4064941 & 358.2751465 \\
\hline \multirow[t]{2}{*}{691119} & \multicolumn{2}{|l|}{64752.879125-1909.975159} & & \\
\hline & & 76.9372559 & .4943848 & 358.1762695 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{64752.187125} & & & \\
\hline & & 77.3547363 & 359.8791504 & 358.1542969 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{64756.887125} & & & 1460.904709 \\
\hline & & 75.97C4590 & 359.0332031 & 358.0114746 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{64750.187125} & & & \\
\hline & & 75.7067871 & 359.7802734 & 358.0334473 \\
\hline \multirow[t]{2}{*}{691119} & \multicolumn{2}{|l|}{64758.887125-1841.968781} & & \\
\hline & & 76.6625977 & 359.5166016 & 357.9235840 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{64758.187125} & & & \\
\hline & & 76.7724609 & 359.1760254 & 357.9895020 \\
\hline \multirow[t]{2}{*}{691119} & 648.949125 & & -110.776799 & \\
\hline & & 76.2780762 & 1.4611816 & 357.9235840 \\
\hline \multirow[t]{2}{*}{691119} & 648.188125 & & & \\
\hline & & 76.7504883 & . 7910156 & 357.9565430 \\
\hline \multirow[t]{2}{*}{691119} & 6482.887125 & & & 1428.833115 \\
\hline & & 74.9047852 & 1.1425781 & 357.8466797 \\
\hline \multirow[t]{2}{*}{691119} & 6482.188125 & & & \\
\hline & & 75.2893066 & 1.2634277 & 357.8686523 \\
\hline \multirow[t]{2}{*}{691119} & \(6484.879125-\) & 768.295166 & & \\
\hline & & 75.4321289 & .0109863 & 357.8247070 \\
\hline \multirow[t]{2}{*}{691119} & 6484.187125 & & & \\
\hline & & 74.5971680 & . 0439453 & 357.7478027 \\
\hline \multirow[t]{2}{*}{691119} & t48 6.887125 & & -154.166399 & \\
\hline & & 76.5527344 & . 0439453 & 357.9455566 \\
\hline \multirow[t]{2}{*}{691119} & 6486.187125 & & & \\
\hline & & 76.2121582 & . 0988770 & 357.9125977 \\
\hline \multirow[t]{2}{*}{691119} & 6488.879125 & & & \[
1382.199265
\] \\
\hline & & 75.0915527 & . 8239746 & 357.9785156 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{6488.187125} & & & \\
\hline & & 76.1352539 & 1.0107422 & 358.0114745 \\
\hline \multirow[t]{2}{*}{691119} & 64810.979125- & 1668.475174 & & \\
\hline & & 73.6962891 & . 4943848 & 357.9345703 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{69111964810.187125} \\
\hline & & 74.1137635 & . 4284668 & 357.9785156 \\
\hline \multirow[t]{2}{*}{691119} & 64812.887125 & & -96.232799 & \\
\hline & & 75.C476074 & 1.2634277 & 357.9455566 \\
\hline \multirow[t]{2}{*}{691119} & 64812.187125 & & & \\
\hline & & 74.4104004 & .7910156 & 357.9345703 \\
\hline \multirow[t]{2}{*}{691119} & 64814.918125 & & & 1348.567429 \\
\hline & & 74.2565918 & 359.6704102 & 357.8576660 \\
\hline \multirow[t]{2}{*}{691119} & 64814.187125 & & & \\
\hline & & 74.3334961 & .3295898 & 357.8356934 \\
\hline \multirow[t]{2}{*}{691119} & 64816.998 & \[
637.176788
\] & & \\
\hline & & 74.6740723 & 359.5825195 & 357.7697754 \\
\hline \multirow[t]{2}{*}{691119} & 64816.187125 & & & \\
\hline & & 74.5092773 & 359.6484375 & 357.8137207 \\
\hline \multirow[t]{2}{*}{691119} & 64818.887125 & & -123.866399 & \\
\hline & & 74.2016602 & . 9228516 & 357.7807617 \\
\hline \multirow[t]{2}{*}{691119} & 64818.187125 & & & \\
\hline & & 74.7399902 & .6921387 & 357.8027344 \\
\hline \multirow[t]{2}{*}{691119} & 64820.887125 & & & \[
1318.749496
\] \\
\hline & & 73.64135 .74 & 1.1096191 & 357.7697754 \\
\hline \multirow[t]{2}{*}{691119} & 64820.187125 & & & \\
\hline & & \[
73.8830566
\] & .9667969 & 357.7587891 \\
\hline \multirow[t]{2}{*}{691119} & 64822.379125 & \[
550.365570
\] & & \\
\hline & & 73.3117676 & .1977539 & 357.8686523 \\
\hline \multirow[t]{2}{*}{691119} & 64822.187125 & & & \\
\hline & & 72.8283691 & . 1428223 & 357.7917480 \\
\hline \multirow[t]{2}{*}{691119} & t4824.979125 & & -162.407999 & \\
\hline & & 73.7402344 & 359.8352051 & 357.9016113 \\
\hline \multirow[t]{2}{*}{691119} & 64824.187125 & & & \\
\hline & & 73.3886719 & .0109863 & 357.8796387 \\
\hline \multirow[t]{2}{*}{691119} & 64826.887125 & & & \[
1238.657181
\] \\
\hline & & 73.7622070 & 359.9340820 & \[
357.9016113
\] \\
\hline \multirow[t]{2}{*}{691119} & 64826.187125 & & & \\
\hline & & 74.1357422 & .0659180 & 357.9235840 \\
\hline \multirow[t]{2}{*}{691119} & t4828.949125 & \[
1504.899170
\] & & \\
\hline & & \[
73.5205078
\] & .6921387 & 357.8796387 \\
\hline \multirow[t]{2}{*}{691119} & 64828.187125 & & & \\
\hline & & 73.9929199 & .4614258 & 357.9345703 \\
\hline \multirow[t]{2}{*}{691119} & 64830.887125 & & -102.535200 & \\
\hline & & 73.4436035 & 1.0656738 & 358.2641602 \\
\hline 641119 & 64830.137125 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{691119} & & 68.1701660 & 1.19 & 359.5166016 \\
\hline & & 68.1042480 & 1.2414551 & 359．4946239 \\
\hline \multirow[t]{2}{*}{691119} & 64914．959125 & & & 956.253746 \\
\hline & & 63.0163574 & 1.7023809 & 359.4946289 \\
\hline \multirow[t]{2}{*}{691119} & 64914．187125 & & & \\
\hline & & 67.2253418 & 1 & 359.4946299 \\
\hline \multirow[t]{2}{*}{691119} & 6491 & 1024.217575 & & \\
\hline & & 08.4947559 & 2.233224 & 359.4830426 \\
\hline \multirow[t]{2}{*}{691119} & 64910.187125 & & & \\
\hline & & 67.9064941 & 1.9665527 & 359.4500836 \\
\hline \multirow[t]{2}{*}{091119} & t4918．867125 & & \[
-97.929600
\] & \\
\hline & & 66.9946289 & ． 3025488 & 359．4830426 \\
\hline \multirow[t]{2}{*}{691119} & 64918.187125 & & & \\
\hline & & 67.1044922 & ． \(67-1660\) & 359.4177246 \\
\hline \multirow[t]{2}{*}{691119} & 6442＂．359125 & & & \[
921.755104
\] \\
\hline & & 67.4450684 & .6042480 & \[
359.5385742
\] \\
\hline \multirow[t]{2}{*}{691119} & 64920.187125 & & & \\
\hline & & 66．t210．937 & 359.6923828 & 359.4506836 \\
\hline \multirow[t]{2}{*}{691119} & t4922．867125 & \[
002.7 C 7985
\] & & \\
\hline & & \[
68.8293457
\] & 1. & 359．549565 \\
\hline \multirow[t]{2}{*}{691119} & 64922.187125 & & & \\
\hline & & 68.6315918 & 1.3842773 & 359．5275879 \\
\hline \multirow[t]{2}{*}{691119} & 64924．867125 & & －84．355200 & \\
\hline & & 66.7309570 & ． 9338379 & 359.4396973 \\
\hline \multirow[t]{2}{*}{091119} & 04924.187125 & & & \\
\hline & & 68.0053711 & ． 8067919 & 359．4616099 \\
\hline \multirow[t]{2}{*}{691119} & 64920.857125 & & & ¢13．43383， \\
\hline & & 65.104980 & 1.373291 & 359.5495605 \\
\hline \multirow[t]{2}{*}{691119} & 64926.187125 & & & \\
\hline & & 65.4565430 & ． 714111 & 359．4726562 \\
\hline 691119 & 64928.898125 & \[
\begin{array}{r}
-953.892784 \\
67.2892734
\end{array}
\] & 1. & 359.7692871 \\
\hline \multirow[t]{2}{*}{691119} & 64923.187125 & & & \\
\hline & & 66.8627930 & 1.4392019 C & 354．7253414 \\
\hline \multirow[t]{2}{*}{691119} & 6493 －． 867125 & & －60．357600 & \\
\hline & & 67.0356152 & 1.1975798 & 359.9450084 \\
\hline \multirow[t]{2}{*}{691119.} & 64930.187125 & & & \\
\hline & & 68.0932617 & 1.0766002 & 359．84．1307 \\
\hline \multirow[t]{2}{*}{691119} & 64932． 559125 & & & 879．5cd47 \\
\hline & & 64.8522949 & 1.2854034 & －1203ヶタロ \\
\hline
\end{tabular}

\[
\begin{aligned}
& \begin{array}{l}
n \\
n \\
\sigma \\
0 \\
n \\
N \\
\sigma \\
0 \\
n \\
n
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
n \\
0 \\
0 \\
m \\
\infty \\
n \\
n \\
n \\
n \\
n
\end{array} \\
& \begin{array}{l}
n \\
0 \\
5 \\
m \\
0 \\
0 \\
0 \\
0 \\
i n \\
m \\
n \\
0 \\
2 \\
2 \\
n \\
n \\
0
\end{array} \\
& \text { G8L7519•65を } \\
& \begin{array}{c}
\stackrel{\rightharpoonup}{n} \\
M \\
N \\
N \\
\infty \\
N \\
\cdots \\
\cdots \\
n \\
m
\end{array} \\
& \begin{array}{l}
+1619+8^{\circ} 65 \varepsilon \\
862210^{\circ} E L L \\
169 \varepsilon E J L^{\circ} 65 E
\end{array} \\
& \begin{array}{r}
773.012238 \\
1.9775391 \quad 359.8461914
\end{array} \\
& \begin{array}{l}
n \\
n \\
n \\
n \\
n \\
n \\
\infty \\
0 \\
n \\
n \\
m
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{cc}
n & \cdots \\
0 & \sigma \\
\infty & m \\
0 & n \\
0 & n \\
i n & \cdots \\
\infty & \sigma \\
- & -
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\vec{\sigma} \\
\vec{A} \\
\cdots \\
\cdots \\
n \\
0
\end{array} \\
& \begin{array}{l}
G 9+1 G L L \cdot G 9 \\
88 L 250^{\circ} \varepsilon 88- \\
7286906^{\circ} G 9
\end{array} \\
& \begin{array}{l}
65.7641602 \\
65.3356934
\end{array} \\
& \begin{array}{cc}
0 & 0 \\
n & - \\
N & 0 \\
0 & 7 \\
0 & 0 \\
M & N \\
n & 5 \\
0 & 0
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{cc}
n & 0 \\
0 & n \\
j & x \\
n & 0 \\
N & 0 \\
N & n \\
n & n \\
N & n \\
0 & 0
\end{array} \\
& \begin{array}{l}
2.0214844359 .8132324 \\
1.3952637359 .8461914
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { SZOSTSE. } \\
& \begin{array}{lll}
- & \infty & N \\
0 & - & N \\
0 & N & N \\
\infty & n & N \\
0 & m & N \\
N & \sim & + \\
- & - & -
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{ll}
n & n \\
\infty & n \\
\infty & n \\
n & n \\
0 & n \\
n & 0 \\
\cdots & 0 \\
& n
\end{array} \\
& \begin{array}{ll}
0 & n \\
0 & 0 \\
0 & x \\
\infty & n \\
n & n \\
n & 0
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& 69111964938.918125 \\
& 69111964938.187125 \\
& 691119 \quad 04940.859125 \\
& G \mathcal{L E T} \cdot(17677 \text { GTIT69 } \\
& \text { G2165日・で6ゅ7 611169 } \\
& 69111964942.188125 \\
& 69111964944.867125 \\
& 69111964944.187125 \\
& \text { 与こI } 868^{\bullet-0 ヶ 6 ヶ 9 ~ G I I T 69 ~} \\
& 65111964946.167125 \\
& 091119 \text { t4948.859125 } \\
& 69111964948 \cdot 187125 \\
& 69111904950.859125 \\
& 64950.187125 \\
& \begin{array}{c}
n \\
\sim \\
\sim \\
0 \\
0 \\
x \\
n \\
n \\
0 \\
0 \\
0
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
0 \\
\square \\
0 \\
0
\end{array}
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|}
\hline 691119 & 65C5t. \(3591<5\) & 6.J. 1062912 & 3.1977215 & \[
\begin{array}{r}
.3405762 \\
337.531918
\end{array}
\] \\
\hline & & 61.9519043 & 2.4369648 & .1208496 \\
\hline 691119 & 65056.187125 & & & \\
\hline \multirow[t]{3}{*}{691119} & \multirow[t]{3}{*}{65058.898125} & \(61.1718751)\) & 2.6367188 & .1867676 \\
\hline & & -468.059196 & & \\
\hline & & 62.2155762 & 2.5817871 & 359.9450684 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{65053.187125} & & & \\
\hline & & \multirow[t]{2}{*}{61.6592187} & 2.5488281 & - Dungoco \\
\hline \multirow[t]{2}{*}{691119} & 651. 3 ¢7125 & & -18.180000 & \\
\hline & & 60.4687500 & 2.0434570 & 359.7802734 \\
\hline \multirow[t]{2}{*}{6S1119} & \multirow[t]{2}{*}{651.188125} & & & \\
\hline & & 60.6025359 & 2.1802793 & 359.7912598 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{651} & & & 315.861919 \\
\hline & & 59.5129395 & 2.5378418 & 359.8791504 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{6512.108125} & & & \\
\hline & & 59.1503906 & 2.1203013 & 359.8132324 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{\(t\)} & -421.919996 & & \\
\hline & & 59.2712402 & 2.8564453 & 0000000 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{0514.187125} & & & \\
\hline & & 59.0295410 & 2.9344727 & 359.9780273 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{6516.867125} & & -15.028800 & \\
\hline & & 58.9196777 & 1.9555664 & . 0329590 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{6516.137125} & & & \\
\hline & & 58.8647461 & 2.1972656 & . 0329590 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{651} & & & 272.001835 \\
\hline & & 59.2932129 & 1.7578125 & - 000000 \\
\hline 691119 & 6518.187125 & 58.9526367 & 1.4002500 & . C109863 \\
\hline \multirow[t]{2}{*}{691119} & \multirow[t]{2}{*}{6512 C .750125} & -301.391994 & & \\
\hline & & 20.9824219 & . 8239746 & 3.1530762 \\
\hline 091119 & 65120.187125 & 27.2680664 & . 8129883 & 3.1311035 \\
\hline \multirow[t]{2}{*}{091119} & \multirow[t]{2}{*}{65122.867125} & & -21.573600 & \\
\hline & & 27.4658203 & 1.1865234 & 2.9992676 \\
\hline 091119 & \(t 5122.187125\) & & & \\
\hline \multirow[t]{2}{*}{091119} & \multirow[t]{2}{*}{\(651<4.867125\)} & 27.4438477 & 1.7578125 & 3. 0981445 \\
\hline & & 27.6336152 & 1.5490723 & 2.8344727 \\
\hline 691119 & 65124. 187125 & & & \\
\hline
\end{tabular}

\title{

}
\begin{tabular}{|c|c|c|c|c|}
\hline ¢62008 \({ }^{\circ}\) & \[
\begin{aligned}
& 92+1962^{\bullet} \text { 2 } \\
& 00912 \vdash^{\circ} 92-
\end{aligned}
\] & \(2099102 \cdot 62\) & ¢2I6L8＊Чゅ159 & 611169 \\
\hline \multirow[t]{2}{*}{G8LGLで＊て} & \multirow[t]{2}{*}{サlヶゅてらで【} & \multirow[t]{2}{*}{すセヶてもてく・きて} & \multirow[t]{2}{*}{¢2188【＊で159} & \multirow[t]{2}{*}{611169} \\
\hline & & & & \\
\hline द1と609カ＊て & \(6616198^{\circ}\) & ع 251908•92
\(968209 \cdot 202\) & ¢2I85じカウ【¢9 & 611169 \\
\hline 8ヵ968をカ・て & 0200238＊ & L20ES89＊82 & \multirow[t]{3}{*}{ら21298＊で59} & \multirow[t]{3}{*}{6 TII69} \\
\hline 8と8166＊90て & \multirow[t]{3}{*}{ZLI9LGE＊} & \multirow[t]{3}{*}{\(6076656{ }^{\circ} \mathrm{HZ}\)} & & \\
\hline \multirow[t]{2}{*}{IGOLLヶ9＊て} & & & & \\
\hline & & & ¢てILEI・くゅT49 & 6III69 \\
\hline \multirow[t]{2}{*}{¢ヵ18655＊て} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 20+\angle 802^{\circ} \\
& 008986^{\circ} \mathrm{sz}-
\end{aligned}
\]} & \multirow[t]{2}{*}{L6LIヶ82＊82} & \multirow[t]{3}{*}{¢てT6LE・ごIS9} & \multirow[t]{2}{*}{6IIT69} \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{\(081+818^{*}\) 2} & \multirow[t]{2}{*}{Oとカ0691＊} & \multirow[t]{2}{*}{L6LTヶ8L＊をて} & & \multirow[t]{2}{*}{6IIIS9} \\
\hline & & & G7IL8I＊8EIG9 & \\
\hline cooszis＊2 & \multirow[t]{3}{*}{2598116＊} & \[
\begin{aligned}
& L \varepsilon \dashv \varepsilon Z 5^{\circ} 8 Z \\
& \text { SGISIG․与ZZ- }
\end{aligned}
\] & SてIL98＊8をIG9 & 611169 \\
\hline \multirow[t]{2}{*}{20ヶ2120＊E} & & \multirow[t]{2}{*}{L6LTッ8L＊9て} & \multirow[t]{3}{*}{¢てIL8I＊9とIG7} & \multirow[t]{2}{*}{611169} \\
\hline & & & & \\
\hline を182886 \({ }^{\circ}\) 乙 & ゅてぃゅてらで「 & L6LTヶ8L＊ 8 2 & & \multirow[t]{3}{*}{611169} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 6 \varepsilon 8 \varepsilon 66^{\circ} 612 \\
& 6 \varepsilon 52010^{\circ} \varepsilon
\end{aligned}
\]} & \multirow[t]{3}{*}{8 8ヶ8をカ6ヶ＊} & \multirow[t]{3}{*}{8LOS025＊ 2} & \multirow[t]{2}{*}{S21906＊98157} & \\
\hline & & & & \\
\hline & & & SてIL8I＊ヶEIS9 & 611160 \\
\hline 20ヶ2120＊を & 5691886＊ & IOE\＆と99＊8て & \multirow[t]{3}{*}{¢2TL9 \({ }^{\circ}+\boldsymbol{1}\) ¢ 59} & \multirow[t]{3}{*}{611169} \\
\hline \multirow[t]{3}{*}{をカCヶ688 \({ }^{\text {a }}\)} & \multirow[t]{3}{*}{\[
0 \not \subset 809 \varepsilon L^{\circ}
\]} & \multirow[t]{3}{*}{らカャ901ヶ・8て} & & \\
\hline & & & & \\
\hline & & & & 6III69 \\
\hline عZこを乌¢6＊て & ヶ¢ \(2598 \mathrm{I}^{\text {－}}\) & \(121 ヶ L 65^{\bullet} 82\) & & \\
\hline \multirow[t]{3}{*}{0て8¢9ャレ＊て} & \multirow[t]{3}{*}{Lらゅを6てを・I} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 96 \varepsilon \neg \varepsilon 8 \cdot 25 Z- \\
& L Z \angle 69 \rightarrow 1^{\circ} 8 Z
\end{aligned}
\]} & ¢て【L9ロ＊ひとIS9 & 611169 \\
\hline & & & \multirow[t]{2}{*}{SてTL甘T＊OEIS9} & \multirow[t]{2}{*}{6III69} \\
\hline & & & & \\
\hline ESカカ9ら8＊て & 161960 \({ }^{\text {c }}\) T & IILعCを9＊82 & & \\
\hline 656てヵ6＊SF？ & & & SてIL98＊ & 6III69 \\
\hline 18288ヵら＊ & Sカ9らとらI•I & \(8652916^{\circ} \mathrm{LZ}\) & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{611169} \\
\hline \multirow[t]{3}{*}{ャてELGZ9＊て} & \multirow[t]{5}{*}{} & \multirow[t]{3}{*}{0816061 82} & & \\
\hline & & & & \\
\hline & & & \(5 \geq 1298.82157\) & 611169 \\
\hline \multirow[t]{2}{*}{1989201＊} & & \multirow[t]{2}{*}{182を198＊} & \multirow[t]{2}{*}{S2IL81•92159} & \multirow[t]{2}{*}{611159} \\
\hline & & & & \\
\hline らわT8655＊2 & \(8055+91\)－ & \(91866 L^{\text {•82 }}\) & & \\
\hline & & L6SLLI＊LL2－ & S21618＊92159 & 611169 \\
\hline \(9068006{ }^{\circ} \mathrm{Z}\) & 2L98ETL＊ & 0ヶを8ヶらヶ＊ 1 て & & \\
\hline
\end{tabular}

\title{

}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{5146.187125} \\
\hline & 28.6962891 & 1.2744141 & 2.2851563 \\
\hline \multirow[t]{2}{*}{3148.379125} & & & 190.002558 \\
\hline & 28.2349633 & 4.1857910 & 357.8027344 \\
\hline \multicolumn{4}{|l|}{5149.187125} \\
\hline & 28.3117673 & 3.2629395 & 358.0444336 \\
\hline \multirow[t]{2}{*}{;150.367125} & -178.774397 & & \\
\hline & 28.3557129 & 3.7902832 & 358.0114746 \\
\hline \multicolumn{4}{|l|}{;150.187125} \\
\hline & 27.9332324 & 3.6584473 & 357.7148437 \\
\hline \multirow[t]{2}{*}{;152.867125} & & -25.452000 & \\
\hline & 28.3447266 & 3.9001465 & 357.7587891 \\
\hline \multicolumn{4}{|l|}{;152.137125} \\
\hline & 28.7072754 & 3.9550781 & 357.9235840 \\
\hline \multirow[t]{2}{*}{i154.857125} & & & 179.427599 \\
\hline & 27.6745605 & 4.3725586 & 357.3413080 \\
\hline \multicolumn{4}{|l|}{;154.187125} \\
\hline & 28.3776855 & 4.6472168 & 357.5939941 \\
\hline \multirow[t]{2}{*}{;156.896125} & -156.234398 & & \\
\hline & 27.8833008 & 4.1967773 & 357.9675293 \\
\hline \multicolumn{4}{|l|}{.156.187125} \\
\hline & 27.8942871 & 4.3835449 & 357.8906250 \\
\hline \multirow[t]{2}{*}{-156.967125} & & -23.270400 & \\
\hline & 28.3117676 & 3.6474609 & 357.6928711 \\
\hline \multicolumn{4}{|l|}{.158.187125} \\
\hline & 28.1030273 & 3.6364746 & 357.6818848 \\
\hline \multirow[t]{2}{*}{i2.867125} & & & 163.478479 \\
\hline & 27.9821777 & 3.0761719 & 357.4621582 \\
\hline \multirow[t]{2}{*}{,2.188125} & & & \\
\hline & 27.8942871 & 3.1860352 & 357.4182129 \\
\hline \multirow[t]{2}{*}{122.867125} & \(-136.527998\) & & \\
\hline & 27.5976562 & 2.6037598 & 357.7917480 \\
\hline \multicolumn{4}{|l|}{122.188125} \\
\hline & 27.6306152 & 2.8784180 & 357.8027344 \\
\hline \multirow[t]{2}{*}{12 4.859125} & & -19.634400 & \\
\hline & 27.4328613 & 2.6367188 & 358.1542969 \\
\hline \multicolumn{4}{|l|}{124.187125} \\
\hline & 27.7734375 & 2.7246094 & 357.9895020 \\
\hline \multirow[t]{2}{*}{\(12 \quad 0.867125\)} & & & 152.733160 \\
\hline & 25.8837891 & 2.9003906 & 358.341C645 \\
\hline \multicolumn{4}{|l|}{12 6.137125} \\
\hline
\end{tabular}

\footnotetext{
346.4978027
345.7067871
345.9704590

\(1 n\)
\(1 n\)
\(1 n\)
0
10
0
0
10
0
\(m\)
\(n\)
\(n\)
\(\infty\)
\(n\)
\(n\)
\(N\)
+
0
\(\cdots\)
\(m\)

\(n\)
\(N\)
0
0
0
\(\infty\)
0
0
0
0
\(n\)
\begin{tabular}{c}
\(n\) \\
\(\vdots\) \\
\multirow{2}{n}{} \\
\(\cdots\) \\
\(m\)
\end{tabular}

0

0
0
0
0
4
\(n\)
\(n\)
0
0
0
\(n\)
\(n\)
\(n\)
\(n\)
\(n\)

\(n\)
\(\cdots\)
-
0
0
0
0
\(i n\)
\(n\)
\(n\)
7.4487305

 \begin{tabular}{c}
\(n\) \\
\multirow{1}{n}{} \\
0 \\
0 \\
\(\vdots\) \\
\(\vdots\) \\
0
\end{tabular} -
0
0
0
\(n\)
0
0
0 2.5708008
-1.934200
2.1643066

}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & E182E86 \({ }^{\circ}\) & 26ヶ6LけT・ヶて & & \\
\hline & & & S2IL81•922G9 & 611169 \\
\hline \multirow[t]{2}{*}{C28060ع＊ャGE} & \(1+99089^{\circ} 2\) & 6とうOヶ01・カて & & \\
\hline & & \(666650^{\circ}+\)－ & G2I6G8•92257 & 6III69 \\
\hline \multirow[t]{2}{*}{\(2959 L 78^{\circ} \varepsilon G \varepsilon\)} & OSZOSIS \({ }^{\circ}\) & ヶL092てゅ＊ヶて & & \\
\hline & & & SてIL8T＊わて 2 ¢9 & 6III69 \\
\hline S96E950＊＊SE & & L88E865＊ & & \\
\hline 6L91L2＊611 & & & ¢21658＊ャ2 \({ }^{\text {¢ }}\) & 611169 \\
\hline \multirow[t]{2}{*}{L812661＊\({ }^{\circ}\)} & 168LE8E＊ & LLちEIE9＊ちて & & \\
\hline & & & G71L81＊22259 & 611169 \\
\hline \multirow[t]{2}{*}{\(6505996^{\circ} \mathcal{E}\) ¢} & ¢88ヶ¢ \({ }^{\circ} 9^{\circ}\) ¢ & をI9を029＊ャて & & \\
\hline & 008ヶ99＊81－ & & S21868＊22 257 & 611169 \\
\hline \multirow[t]{2}{*}{2SES8ヶL＊カSE} & 89960 ¢でを & ひてEと○ヶ8＊とて & & \\
\hline & & － & S21L8I＊02259 & 611169 \\
\hline \multirow[t]{2}{*}{LE\Oサ9E＊ヶGE} & \(88 \downarrow\) OGLT•ع & \(765 E 818{ }^{\circ} \mathrm{cz}\) & & \\
\hline & & \[
86 乌 59 Z^{\circ} \varsigma 8-
\] & \(521198^{\circ} 02259\) & 6T1169 \\
\hline \multirow[t]{2}{*}{¢96E950＊ヶらE} & SSOTEE6＊ & 2G98TTヶ＊と & & \\
\hline & & & GZTLEI＊8I2G9 & 6IIT69 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \varepsilon \nsim 06 \text { ISヶ* } \ddagger G \varepsilon \\
& 856926^{\circ} \text { IEI }
\end{aligned}
\]} & \(O \varepsilon \neg S^{18} G^{\circ} \varepsilon\) & \(\zeta \downarrow 9 G E G 9^{\circ} \mathcal{C}\) & & \\
\hline & & & \(52 T 198 * 81259\) & 611169 \\
\hline \multirow[t]{2}{*}{2T8LOGS＊カGを} & & \(\varepsilon O L O L \downarrow て ゙ ¢ て\) & & \\
\hline & & & S21L81＊91259 & 6I1169 \\
\hline \multirow[t]{2}{*}{\(\downarrow 8900\) てE＊\(\dagger 丂 \mathcal{L}\)} & くてこく0ヶて＊＊ & 8ヶTLCES＊Eて & & \\
\hline & \(009602^{\circ} \mathrm{SZ}\)－ & & S2TL98•91259 & 611169 \\
\hline \multirow[t]{2}{*}{عLヶわとを0＊8らを} & S2T8LSL＊ & \(5125 ヶ 88^{\circ} \mathrm{CZ}\) & & \\
\hline & & & SLILAT＊ャTZS9 & 6III69 \\
\hline \multirow[t]{2}{*}{2EEO6SL®9SE} & S6IOS6E＊2 & IてIヶてL6＊2て & & \\
\hline & & \[
8616 \varepsilon G^{\circ} \geqslant 6-
\] & G2T198＊ 1259 & 611169 \\
\hline \multirow[t]{2}{*}{SL8Iてゅて＊8Sを} & \(6 \angle 800 ヶ\) ¢ 2 & \[
\dashv \varepsilon L 2082^{\circ} 22
\] & & \\
\hline & & & & 6 IT169 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 8 \varepsilon \angle T E G Z{ }^{\bullet} 8 \varsigma \varepsilon \\
& \angle 6 \angle Z Z Z^{\circ} 8 ヶ 1
\end{aligned}
\]} & LTTS666＊ & 8【ちをらてて・てて & & \\
\hline & & & G2IL98＊212G9 & 6III69 \\
\hline \multirow[t]{2}{*}{} & \(0867010^{\circ} 2\) & 8ヶ8をヶ66＊てて & & \\
\hline & & & G2TL81＊CI2G7 & 611169 \\
\hline \multirow[t]{2}{*}{\(196656 \underbrace{*} 85 \%\)} & & \(6 E S L L 59^{\circ} 22\) & & \\
\hline & \[
00 ゅ 2 Z ヶ * 81-
\] & & S2T198＊OI2G9 & 61IT69 \\
\hline \multirow[t]{2}{*}{} & L L力とIEI＊て & ¢968E66 \({ }^{\circ}+2\) & & \\
\hline & & & SZILRI＊8 てGJ & 611169 \\
\hline \multirow[t]{2}{*}{GS0T80E＊8GE} & 9わてこひをて＊て & \(682 \mathrm{LCO}{ }^{*}+2\) & & \\
\hline & & \[
865 \angle 56^{\circ} 211-
\] & S21L98＊8 259 & 61IT69 \\
\hline \(6962+51 * 85 \varepsilon\) & L98920 \({ }^{\circ}\) & \[
\angle \angle 265 \angle 5^{\circ} 92
\] & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline ¢ \(21990^{\circ} 6+257\) & 611169 \\
\hline & 611169 \\
\hline ¢て1698＊9ヶてらす & 611169 \\
\hline SてTL81・ャゅてら9 & 611169 \\
\hline G216GR・カワてら7 & 6 III69 \\
\hline ¢て1881・でてら9 & 611169 \\
\hline 5216く8＊2ヶて57 & 611169 \\
\hline SてIL8I＊Cヶて59 & 611169 \\
\hline らてIL98＊くヶてら9 & 611169 \\
\hline & 611169 \\
\hline Sて1298•8ع259 & 611169 \\
\hline SZTLPT•OEZSF & 611169 \\
\hline ¢こโ6く8＊9とてらも & 6III69 \\
\hline GてIL\＆I・カをてら乌 & 611169 \\
\hline らて151＊＊ャとつら9 & 6IIT69 \\
\hline S2TLET• ？¢ こ59 & 611169 \\
\hline SてIL9ロ・フEZG9 & 611169 \\
\hline SてILEI•نをてら9 & 611169 \\
\hline GてIL98＊0とてらO & 611159 \\
\hline Sて1LEI・とてつら9 & 611169 \\
\hline らこTく98＊とてこらす & 611164 \\
\hline
\end{tabular}

\[
26.0375977 \quad .7141113 \quad 351.1340332
\]
\[
\begin{aligned}
& .8239746351 .0351562 \\
& 1.2524414350 .9252930
\end{aligned}
\]
LT9LOEG•9ヶと 96 ヶ80て1•

\[
\rightarrow \angle S 8 E S t{ }^{-9+8} \quad 9268688^{\circ}
\]
\[
L L \dashv \varepsilon 188^{\circ} O 5 \varepsilon 6 L \varepsilon ร 9 \nleftarrow L^{\circ} \xi
\]
\[
\text { ZゅLOTOT•TGE } 9192666^{\circ} 2
\]
\[
\text { SLEGOTZ•ISE } \quad \begin{aligned}
& 008 ヶ ヶ 5^{\circ 9}- \\
& 0 \& 069 L^{\circ}
\end{aligned}
\]
\[
\begin{aligned}
& n \\
& 0 \\
& n \\
& n \\
& n \\
& 0 \\
& 0 \\
& 0 \\
& n \\
& n \\
& \infty \\
& +0 \\
& n \\
& n \\
& n \\
& n \\
& \infty \\
& m \\
& m
\end{aligned}
\]

\[
\angle \varepsilon ケ 8 \vdash 9 ヶ \circ 9 ヶ \varepsilon \quad 8 \angle D S \subseteq 6 \varepsilon^{\circ}
\]
\[
66 T ヶ 5 C 8^{\cdot 97 \varepsilon} 60626 L L^{\circ} \varepsilon
\]
\[
\text { Zヶて8ゅ69*6ヶを } \quad \subseteq \downarrow 90996^{\circ} \varepsilon
\]

27． 3669434 \(n\)
\(n\)
\(N\)
\(n\)
0
\(n\)
0
0
\(n\)
\(n\)
0
10
0
\(n\)
0
0
\(n\)
\(\sim\)
\(N\)

\(m\)
\(n\)
\(m\)
\(n\)
\(n\)
\(n\)
\(n\)
\(n\) 0
0
\(\infty\)
\(n\)
\(n\)
\(n\)
0
\(n\)
\(n\)
\(n\)
0
0
\(n\)
\(\infty\)
\(n\)
\(n\)
\(n\)
\(N\)

\(m\)
\(\infty\)
0
\(t\)
\(t\)
\(\sim\)
\(\sim\)
\(\sim\)
0
0
\(N\)
I216サ日L•Sて
\(N\)
\(N\)
0
0
0
\(N\)
\(O\)
\(N\)

\begin{tabular}{|c|}
\hline 10 & \(N\) & \(\infty\) & \(\rightarrow\) & 0 & n & - & \(\cdots\) & & \%o & & N & \(\sigma\) & \(\sim\) & & 2) & \(\xi\) & \(\pi\) & \(\bigcirc\) & \(\pm\) & & 0 m \\
\hline \(x\) & \(N\) & \(\pm\) & & & \(\bigcirc\) & \(\sigma\) & \(\infty\) & & \(0 \infty\) & & \(\bigcirc\) & \(N\) & \(\infty\) & & & \(x\) & \(\sim\) & Co & \(\pm\) & & \(\cdots\) \\
\hline \(N\) & \(N\) & \(\cdots\) & & in & - & \(\infty\) & N & & \(\cdots\) & - & \(\stackrel{ }{ }\) & \(\cdots\) & in & & \(0^{2}\) & , & \(\cdots\) & \(\cdots\) & 0 & & \(\bigcirc\) \\
\hline \(\sim\) & N & \(N\) & & N & \(\stackrel{\sim}{1}\) & \(\bigcirc\) & \(\cdots\) & & - & \(\cdots\) & \(\sim\) & N & \(\cdots\) & N & \({ }^{\infty}\) & \(\pm\) & V & \(\uparrow\) & \(\checkmark\) & & -0n \\
\hline in & 5 & \(\bigcirc\) & & K & \(\pm\) & \(\infty\) & \(\cdots\) & & & - & \(\stackrel{\rightharpoonup}{*}\) & \(\cdots\) & \(\cdots\) & & & \(\stackrel{\sim}{\sim}\) & \(\cdots\) & \(\stackrel{0}{0}\) & 0 & & \(\cdots\) \\
\hline \(\stackrel{1}{\square}\) & \(\underset{\infty}{\infty}\) & \(\stackrel{ }{*}\) & & - 0 & \(\stackrel{+}{\square}\) & 8 & n & \(\cdots\) & & m & \(\stackrel{\sim}{*}\) & \(\stackrel{N}{N}\) & \(\underset{\infty}{\infty}\) & & & 0 & \(\underset{\sim}{2}\) & \(\cdots\) & \(\cdots\) & & - \({ }^{\text {c }}\) \\
\hline \(\stackrel{+}{0}\) & \({ }^{\circ}\) & - & & & - & \({ }^{\circ}\) & & & & & - & \(\bullet\) & & - & & - & - & \(\bullet\) & \(\bullet\) & & \\
\hline 0 & 0 & \(\sigma\) & & \(\infty\) & 0 & \(\bigcirc\) & \(\sigma\) & \(\sigma\) & & \(\sigma\) & \(\cdots\) & \(\cdots\) & & \(\sim\) & & \(\stackrel{-}{1}\) & \(\vec{\sim}\) & \(\cdots\) & & & \\
\hline & & & & & & & & & & & n & in & Ln & \(\cdots\) & in & \(n\) & い & 15 & in & n & n \\
\hline & & & & & & & & & & & m & \(\cdots\) & m & m & & \(\cdots\) & \(\cdots\) & - & \(n\) & m & \(\cdots \mathrm{m}\) \\
\hline 0 & & \(\sim\) & \(N\) & \(\infty\) & 0 & \(\infty\) & & 0 - & & \(\infty\) & \(\bigcirc\) & & 0 & 0 & 0 & \(\pm\) & \(\cup\) & & & \(\sim\) & \\
\hline 0 & & \(\infty\) & 0 & \(\stackrel{+}{*}\) & 10 & \(\pm\) & & & & \(\stackrel{\infty}{\infty}\) & 0 & & & \(\sim\) & \(\infty\) & \(\stackrel{N}{n}\) & 0 & & & in & 0 \\
\hline \(\pm\) & & 0 & \(\stackrel{0}{0}\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & & \({ }^{9}\) & & \(\stackrel{\sim}{0}\) & \(\sim\) & & \(\bigcirc\) & \(\bigcirc\) & \(\stackrel{5}{5}\) & \(\stackrel{\sim}{\sim}\) & \(\bigcirc\) & & N & \(\bigcirc\) & - \({ }^{\infty}\) \\
\hline + & O & - & \(\stackrel{\square}{\square}\) & 0 & \(\cdots\) & \(\stackrel{\square}{\circ}\) & & & & - & \(\cdots\) & & - & 8 & N & \(\sim\) & \(\underset{\sim}{c}\) & & + & \(\xrightarrow{2}\) & - \({ }^{0}\) \\
\hline \(\stackrel{\square}{6}\) & & 8 & \(\stackrel{\square}{0}\) & 8 & \({ }_{0}^{\infty}\) & 8 & & & & - & \(\stackrel{m}{\sim}\) & & & 0 & \(\stackrel{5}{5}\) & \(\sim\) & & & & \(\cdots\) & - \\
\hline + & \(\stackrel{\sim}{\sim}\) & 0 & 0 & \(\sigma\) & 0 & 0 & & \(\cdots\) & & \(\stackrel{ }{+}\) & \(\stackrel{ }{\sim}\) & & \(\infty\) & \(\infty\) & 0 & in & \(\stackrel{0}{0}\) & & in & \(\sigma\) & - \({ }_{\text {- }}\) \\
\hline & & & & - & - & - & & & & - & & & & - & - & - & & & & & \\
\hline , & \(\rightarrow\) & \(\sim\) & -1 & \(\cdots\) & \(\rightarrow\) & - & & \(\rightarrow\) & & - & & & & & & & & & - & & - \\
\hline & \\
\hline 0 & 0 & \(\stackrel{0}{*}\) & 0 & 0 & \(n\) & & \(0 \sim\) & \(\stackrel{\sim}{\sim}\) & & & & & & & & & \% & \(\cdots\) & \(\infty\) & \(\xrightarrow{\sim}\) & 1 O \\
\hline \(\stackrel{\rightharpoonup}{0}\) & \(\sim_{n}^{\infty}\) & - & - & \(\overrightarrow{+}\) & \(\cdots\) & & - & \(\stackrel{+}{+}\) & & & & \(\xrightarrow{\sim}\) & in & N & in & & & \(\stackrel{\sim}{2}\) & \(\underset{\sim}{\infty}\) & \(\stackrel{+}{6}\) & \(\cdots\) \\
\hline 0 & \(n\) & in & \(\stackrel{\sim}{n}\) & O & \(\xrightarrow{\square}\) & & 0 & 0 & & & & \(\cdots\) & 0 & ~ & \(\sim\) & & & \(\stackrel{\sim}{\sigma}\) & - & \(\stackrel{0}{0}\) & - \({ }_{\sim}^{\infty}\) \\
\hline & \(N\) & n & \(\cdots\) & N & \(\pm\) & & +1 & c & & & & 0 & \(\infty\) & \(\infty\) & \(\sigma\) & & & \(N\) & \(\cdots\) & \(\stackrel{1}{c}\) & \(\cdots \stackrel{\sim}{\sim}\) \\
\hline \(\cdots\) & \(\cdots\) & + & \(\stackrel{\square}{5}\) & \(\sim\) & \(\stackrel{\sim}{0}\) & & a & \(\stackrel{\square}{2}\) & & & & \(\stackrel{\sim}{\sim}\) & \(\cdots\) & N & \(\stackrel{\rightharpoonup}{n}\) & & & v & \(\pm\) & 0 & , \\
\hline \(\bullet\) & & & & - & & & \(\cdots\) • & & & & & & & \(\stackrel{\rightharpoonup}{*}\) & - & & & & & & \\
\hline & \(\checkmark\) & \(\checkmark\) & ナ & & \(\checkmark\) & & & n & & & & N & N & v & \(\sim\) & & \(1 \sim\) & \(N\) & 0 & & \(\stackrel{+}{5}\) \\
\hline & & & & & & & & & & & & & & & & & & & m & & \(\cdots\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \(\stackrel{n}{n}\) & \(\sim\) & \(\sim\) & \(\sim\) & \(\stackrel{\sim}{n}\) & \(\stackrel{\sim}{\sim}\) & n & \[
n
\] & in & n & in & \[
\Omega
\] & \[
\sim
\] & in & \[
0
\] & \[
0
\] & \[
\stackrel{i n}{n}
\] & n & \[
n
\] & \[
\Omega
\] \\
\hline \(\underset{\sim}{\sim}\) & \(\sim\) & \(\sim\) & \(\sim\) & \(\cdots\) & \(\xrightarrow{\sim}\) & \(\sim\) & \(\underset{\sim}{\sim}\) & \(\sim\) & \(\underset{\sim}{\sim}\) & \(\underset{\sim}{\sim}\) & \(\underset{\sim}{\sim}\) & \(\sim\) & \(\sim\) & \(\underset{\sim}{\sim}\) & \(\sim\) & \(\underset{\sim}{\sim}\) & \(\sim\) & \(\underset{\sim}{\sim}\) & \(\underset{\sim}{\sim}\) \\
\hline - & \(\sigma\) & N & 2 & \(\cdots\) & N & \(\sigma\) & \(\sigma\) & 0 & \(\sigma\) & N & \(\uparrow\) & N & ת & - & \(\sigma\) & \(\uparrow\) & \(\stackrel{\sim}{\sim}\) & \(\stackrel{ }{ }\) & \(\sigma\) \\
\hline \(\infty\) & \(\infty\) & \(\infty\) & 2 & \(\infty\) & \(\infty\) & \(\infty\) & \(x\) & \(\infty\) & in & \(\propto\) & 4, & 2 & 9 & \(\propto\) & \(\sigma\) & 0 & \(\cdots\) & \(\infty\) & 0 \\
\hline \(\cdots\) & \(\sim\) & \(\cdots\) & m & \(\pm\) & \(\cdots\) & \(v\) & \(\sim\) & \(\sim\) & \(\infty\) & \(\rightarrow\) & \(\sigma\) & \(\rightarrow\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & & N & \(\cdots\) & \(\cdots\) \\
\hline & \(\bullet\) & - & - & \(\bullet\) & - & & \(\bullet\) & \(\bullet\) & \(\stackrel{+}{\circ}\) & \(\bullet\) & - & - & & \(\stackrel{\square}{\square}\) & \(\stackrel{+}{+}\) & - & & - & \(\stackrel{-}{\square}\) \\
\hline 0 & \(\cdots\) & N & \(\sim\) & \(\pm\) & 0 & N & \(\cdots\) & \(\cdots\) & \(\infty\) & 0 & 0 & 0 & \(\cdots\) & \(\sim\) & \(\Omega\) & \(\pm\) & \(\cdots\) & \(\stackrel{\leftarrow}{\sim}\) & \(\pi\) \\
\hline n & n & in & L) & \(n\) & n & \(\cdots\) & \(\cdots\) & 10 & & & - & \(\cdots\) & \(\square\) & \(\cdots\) & \(\stackrel{\square}{4}\) & \(\overrightarrow{4}\) & \(\stackrel{\square}{5}\) & \(\pm\) & \(\overrightarrow{5}\) \\
\hline n & m & m & m & m & m & \(\cdots\) & m & \(\cdots\) & & & \(\stackrel{4}{4}\) & & 5 & & \(\stackrel{4}{4}\) & 4 & 5 & + & in \\
\hline in & in & in & \({ }_{0}\) & 0 & 0 & \(\sim\) & \(\sim\) & \({ }_{0}^{6}\) & \[
\stackrel{\ln }{\mathbf{n}}
\] & \[
\underset{\sim}{\infty}
\] & in & \({ }_{0}^{1}\) & 10 & 18 & 0 & \(\stackrel{15}{0}\) & \(\sim\) & \% & \({ }_{3}\) \\
\hline \(\sigma\) & 0 & 0 & \(\sigma\) & \(\sigma\) & 0 & \(\sigma\) & \(\sigma\) & \(\sigma\) & 0 & \(\sigma\) & \(\sigma\) & \(\sigma\) & \(\sigma\) & \(\sigma\) & \(\checkmark\) & \(\sigma\) & \(\sigma\) & \(\sigma\) & \(\cdots\) \\
\hline - & - & \(\rightarrow\) & \(=\) & \(\cdots\) & - & \(\cdots\) & \(\cdots\) & \(\square\) & & - & - & & & & & & & & \\
\hline \(=\) & \(\rightarrow\) & \(\cdots\) & \(\cdots\) & - & F & - & \(\cdots\) & \(\cdots\) & I & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & - & \(\square\) & \(\square\) & \(\cdots\) \\
\hline 0 & 0 & 0 & 0 & \(\stackrel{a}{0}\) & \(\sigma\) & 0 & \(\sigma\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\sim\) & 0 & 0 & \(\checkmark\) \\
\hline \(\bigcirc\) & 0 & c & 0 & c & 0 & 0 & \(\infty\) & 0 & 0 & 0 & 0 & \(c\) & 0 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
355.8142390 \\
-2.744800
\end{array}
\] & 1.6809082 & 2352.2656250 \\
\hline 359.5935059 & . .6701660 & 0352.3315430 \\
\hline 354.5617676 & \[
\begin{array}{r}
1.1425781 \\
.000000
\end{array}
\] & 1351.9909668 \\
\hline 4.1198730 & 359.2858887 & 7352.3315430 \\
\hline 3.9550781 & 359.5715332 & \[
\begin{array}{r}
352.6611328 \\
-.173360
\end{array}
\] \\
\hline 1.9116211 & 359.6264648 & 8352.0678711 \\
\hline 4.3066406 & 359.5385742 & 2352.1008302 \\
\hline -1.288000 & & \\
\hline 1.6149902 & 359.5715332 & 351.8701172 \\
\hline 1.0546875 & \[
\begin{array}{r}
359.6374512 \\
-.242400
\end{array}
\] & 2351.9799805 \\
\hline 358.9343262 & 359.6923828 & 851.6503906 \\
\hline .9777832 & 359.4616699 & \[
\begin{array}{r}
351.7712402 \\
14.215520
\end{array}
\] \\
\hline 355.6384277 & 359.8022461 & 351.4636230 \\
\hline \[
\begin{array}{r}
357.0227051 \\
7.341600
\end{array}
\] & 359.8022461 & 351.4416504 \\
\hline 354.9462891 & 359.9340820 & 351.6064453 \\
\hline 355.3967285 & 359.9450684 & 351.6174316 \\
\hline 356.9128 & 358.6157 & 351.4636 \\
\hline & & -2.080320 \\
\hline \[
\begin{array}{r}
357.4841309 \\
1.545600
\end{array}
\] & 358. 5498047 & 351.2219238 \\
\hline 357.4841309 & 358.5498047 & 351.2219238 \\
\hline & -2.908800 & \\
\hline 357.4841309 & 358.5498047 & 351.2219238 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{357.5720215358 .7145996}} & 351.1560059 \\
\hline & & -2.080320 \\
\hline \multicolumn{2}{|l|}{357.4841309358 .5498747} & 351.2219239 \\
\hline
\end{tabular}

APPENDIX F
LM FREE FLIGHT TRAJECTORY, REV. 14
REGION OF MARE NECTARIS
\begin{tabular}{|c|c|}
\hline ALTITUCE & SEL ENOGRAPHIC \\
\hline ABOVE MLR & LATITUDF \\
\hline (FEFT) & (DEGRFFS) \\
\hline 158129.0 & -15.1012 \\
\hline 153844.2 & -15.1773 \\
\hline 149594.1 & -15.2414 \\
\hline 145382.2 & -15.2934 \\
\hline 141211.8 & -15.3331 \\
\hline 137086.3 & -15.3604 \\
\hline 133009.0 & -15.3754 \\
\hline 128983.2 & -15.3779 \\
\hline 125012.1 & -15.3678 \\
\hline 121099.0 & -15.3452 \\
\hline 117247.1 & -15.3099 \\
\hline 113459.5 & -15.2621 \\
\hline 109739.3 & -15.2016 \\
\hline 106089.5 & -15.1285 \\
\hline 102513.3 & -15.0428 \\
\hline 99013.5 & -14.9446 \\
\hline 95593.0 & -14.8339 \\
\hline 92254.7 & -14.7107 \\
\hline 89001.4 & -14.5752 \\
\hline 85835.8 & -14.4275 \\
\hline 82760.5 & -14.2677 \\
\hline 79778.2 & -14.0958 \\
\hline 76891.3 & -13.9120 \\
\hline 74102.2 & -13.7166 \\
\hline 71413.4 & -13.5095 \\
\hline 68827.1 & -13.2911 \\
\hline 66345.6 & -13.0614 \\
\hline 6397 C .8 & -12.8207 \\
\hline 61705.0 & -12.5693 \\
\hline 59549.9 & -12.3072 \\
\hline 57507.5 & -12.0348 \\
\hline 55579.4 & -11.7522 \\
\hline 53767.5 & -11.4599 \\
\hline 52073.2 & -11.1579 \\
\hline 50497.9 & - 10.8465 \\
\hline 49043.2 & -10.5262 \\
\hline 47710.2 & -10.1970 \\
\hline 46500.0 & -9.8594 \\
\hline 45413.9 & -9.5136 \\
\hline 44452.6 & -9.1600 \\
\hline 43617.1 & -8.7988 \\
\hline 42908.1 & -8.4304 \\
\hline 42326.2 & -8.0551 \\
\hline 41872.0 & -7.6733 \\
\hline 41464.3 & -7.1521 \\
\hline
\end{tabular}
SELENOGRAPHIC
LONGITUDE
(DEGREES)

GET
(HR-MN-SEC)
\begin{tabular}{|c|c|c|c|}
\hline 67.9194 & 109 & 58 & .008 \\
\hline 66.2583 & 109 & 58 & 30.008 \\
\hline 64.5937 & 109 & 59 & . 008 \\
\hline 62.9257 & 109 & 59 & 30.008 \\
\hline 61.2546 & 110 & 0 & . 008 \\
\hline 59.5807 & 110 & 0 & 30.008 \\
\hline 57.9040 & 110 & 1 & . 008 \\
\hline 56.2249 & 110 & 1 & 30.008 \\
\hline 54.5435 & 110 & 2 & . 008 \\
\hline 52.8601 & 110 & 2 & 30.008 \\
\hline 51.1749 & 110 & 3 & . 008 \\
\hline 49.4882 & 110 & 3 & 30.008 \\
\hline 47.8002 & 110 & 4 & . 008 \\
\hline 46.1111 & 110 & 4 & 30.008 \\
\hline 44.4212 & 110 & 5 & . 0008 \\
\hline 42.7306 & 110 & 5 & 30.008 \\
\hline 41.0397 & 110 & 6 & . 008 \\
\hline 39.3486 & 110 & 6 & 30.008 \\
\hline 37.6576 & 110 & 7 & . 008 \\
\hline 35.9669 & 110 & 7 & 30.008 \\
\hline 34.2767 & 110 & 8 & . 008 \\
\hline 32.5871 & 110 & 8 & 30.008 \\
\hline 30.8985 & 110 & 9 & . 008 \\
\hline 29.2110 & 110 & 9 & 30.008 \\
\hline 27.5248 & 110 & 10 & . 008 \\
\hline 25.8400 & 110 & 10 & 30.008 \\
\hline 24.1569 & 110 & 11 & . 008 \\
\hline 22.4755 & 110 & 11 & 30.008 \\
\hline 20.7960 & 110 & 12 & . 008 \\
\hline 19.1186 & 110 & 12 & 30.008 \\
\hline 17.4434 & 110 & 13 & . 008 \\
\hline 15.7704 & 110 & 13 & 30.008 \\
\hline 14.0999 & 110 & 14 & . 008 \\
\hline 12.4318 & 110 & 14 & 30.008 \\
\hline 10.7663 & 110 & 15 & . 008 \\
\hline 9.1034 & 110 & 15 & 30.008 \\
\hline 7.4432 & 110 & 16 & . 008 \\
\hline 5.7857 & 110 & 16 & 30.008 \\
\hline 4.1310 & 110 & 17 & . 008 \\
\hline 2.4791 & 110 & 17 & 30.008 \\
\hline . 8299 & 110 & 18 & . 008 \\
\hline -. 8164 & 110 & 18 & 30.008 \\
\hline -2.4600 & 110 & 19 & . 008 \\
\hline -4.1008 & 110 & 19 & 30.008 \\
\hline -6.2940 & 110 & 20 & 9.500 \\
\hline
\end{tabular}
1. "Apollo 12 Descent Postflight Analysis," MSC Memo 69-FM22-324, to D. J. Incerto from Landing Analysis Branch, dated 19 December, 1969.
2. Girod, W. P., "Task A-50 BET Delivery - LM Ascent and Insertion to CSI Trajectory," TRW IOC 70:7254.3-6, dated 16 January 1969.
3. Girod, W. P., "Task A-50 BET Delivery CSM Segment 1 (Post TLI to Lunar SOI)," TRW IOC 69:7254.3-106, dated 20 November 1969.
4. Girod, W. P., "Task A-50 BET Delivery Real Time LM Powered Descent," TRW IOC 69:7254.3-108, dated 21 November 1969.
5. Girod, W. P., "Task A-50 BET Delivery Real Time LM Ascent," TRW IOC 69:7254.3-109, dated 21 November 1969.
6. Girod, W. P., "Task A-50 BET Delivery CSM Segment 2 (Lunar SOI to LOPC-1)," TRW IOC 69:7254.3-111, dated 25 November 1969.
7. Girod, W. P., "Task A-50 BET Delivery CSM Segment 3 (LOPC-1 to Lunar SOI)," TRW IOC 69:7254.3-113, dated 26 November 1969.
8. Girod, W. P., "Task A-50 BET Delivery Preliminary LM Free Flight BET," TRW IOC 69:7254.3-115, dated 26 November 1969.
9. Girod, W. P., "Task A-50 BET Delivery CSM Segment 4 (Lunar SOI to Entry Interface)," TRW IOC 69:7254.3-117, dated 2 December 1969.
10. Girod, W. P., "Task A-50 BET Delivery: Preliminary Entry," TRW IOC 69:7254.3-126, dated 22 December 1969.
11. Girod, W. P., "Task A-50 BET Delivery - LM Ascent Stage Impact Trajectory," TRW IOC 70:7254.3-4, dated 9 January 1970.
12. Girod, W. P., "Task A-50 BET Delivery Final LM Powered Descent," TRW IOC, dated 6 February 1970.
13. Moore, J. B., "Task A-50 BET Delivery - LOI-1 and TEI Powered Flight Trajectories, TRW IOC 70:7254.3-6, dated 19 January 1970.
14. "Support to the Postflight Analysis of the GN\&C Systems on Apollo 12," TRW Letter 69:7254.3-124, to J. F. Hanaway (EG7) from D. L. Rue, dated 18 December 1969.
15. TRW Document 11176-H508-R0-00, "Apollo Mission 11, Trajectory Reconstruction and Postflight Analysis, Volume I," dated 16 March 1970```

