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APOLLO 10 (MISSION F) VEHICLE AND TRAJECTORY RESPONSE
TO THE CSM POWERED FLIGHT MANEUVERS

By James L. Wells, Jr.
1.0 SUMMARY

These simulations were generated to determine what typical response
could be expected on the onboard displays, DSKY displays, and ground
trajectory displays during each SPS burn.

For each maneuver, the primary guidance system (G&N) performed the
maneuver  and drove the FDAI-1. The SCS system was alined at the
beginning of each burn and drove the FDAI-2 during the burn for monitoring
purposes. For each SPS maneuver, time histories are presented for SPS
engine angles, vehicle body rates, IMU gimbal angles, attitude angles,

SCS rates, SCS attitudes and attitude errors, tGO’ VGO’ Vg components

in control coordinates, EMS decremented AV, cross-axis velocity errors,
predicted apogee and perigee, altitude, and Vi versus v, .

Each burn is discussed separately to explain the characteristic
responses that are shown in the figures. The discussion also includes
an explanation of the velocity residuals at the end of each burn.

2.0 INTRCDUCTION

The intent of this document is to present time histories of the
G&N control response that drives the FDAI-1, the DSKY parameters that are
generated during and after the burn, the SCS monitoring parameters avail-
able on FDATI-2, and the trajectory parameters that can be monitored on
the ground. The updated DAP as defined in reference 1 was used for this
study.

These trajectory simulations were initiated by use of the operational
reference trajectory. These six-degree-of-freedom cases simulated the
G&N guidance and control system, the SCS system, and the EMS system.

These simulations did not contain slosh and bending effects. Each time
history figure represented in this document is referenced to SPS ignition
for that particular burn.




Each maneuver consisted of the following sequence.
a. Coast

b. Guidance precomputation

¢. Realinement and reorientation

d. Average g ON at t = 30 seconds

I1G
e. SPS burn

The IMU was alined so that the FDAI-1 read 0°, 0°, 0° (roll, pitch,
and yaw) at SPS ignition (preferred alinement), and the SCS was alined so
that FDAI-2 read 0°, 0°, 0° (roll, pitch, and yaw) from the BMAG's at
SPS ignition. Because no RCS ullage was simulated before the SPS maneuver,
the displays did not show any deadband errors at SPS ignition as in
previous studies. An initial SPS engine mistrim of +0.3° in pitch and
+0.3° in yaw was apllied to the SPS engine pitch and yaw angles that
appear in table I. The weight and balance data were obtained from
reference 2.

In the figures are presented time histories of parameters that are
affected by SPS engine misalinement, offset center of gravity, rotational
dynamics, and control system corrections. The trajectory parameters
and targets before the maneuvers are presented in table I, and the
resultant conditions after the maneuvers are presenteq in table II.

3.0 ABBREVIATIONS

BMAG body mounted attitude gyro

CSM command/service modules

DAP digital autopilot

DSKY display keyboard

EMS entry monitoring system

FDAI-1 flight director attitude indicator, command pilot
FDAI-2 flight director attitude indicator, CSM pilot

G&N guidance and navigation
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IMU inertial measurement unit
LoI-1 lunar orbit insertion maneuver
LoI-2 circularization maneuver

RCS reaction control system

5CS8 stabilization control system
SPS service propulsion system

TEI transearth injection

TVC thrust vector control

ﬁGO ‘ time to go

tIG time of SPS ignition

Vg components velocity in control coordinates

VGO . total velocity to go

A B inertial velocity

AV . velocity change

Y. inertial flight-path angle

4.0 SPS BURN PARAMETERS

4.1 ZEvasive Maneuver

The evasive maneuver consists of a 19.68-fps burn to move the CSM/LM
away from the booster. The SPS engine initially is mistrimmed by 0.3°
in pitch and 0.3° in yaw (ref. 3). Because an RCS ullage is not required,
the vehicle body rates, the IMU gimbal angles, and the attitude errors are
all zero at SPS ignition. Ninety percent of full thrust is reached in
0.42 second, and the first DAP output does not occur until 0.66 second.
When. the TVC DAP comes on, it uses the initial vehicle attitude as a
reference point to maintain attitude control and drives the SPS engine



(fig. 1(a)] to damp out the body rates [fig. 1(b)]. For the small AV,
the onboard computer executes this maneuver with the short burn logic,
and the guidance does not have enough time to issue a steering command
before SPS cutoff. The body rates remain small, but the IMU gimbal angles
[fig. 1(c)] and attitude errors [fig. 1(d)] continue to increase slightly
until cutoff. The attitude errors at cutoff were as follows: roll = 0.06°,
pitch = -0.14°, and yaw = -0.13°.

The SCS rates [fig. 1(e)], attitudes [fig. 1(f)], and attitude
errors [fig. 1(g)] do not cause any noticeable differences in these
short burns because guidance is not involved. The G&N body rates and

the SCS body rates are obtained from the same source. The tGO calculation

[fig. 1(h)] is made in the guidance precomputation and is not updated

because of the short evasive burn. The VGO (the Vg calculated by the

onboard computer) is shown in figure 1(i), and the Vg's in control
coordinates are shown in figure 1(j). These figures show that Vg

approaches zero at cutoff (tailoff not shown in figures). After tailoff,
there was a velocity error of only 0.12 fps (table II).

The EMS AV counter was simulated during each burn, and the results
for this maneuver are shown in figure 1(k). The desired velocity was
loaded into the AV counter and was monitored during this burn.

The cross-axis velocity that is shown in figure 1(1) is an
external method (not onboard computer) used to determine the velocity
errors normal to the desired thrusting direction that are created during
the evasive maneuver. For this burn, the cross-axis velocity error is
approximately 0.17 fps at cutoff. The acceleration of this heavy vehicle
is so small that the mistrim has very little effect on these short burns.
The calculated orbital parameters (earth reference) are shown in
figures 1{m), 1(n), and 1(o).

4,2 Midcourse Correction Maneuver

The second CSM/IM SPS burn is G&N controlled with a total external
AV target of 56.97 fps. No ullage maneuvers are required for the
midcourse correction burn. The SPS engine is initially misalined 0.3° in
pitch and 0.3° in yaw and the SPS engine starts to damp out the rates
that start to build up [fig. 2(a)]. The effects of the SPS engine on the
vehicle body rates are shown in figure 2(b). The initial rates are
damped out by 2 seconds, and the rates are reversed at approximately
4.5 seconds before being nulled to a constant rate at cutoff. The IMU
gimbal angles [fig. 2(c)] and the attitude errors [fig. 2(d)] reflect
the effect of the initial mistrim. The maximum attitude error occurred
at approximately 6 seconds with a pitch reading of -0.42° and a yaw
reading of -0.46°,
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Monitoring the FDAI-2 [figs. 2(e), 2(f), and 2(g)] indicated that
the G&N was performing normally. ’

The first and only teo [fig. 2(h)] is calculated at L seconds. It

is not updated at 6 seconds because t < 4 seconds, and cutoff occurs

GO
at 8.26 seconds. The total velocity to be gained [fig. 2(i)] is
decremented from ignition until cutoff. The velocity to be gained in
control coordinates is presented in figure 2(j) which shows that most of
the Vg is in the X coordinate. The EMS decreases the desired velocity

along the X-body axis [fig. 2(k)] from SPS thrust buildup through

talloff. This system is also used to determine whether the G&N is
performing efficiently.

The total cross-axis velocity error was computed and is presented
in figure 2(1). Because only one steering command was generated during
this burn, the effect was not sufficient to null the cross-axis velocity
error that was still increasing slightly at cutoff.

The following orbital elements are presented: predicted apogee and
perigee [fig. 2(m)], altitude [fig. 2(n)], and inertial velocity versus
intertial flight-path angle [fig. 2(o0)].

4.3 First Lunar Orbit Insertion Maneuver (LOI-1)

The third SPS burn is a CSM/LM G&N controlled maneuver that will
place the vehicle into a lunar orbit. This maneuver requires a total

external AV target of 2978.36 fps, and a burn duration of approximately
361.4 seconds.

The SPS engine angles [fig. 3(a)] reflect the initial mistrim, its
correction, and the tracking of the c.g. until cutoff. The effects of
the initial mistrim can be seen during the first 20 seconds of the vehicle
body rates [fig. 3(b)]. After that time, the rates are reduced and remain
negligible through cutoff. The IMU gimbal angles [fig. 3(c)] show the
initial mistrim effect and the turning of the vehicle to keep the thrust
vector through the moving Z c.g. to meet the target conditions. The
maximum pitch and yaw attitude error [fig. 3(d)] was -0.41° in pitch
and -0.45° in yaw.

The SCS rates [fig. 3(e)], attitudes [fig. 3(f)], and attitude
errors [fig. 3(g)] drive the FDAI-2 and give approximately the same
results as the G&N.

The first good t occurs at L4 seconds and then is updated every

GO

2 seconds until t.. < 4 seconds [fig. 3(h)]. The Voo 1s shown in




figure 3(i), and the velocity components are shown in figure 3(j).
The desired AV was input into the EMS, and the results are shown in
figure 3(k). The cross-axis velocity error [fig. 3(1)] reached a
maximum of 0.68 fps at 8 seconds and then went to zero at cutoff
(361.38 sec). The effects of the SPS burn on selected trajectory
parameters are shown in figures 3(m), 3(n), and 3(o).

4.4 Circularization Maneuver (LOI-2)

The fourth SPS burn is also a CSM/LM docked burn with an external
AV target of 138.5 fps and a burn duration of 1L4.45 seconds. It is
designed to circularize the lunar orbit at approximately 58 n. mi.

The SPS engine is misalined 0.3° in pitch and 0.3° in yaw for
this burn also. Corrections made by the SPS engine for this initial
error are shown in figure 4(a). The vehicle is much lighter during
this burn; therefore, larger body attitude rates are obtained for
LOI-2 than were obtained for the previous burns [fig. 4(b)]. The
maximum rates reached are 0.27 deg/sec pitch and 0.28 deg/sec for yaw.
The IMU angles show the effects of the initial mistrim in figure Liec).
The attitude errors reach a maximum deviation of -0.65° in pitch and
-0.69° in yaw [fig. 4(a)].

The rates, attitudes, and attitude errors that are monitored by
the SCS system on FDAI-2 are presented in figures L4(e), 4(f), and 4(g),
respectively.

The t.,, calculation [fig. 4(n)] is updated every 2 seconds from

4 through 10 seconds; then teo

total Vg [fig. 4(i)], Vg components in control coordinates [fig. 4(3)],

and velocity along the X-body axis [fig. 4(k)] were obtained from
monitoring the onboard displays. The cross-axis velocity [fig. 4(1)]

< L seconds and is not updated again. The

resulted in an error of 0.39 fps after a velocity of 1.13 fps was obtained

during the burn. The trajectory effects are shown in figures U4(m),

4(n), and 4(o).

4.5 Transearth Insertion Maneuver (TEI)

The fifth SPS burn is the first undocked burn for the CSM. It is

designed to direct the spacecraft on an earth return trajectory. The TEI
burn consists of an external AV target of 3622.53 fps and a burn duration

of 168.8 seconds.




The SPS engine is misalined 0.3° in pitch and 0.3° in yaw. The
DAP comes on at 0.66 second and drives the SPS engine [fig. 5(a)]
to damp out the vehicle rates [fig. 5(b)] that build up because of the
initial mistrim. The SPS engine also tracks the c.g. during the burn,
specifically in the Y direction [fig. S(a)]. The vehicle body rates
essentially are damped out after maximum rates of 0.19 deg/sec in pitch
and 0.23 deg/sec in yaw are obtained. The initial engine misalinement
effects on the IMU gimbal angles are shown in figure 5(c). After the
misalinement is corrected, the yaw angle increases until cutoff occurs
because the c.g. shifts in the yaw direction. The control system keeps
the thrust direction towards the target; and, as the c.g. changes, the
body attitude changes. The attitude errors [fig. 5(d)] remain small
because the control system is homing in on the target.

The SCS rates [fig. 5(e)] and attitudes [fig. 5(f)] verify the
G&N results, but the SCS attitude errors [fig. 5(g)] are different.
This difference is attributed to the different methods by which they
are computed.

The t., [fig. 5(h)], the total Vg [fig. 5(i)], the vg components

[fig. 5(j)] in control coordinates, and the EMS decremented velocity
[fig. 5(k)] show the time histories of the available onboard displays.

The cross-axis velocity error is presented in figure 5(1). The
vehicle configuration is much lighter than for the previous burns;
therefore, higher rates and greater cross-axis velocity errors can be
expected. The velocity error levels out at approximately 2.4 fps
while the initial mistrim is being corrected then increases to 3.3 fps
before being driven back to 0.8 fps at cutoff.

The predicted apogee and perigee plot [fig. 5{(m)] shows the
spacecraft leaving a circular orbit as the predicted apogee extends
beyond the top of the plot. The altitude [fig. 5(n)] also increases at
the end of the burn, which indicates that the spacecraft is going into
a high elliptical orbit. This increase is also verified by the increasing
inertial velocity versus inertial flight-path angle [fig. 5(o0)].

5.0 CONCLUSIONS

The following is a summary of conclusions that were reached from
this analysis.

1. These new DAP gains respond more quickly to the initial errors
and prevent high cross-axis velocity errors.



2. TFor a fully loaded vehicle, the acceleration is small and does
not build up significantly high cross-axis velocity errors.

3. The duration of the long burns such as LOI-1 gives the guidance
and control system time to null practically all of the cross-axis velocity
errors by cutoff.

4. The TEI burn is a CSM-only maneuver. Because this burn is done
with a light vehicle configuration, higher rates and greater cross-axis
velocities can be expected during the burn. However, this maneuver is
of sufficient duration to null almost all of the velocity errors.
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(a) SPS engine angles.

Figure 1. - Evasive maneuver burn parameters.
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(b) Body attitude rates, FDAI-1.

Figure 1.- Continued.
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(c) IMU gimbal angles.

Figure 1. - Continued.
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Figure 1.- Continued.
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(e) Body attitude rates, FDAI-2.

Figure 1.- Continued.
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(f) SCS attitudes monitored from BMAGS.

Figure 1.- Continued.
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{g) SCS attitude errors monitored from BMAGS.

Figure 1.- Continued.
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(h) Time to go until SPS cutoff,

Figure 1.- Continued.
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