

APOLLO 10 SPACECRAFT DISPERSION ANALYSIS VOLUME III LOI, TEI, AND APS BURN-TO-DEPLETION MANEUVERS
 MISSION PLANNING AND ANALYSIS DIVISION

MANNED SPACECRAFT CENTER houston, TEXAS

PROJECT APOLLO

APOLLO 10 SPACECRAFT DISPERSION ANALYSIS

 VOLUME III - LOI, TEI, AND APS BURN-TO-DEPLETION MANEUVERSBy R. Leroy Mc Henry
Guidance and Performance Branch

MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

CONTENTS

Section Page
SUMMARY 1
INTRODUCTION 1
NOMEN CLATURE 2
METHODS OF ANALYSIS 3
ANALYSIS OF RESULTS 4
Lunar Orbit Insertion Maneuver - LOI-I 4
Circularization Maneuver - LOI-2 5
Transearth Injection Maneuver - TEI 5
APS Burn to Depletion Maneuver 5
CONCLUSIONS 6
APPENDIX A - COORDINATE SYSTEMS 11
APPENDIX B - ERROR SOURCE MAGNITUDES (30 DEVIATIONS) 15

TABLES

Table Page
I LOI-1 MANEUVER SUMMARY 7
II
LOI-2 MANEUVER SUMMARY 8
III TEI MANEUVER SUMMARY 9
IVAPS BURN-TO-DEPLETION MANEUVER SUMMARY10

APOLLO 10 SPACECRAFT DISPERSION ANALYSIS

VOLUME III - LOI, TEI, and APS BURN-TO-DEPLETION MANEUVERS
R. Leroy McHenry

SUMMARY

A spacecraft dispersion analysis is presented for the LOI-l, the LOI-2, the TEI, and the APS burn to depletion maneuvers of Apollo 10 (Mission F). The analysis was performed in two parts. The first part consisted of a trajectory sequence which modeled the targeting and performance of LOI-1, LOI-2, and TEI, and the second part was an individual dispersion analysis of the APS burn to depletion maneuver.

Analysis of the first part showed that the primary effect of translunar midcourse correction errors was to increase the required LOI-l ΔV. The MSFN inaccuracies prior to LOI-2 were the primary cause of the dispersions for LOI-2. The MSFN dispersions at TEI update time caused large deviations in TEI ignition time. However, there was a negligible increase in the ΔV requirements for the TEI maneuver.

The analysis of the APS burn to depletion maneuver showed that the ΔV targets were sufficiently biased to prevent the occurrence of a guided cutoff prior to APS propellant depletion.

INTRODUCTION

The results of a dispersion analysis for the LOI-1, the LOI-2, the TEI, and the APS burn-to-depletion maneuvers of Apollo 10 (Mission F) are presented in this report. One hundred and thirty random trajectories were generated for this analysis by use of a Monte Carlo sampling technique.

Except for the APS burn to depletion maneuver, an estimated MSFN state vector and target update was simulated prior to each maneuver. Targeting of the maneuvers was modeled as closely as possible to reflect real-time targeting procedures. However, the capability to retarget LOI-l and LOI-2 to any orbital plane which passes within the allowable
range of azimuths over the landing site was not available in the computer program simulation. The program does have the capability to compute targets to obtain a selected set of desired conditions of the nominal trajectory. This capability allows LOI-1 and LOI-2 to be targeted such that the resultant orbits will have a satisfactory shape, even though they are not constrained to pass over the landing site. The nominal plane change was applied to each dispersed trajectory at LOI-l since neglect of relatively small adjustments to the nominal plane change has little effect on the total ΔV requirement.

The TEI maneuver was targeted for a selected set of nominal conditions at cutoff. Even though this targeting does not insure the proper conditions at earth entry interface, it was felt that targeting in this manner would yield a good representation of the total ΔV requirement for this maneuver.

NOMENCLATURE

AGS lunar module abort guidance system
APS lunar module ascent propulsion system
$\Delta \mathrm{V} \quad$ incremental change in velocity
LOI-l lunar orbit insertion maneuver
LOI-2 circularization maneuver
MCC-H Mission Control Center-Houston
MSFN Manned Space Flight Network
PGNCS primary guidance and navigation control system
SPS service propulsion system
TEI transearth injection maneuver

The dispersion analysis for the LOI-1, the LOI-2, and the TEI maneuvers was performed in a trajectory sequence so that the targeting and performance of LOI-l on any given trajectory directly affected the performance requirements for LOI-2; similarly, the targeting and performance of LOI-2 affected the performance requirements for TEI. For each of the trajectories simulated, an actual state vector at nominal LOI-l ignition time was constructed by random sampling of a covariance matrix of the expected errors at LOI-1 which result from translunar midcourse maneuver errors. An MCC-H update was simulated prior to LOI-l ignition as an estimated state vector which differed from the actual state vector by random errors in the best MSFN estimate.

Targeting of LOI-l for pericynthion and apocynthion and the nominal out-of-plane ΔV was based on the updated state vector. After the targets were computed, the maneuver was simulated with all of the significant spacecraft errors applied.

The actual state vector at the time of pre-LOI-2 ignition search was computed from the actual state vector at LOI-l cutoff time by the lunar analytic ephemeris generator (LAEG). The estimated state vector used to compute the targets and to simulate an MCC-H update was determined by application of randomly sampled MSFN state vector errors to the actual state vector.

The LOI-2 maneuver was targeted to circularize the spacecraft orbit at the $60-\mathrm{n}$. mi. altitude prior to perigee if the initial pericynthion altitude was less than $60 \mathrm{n} . \mathrm{mi}$. For cases in which the initial pericynthion altitude equaled or exceeded 60 n . mi., the maneuver was targeted to occur at pericynthion.

After the LOI-2 maneuver simulation was performed, the actual state vector was advanced with the LAEG to a fixed elapsed time prior to the TEI maneuver. At this point, an estimated state vector was constructed by application of random MSFN state vector errors to the actual state vector, thereby simulating an MCC-H update. From the updated state vector, a TEI ignition time was computed based on the time of passage over the longitude at nominal TEI ignition. Delta V targets for the TEI maneuver were then computed. The targeting criteria for the TEI maneuver were the nominal velocity magnitude, flight-path angle, and azimuth at cutoff.

A 20-second two-jet RCS ullage maneuver was simulated prior to the main engine ignition for the TEI maneuver. After 75 seconds of the SPS burn, crossover from the propellant storage tank to the sump tank was simulated. The effect of crossover is a slightly higher thrust and propellant flow rate.

The LOI-l, LOI-2, and TEI maneuvers were all simulated under control of the PGNCS. For these maneuvers, it was assumed that the PGNCS platform was alined 55 minutes prior to nominal ignition time.

The dispersion analysis for the APS burn to depletion maneuver was performed separately from the dispersion analyis for the trajectory sequence described previously. No retargeting of the maneuver was simulated. The maneuver was simulated with AGS control. The last LM PGNCS alinement time was assumed to be 5.5 hours prior to ignition. Also, it was assumed that the AGS was alined to the drifted PGNCS at 1.5 hours prior to ignition.

The results of this dispersion analysis are presented in tables I, II, III and IV. The coordinate systems used for the parameters presented in the tables are defined in appendix A. The error sources and their respective values that were modeled in this analysis are presented in appendix B.

ANALYSIS OF RESULTS

Lunar Orbit Insertion Maneuver - LOI-1
Errors in the translunar midcourse correction maneuvers and MSFN uncertainties cause a 9-n. mi. dispersion in pericynthion altitude at LOI-l ignition time as shown in table I. In fact, the effect of the errors upon the mean ignition time caused the maneuver to be performed 10 seconds earlier than nominal.

However, the most significant consequence of the translunar midcourse correction errors, combined with LOI-l performance errors, is that they tend to increase the ΔV required for the maneuver. The 3σ deviation in the total ΔV gained was 34 fps which was caused primarily by targeting dispersions.

The $1.22 \mathrm{fps} V_{g x}$ residual was caused by SPS thrust tailoff uncertainty.

Circularization Maneuver - LOI-2

Prior to the LOI-2 maneuver, the best estimate of the MSFN tracking of only one orbital pass was used to update the onboard computer. As might be expected, the MSFN dispersions increased the $\triangle V$ requirements for this maneuver. Results of the LOI-2 maneuver (table II) show that the mean of the required ΔV was 146.84 fps , which is approximately 8 fps more than nominally required. The 3σ dispersion of 42.87 fps shows that the required ΔV can be as much as 50 fps more than nominal. The statistics for the time of ignition are also partially indicative of the large MSFN uncertainties in altitude at this point, because time of ignition is based on altitude.

The LOI-2 maneuver is a relatively short spacecraft burn. As a result, the PGNCS digital autopilot does not have sufficient time to steer out all of the thrust vector mistrim. This error causes crossaxis velocity errors which can be detected as $V_{g y}$ and $V_{g z}$ residuals. The $3 \sigma \mathrm{~V}_{\mathrm{gy}}$ and V_{gz} residuals are 7.88 fps and 8.42 fps , respectively.

Transearth Injection Maneuver - TEI

The differences in the actual trajectory from the nominal trajectory at the TEI update time, when compounded by errors in the MSFN update, can cause large deviations in the TEI time of ignition. The maneuver can be almost 20 minutes later than nominally planned (table III). However, there is very little impact upon the ΔV requirement for this maneuver. A l3.23-fps 30 dispersion exists in the total ΔV gained for this maneuver. Both targeting and spacecraft sensing errors contribute to this dispersion.

The $V_{g x}$ residual shows that a $3.05-f p s$ dispersion can occur. This dispersion results from SPS thrust tailoff uncertainty.

APS Burn to Depletion Maneuver
Results of the dispersion analysis of the APS burn to depletion maneuver are presented in table IV. The V_{g} residuals show that the targets are sufficiently biased to insure propellant depletion prior to a guided cutoff.

The large errors in the velocity parameters are caused primarily by initial misalinement of the AGS at ignition. This initial misalinement results primarily from 4 hours of PGNCS drift prior to alinement of the AGS with the PGNCS.

CONCLUSIONS

Based upon the dispersion analyses for the LOI-1, LOI-2, TEI, and the APS burn to depletion maneuvers, the following conclusions have been made.

1. No major problems were uncovered in the dispersion analysis.
2. MSFN inaccuracies in the pre-LOI-2 update are the primary contributors to the increase in ΔV cost for LOI-2. The required ΔV can be as much as 50 fps more than nominal.
3. Differences in the actual trajectory from the nominal trajectory combined with pre-TET update errors can cause large deviations (20 min) in the time of ignition for TEI.
4. TEI can be retargeted with no significant increase in ΔV cost.
5. The ΔV targets for the APS burn to depletion maneuver are sufficiently biased to insure APS propellant depletion.
TABLE I.- LOI-I MANEUVER SUMMARY
[IMU alinement time 75:13:17.55 g.e.t.]

Trajectory characteristics					Maneuver characteristics			
Parameter		Nominal	Mean	30		Nominal	Mean	30
Apogee	Preburn	0.00	0.00	0.00	Burn initiation g.e.t., hr:min:sec			-0:0:54.14
altitude, n. mi.	Postburn	169.64	169.94	7.08		76:08:17.55	76:08:6.73	+0:0:17.24
$\begin{aligned} & \text { Perigee } \\ & \text { altitude, n. mi. } \end{aligned}$	Preburn	59.30	59.37	9.07	Burn duration (not including ullage), sec	345.93	346.40	8.01
	Postburn	59.04	58.85	2.00				
Semimajor axis, n. mi	Preburn	-2310.51	-2308.19	65.81	Actual total ΔV gained, fps	2866.16	2872.00	34.25
	Postburn	1052.85	1052.90	3.80				
Altitude, n. mi.	Preburn	84.01	85.56	12.96	Actual ΔV_{X} gained,	-2737.48	-2719.84	73.61
	Postburn	59.63	60.69	6.96				
Right ascension of the ascending node, deg	Preburn	200.60	200.59	7.01	Actual ΔV_{Y} gained, fps	43.69	43.49	7.92
	Postburn	199.06	199.12	6.44				
Inclination, deg	Preburn	174.75	174.74	0.28	Actual ΔV_{Z} gained, fps	-848.05	-916.54	277.14
	Postburn	174.32	174.32	0.32				
Inertial flightpath angle, deg	Preburn	-9.71	-10.15	2.05	V_{gx} residual, fps	-0.02	0.00	1.22
	Postburn	0.44	0.519	1.70				
Eccentricity	Preburn	1.432	1.432	0.010	$V_{\text {gy }}$ residual, fps	0.00	0.00	0.00
	Postburn	0.053	0.053	0.003				
Spacecraft weight, lb	Preburn	93133.0	93133.0	218.7	V_{gz} residual, fps	0.00	0.00	0.00
	Postburn	$70 \quad 115.2$	$70 \quad 066.7$	374.1				
Inertial velocity, fps	Preburn	8250.37	8242.87	57.08	Main engine ΔV expended, fps	2866.16	2872.00	34.25
	Postburn	5478.34	5474.80	33.56				
True anomaly, deg	Preburn	343.52	342.78	3.48	$R C S \quad \Delta V$ expended for trim and ullage, fps	0.00	0.00	0.00
	Postburn	8.97	68.22	17.37				

COMMENTS: The LOI-1 maneuver was targeted for a $60-$ by $170-\mathrm{n}$. mi. orbit, with no constraint for passage over
the landing site considered in the targeting. However, the nominal plane change was applied. The tolerances on pericynthion and apocynthion were $\pm 2 \mathrm{n} . \mathrm{mi}$. The 7.08 n . mi. dispersion in apocynthion is caused primarily by the than nominal for LOI-l.
[IMU alinement time 79:38:23.55 g.e.t.]

Trajectory characteristics					Maneuver characteristics			
Parameter		Nominal	Mean	30		Nominal	Mean	30
Apogee altitude, n. mi.	Preburn	169.69	1.69 .98	7.07	Burn initiation g.e.t., hr:min:sec Burn duration (not including ullage), sec Actual total ΔV gained, fps	80:32:00.88	80:28:53.91	$\begin{aligned} & -0: 11: 23.76 \\ & +0: 07: 31.18 \end{aligned}$
	Postburn	59.23	62.91	10.05				
Perigee altitude, n. mi.	Preburn	59.02	58.82	2.08				4.38
	Postburn	58.93	56.58	6.39		14.36	15.20	
Semimajor axis, n. mi.	Preburn	1052.85	1052.90	3.78				42.87
	Postburn	997.60	998.26	4.77		138.55	146.84	
Altitude, n. mi.	Preburn	59.04	59.69	2.91	Actual ΔV_{X} gained, fps Actual ΔV_{Y} gained, fps	-138.49	-136.54	15.92
	Postburn	59.03	59.92	4.14				
Right ascension of the ascending node, deg	Preburn	199.20	199.27	6.44				
	Postburn	199.20	199.27	6.45		0.00	0.00	0.38
```Inclination, deg```	Preburn	174.32	174.32	0.32	$\begin{aligned} & \text { Actual } \Delta V_{Z} \text { gained, } \\ & \text { fps } \\ & V_{\text {gx }} \text { residual, fps } \end{aligned}$	0.45	-36.71	125.76
	Postburn	174.33	174.32	0.33				
Inertial flightpath angle, deg	Preburn	-0.011	-0.4i1	0.99				
	Postburn	-0.008	-0.026	0.59		-0.01	-0.07	1.20
Eccentricity	Preburn	0.053	0.053	0.003	$\begin{aligned} & \mathrm{V}_{\mathrm{gy}} \text { residual, fps } \\ & \mathrm{V}_{\mathrm{gz}} \text { residual, fps } \end{aligned}$	0.00	0.14	7.88
	Postburn	0.000	0.003	0.007				
Spacecraft weight, lb	Preburn	70115.2	70066.7	374.1		0.00	0.40	8.42
	Postburn	69159.9	69054.9	495.3				
$\begin{aligned} & \text { Inertial } \\ & \text { velocity, fps } \end{aligned}$	Preburn	5483.34	5480.02	- 17.25	$\begin{aligned} & \mathrm{V}_{\mathrm{gz}} \text { residual, fps } \\ & \text { Main engine } \Delta V \\ & \text { expended, fps } \end{aligned}$			42.87
	Postburn	5344.80	5341.84	23.37		138.55	146.84	
True anomaly, deg	Preburn	359.91	324.27	280.73	RCS $\triangle V$ expended for trim and ullage, fps			
	Postburn	352.85	205.37	266.52		0.00	0.00	0.00

[^0]TABLE III.- TEI MANEUVER SUMMARY
[IMU alinement time 126:56:14.55 g.e.t.]

COMMENTS: The TEI maneuver was targeted for burnout velocity magnitude ( $\pm 2$ fps), flight-path angle ( $\pm 0.05^{\circ}$ ),
and azimuth $\left( \pm 0.25^{\circ}\right)$. The large deviation in time of ignition results primarily from the large MSFN inaccuracies.
TABLE IV.- APS BURN-TO-DEPLETION MANEUVER SUMMARY

Trajectory characteristics					Maneuver characteristics			
Parameter		Nominal	Mean	30	Burn initiation g.e.t., hr:min:sec	Nominal	Mean	30
Apogee   altitude, n. mi.	Preburn	60.73	62.17	7.38				
	Postburn	0.00	0.00	0.00		109:03:41.4	109:03:41.4	0.00
Perigee   altitude, n. mi.	Preburn	57.43	56.95	6.09	Burn duration (not including ullage), sec	211.95	211.86	8.34
	Postburn	53.23	53.27	4.17				
Semimajoraxis, n. mi	Preburn	997.59	998.47	5.22	Actual total $\Delta V$ gained, fps	3652.04	3652.46	45.17
	Postburn	-1242.91	-1242.18	56.55				
Altitude, n. mi.	Preburn	58.92	59.11	1.73	Actual $\Delta V_{X}$ gained, fps	3484.40	3483.67	49.92
	Postburn	54.31	54.38	5.72				
Right ascension of the ascending node, deg	Preburn	170.45	170.45	1.20	Actual $\Delta \mathrm{V}_{\mathrm{Y}}$ gained, fps	0.00	0.95	103.43
	Postburn	170.45	170.45	1.47				
Inclination deg	Preburn	154.03	154.03	0.23	Actual $\Delta V_{Z}$ gained, fps	1093.77	1096.49	95.78
	Postburn	154.03	154.03	0.46				
Inertial flight path angle, deg	Preburn	-0.094	-0.095	0.108	$\mathrm{V}_{\mathrm{gx}}$ residual, fps	1347.96	1244.36	43.92
	Postburn	2.135	2.105	1.689				
Eccentricity	Preburn	0.001	0.002	0.001	$\mathrm{V}_{\mathrm{gy}}$ residual, fps	0.00	32.65	42.84
	Postburn	1.798	1.799	0.038				
Spacecraft weight, lb	Preburn	7725.0	7725.3	34.77	$V_{g z}$ residual, fps	0.00	516.01	39.98
	Postburn	5352.6	5352.6	1.00				
Inertial   velocity, fps	Preburn	5345.45	5346.85	9.63	Main engine $\Delta V$ expended, fps	3652.04	3652.46	45.17
	Postburn	8962.72	8963.50	49.56				
True anomaly, deg	Preburn	275.55	290.77	112.26	RCS $\triangle V$ expended for trim and ullage, fps	0.00	0.00	0.00
	Postburn	0.93	3.27	2.61				

[^1]
## APPENDIX A

COORDINATE SYSTEMS

## APPENDIX A

In tables I through III, the statistics for inertial right ascension of the ascending node and orbital inclination are based on an initially rotating selenographic coorainate system which was made inertial at a ground elapsed time of $76^{\mathrm{h}} 8^{\mathrm{m}} 17.55^{\mathrm{s}}$, that is, LOI-1 ignition time.

The actual velocity gained, $\Delta \mathrm{V}_{\mathrm{x}}, \Delta \mathrm{V}_{\mathrm{y}}$, and $\Delta \mathrm{V}_{\mathrm{z}}$, presented in tables I through IV are in the local vertical/local horizontal coordinate system.
$\overline{\mathrm{X}}=(\overline{\mathrm{r}} \mathrm{x} \overline{\mathrm{v}}) \times \overline{\mathrm{r}}$
$\bar{Y}=\bar{Z} x \bar{X}$
$\bar{Z}=-\bar{r}$
where $\bar{r}=$ position vector in inertial coordinates at ignition time
$\overline{\mathrm{v}}=$ velocity vector in inertial coordinates at ignition time
The $\Delta V$ residuals, $V_{g x}, V_{g y}, V_{g z}$, are in spacecraft control axis coordinates. The $X, Y$, and $Z$ refer to the spacecraft axes rotated $7^{\circ} 15^{\prime}$ to the RCS thrust axes in the spacecraft Y-Z plane.

## APPENDIX B

## APPENDIX B

## ERROR SOURCE MAGNITUDES (3o DEVIATIONS)

Source $\quad \operatorname{CSM~PGNCS}^{a} \quad$ LM PGNCS ${ }^{a} \quad$ LM AGS ${ }^{a}$

Platform misalinement, deg	0.033	$\mathrm{~N} / \mathrm{A}$	$0.063^{\mathrm{b}}$
Static gyro drifts, deg/sec			

${ }^{a} N / A$ indicates these errors were not modeled in this analysis.
$b_{\text {PGNCS }}$ inflight alinement error transmitted to the AGS.
${ }^{c}$ PGNCS drift rate prior to alinement of AGS to PGNCS.


[^0]:    COMMENTS: The LOI-2 maneuver was targeted for a $60-$ by $60-\mathrm{n}$. mi. circular orbit, with a tolerance of 1 n . mi. cost in $\Delta V$ is increased. The $V_{g y}$ and $V_{g z}$ residuals are the cross-axis velocity errors caused by thrust vector mistrim.

[^1]:    prior to ignition. At burn to depletion maneuver was an AGS controlled burn. The LM PGNCS was alined 5.5 hours results of a non-guided engine cut of .

