

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FINAL

APOLLO 12 FLIGHT PLAN

AS-507/CSM-108/LM-6

OCTOBER 15,1969

FLIGHT PLANNING BRANCH
FLIGHT CREW SUPPORT DIVISION

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

INDEXING DATA

DATE 10-15-69 OPR

#

T PGM R APO SUBJECT:

SIGNATOR LOC

APOLLO 12

APOLLO AS-507/CSM-108/LM-6

FINAL FLIGHT PLAN

OCTOBER 15, 1969

Submitted by:

C. L. Stough

Flight Planning Branch

Approved by:

Warren J. North / Chief, Flight Crew Support Division

Donald K. Slayton / Director of Flight Crew Operations

Concurrence:

Manager, Apollo Spacecraft Program

Christopher C. Kraft, Jr.

Director of Flight Operations

Any comments or questions on this document should be forwarded to C. L. Stough, Flight Planning Branch, mail code CF34, extension 4471.

TABLE OF CONTENTS

List of Charts and Graphs	iv
List of Tables	٧
Introduction	vii
Acknowledgments	viii
Abbreviations	ix
Photographic Nomenclature	xviii
Symbol Nomenclature	xix
SECTION 1 - GENERAL	
Flight Plan Notes	1-1
SECTION 2 - MISSION OBJECTIVES	
Mission Objectives	2-1
SECTION 3 - DETAILED TIMELINE	
1. Launch Phase	3-i
2. Translunar Injection	3-4
3. Translunar Coast Phase	
a. Transposition, Docking, and Ejection	3-5
b. Cislunar Navigation	3-8,3-16
c. LM Familiarization	3-45
d. Lunar Orbit Insertion	3-60

4.	. Lunar Orbit/Descent Phase		
	a.	Second LM Ingress	3-67
	b.	LM Activation and Checkout	3-79
	c.	Undocking	3-84
	d.	Touchdown	3-87
5.	Lun	ar Surface Phase	,
	a.	First EVA	3-93
	b.	Second EVA	3-108
	с.	LM Liftoff	3-122
6.	Ren	dezvous/Lunar Orbit Phase	
	a.	Docking	3-125
	b.	LM Jettison	3-127
	с.	LM Impact	3-129
•	d.	Candidate Landing Site Photography and Landmark Tracking	3-137,3-154
	e.	Trans Earth Injection	3-158
7.	Tra	ns Earth Coast Cislunar Navigation	3-169,3-173 3-183,3-186 3-188,3-198
8.	Ent	ry Interface	3-205

SECTION 4 - CONSUMABLES

This section will be added later as part of "Revision A" to the Final Flight Plan.

SECTION 5 - ABBREVIATED TIMELINE

Abbreviated Timeline 5-1

SECTION 6 - ALTERNATE MISSIONS

Alternate Mission 1 - CSM Only	6-1
Alternate Mission 2 - CSM/LM Lunar Orbit, DPS No/Go for Burn	6-2
Alternate Mission 3 - CSM/LM Lunar Orbit, No/Go for Undocking	6-3
Alternate Mission 4 - CSM Only, Earth Orbit	6-4
Alternate Timeline,-No MCC-4	6-5
Alternate Timeline,-LM Undocking Delayed One Rev.	6-10

CHARTS AND GRAPHS

FIG 1-1	LUNAR EXPLORATION COMM - ONE CREWMAN	1-8
FIG 1-2	LUNAR EXPLORATION COMM - BOTH CREWMAN	1-9
FIG 3-1	DOCKED LANDMARK TRACKING PROFILE	3-68,3-82
FIG 3-2	LUNAR ORBIT REST PERIOD ATTITUDE	3-71
FIG 3-3	CSM LANDMARK TRACKING PROFILE	3-89,3-92, 3-110,3-118a 3-120,3-144, 3-148
FIG 3-4	HIGH RESOLUTION PHOTOGRAPHY	3-135,3-142
FIG 3-5	STEREO STRIP PHOTOGRAPHY	3-138.3-152

TABLES

TABLE	1-1	MSFN COVERAGE	1-10
	1-2	TV SCHEDULE	1-13
	1-3	FUEL CELL PURGE AND WATER DUMP SCHEDULE	1-14
	1-4	LiOH CANNISTER CHANGE SCHEDULE	1-15
	1-5	CSM BURN SCHEDULE	1-16
	1-6	LM BURN SCHEDULE	1-17
	1-7	BLOCK DATA	1-18
	1-8	DSEA SCHEDULE	1-19
	1-9	BATTERY CHARGE SCHEDULE	1-20
	1-10	LANDMARK TRACKING	1-21
	1-11	MISSION ACTIVITY SUMMARY	1-22
	2-1	MISSION OBJECTIVE/ACTIVITY REFERENCE	2-2
	3-1	TLI BURN TABLE	3-3
	3-2	MCC-1 BURN TABLE	3-11
	3-3	MCC-2 BURN TABLE	3-25
	3-4	MCC-3 BURN TABLE	3-42
	3-5	MCC-4 BURN TABLE	3-53
	3-6	LOI-1 BURN TABLE	3-59
	3-7	LOI-1 ABORT TABLE	3-59
	3-8	LOI-2 BURN TABLE	3-64
	3-9	CSM PLANE CHANGE #1 BURN TABLE	3-98
	3-10	CSM PLANE CHANGE #2 BURN TABLE	3-136

TABLES (Cont'd)

3-11	TEI BURN TABLE	3-157
	MCC-5 BURN TABLE	3-166
	MCC-6 BURN TABLE	3-190
	MCC 7 RIIDN TARI F	3-201

•

INTRODUCTION

This Flight Plan has been prepared by the Flight Planning Branch, Flight Crew Support Division, with technical support by TRW Systems.

This document schedules the AS-507/CSM-108/LM-6 operations and crew activities to fulfill, when possible, the test objectives defined in the Mission Requirements, H Type Mission Lunar Landing, Change B dated October 14, 1969.

The trajectory parameters used in this Flight Plan are for November 14, 1969 launch, with 72° launch azimuth and were supplied by Mission Planning and Analysis Division as defined by the Apollo Mission H-1 Spacecraft Operational Trajectory to be published.

The Apolio 12 Flight Plan is under the configuration control of the Crew Procedures Control Board (CPCB). All proposed changes to this document that fall in the following categories should be submitted to the CPCB via a Crew Procedures Change Request:

- 1. Items that impose additional crew training or impact crew procedures.
- 2. Items that impact the accomplishment of Mission Objectives.
- 3. Items that result in a significant RCS or EPS budget change.
- Items that result in moving major activities to a differenct activity day in the Flight Plan.
- 5. Items that require a change to the flight data file.

The Chief, Flight Planning Branch (FCSD) will determine what proposed changes fall in the above categories.

Mr. C. L. Stough will act as co-ordinator for all proposed changes to the Apollo 12 Flight Plan.

This Flight Plan is not to be reproduced without the written approval of the Chief, Flight Crew Support Division.

Any requests for additional copies or changes to the distribution lists of this document must be made in writing to Mr. W. J. North, Chief, Flight Crew Support Division, MSC, Houston, Texas.

ACKNOWLEDGMENTS

Acknowledgment is made to Messrs.

Wood Calvert, William Killian, Don Hutson, Thomas Johnson,
Leon Vick, Bob Jefferies, Elvin Pippert, Spencer Gardner and
Ron Huffman for their technical support in the preparation of
the Apollo 12 Flight Plan.

Views of the earth shown in the Flight Plan were taken from the document, "Views from the CM and LM during the Flight of Apollo 12 (Mission H-1)."

The CSM and LM attitude information was taken from the document, "Operational Lunar Orbit Attitude Sequence for Apollo 12 (Mission H-1)" to be published.

ABBREVIATIONS

ACCEL Accelerometer ACN Ascension ACT Activation Acquisition or Acquire ACQ AEA Abort Electronics Assembly AGS Abort Guidance Subsystem AΗ Ampere Hours ALSCC Apollo Lunar Surface Close-up Camera ALSEP Apollo Lunar Surface Experiment Package ALT Altitude AM Amplitude Modulation AMP or amp Ampere AMPL Amplifier ANG Antigua ANT Antenna AOH Apollo Operations Handbook AOS Acquisition of Signal or Acquisition of Site Alignment Optical Telescope AOT APS Ascent Propulsion Subsystem ars Atmosphere Revitalization System ASC Ascent A/T Alignment Technique ATT Attitude AUX Auxiliary ΑZ Azimuth BAT Battery BDBand BDA Bermuda Bio-Medical Data on Voice Downlink Bio BP Barber Pole **BRKT** Bracket BT Burn Time BU Backup Black & White (Film 3400) BW Black & White (Film 3401) BW1 CAP COM Capsule Communicator CAL ₹ Calibration Angle CAM Camera CAN CANISTER CB Circuit Breaker CCIG Cold Cathode Ion Gage Constant Delta Altitude CDH CDR Commander CDU Coupling Data Unit

CEX Color External Photography
CIN Color Internal Photography

CIRC Circularization

CK Check

C/L Centerline or Checklist

CM Command Module

CMC Command Module Computer

CMD Command

CMP Command Module Pilot

CNTL Control Check out

COAS Crew Optical Alignment Sight

COMM Communications
CONFIG Configuration

COMP Compare

CONT Continue and Contingency

CP Control Point

CRO Carnarvon, Australia

CRYO Cryogenic

CSC Contingency Sample Collection

CSC Close-up Stereo Camera

CSI Coelliptic Sequence Initiation

CSM Command Service Module
C&WS Caution and Warning System

CWEA Caution and Warning Electronic Assembly

CYI Grand Canary Island

DAC Data Acquisition Camera

DAP Digital Auto Pilot

DB Deadband

DC Direct Current

DCA Digital Command Assembly

DEDA Data Entry and Display Assembly

DEGS Degrees
DEPL Depletion
DES Descent

DET Digital Event Timer

DIFF Difference
DIR Direct
DK Docked

DO Detailed Objective
DOI Descent Orbit Insertion
DPS Descent Propulsion System

DS Documented Sample

DSE Data Storage Equipment
DSKY Display and Keyboard
DTO Detailed Test Objective
DUA Digital Uplink Assembly

DWN Down

E Erasable or Enter ECS Environmental Control System ED Explosive Device EDT Eastern Daylight Time **EFH** Earth Far Horizon ΕI Earth (atmosphere) Interface and Entry Interface EL Electric Hasselblad Camera ELEV Elevation **EMER** Emergency EMS Entry Monitor System EMU Extravehicular Mobility Unit ENH Earth Near Horizon EP0 Earth Parking Orbit EPHEM **EPHEMERIS** EPS Electrical Power Subsystem EQUIP Equipment **EST** Eastern Standard Time ETB Equipment Transfer Bag EVA Extravehicular Activity EVAP Evaporator **EVCS** Extravehicular Communications System EVT Extravehicular Transfer EXT External f F Stop FC Fuel Cell FDAI Flight Director Attitude Indicator FLT Flight FM Frequency Modulated FOV. Field of View FPS or fps Feet per second FT or ft Feet FT0 Flight Test Objective FTP Full Throttle Position FWD Forward G.A. Gas Analysis GΑ Gimbal Angle GBI Grand Bahama Islands GBM Grand Bahama (MSFN) GDC Gyro Display Coupler GDS Goldstone, California GET Ground Elapsed Time GETI Ground Elapsed Time of Ignition GLY Glycol GMT Greenwich Mean Time G&N Guidance and Navigation GNCS Guidance Navigation Control System GWM Guam

Guaymas, Mexico

GYM

```
Hydrogen
H2
            Apogee Altitude
HA
HAW
            Hawaii
            High Bit Rate (TLM)
HBR
            Highly Desirable
HD
            High Gain Antenna
HGA
            High
ΗI
            Water
H20
            Perigee Altitude
HP
            Honeysuckle (Canberra, Australia)
HSK
            Hand Tool Carrier
HTC
HTR
            Heater
            USNS Huntsville
HTV
ICDU
            Inertial Coupling Data Unit
            Identification
ID
            Inner Gimbal Angle
IGA
IGN
            Ignition
            Inertial Measurement Unit
IMU
            Indicator
IND
            Initialization
INIT
INT
             Intervalometer
ΙP
            Initial Point
            Interim Stowage Assembly
ISA
            Instrumentation Unit
IU
            Intervehicular Communications
IVC
            Intravehicular Transfer
IVT
            Jettison
JETT
KM
            Kilometer
            Kilowatt Hour
kwh
            Launch Azimuth
LA
            Latitude
LAT
            Low Bit Rate (TLM)
LBR
LBS or 1bs
            Pounds
            Liquid Cooled Garment
LCG
            Lift/Drag
L/D
            Lunar Day (TV Lens)
LD
            Landing
LDG
            Landmark
LDMK
            Lower Equipment Bay
LEB
            Lunar Equipment Conveyor
LEC
            Lunar Surface Electric Hasselblad Camera
LEL
            Lunar Far Horizon
LFH
            LM Guidance Computer
LGC
            Left-hand
LH
            Local Horizontal
L/H
```

Left-hand Equipment Bay

LHEB

Left-hand Forward Equipment Bay LHFEB Left Hand Side Storage Container LHSSC Lithium Hydroxide LiOH Lunar Landing Mission LLM Landmark Line of Sight LLOS Lunar Module LM Lunar Module Pilot LMP Lunar Near Horizon LNH LIFT OFF L/0 Lunar Orbit Insertion LOI Longitude LONG Loss of Signal or Loss of Site LOS Lunar Parking Orbit LP0 Landing Radar LR LRRR or LR3 Laser Ranging Retro-Reflector Landing Site or Lunar Surface LS Lunar Surface Magnetometer LSM LT Light Lighting LTG Launch Vehicle L۷ Local Vertical L/V Launch Vehicle Pressure Display LVPD Mandatory M Madrid, Spain MAD Magazine (Camera) MAG Manua 1 MAN Maximum MAX Maximum Dynamic Pressure MAX Q Midcourse Correction MCC Mission Control Center - Houston MCC-H or MCC Main Display Console MDC Measurement MEAS USNS Mercury MER Modular Experiment Stowage Assembly MESA Mission Event Timer MET Middle Gimbal Angle MGA Minimum Impulse M/IMinimum MIN MIR Mirror Merrit Island, Florida MLA Millimeter mm MNVR Maneuver Monitor MON Mid Pacific Landing MPL Main Propulsion System MPS Manned Space Flight Network MSFN Manual Thrust Vector Control MTVC

NAV Navigation NM Nautical Miles

NOM Nominal
NXX Noun XX

02 Oxygen

OBS Observation

O/F Oxidizer to Fuel Ratio
OGA Outer Gimbal Angle
OMNI Omnidirectional Antenna

OPR Operate

OPS Oxygen Purge System

OPT Option
ORB Orbital

ORDEAL Orbit Rate Display Earth and Lunar

ORIENT Orientation OVBD Overboard OVHD Overhead

P Pitch or Program
PAD Voice Update

PCM Pulse Code Modulation

PC Plane Change or Chamber Pressure

PDI Powered Descent Initiation

PER Pericynthian

PGA Pressure Garment Assembly

PGNS Primary Guidance Navigation Control Section

PHOTO PHOTOGRAPH

PIPA Pulse Integrating Pendulous Accelerometer

PKG Package

PLSS Portable Life Support Systems

PM Phase Modulated

POL Polarity or Polarizing PRE Pretoria, South Africa

PREF Preferred
PREP Preparation
PRESS Pressure
PRIM Primary

PRN Pseudo Random Noise

PROP Proportional PRPLNT Propellant

PSE Passive Seismic Experiment
PSIA Pounds per Square Inch Absolute
PSID Pounds per Square Inch Differential

PSIG Pounds per Square Inch Gage

PT Point

PTC Passive Thermal Control PU Propellant Utilization

PUGS Propellant Utilization and Gaging System

PWR Power
PXX Program XX
PYRO Pyrotechnic

Qty Quantity Quadrant QUAD R Roll or Range Red & Blue R&B Radiator, or Radial, or Radiation rad RCDR Recorder Reaction Control System RCS RCU Remote Control Unit RCV Receiver REACQ Reacquire USNS Redstone RED Reference Stable Member Matrix REFSMMAT Regulator REG Required REQD Revolution REV Right-hand RH RING Ringsite Radius of Landing Site RLS Rendezvous RNDZ Range/Ranging RNG Rendezvous Radar RR RSI Roll Stability Indicator Real Time RT Real Time Command RTC Radioisotope Thermoelectric Generator RTG Routine XX RXX SA Shaft Angle S/C Spacecraft Signal Conditioning Equipment SCE SCS Stabilization Control System SCT Scanning Telescope SEC Secondary S-IVB Engine Cut-off SEC0 Sequential Events Control System SECS SEL Select SEP Separate Sequence SEQ Suprathermal Ion Detector Experiment SIDE Saturn IV B(Third Stage) S-IVB Service Module LM Adapter SLA SLOS Star Line-of-Sight Service Module SM SP0T Spot Meter Service Propulsion System SPS Sunrise SR Sample Return Container SRC

S-Band Receiver Mode No. X

SRX

Sunset SS S-Band Transmit Mode No. X STX State Vector S.V. Switch Sw Solar Wind Composition SWC Solar Wind Experiment SWE Sextant SXT SYS System Time of Ephemeris Update T EPHEM Trunnion Angle TA Tananarive, Madagascar TAN Time Base TB Time of Closest Approach TCA Touchdown TD Transposition Docking & LM Ejection TD&E Trans Earth Coast TEC Technique TECH Transearth Insertion TEI Temperature TEMP Terminate TERM Corpus Christi, Texas TEX Target TGT Time of Ignition TIG Trans Lunar Coast TLC Translunar Insertion TLI Telemetry TLM or TM Terminal Phase Final **TPF** Terminal Phase Initiation TPI Terminal Phase Midcourse TPM Transmitter/Receiver T/R Translation **TRANS** Trunion TRN Television T۷ Thrust Vector Control TVC TWR Tower Ullage ULL Umbilical UMB Undock UNDK United States US Velocity Resultant Velocity ٧R Velocity along the X-axis ٧X Velocity along the Y-axis ۷Y Velocity along the Z-axis ٧Z

VAN USNS Vanguard VHF Very High Frequency **VLV** Valve VOX Voice Keying VXX Verb XX W/0 Without WRT With Respect to WTN USNS Watertown Χ Time of Closest Approach (Symbol) X-DOT Rate of Change along the X axis XFER Transfer XMIT Transmit or Transmitter XPONDER Transponder Υ Yaw YD0T Rate of Change along the Y axis **ZDOT** Rate of Change along the Z axis Azimuth Change (Difference) ΔAz Altitude Change (Difference) ΔΗ Pressure Change (Difference) ΔΡ Position Change (Difference) ΔR Velocity Change (Difference) Δ٧ Velocity Change at Engine Cutoff ΔVC

Photographic Nomenclature

AAA/BBB/CCC/DDD - EEE, EEE, (GGG, HHH, III) JJJ

AAA - Location from which photography is to be accomplished

BBB - Camera

CCC - Lens

DDD - Film Type

EEE - Photography aids (i.e., brackets, intervalometer, Mirror etc.)

GGG - Lens Aperture Setting

HHH - Shutter Speed

III - Focus distance in feet

JJJ - Number of frames for EL & LEL cameras
Frame Rate
Magazine percent
T Time (minutes)
Operating time (minutes) for TV

SYMBOL NOMENCLATURE

