
$\rightarrow+\quad$ -
$=$

SATURN AS-205/CSM-101 POSTFLIGHT TRAJECTORY

DECEMBER 1968

AEROSPACE PHYSICS BRANCH CHRYSLER CORPORATION SPACE DIVISION

PREPARED BY:
THE TRAJECTORY RECONSTRUCTION UNIT

APPROVED:
 Postflight Evaluation Group
alden der
J.7द. SNider, Manager

Flight Mechanics Section
RACon
R. H. Ross, Chief Engineer

Aerospace Physics Branch

FORENORD

This report presents the postflight trajectory of the Saturn AS-205/ CSM-101 vehicle from guidance reference release to S-IVB/CSM-101 separation. Included in the report is an analysis of the powered flight trajectory, orbital flight trajectory, orbital effects of the S-IVB propellant dump safing experiment, and the ballistic free flight to impact of the expended S-IB stage.

The trajectory determination and documentation were performed by the Aerospace Physics Branch of Chrysler Corporation Space Division in compliance with the work scope of contract NAS8-4016, Schedule II, Supplemented Agreement MSFC-1, Amendment 105, Paragraph 11.2, BB Item 3.1.5-4-202, Part IV.

Acknowledgements are made to the personnel of Marshall Space Flight Center, R-AERO-FFT, for their assistance and cooperation, and to the Dynamics Programming Unit of CCSD Computer Services for their invaluable assistance.

TABLE OF CONTENTS

PAGE

Foreword i
Table of Contents ii
List of Illustrations iv
List of Tables v
Sunmary 1
1.0 Introduction 2
2.0 Coordinate Systems and Launch Parameters 3
3.0 Powered Flight Trajectory Analysis 4
3.1 Data Sources 4
3.1.1 PAFB Tracking Station (0.18) 4
3.1.2 Cape Tracking Station (1.16) 4
3.1.3 Merritt Island Tracking Station (19.18) 5
3.1.4 Grand Bahama Tracking Station (3.18) 5
3.1.5 Grand Turk Tracking Station (7.18) 5
3.1.6 Bermuda Tracking Station (67.18) 6
3.1.7 Bermuda Tracking Station (67.16) 6
3.2 Trajectory Composition (Powered Flight) 6
3.3 Powered Flight Trajectory 7
3.4 Error Analysis 9
4.0 Orbital Trajectory Analysis 11
4.1 Orbital Trajectory 11
4.2 Orbital Data Sources 11
4.3 Trajectory Analysis 12
4.4 Orbital S-IVB Safing Experiment 13
5.0 Expended S-IB and S-IVB Stage Free Flight Trajectories 14

TABLE OF CONTENTS (CONT'D.)

PAGE
6.0 Government Furnished Data.. 15

References and Distribution.. 119
Appendix A.. A-1
FIGUREPAGE
1 Trajectory Coordinate Systems 16
Available Tracking Data (Powered Flight) 2 17
3 Vehicle Ground Track and Tracking Stations 18
4 Antenna Location and Vehicle Center of Gravity 19
5
Measured Parameter Tracking Comparison (Azimuth) 20
6
Measured Parameter Tracking Comparison (Elevation) 217
15
Orbital Ground Track (Two Revolutions) 30

TITLE
PAGE
Measured Parameter Tracking Comparison (Range) 22
Altitude 23
Surface Range 24
Total Inertial Acceleration 25
Earth-Fixed Velocity and Elevation Above Local Horizontal. 26
Space-Fixed Velocity and Flight Path Angle. 27
Mach Number and Dynamic Pressure 28
14 Estimated Uncertainty of Reference Trajectory (Powered Flight) 29 14
Accleration Due to LOX Dump 31
Orbital Altitude 32
Orbital Space-Fixed Velocity 33

LIST OF TABLES

TABLE
Tracking Data Sources Available During Powered Flight 34
Times of Events 35
Significant Trajectory Parameters 36
Cutoff Conditions 37
S-IB/S-IVB Separation Conditions 38
S-IVB/CSM-101 Insertion and Separation Conditions 39
Available Orbital Tracking Data 40
Orbital Tracking Utilization Summary 41
Orbital Elements at Significant Times 42
Effects on Orbit of S-IVB Safing Experiment 43
Earth-Fixed Plumbline Positions, Velocities and Accelerations (Metric Units) 44
Space-Fixed Ephemeris Positions, Velocities and Accelerations (Metric Units) 56
Geographic Coordinates (Metric Units) 68
Earth-Fixed Plumbline Positions, Velocities and Accelerations (English Units) 80
Space-Fixed Ephemeris Positions, Velocities and Accelerations (English Units) 92
Geographic Coordinates (English Units) 104
S-IB Stage Free Flight Trajectory (Metric Units) 116
S-IB Stage Free Flight Trajectory (English Units) 117
Government Furnished Documentation. 118

SUMMARY

The manned Apollo Saturn Vehicle, AS-205/CSM-101, was launched from Cape Kennedy, Florida, at 10:02:45 A.M. EST, October 11, 1968. The primary mission was to flight test the manned Apollo Spacecraft. The actual flight trajectory was very close to the predicted nominal. This report presents the AS-205/CSM-101 postflight trajectory from guidance reference release to S-IVB/CSM-101 separation, and includes a discussion of the orbital effects due to the S-IVB safing experiment. The trajectory is presented in the earth-fixed plumbline, space-fixed ephemeris, and geographic coordinate systems. Time histories of trajectory parameters are given, in tabular form, at; 1.0 sec intervals from guidance reference release to $\mathrm{S}-\mathrm{IB} / \mathrm{S}-\mathrm{IVB}$ separation, 5.0 sec intervals from $S-I B / S-I V B$ separation to orbital insertion, and 50.0 sec intervals from insertion to $S-T V B / C S M-101$ separation. Also included is a tabulation at 10.0 sec intervals of the expended S-IB stage ballistic free flight trajectory to impact.

The trajectory was established from radar tracking data, telemetered guidance data from the ST-124 M guidance platform, and measured meteorological data. At S-IVB/CSM-101 separation (10502.4 sec), the vehicle spacefixed velocity was lower than predicted nominal by $7.6 \mathrm{~m} / \mathrm{s}(24.9 \mathrm{ft} / \mathrm{s})$. The altitude, at this point, was $6.6 \mathrm{~km}(3.6 \mathrm{~nm})$ higher than nominal and the flight path angle was 0.02 deg lower than nominal.

1.0 INTRODUCTION

The manned Saturn IB vehicle, AS-205/CSM-101, was launched from KSC at 10:02:45 A.M. EST on October 11, 1968. The launch azimuth from pad 34 was 100 deg east of north. After approximately 10 sec of vertical rise, the vehicle began a roll maneuver to the flight azimuth of 72 deg east of north. Also at 10 sec , the down range pitch maneuver was started. The S-IVB stage and the Apollo 7 spacecraft with three Astronauts aboard were placed into an elliptical earth orbit for flight test of the manned Apollo configuration. A safing experiment (propellant dump) was conducted with the S-IVB stage during the first revolution and prior to $S-I V B / C S M-101$ separation. The S-IVB stage was separated from the manned spacecraft well into the second revolution as the vehicle approached Hawaii.

This report presents the postflight mass-point reference trajectory, and associated information, from guidance reference release (-4.972 sec) to S-IVB/CSM-101 separation (10502.4 sec). All times are referenced to the established Range Zero of 10:02:45 A.M. EST, unless otherwise specified. Comparison of this trajectory with the nominal is given for some specific parameters as indications of vehicle performance. Reference l provides documentation of the predicted nominal trajectory. Also presented in this report are details of available tracking data, the data utilization, an error analysis, the orbital determination, the orbital effects of the S-IVB safing experiment, and the expended S-IB stage ballistic free flight to impact. Accompaning the discussion are figures and tables of the trajectory data in both the metric and English units of measure.

2.0 COORDINATE SYSTEMS AND LAUNCH PARAMETERS

The translational motion of the vehicle's center of gravity is tabulated in three coordinate systems: earth-fixed plumbline, space-fixed ephemeris, and geographic. These coordinate systems conform to the "Project Apollo Coordinate System Standards" and are defined in Appendix A and graphically illustrated in Figure 1. The earth-fixed plumbline coordinate system has its origin located at the launch site on the reference earth model. In the earth-fixed system, the vehicle's center of gravity has an initial displacement of 34.7 m (113.8 ft) above the reference ellipsoid.

The representative model for the earth and its gravitational field is the Fischer Ellipsoid of 1960. All latitude and longitude coordinates are defined with respect to this ellipsoid.

The geographic coordinates and gravity data for launch pad 34 at Cape Kennedy are:

Geodetic Latitude	28.521963 deg
Longitude	80.561141 deg
Acceleration of Gravity	$9.818 \mathrm{~m} / \mathrm{sec}^{2}\left(32.21 \mathrm{ft} / \mathrm{sec}^{2}\right)$

Elevation above the reference ellipsoid are:
Base of Launch Pedestal 5.7 m (18.7 ft)
C. G. at First Motion $\quad 34.7 \mathrm{~m}(113.8 \mathrm{ft})$

Azimuth alignments are:

Launch Azimuth
Flight Azimuth
ST-124M Platform Azimuth

100 deg E of N
$72 \operatorname{deg} \mathrm{E}$ of N
$72 \operatorname{deg} \mathrm{E}$ of N

3.0 POWERED FLIGHT TRAJECTORY ANALYSIS

3.1 Data Sources

Tracking data from seven radar tracking stations and telemetered guidance data were available from first motion through insertion (S-IVB $\mathrm{CO}+10 \mathrm{sec}$). The coverage of each tracking station is itemized in Table I and shown in Figure 2. The vehicle ground track relative to each tracking station is shown in Figure 3. The radar antenna location and the vehicle's center of gravity versus time are shown in Figure 4. The measured parameter data from each of the seven radar tracking sites are compared with the reference postflight trajectory in Figures 5 through 7.

3.1.1 PAFB Tracking Station (0.18)

Patrick Air Force Base radar produced data from 20 to 593 sec . The quality of these data were much higher than that received on the previous flight. The range data were much smoother and its maximum deviations were less than $10 \mathrm{~m}(33 \mathrm{ft})$ through the entire track. The angle data were also good with the magnitude of the maximum deviations being less than 0.03 deg.

3.1.2 Cape Tracking Station (1.16)

Cape Kennedy radar produced data from 0 to 603 sec with a 59 sec gap from 500 to 559 sec . These data matched the reference trajectory very closely with the exception of the initial 100 sec and final 44 sec of track where the largest angle and range deviations occurred. After the first 100 sec and prior to the gap, the deviations settled to an $8 \mathrm{~m}(26 \mathrm{ft})$ bias in range and the angle deviations were less than 0.01 deg . After the gap these data were rough and exhibited large deviations from the reference trajectory.

3.1.3 Merritt Island Tracking Station (19.18)

Merritt Island radar produced its usual good quality data with coverage from 11 to 606 sec . With the exception of large deviations early in the flight, the angle data agreed very well with the reference trajectory. The range was in close agreement with the reference trajectory, containing deviations of less than 10 m (33 ft) until the last 100 sec of track where the deviations tailed off to a maximum of approximately 20 m (66 ft).
3.1.4 Grand Bahama Tracking Station (3.18)

Grand Bahama radar produced a good set of tracking data from 96 to 584 sec . These data were very similar to that produced on the last flight. The azimuth and elevation were in close agreement with the reference trafectory, containing a bias of slightly less than 0.02 deg in elevation. The range data reveals excellent agreement with the reference trajectory, containing deviations of less than 15 m (49 ft) through the entire track.

3.1.5 Grand Turk Tracking Station (7.18)

Grand Turk radar produced data from 211 to 685 sec . The azimuth data received from Grand Turk were in excellent agreement with the reference trajectory, containing deviations of less than 0.01 deg throughout track. The elevation data were completely unusable and deviations were too large to be included in the measured parameter comparisons. The range data, although having large deviations from the reference trajectory at the beginning and ending of track, had deviations of less than 10 m (33 ft) for the major portion of track.

3.1.6 Bermuda Tracking Station (67.18)

Bermuda (FPQ-6) radar produced data from 0 to 689 sec although the data were not usable until 250 sec . The measured parameter deviations of this set of data exhibited the same characteristic deviations as on the previous flight. The azimuth data were in good agreement with the reference trajectory with maximum deviations being less than 0.03 deg . Deviations in elevation data were less than 0.03 deg with the exception of the first 50 sec of usable data. The range data were smooth and revealed maximum deviations of 45 m (148 ft).

3.1.7 Bermuda Tracking Station (67.16)

Bermuda (FPS-16) radar produced data from 0 to 689 sec . The angles and range measurements all exhibited very large deviations with respect to the reference trajectory. The azimuth data were the better of the three measurements. The range deviations were too large to be presented on the measured parameter comparisons with deviations up to 420 m (1378 ft). Although the parameter deviations were large they did appear to contain the characteristics of a station location error, as observed on the previous IB flight.

3.2 Trajectory Composition_(Powered Flight)

Tracking data from C-band radars, covering the major portion of powered flight, were available for establishing the postflight trajectory. Telemetered guidance information and measured meteorological data were also received and utilized in the postflight trajectory determination.

The observed mass-point trajectory; often referred to as the postflight trajectory, the reference postflight trajectory, or the best estimate trajectory, was established by a composite fit of the radar tracking data.

The composite fit or best estimate trajectory is established through the utilization of a computer program called GATE. This program uses telemetered guidance velocity data as the generating parameter to compute a trafectory which will best fit the tracking data, yet retain the smoothness of the guidance data. The guidance data can vary only in accordance with an ejghteen term error model and the variances assigned to each error coefficient. The error coefficients are determined using the Kalman Inear filtering technique and applied to the telemetered guidance data to produce the final smooth and continuous trajectory. The GATE program also incorporates a ten term tracker error model through which the residuals between the tracking system and the reference postflight trajectory may be resolved. However, only the guidance error model was used to fit the data for this flight, See Reference 2 for further details of the GATE program.

3.3 Powered Flight Tra, iectory

A comparison of actual and nominal times at some significant flight events is presented in Table II. Altitude and surface range are graphically illustrated in Figures 8 and 9, respectively, for the entire powered flight. Figure $1 C$ is an illustration of the total inertial acceleration profiles for the $S-I B$ and $S-I V B$ stages. The magnitude of the total earthfixed velocity vector and the associated elevation angle, positive above the local horizontal, are shown in Figure 1l. The magnitude of the spacefixed velocity vector and the angle between this vector and the local horizontal plane are shown in Figure 12. The Mach number and dynamic pressure parameters are shown during the $S-I B$ powered flight in Figure 13.

The meteorologically associated trajectory parameters were calculated using measured meteorological data for the day of launch. The measured data were furnished to an altitude of 90 km (49 nm). Above this altitude the U. S. Standard Reference Atmosphere was used.

Various trajectory parameters, such as altitude, surface range, and velocity, are given at some significant flight event times in Table III. The apex and impact of the discarded S-IB stage are also included in Table III. Several trajectory parameters are compared with nominal at engine cutoff events for the S-IB and S-IVB stages in Table IV. Trajectory parameters, for the purpose of performance evaluation, are compared to nominal in Table V for the S-IB/S-IVB separation event and in Table VI for the S-IVB/CSM-101 insertion and separation events. The vehicle flight evaluation report, Reference 3, provides details of vehicle subsystems performance. Tables VII through X present orbital trafectory information which is discussed in Section 4.0 below.

The actual postflight trajectory, from guidance reference release to S-IVB/CSM-101 separation is tabulated in both metric and English units of measure in Tables XI through XVI. These tables present the trajectory in the earth-fixed plumbline, space-fixed ephemeris, and geographic coordinate systems. The data are tabulated at 3.0 sec increments from guidance reference release to $\mathrm{S}-\mathrm{IB} / \mathrm{S}-\mathrm{IVB}$ separation, continuing at 5.0 sec increments to insertion, and at 50.0 sec increments from insertion to S-IVB/CSM-101 separation.

The actual trajectory was very close to the predicted nominal, as reflected in the previously mentioned tables where comparisons are made. The velocity gain due to thrust decay between $O B C O$ and $S-I B / S-I V B$ separation amounted to $4.1 \mathrm{~m} / \mathrm{s}$ ($13.5 \mathrm{ft} / \mathrm{s}$) which was $2.0 \mathrm{~m} / \mathrm{s}(6.7 \mathrm{ft} / \mathrm{s})$ less than predicted. The velocity gain after S-IVB CO, due to thrust decay, amounted to $6.4 \mathrm{~m} / \mathrm{s}(21.0 \mathrm{ft} / \mathrm{s})$ which was $1.2 \mathrm{~m} / \mathrm{s}(3.9 \mathrm{ft} / \mathrm{s})$ greater than predicted.

3.4 Error Analyses

The best estimate of the reference postflight trajectory during the powered flight is the results of a composite fit of C-band radar data received from seven Eastern Test Range tracking stations. During the major portion of first stage powered flight, good coverage was provided by Merritt Island, Cape Kennedy, and Patrick Air Force Base radars. These data were the main data used in the GATE program to establish this portion of the powered flight trajectory. The remaining portion of the powered flight trajectory was established as a composite fit of all available radar tracking data.

The reference trajectory was smoothed, differentiated, and transformed from the point of track (radar antenna location) to the vehicle's center of gravity to provide a positional time history of the center of gravity rather than the point of track.

The measured parameter comparisons (Figures 5 through 7) reveal the trends of the radar data with respect to the reference trajectory. The dispersion of these data and their analyses give an indication of the quality of the reference trajectory. Most of the range and angle deviations of the radars appear to be biased or show systematic trends that could be represented
by a realistic error model. The maximum range deviation shown in Figure 7, is 50 m (164 ft) which occurs in the Grand Turk data at the beginning of track. Four tracking systems; Merritt Island, Patrick Air Force Base, Cape Kennedy, and Grand Bahama, all produced range data with deviations
 entire period of track. The angle deviations showed very good agreement with the reference trajectory between 100 and 500 sec of the flight.

An estimate of the total uncertainty of the powered flight trajectory is presented in Figure 14. At S-IB outboard engines cutoff, the position uncertainty is about 30 m (98 ft) in the XE and ZE components and about 50 m (164 ft) in the YE component. The corresponding velocity uncertainty is about $0.3 \mathrm{~m} / \mathrm{s}(1.0 \mathrm{ft} / \mathrm{s})$ in DXE and DZE, and about $0.5 \mathrm{~m} / \mathrm{s}(1.6 \mathrm{ft} / \mathrm{s})$ in DYE. At S-IVB CO the uncertainties have increased to about 100 m (328 ft) in the $X E$ and ZE components, and about 150 m (492 ft) in the YE component. The velocity uncertainties at S-IVB CO have increased to $0.5 \mathrm{~m} / \mathrm{s}(1.6 \mathrm{ft} / \mathrm{s})$ in the DKE and DZE components, and $1.0 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ in the DYE component.

4.0 ORBITAL TRAJECTORY ANALYSIS

4.1 Orbital Trajectory

The AS-205 S-IVB/CSM-101 vehicle was inserted into orbit at 15 hrs 13 min 11.76 sec U.T. (626.76 sec Range Time). Figure 15 is a ground projection plot showing the first two orbital revolutions. The orbital insertion parameters for AS-205 were determined by a least squares differential correction procedure using C-Band radar orbital tracking data over the first two revolutions and by the insertion point established by the best estimate powered flight trajectory.

The primary objective of the AS-205 flight was to provide tests of the manned Apollo 7 spacecraft. Also, an orbital safing experiment (LOX dump) of the S-IVB stage was planned during the first revolution. The orbital safing experiment was conducted beginning at 5668.96 sec and ending at 6389.96 sec . The S-IVB/CSM-101 separation occurred over Hawaii in the second revolution at 10502.4 sec .

4.2 Orbital Data Sources

Orbital tracking of the AS-205 vehicle was conducted by the NASA Space Tracking and Data Acquisition Network (STADAN). This network provided the C-Band radar data used in determination of the AS-205 orbital trajectory. A surmary of the stations furnishing data for use in determining the S-IVB orbital trajectory is presented in Table VII. These data cover portions of the first two revolutions of flight.

The two stations at Bermuda (FPS-16 and FPQ-6) and the Carnarvon tracking station furnished tracking data in the first revolution prior to the orbital safing experiment. The tracking stations at California, White Sands, Merritt

Island and Patrick furnished tracking data during the first revolution while the orbital safing experiment was being conducted. Data for the second revolution werefurnished by the tracking stations at Bermuda (FPS-16 and FPQ-6), Carnarvon and Pretoria prior to S-IVB/CSM-101 separation and California, Hawaii, Merritt Island and Patrick following the separation.

4.3 Trajectory Analysis

The Orbital Correction Program (OCP) was used to provide solutions for the insertion conditions and orbital trajectory, utilizing orbital tracking data and representative orbital acceleration models. Solutions were made using various combinations of all orbital tracking data received. However, the most reasonable solutions were made using data from Bermuda (FPS-16), Carnarvon, California and Merritt Island during the first revolution and Carnarvon and California during the second revolution. From the most reasonable solution, Table VIII provides a tabulation of the number of observations and the root mean square (RMS) of the residuals associated with each measured parameter.

Telemetered guidance accelerometer data were furnished to represent the actual orbiting vehicle acceleration. These data were utilized in the orbital solutions to give a more realistic fit of the orbital tracking data.

Considering the most reasonable OCP solutions and the agreement between the orbital and powered flight solutions, the estimated uncertainty of the insertion position and velocity components are no greater than quoted at S-IVB CO in Section 3.4, above.

The orbital trajectory, from insertion to S-IVB/CSM-101 separation, was obtained from the OCP using orbital tracking data and telemetered guidance accelerations. The orbital parameters at insertion and S-IVB/ CSM-101 separation were taken from the orbital trajectory and are presented in Table IX.

4.4 Orbital S-IVB Safing Experiment

The scheduled S-IVB orbital safing experiment (LOX dump) was initiated at 5668.96 sec and terminated at 6389.96 sec . Orbital tracking data from the tracking stations at California, White Sands, Merritt Island and Patrick and telemetered acceleration data were available to help construct the orbital trajectory through the period of the safing experiment. The telemetered acceleration magnitude profile, during the safing experiment, is shown in Figure 16.

In addition to the actual S-IVB/GSM-101 orbital trajectory, a theoretical trajectory was initiated at the beginning of the safing experiment and integrated through S-IVB/CSM-101 separation assuming nominal drag forces and no dump forces. The orbital parameters at the end of the safing experiment from this theoretical trajectory are compared to the parameters computed from the actual S-IVB/CSi-101 orbital trajectory. This comparison, which reveals the effect of the LOX dump on the S-IVB/CSM-101 orbit, is presented in Table X. The effects of the safing experiment on the orbiting S-IVB/CSM-101 altitude and space-fixed velocity profiles are shown in Figures 17 and 18, respectively. The solid line in these figures represent the actual S-IVB/CSM-101 orbital trajectory. The dashed line represents the theoretical trajectory which would have occurred with no propellant dumping.

5.0 EXPENDED S-IB AND S-TVB STAGE FREE FLIGHT TrajECTORIES

Three theoretical free flight trajectories were computed for the discarded S-IB stage using initial conditions at S-IB/S-IVB separation. The trajectories were integrated from separation to impact using actual retro-rocket performance and actual outboard engine decay data. Trajectories were calculated assuming nominal drag coefficients for three types of S-IB stage free flight conditions. These three conditions for the expended S-IB stage are: (1) stabilized at zero deg angle of attack, (2) a tumbling body, and (3) stabilized at 90 deg angle of attack. This provides the following S-IB stage impact locations.

Drag Conditions
0 deg Angle of Attack
Tumbling Body 90 deg Angle of Attack

Impact Range
$501.32 \mathrm{~km}(270.69 \mathrm{~nm})$ $490.78 \mathrm{~km}(265.00 \mathrm{~nm})$
$483.76 \mathrm{Km}(261.21 \mathrm{~nm})$

Impact Time
495.0 sec
560.2 sec
604.3 sec

Radar tracking data were not available to confirm the results obtained. However, on previous flights the tumbling drag case was proven to be close to the actual tracking data. For this reason, the theoretical free-flight trajectory utilizing the tumbling drag coefficient data is considered the actual trajectory of the expended S-IB stage. This ballistic free flight trajectory is presented in tabular form in Table XVII (metric units) and Table XVIII (English units). The ground track and impact are also shown in Figure 3.

The S-IVB expended stage remained in earth orbit, following S-IVB/CSM-101 separation, for approximately 7 days. Due to the lack of tracking data during the final revolutions, the S-IVB free flight re-entry trajectory was not computed.

6.0 GOVERNMENT FURNISHED DATA

The Government furnished data used to establish the postflight trajectory of the AS-205 vehicle are tabulated in Table XIX.

Figure 1. Trajectory Coordinate Systems

Figure 2. Available Tracking Data (Powered Flight)

\triangle Elevition (Trackinf : in (

Figure 6. Measured Parameter Tracking Comparison (Elevation)

Acceleration

Figure 10. Total Inertial Acceleration

Figure 11.| Earth-Fixed Velocity and Elevation Above Local Horizontal

Figure 15. Orbital Ground Track (Two Revolutions)

Figure 16. Acceleration Due to LOX Dump

TABLE I

TRACKING DATA SOURCES AVAILABLE DURING POWERED FLICHT

Data Source

Patrick (0.18) Radar (FPQ-6)
Cape (1.16) Radar (FPS-16)

Merritt Island (19.18) Radar (TPQ-18)
Grand Bahame (3.18) Radar (TPQ-18)
Grand Turk (7.18) Radar (TPQ-18)
Bermuda (67.18) Radar (FPQ-6)
Bermuda (67.16) Radar (FPS-16)

Trackins Interyal (Sec)

Patrick (0.18) Radar (FPQ-6)	$20-593$
Cape (1.16) Radar (FPS-16)	$0-499$
Merritt Island (19.18) Radar (TPQ-18)	$11-606$
Grand Bahama (3.18) Radar (TPQ-18)	$96-584$
Grand Turk (7.18) Radar (TPQ-18)	$211-685$
Bermuda (67.18) Radar (FPQ-6)	$0-689$
Bermuda (67.16) Radar (FPS-16)	$0-689$

TABLE II
TIMES OF EVENTS

Events	Actual	Range Time in sec Nomina	Act-Nom
Guidance Reference Release	- 4.972	-	--
First Motion	0.17	0.17	0.00
L. O. Signal (Umb. Disc)	0.36	0.37	- 0.01
Mach One	62.15	61.55	0.60
Maximum Dynamic Pressure	75.5	75.0	0.5
IECO	140.65	140.28	0.37
OECO	144.32	143.28	1.04
S-IB/S-IVB Separation (Signal)	145.59	144.58	1.01
Guidance Initiation (IGM)	169.76	168.42	1.34
S-IVB CO	616.76	614.80	1.96
Orbit Insertion	626.76	624.80	1.96
S-IVB/CSM-101 Separation	10502.4	10495.17	7.23

Note: Actual times are referenced to Range Zero (10:02:45 A.M. EST). Nominal times were obtained from Reference 1 and adjusted to the actual 0.17 sec first motion time.

SIGNIFICANT TRAJECTORY PARAMETERS
 Range Time
Altitude
75.5 sec
$3.20 \mathrm{n} / \mathrm{cm}^{2}\left(665.60 \mathrm{lb} / \mathrm{ft}^{2}\right)$
$12.16 \mathrm{~km}(6.57 \mathrm{~nm})$
140.10 sec
$41.99 \mathrm{~m} / \mathrm{s}^{2}\left(137.76 \mathrm{ft} / \mathrm{s}^{2}\right)$
144.6 sec
$1978.2 \mathrm{~m} / \mathrm{s}(6490.1 \mathrm{ft} / \mathrm{s})$
259.4 sec
$119.3 \mathrm{~km}(64.4 \mathrm{~nm})$
$24.6 \mathrm{~km}(132.6 \mathrm{~nm})$
$1628.1 \mathrm{~m} / \mathrm{s}(5341.5 \mathrm{ft} / \mathrm{s})$

Erent
First Motion
Total Inertial Acceleration Range Time Range Time Altitude
Range Time
Acceleration
Acceleration
Range Time
Velocity Range Time
Altitude
Surface Range
Earth-Fixed Velocity Range Time
Altitude
Surface Range
Earth-Fixed Velocity
Earth-Fixed Velocity

Longitude
Range Time
Acceleration
Range Time
Velocity
Maximum Earth-Fixed Velocity (S-IVB Stage)
Impact (S-IB Stage)
Maximum Total Inertial Acceleration
(S-IVB Stage)

$$
\begin{aligned}
& \text { Parameter } \\
& \text { Range Time } \\
& \text { Altitude } \\
& \text { Range } \\
& \text { Cross Range, YE } \\
& \text { Cross Range Velocity, DYE } \\
& \text { Earth-Fixed Velocity } \\
& \text { Earth-Fixed Velocity Vector } \\
& \text { Elevation } \\
& \text { Earth-Fixed Velocity Vector } \\
& \text { Azimuth } \\
& \text { Space-Fixed Velocity } \\
& \text { Total Inertial Acceleration }
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE IV } \\
\text { CUTOFF CONDITIONS }
\end{gathered}
$$

$$
\begin{array}{r}
\text { IECO } \\
140.65 \\
56.72 \\
30.63 \\
54.05 \\
29.19 \\
0.11 \\
0.06 \\
3.9 \\
12.8 \\
1909.5 \\
6264.7 \\
32.52 \\
72.29 \\
7394.3 \\
40.53 \\
132.97 \\
2253.8
\end{array}
$$

$$
\begin{array}{r}
O E C O \\
144.32 \\
60.52 \\
32.68 \\
60.04 \\
32.42 \\
0.13 \\
0.07 \\
4.3 \\
14.1 \\
1974.8 \\
6478.9 \\
31.69 \\
72.33 \\
2321.6 \\
7616.7 \\
20.36 \\
66.80
\end{array}
$$

[^0]
TABLE V

S-IB/S-IVB SEPARATION CONDITIONS

Parameters	Units	Separation Signal		
		Actual	Nominal	Act-Nom
Range Time	sec	145.59	144.58	1.01
Altitude	km	61.84	61.91	- 0.07
	nm	33.39	33.43	- 0.04
Range	km	62.15	61.82	0.33
	nm	33.56	33.38	0.18
Space-Fixed Velocity	m / s	2320.3	2326.1	- 5.8
	ft / s	7612.4	7631.5	- 19.1
Cross Range	km	0.14	- 0.03	0.17
	nm	0.08	- 0.02	0.10
Flight Path Angle	deg	26.32	26.60	- 0.28
Heading Angle	deg	72.35	72.23	0.12

$$
\begin{aligned}
& \begin{array}{l}
\quad \text { Parameters } \\
\text { Range Time } \\
\text { Altitude } \\
\text { Range } \\
\text { Space-Fixed Velocity } \\
\text { Cross Range } \\
\text { Flight Path Angle } \\
\text { Heading Angle }
\end{array}
\end{aligned}
$$

TABLE VII
AVAILABIE ORBITAL TRACKING DATA

		Revolution	
Station	Type of Radar	1	2
Bermuda	FPS-16	X	X
Bermuda	FPQ-6	X	X
California	FPS-16	X	X
Carnarvon	FPQ-6	X	X
Hawaii	FPS-16		X
Merritt Island	TPQ-18	X	X
Patrick	FPQ-6	X	X
Pretoria	MPS-25		X
White Sands	FPS-16M	X	

ORBITAL TRACKING UTILIZATION SUMMARY

Station	Time of Track (Range Time in Sec)		Data Type	Valid Observations	RMS Error of Residuals
$\begin{aligned} & \text { Bermuda (FPS-16) } \\ & \text { (Rev. 1) } \end{aligned}$	Begin	633	AZ	29	0.006 deg
	End	807	EL	28	0.013 deg
			RA	29	5 m (16 ft)
Carnarvon (Rev. 1)	Begin	3207	AZ	50	0.003 deg
	End	3627	EL	50	0.008 deg
			RA	52	6 m (20 ft)
California (Rev. 1)	Begin	5379	AZ	47	0.018 deg
	End	5667	EL	45	0.017 deg
:			RA	47	$8 \mathrm{~m}(26 \mathrm{ft})$
Merritt Island (Rev. 1)	Begin	5842	12	68	0.009 des
	End	6255	EL	67	0.014 deg
\cdots			RA	68	18 m (59 ft)
Carnarvon (Rev. 2)	Begin	8907	AZ	74	0.008 deg
	End	9357	EL	74	0.025 deg
			RA	74	21 m (69 ft)
California (Rev. 2)	Begin	11139	AZ	46	0.027 deg
	End	11421	EL	45	0.011 deg
			ra	46	45 m (148 ft)

TABIE IX
ORBITAL ELEMENTS AT SIGNIFICANT TDES

PARAMETERS	UNITS	INSERTION	S-IVB/CSM-101 SEPARATION
Time	(Range Time in Sec.)	626.76	10502.4
Space-Fixed Velocity	$\begin{aligned} & (\mathrm{m} / \mathrm{s}) \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$	$\begin{array}{r} 7788.6 \\ 25552.8 \end{array}$	$\begin{array}{r} 7772.3 \\ 25499.4 \end{array}$
Flight Path Angle	(deg)	0.005	-0.30°
Altitude	(km) (nm)	$\begin{aligned} & 228.1 \\ & 123.2 \end{aligned}$	$\begin{aligned} & 246.8 \\ & 133.3 \end{aligned}$
Apogee	(km)	$\begin{aligned} & 282.13 \\ & 152.34 \end{aligned}$	$\begin{aligned} & 315.23 \\ & 170.21 \end{aligned}$
Perigee	$\begin{aligned} & (\mathrm{km}) \\ & (\mathrm{rm}) \end{aligned}$	$\begin{aligned} & 222.29 \\ & 120.03 \end{aligned}$	$\begin{aligned} & 227.82 \\ & 123.01 \end{aligned}$
Period	(min)	89.55	89.94
Eccentricity	---	0.0045	0.0066
Inclination	(deg)	31.608	31.640

TABIE X

N
N
i
8
0
0
$\stackrel{\square}{\square}$

62.15

白幺 $0 \quad$ in

	$\begin{aligned} & \text { w } \\ & \text { N } \\ & \text { a } \\ & \end{aligned}$			$\begin{gathered} \underset{\sim}{\oplus} \\ \underset{\sim}{\oplus} \end{gathered}$	$\begin{aligned} & \circ \\ & \end{aligned}$		$\stackrel{n}{7}$		$\begin{aligned} & \text { N} \\ & \vdots \\ & 0 \end{aligned}$	
		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{0}{0}$	$\begin{array}{r} \hat{O} \\ \vdots \end{array}$		$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & t u n \\ & 000 \\ & 000 \\ & 000 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { t } \\ & 0 \\ & 0 \\ & i \end{aligned}$	
				$\begin{aligned} & n \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { oे } \\ & \text { ín } \end{aligned}$		$\begin{gathered} \underset{\sim}{9} \\ \dot{i} \end{gathered}$			
	$\underset{\sim}{\sim}$			-1 0 ∞ 0 -1	$\begin{aligned} & \underset{\sim}{N} \\ & \dot{\sim} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N} \\ & \dot{\sim} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	
$\frac{\grave{z}}{2}$										
	$\underset{\sim}{2} \approx$	midy		$\stackrel{M}{\substack{4 \\ j}}$	$\begin{gathered} \dot{j} \\ \dot{j} \end{gathered}$		\pm	90tm	\because	
	$\underset{\sim}{w}$			$\begin{aligned} & \ddot{0} \\ & \stackrel{y}{9} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { G } \\ & \underset{\sim}{2} \end{aligned}$		∞ $\stackrel{0}{m}$ $\stackrel{-1}{0}$		$\begin{aligned} & \text { M } \\ & \dot{0} \\ & \dot{\infty} \end{aligned}$	
	$\underset{\sim}{\text { w }}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { in }}{\stackrel{\sim}{\sim}}$		$\underset{\substack{\text { N } \\ \underset{\sim}{N} \\ \hline}}{ }$	－inn ペ゙がか －トかの	$\begin{aligned} & \text { n } \\ & \mathbf{\infty} \\ & \stackrel{4}{0} \\ & \mathbf{0} \end{aligned}$	
$\underset{\underset{\sim}{\underset{\sim}{x}}}{\square}$										
$\begin{gathered} \frac{1}{c} \\ \stackrel{\rightharpoonup}{x} \\ \underset{\sim}{4} \end{gathered}$	$\stackrel{\amalg}{\boldsymbol{\amalg}}$	$\stackrel{0}{\sim} \underset{\sim}{N} \underset{\sim}{N}$	．	$\stackrel{0}{\sim}$	$\stackrel{M}{m}$	1 \sum_{0}^{3} \vdots n	$\stackrel{i n}{\sim}$	$\operatorname{Nn}_{\sim}^{n} \underset{\sim}{N} \underset{N}{N}$	$\stackrel{M}{\underset{N}{N}}$	
＇	$\underset{x}{x}$ $\stackrel{\text { 峾 }}{\sim}$		$\begin{aligned} & \text { O} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \sim \\ & \underset{\sim}{0} \end{aligned}$	n n 8 8 0 \pm \pm	NDIIVZVdヨS 8AI－S／日I－S	$\frac{\vec{n}}{n}$	$\begin{aligned} & 0000 \\ & 000 \\ & 0 n_{1}^{0} 00 \\ & -1000 \end{aligned}$		 00000000009000090009

DZE
M / S

山呙

$\begin{aligned} & w \\ & w_{n} \\ & 0 \\ & 0 \\ & \Sigma \end{aligned}$

[^1]

[^2]


```
びの


 -917133
-1060971

 \(5 \infty\)
-10
08
49
49
19
 \(\sigma\)
\(\sigma\)
0
\(N\)
\(\infty\)
\(\sigma\)
-1
XE
\(M\)


\footnotetext{

}




ag
in
合
2 N NNNN
0
0
0
\(i\) joicio N
0
\(\dot{O}\)
\(i\)

 0.02 \begin{tabular}{l} 
NNN \\
\hdashline\(B O B\) \\
COOC
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& N \\
& ? \\
& 0
\end{aligned}
\]} & - \\
\hline &  \\
\hline & 7 \\
\hline
\end{tabular}


\(-338.0\)




3027.488
3027.488
3156.823


LIFtoff

DCZSP
M／S SO

\(\qquad\)





\section*{Nin}



N2
\[
\begin{aligned}
& \text { mल } \mathrm{m} \text { 응 }
\end{aligned}
\]

YSP
KM




\begin{tabular}{|c|}
\hline Or＊9 \\
\hline \(66^{\circ} 5\) \\
\hline \(86^{\circ} 5\) \\
\hline \(00^{\circ} 9\) \\
\hline \(88^{\circ} \mathrm{s}\) \\
\hline カ9＊5 \\
\hline 9カ・ら \\
\hline 18．s \\
\hline 91＊ \\
\hline E6＂ヶ \\
\hline S1．ウ \\
\hline \(19^{\circ} \mathrm{H}\) \\
\hline ¢9＊ヶ \\
\hline \[
\begin{aligned}
& 0 S S / W \\
& d S Z O J
\end{aligned}
\] \\
\hline
\end{tabular}






TIME





\(a_{n}^{n}\)
\(0^{2}\)



ZSP
KM





DDYSP
M/S SO

\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { a } \\
& \times \\
& x \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline
\end{tabular}


\[
\frac{a}{x}
\]
YSP
\(K M\)







DZSP
M/S


\section*{DYSP
M/S}


4.3
e

\[
\begin{array}{r}
D \times S P \\
M / S
\end{array}
\]
-1476.6
-1453.8
-1415.8


\section*{}
 1276.880
1252.148
1213.936
\(620.0 \quad-5493.862\)


S-IVB guidance cutoff


620.0
625.0





\begin{tabular}{|c|c|c|c|}
\hline ZSP & DXSP & DYSP & D2SP \\
\hline KM & M/S & M/S & M/S \\
\hline 3328.150 & 1102.3 & -7628.3 & -1111.2 \\
\hline 3266.849 & 1484.4 & -7525.3 & -1340.1 \\
\hline 3194.214 & 1861.2 & -7396.3 & -1564.4 \\
\hline 3110.501 & 2231.6 & -7241.7 & -1783.1 \\
\hline 3016.704 & 2594.0 & -7062.2 & -1995.6 \\
\hline 2911.054 & 2947.4 & -6858.4 & -2201.1 \\
\hline 2796.019 & 3290.5 & -6630.9 & -2398.9 \\
\hline 2671.300 & 3622.0 & -6380.7 & -2588.3 \\
\hline 2537.335 & 3941.0 & -6108.5 & -2768.7 \\
\hline 2394.590 & 4246.1 & -5815.4 & -2939.4 \\
\hline 2243.565 & 4536.5 & -5502.4 & -3099.9 \\
\hline 2084.784 & 4811.1 & -5170.7 & -3249.5 \\
\hline 1918.801 & 5069.0 & -4821.3 & -3387.9 \\
\hline 1746.193 & 5309.3 & -4455.5 & -3514.5 \\
\hline 1567.559 & 5531.2 & -4074.6 & -3628.8 \\
\hline 1383.519 & 5733.9 & -3680.0 & -3730.6 \\
\hline 1194.711 & 5916.8 & -3273.0 & -3819.5 \\
\hline 1001.788 & .6079.3 & -2855.0 & -3895.2 \\
\hline 805.417 & 6220.8 & -2427.5 & -3957.4 \\
\hline 606.275 & 6340.9 & -1992.0 & -4006.0 \\
\hline 405.049 & 6439.2 & -1550.0 & -4040.8 \\
\hline 202.431 & 6515.4 & -1103.0 & -4061.6 \\
\hline -0.883 & 6569.3 & -652.6 & -4068.6 \\
\hline -204.195 & 6600.6 & -200.3 & -4061.6 \\
\hline -406.807 & 6609.4 & 252.4 & -4040.6 \\
\hline -608.028 & 6595.7 & 723.9 & -4005.9 \\
\hline -807.170 & 6559.4 & 1152.6 & -3957.5 \\
\hline -1003.553 & 6500.9 & 1597.1 & -3895.6 \\
\hline -1196.509 & 6420.2 & 2035.8 & -3820.4 \\
\hline -1385.382 & 6317.8 & 2467.3 & -3732.3 \\
\hline -1569.530 & 6193.9 & 2890.1 & -3631.5 \\
\hline -1748.328 & 6049.1 & 3302.8 & -3518.4 \\
\hline -1921.172 & 5883.9 & 3703.9 & -3393.4 \\
\hline -2087.478 & 5698.8 & 4.92 .3 & -3256.9 \\
\hline -2246.682 & 5494.5 & 4466.5 & -3109.5 \\
\hline -2398.250 & 5271.7 & 4825.3 & -2951.5 \\
\hline -2541.669 & 5031.2 & 5167.7 & -2783.6 \\
\hline -2676.458 & 4773.8 & 5492.3 & -2606.4 \\
\hline -2802.164 & 4500.4 & 5798.2 & -2420.4 \\
\hline -2918.364 & 4211.8 & 6084.4 & -2226.3 \\
\hline -3024.668 & 3909.2 & 6349.8 & -2024.7 \\
\hline -3120.720 & 3593.4 & 6593.7 & -1816.3 \\
\hline -3206.199 & 3265.6 & 6815.3 & -1601.9 \\
\hline -3280.817 & 2926.9 & 7013.8 & -1382.0 \\
\hline
\end{tabular}




DDYSP
\(M / S S Q\)

 



\(\frac{a n}{x}\)



\section*{a
\(N\)}

mi
ハMM M M
KM


\section*{\(\times \underset{x}{2}\)}


\footnotetext{

}

\[
\begin{array}{r}
\text { DDYSP } \\
M / S \text { SO }
\end{array}
\]

\(D 2 S P\)
\(M / S\)
\(D Y S P\)
\(M / S\)
DXSP
\(M / S\) ZSP
\(K M\)
YSP
\(K M\)\(\stackrel{a}{\sim} \times\)



\footnotetext{



}
 N.

UOYSP
M/S SQ路
\[
\begin{array}{r}
\text { DDXSP } \\
M / S S O
\end{array}
\]





\footnotetext{
00
0
0
\(n\)
\(n\)
\(n\) 0000
\(\sin _{0} 00\)
\(0 \ln 0\) \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \infty\end{array}\) 0
0
0
0 0
0
0
0
0 00
00
0.0
00 \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & \infty \\ \infty & \infty\end{array}\) 00
00
00
0
0 0
0
N
N
N 0
0
0
0
0 8350.0
8400.0
8450.0 0
0
\(i\)
\(t\) \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1 \\ n & n\end{array}\) 00
00
10
10 \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 10 \\ 0 & 0\end{array}\) 0
0
0
0
0
0 0
0
0
\(i\) 0
0
0
0
0 0
0
0
0
0
0 00
00
0
0
0
0 0
0
0
0
0 9000.0
9050.0 0
0
0
0
0 0
0
0
0
0
0 00
00
00 00
0
0
0
0 00
0
\(n\)
\(n\)
\(m\) 00
0
0
0
5
0 0
0
0
0
0
0
0 0
0
0
0
\(n\)
0 \(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\)
}


\(\underset{M}{\text { RANGE }} \quad\) ALTITUOE
n \(n \min m\)
n

00000
\(\sigma\)

 \(\stackrel{1}{1}\)
















\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { w } \\
& \underset{\alpha}{\underset{a}{2}} \mathbf{2}
\end{aligned}
\]} &  \\
\hline &  \\
\hline & \(\rightarrow \rightarrow H \rightarrow N\) NNNNmmm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \stackrel{\rightharpoonup}{w} \\
& \stackrel{u}{2} \\
& \frac{u}{2}
\end{aligned}
\] &  \\
\hline 픈 & \\
\hline 边 &  \\
\hline \(\stackrel{1}{\square}\) &  \\
\hline
\end{tabular}







\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Qu} \\
\hline \\
\hline
\end{tabular}


 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
 \\
 \\
 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}












TABLE XIII
GEOGRAPHIC COORDINATES
VEL-AZ VEL-ELEV EF VEL

\(31.78 \quad 1970.4\)
1974.8
1975.5
1972.7






 28.5193
28.5238
28.5252
28.5283
\(28 \cdot 5283\)

\subsection*{28.5310}

\(-79.9558\)

\(-79.5526\)


 \(6453.856-79.6345\)
GUIDANCE INITIATION
\(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ n & 0 & 0\end{array}\)








\(\square\)

 000606006000 -10
0
0
0
0
0
\(n\)
0
0 \(n\)
\(\cdots\)
0
0 \(N\)
\(n\)
\(n\)
0
0
0
0
0
0 \(n\)
0
0
\(i n\)
0
0
\(n\)
\(n\)
0 4
0
0
0
0
0
0 \(m i\)
0
0
0
0 \(\infty\)
0
\(\infty\)
0
0
0
0 0
0
un
un
0 0
0
0
0
0
0
0 \(\begin{array}{ll}m & n \\ m & m \\ 0 & 0 \\ \infty & 0 \\ n & n \\ n & n\end{array}\) \(\begin{array}{ll}n & \infty \\ n & n \\ 0 & 0 \\ n & \infty \\ \text { in } & 0 \\ 0 & 0\end{array}\) \(\infty\)
\(\infty\)
0
0
0
0
0
0 \(n\)
0
0
+
0
0
0
0 \(\infty\)
0
0
0
0
\(n\)
\(n\)
\(n\) \(1 n N\)
0
\(N\)
\(N\) +
0
0
\(\infty\)
\(\infty\)
\(\infty\)
\(\infty\)
0
0 0
0
0
0
0
0
un
0 \(\infty\)
\(\infty\)
0
0
0
0
0
0 \(4 M\)
0
0
\(\cdots\)
\(N\)
0
0
0
 \(\begin{array}{lll}0 & 14 & m \\ 0 & 4 & 0 \\ 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\) \(n\)
\(m\)
0
0
0
0
0







228104
228111
228121


1821052
1844123
1879734
 \(\begin{array}{ll}n & 0 \\ 0 & \infty \\ \infty & \infty \\ \cdots & \cdots \\ \cdots & \cdots\end{array}\) \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ i & 0\end{array}\)

 \(\begin{array}{ll}\overrightarrow{0} & \pm \\ 0 \\ \infty & 0 \\ \infty & 0\end{array}\)




0.01

\(\begin{array}{ll}\infty & \infty \\ 0 & \infty \\ \infty & \infty \\ \infty & \infty\end{array}\)

 -69.2121
-68.9535 \begin{tabular}{c}
0 \\
\hdashline- \\
0 \\
0 \\
0 \\
0 \\
\(i\)
\end{tabular}

 -67.6006
-67.3174 \(8620^{\circ} \angle 9-\) Ni
in
\(\vdots\)
\(i\)
\(i\) -66.4409
-66.1394 －65．8331


 -64.2249
-63.8871

 89」か・でー \(-62.1088\)

\(12 \angle 6 \cdot 19=\)




\begin{tabular}{|c|}
\hline ALT I TUDE \\
\hline 230021 \\
\hline 230555 \\
\hline 231150 \\
\hline 231804 \\
\hline 232519 \\
\hline 233294 \\
\hline 234129 \\
\hline 235024 \\
\hline 235980 \\
\hline 236995 \\
\hline 238069 \\
\hline 2392 C 2 \\
\hline 240393 \\
\hline 241640 \\
\hline 242941 \\
\hline 244296 \\
\hline 245701 \\
\hline 247153 \\
\hline 248650 \\
\hline 250187 \\
\hline 251761 \\
\hline 253367 \\
\hline 255001 \\
\hline 256656 \\
\hline 258327 \\
\hline 260007 \\
\hline 261690 \\
\hline 263370 \\
\hline 265038 \\
\hline 266688 \\
\hline 268311 \\
\hline 269900 \\
\hline 271448 \\
\hline 272946 \\
\hline 274386 \\
\hline 275762 \\
\hline 277065 \\
\hline 278287 \\
\hline 279423 \\
\hline 280465 \\
\hline 281408 \\
\hline 282245 \\
\hline 282972 \\
\hline 283584 \\
\hline
\end{tabular}





\footnotetext{
TIME
SEC

}




\section*{}






\footnotetext{
TIME
SEC

}

 \(\underset{\sim}{7}\)

\begin{tabular}{|c|}
\hline \multirow{5}{*}{\[
?
\]} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}







EC DIST
KM
6654.388


\footnotetext{

}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
TABLE XIII \\
geographic coordinates
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { TIME } \\
& \text { SEC }
\end{aligned}
\] & \[
\text { EC } \underset{\text { OM }}{\text { DIST }}
\] & \[
\begin{aligned}
& \text { LONG } \\
& \text { DEG }
\end{aligned}
\] & \[
\operatorname{GC}_{\mathrm{DEG}} \operatorname{LAT}
\] & \[
\begin{gathered}
\text { VEL-AZ } \\
\text { DEG }
\end{gathered}
\] & \[
\begin{gathered}
\text { VEL-ELEV } \\
\text { DEG }
\end{gathered}
\] & Ef VEL M/S & \[
\begin{aligned}
& \text { HEAD } \\
& \text { DEG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FLT-PATH } \\
\text { DEG }
\end{gathered}
\] & sf vel M/S & RANGE & ALTITUDE \\
\hline 9750.0 & 6657.379 & 155.1482 & -12.8548 & 59.03 & -0.33 & 7324.4 & 60.83 & -0.31 & 7734.0 & 14029617 & 280278 \\
\hline 9800.0 & 6655.249 & 157.9026 & -11.2168 & 58.37 & -0.34 & 7327.3 & 60.21 & -0.32 & 7736.6 & 13680442 & 277898 \\
\hline 9850.0 & 6653.076 & 160.6251 & -9.5487 & 57.80 & -0.34 & 7330.2 & 59.68 & -0.32 & 7739.2 & 13330923 & 275502 \\
\hline 9900.0 & 6650.864 & 163.3208 & -7.8551 & 57.32 & -0.35 & 7333.1 & 59.24 & -0.33 & 7741.8 & 12981064 & 273101 \\
\hline 9950.0 & 6648.623 & 165.9947 & -6.1405 & 56.95 & -0.35 & 7336.0 & 58.89 & -0.33 & 7744.5 & 12630866 & 270704 \\
\hline 10000.0 & 6646.357 & 168.6518 & -4.4094 & 56.66 & -0.36 & 7338.9 & 58.63 & -0.34 & 7747.2 & 12280333 & 268320 \\
\hline 10050.0 & 6644.076 & 171.2976 & -2.6661 & 56.47 & -0.36 & 7341.8 & 58.45 & -0.34 & 7749.8 & 11929469 & 265957 \\
\hline 10100.0 & 6641.785 & 173.9372 & -0.9151 & 56.38 & -0.36 & 7344.6 & 58.36 & -0.34 & 7752.5 & 11578278 & 263625 \\
\hline 10150.0 & 6639.492 & 176.5759 & 0.8395 & 56.38 & -0.36 & 7347.4 & 58.36 & -0.34 & 7755.1 & 11226767 & 261331 \\
\hline 10200.0 & 6637.204 & 179.2192 & 2.5931 & 56.47 & -0.36 & 7350.1 & 58.45 & -0.34 & 7757.7 & 10874940 & 259083 \\
\hline 10250.0 & 6634.929 & -178.1276 & 4.3415 & 56.66 & -0.35 & 7352.7 & 58.62 & -0.33 & 7760.3 & 10522806 & 256888 \\
\hline 10300.0 & 6632.675 & -175.4592 & 6.0802 & 56.95 & -0.35 & 7355.3 & 58.88 & -0. 33 & 7762.8 & 10170374 & 254752 \\
\hline 10350.0 & 6630.449 & -172.7703 & 7.8046 & 57.33 & \(-3.34\) & 7357.8 & 59.23 & -0.33 & 7765.3 & 9817652 & 252681 \\
\hline 10400.0 & 6628.259 & -170.0556 & 9.5103 & 57.80 & -0.34 & 7360.2 & 59.68 & -0.32 & 7767.7 & 9464651 & 250681 \\
\hline 10450.0 & 6626.109 & -167.3097 & 11.1923 & 58.38 & -0.33 & 7362.7 & 60.21 & -0.31 & 7770.2 & 9111375 & 248755 \\
\hline 10500.0 & 6624.014 & -164.5277 & 12.8459 & 59.05 & -0.32 & 7364.6 & 60.84 & -0.30 & 7772.3 & 8757847 & 246912 \\
\hline \multicolumn{12}{|l|}{S-IVB/CSM SEPARATION} \\
\hline \(\stackrel{1}{3} 10502.4\) & 6623.840 & -164.3932 & 12.9245 & 59.09 & -0.32 & 7364.6 & 60.87 & -0.30 & 7772.3 & 8740871 & 246751 \\
\hline
\end{tabular}



TABLE XIV
EARTH-FIXED PLUMBLINE POSITIONS, VELOCITIES AND ACCELERATIONS
DOLE
FT／S SO




DXE










\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}



 ※~

츰


                95
0.
-1






I




 ぶ
\begin{tabular}{ll} 
DOYE & \\
T／S SO
\end{tabular}





\(n\)\(n\)
\(n\)
\(n\)
DOZE
FT/S SQ
75.72
59.32
60.01
60.60
\begin{tabular}{ll}
\(N\) & \(N\) \\
\(N\) & \(N\) \\
\(N\) & \(n\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\sigma\) & \(\infty \times 1\) & \(n\) \\
\hline \(\pm\) & Un \(n\) & \(\cdots \infty\) \\
\hline - & - & - \\
\hline - & \(\rightarrow \infty 0\) & 0 \\
\hline
\end{tabular}










\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TIME & XE & YE & ZE & DXE & OYE & DZE & DDXE \\
\hline SEC & FT & FT & FT & FT/S & FT/S & & \\
\hline 141.0 & 186496 & 381 & 180764 & 3342.1 & 12.9 & 5341.3 & 7.32 \\
\hline 142.0 & 189841 & 394 & 186139 & 3347.4 & 13.3 & 5407.3 & 5.15 \\
\hline 143.0 & 193192 & 407 & 191575 & 3352.9 & 13.6 & 5466.2 & 5.25 \\
\hline 144.0 & 196548 & 421 & 197070 & 3357.7 & 13.9 & 5524.3 & 4.63 \\
\hline \multicolumn{8}{|l|}{OECO} \\
\hline 144.32 & 197621 & 426 & 198840 & 3356.8 & 14.0 & 5541.7 & 2.79 \\
\hline 145.0 & 199904 & 435 & 202617 & 3344.0 & 14.2 & 5551.8 & -29.66 \\
\hline \multicolumn{8}{|l|}{S-IB/S-IVB SEPARATION SIGNAL} \\
\hline 145.59 & 201872 & 444 & 205892 & 3326.1 & 14.3 & \(5552 . \mathrm{C}\) & -30.94 \\
\hline 150.0 & 216262 & 509 & 230366 & 3199.4 & 15.3 & 5563.3 & -23.29 \\
\hline 155.0 & 232007 & 586 & 258383 & 3101.8 & 15.0 & 5647.9 & 18.08 \\
\hline 160.0 & 247293 & 659 & 286861 & 3013.1 & 14.5 & 5744.6 & -17.85 \\
\hline 165.0 & 262136 & 731 & 315833 & 2924.8 & 14.2 & 5843.7 & -17.31 \\
\hline \multicolumn{8}{|l|}{guidance initiation} \\
\hline 169.76 & 275863 & 797 & 343880 & 2843.6 & 13.4 & 5941.1 & -16.72 \\
\hline 170.0 & 276546 & 800 & 345306 & 2839.6 & 13.4 & 5946.1 & -16.68 \\
\hline 175.0 & 290533 & 866 & 375294 & 2756.6 & 13.9 & 6049.6 & -15.89 \\
\hline 180.0 & 304126 & 949 & 405793 & 2683.0 & 19.8 & 6148.8 & -13.68 \\
\hline 185.0 & 317370 & 1063 & 436779 & 2614.9 & 25.9 & 6245.6 & -13.60 \\
\hline 190.0 & 330275 & 1207 & 468249 & 2547.1 & 32.0 & 6342.5 & -13.67 \\
\hline 195.0 & 342840 & 1383 & 500210 & 2478.8 & 38.3 & 6442.3 & -13.57 \\
\hline 200.0 & 355063 & 1592 & 532675 & 2410.3 & 45.2 & 6543.8 & -13.81 \\
\hline 205.0 & 366942 & 1835 & 565651 & 2341.3 & 52.2 & 6647.0 & -13.69 \\
\hline 210.0 & 378477 & 2115 & 599148 & 2272.8 & 59.7 & 6752.1 & -13.79 \\
\hline 215.0 & 389668 & 2433 & 633175 & 22.3 .8 & 67.8 & 6859.0 & -13.70 \\
\hline 220.0 & 400515 & 2794 & 667742 & 2134.9 & 76.5 & 6968.0 & -13.82 \\
\hline 225.0 & 411016 & 3199 & 702858 & 2065.4 & 85.7 & 7078.4 & -13.82 \\
\hline 230.0 & 421169 & 3652 & 738529 & 1995.6 & 95.4 & 7190.6 & -13.76 \\
\hline 235.0 & 430974 & 4155 & 774767 & 1926.2 & 105.5 & 7304.7 & -13.99 \\
\hline 240.0 & 440432 & 4708 & 811580 & 1856.8 & 115.9 & 7420.8 & -13.81 \\
\hline 245.0 & 449543 & 5319 & 848979 & 1787.4 & 127.2 & 7538.9 & -13.80 \\
\hline 250.0 & 458306 & 5980 & 886971 & 1717.7 & 137.8 & 7658.4 & -13.95 \\
\hline 255.0 & 466718 & 6697 & 925566 & 1647.4 & 149.2 & 7779.8 & -14.04 \\
\hline 260.0 & 474780 & 7473 & 964772 & 1576.9 & 160.9 & 1902.9 & -13.95 \\
\hline 265.0 & 482490 & 8307 & 1004599 & 1507.2 & 173.0 & 8028.3 & -13.95 \\
\hline
\end{tabular}
CDLE
HT／S SU






DDXE
FT／S SO

```

Nに

```

DYE

山に

YE
FT

DXE
FT/S




\begin{tabular}{|c|c|}
\hline \(\stackrel{\square}{4}\) & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline せn &  \\
\hline コこ & －¢ ¢ \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline ODYE & COZE \\
\hline FT/S SG & FT/S SO \\
\hline 0.59 & -16.58 \\
\hline 4.43 & -17.73 \\
\hline 0.25 & -18.83 \\
\hline \(0 . j 7\) & -19.87 \\
\hline -0.12 & -20.84 \\
\hline -0.31 & -21.75 \\
\hline -0.51 & -22.59 \\
\hline -0.71 & -23.35 \\
\hline -0.91 & -24.:4 \\
\hline -1.12 & -24.65 \\
\hline -1.33 & -25.19 \\
\hline -1.53 & -25.64 \\
\hline -1.74 & -26.-2 \\
\hline -1.94 & -26.31 \\
\hline -2.14 & -26.52 \\
\hline -2.34 & -26.64 \\
\hline -2.53 & -26.68 \\
\hline -2. 12 & -26.64 \\
\hline -2.90 & -26.52 \\
\hline -3.27 & -26.31 \\
\hline -3.23 & -26.32 \\
\hline -3.39 & -25.65 \\
\hline -3.53 & -25.20 \\
\hline -3.66 & -24.68 \\
\hline -3.78 & -24.28 \\
\hline -3.89 & -23.40 \\
\hline -3.99 & -22.66 \\
\hline -4..7 7 & -21.84 \\
\hline -4.13 & -2. 9.97 \\
\hline -4.19 & -20.03 \\
\hline -4.22 & -19.:3 \\
\hline -4.24 & -17.97 \\
\hline -4.25 & -16.86 \\
\hline -4.24 & -15.7) \\
\hline -4.21 & -14.50 \\
\hline -4.16 & -13.26 \\
\hline -4.1 & -11.97 \\
\hline -4.:2 & -i. .66 \\
\hline -3.93 & -9.31 \\
\hline -3.81 & -7.94 \\
\hline -3.68 & -6.54 \\
\hline -3.54 & -5.13 \\
\hline -3.30 & -3.75 \\
\hline -3.2\% & -2.27 \\
\hline
\end{tabular}







DYE
FT/S




UCZE
FT／SSQ ..... DCYE
UCZE
FT／S SQ



DOXE
\(\mathrm{FT} / \mathrm{S} S Q\) ..... DOXE
\(\mathrm{T} / \mathrm{S}\)11111111í1i
DZE
FT／S


OYE
FT／S




 ..... 
  \(N\)
\(N\)
\(N\)
\(N\)
0
0
0
0
0
\(N O\)
\(N\)
1
1  


 0
0
0
0
0
0
0
0
0
0
0
0
10





\section*{mo} \(N\)
\(N\)
\(\infty\)
\(\infty\)
\(\infty\)



 DCYE



\section*{出に}




\footnotetext{
TIME
SEC

}
\begin{tabular}{cc} 
DOYE & DOLE \\
FT/S SC & \(F T / S ~ S Q\)
\end{tabular}













\footnotetext{

}

DCZSP
FT/S SG
 \(\stackrel{\ddots}{\circ}\)
 COYSP
FT/S SC DOXSP
FT/SSO \(\infty\)
\(\vdots \infty \infty \infty\)
\(\vdots\)
\(i\) \(\infty\)
\(\vdots\)
0
M
\(\mathbf{\infty}\)
\(\mathbf{+}\) 3.93 0
0
\(\dot{\sim}\)
\(\dot{\sim}\)



SPACE-FIXED EPHEMERIS PUBLITIONS, VELOCITIES AND ACCELEKATIONS
TIME
SEC
0.0
\[
\begin{array}{lll}
X S P & Y S P & Z S P \\
N M & N M & N M
\end{array}
\]

1705.486
\begin{tabular}{rll}
-4.0 & -2502.486 & 1705.309 \\
-3.0 & -2512.610 & 1705.126 \\
2.0 & -2502.734 & 1704.944 \\
1.0 & -2502.859 & 1704.761 \\
RANGE & ZERU AT 100245 & 4 EST \\
0.0 & -2502.983 & 1704.579
\end{tabular}
\(-1109.0\)
\(n\)
\(i\)
\(i\)
\(i\)
\(\dot{0}\)

\section*{N N}
\(\stackrel{a}{2}\)
\(\begin{array}{llll}- & \infty & 0 & 0 \\ \infty & 0 \\ \infty & \infty & 0 & 0 \\ = & = & 0 & 0 \\ \overrightarrow{1} & 1 & 1 & 1\end{array}\)
0
0
0
-
-1
\(n\)
\(i\)
\(i n\)
\(i\)

1634.713

6LS*ヶCLI E86•20SZ-
FIRST MOTION

634.713


\footnotetext{
LIFTOFF
}






\begin{tabular}{|c|}
\hline \multirow[b]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}




DOXSP
FT/SSQ








TIME
SEC


\begin{tabular}{|c|c|}
\hline \(\sim\) & \(n\) \\
\hline Nu &  \\
\hline づ &  \\
\hline 1 & mmmmmmmmmmmmmmmmmmmen \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
 \\
 \\
 \\

\end{tabular}}} \\
\hline 白こ & & & \\
\hline で & & & \\
\hline & & & \\
\hline
\end{tabular}




\section*{YSP
NM}

\(\frac{2}{2}\)
EXSP
FI／S \(-\ldots\)






DLSP
FT/S

 N~

 \(-13035.6\) -13270.9
-13510.8
 -14002.8
-14256.3 \begin{tabular}{c}
\(?\) \\
\(\stackrel{3}{n}\) \\
\(\stackrel{7}{1}\) \\
\(\stackrel{1}{1}\) \\
\hline
\end{tabular}


个~
0
in
in
in
7


\section*{DXSP
FT/S}


\section*{N}


OCLSP
FT／S SC

DOYSP
FT／S SG
 DDXSP
FT／S SC



\begin{tabular}{|c|c|c|c|}
\hline － & \(\infty\) & \(\infty\) & の人） \\
\hline \(\stackrel{*}{*}\) & 0 & \(\because\) & ONT N0． \\
\hline \(\infty\) & in in & \(\cdots\) &  \\
\hline 1 & \(\cdots\) & － & \(\overrightarrow{~ い い い い ~}\) \\
\hline
\end{tabular}






\section*{DXSP
FT/S}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}




\footnotetext{

}

DCYSP
FT/S SG




\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { DYSP } \\
& \text { FT/S }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DZSP } \\
& F T / S
\end{aligned}
\] \\
\hline 23584.4 & -3797.8 \\
\hline 24\%78.0 & -3048.7 \\
\hline 24490.3 & -2289.3 \\
\hline 24820.: & -1522.2 \\
\hline 25065.8 & -750.0 \\
\hline 25227.1 & 24.7 \\
\hline 25303.2 & 799.5 \\
\hline 25293.9 & 1571.7 \\
\hline 25199.2 & 2338.7 \\
\hline 25019.4 & 3097.9 \\
\hline 24755.0 & 3846.9 \\
\hline 24406.9 & 4583.2 \\
\hline 23976.0 & 5304.1 \\
\hline 23463.9 & 6007.5 \\
\hline 22872.2 & 6690.7 \\
\hline 22202.7 & 7351.6 \\
\hline 21457.6 & 7987.9 \\
\hline 20639.3 & 8597.4 \\
\hline 19750.5 & 9178.1 \\
\hline 18794.0 & - 9727.9 \\
\hline 17773.1 & 10244.9 \\
\hline 16691.0 & 10727.4 \\
\hline 15551.3 & 11173.7 \\
\hline 14357.8 & 11582.1 \\
\hline 13114.5 & 11951.3 \\
\hline 11825.5 & 12279.9 \\
\hline 10495.2 & 12566.7 \\
\hline 912B.0 & 12810.7 \\
\hline 7728.5 & 13011.0 \\
\hline 6301.5 & 13166.8 \\
\hline 4851.8 & 13277.5 \\
\hline 3384.3 & 13342.7 \\
\hline 1904.2 & 13362.1 \\
\hline 416.4 & 13335.5 \\
\hline -1073.8 & 13263.0 \\
\hline -2561.4 & 13144.7 \\
\hline -4041.2 & 12981.0 \\
\hline -5508.1 & 12772.4 \\
\hline -6957.0 & 12519.6 \\
\hline -8382.7 & 12223.4 \\
\hline -9780.4 & 11884.8 \\
\hline -11145.1 & 11504.8 \\
\hline -12472.0 & 11084.9 \\
\hline -13756.6 & 10626.4 \\
\hline
\end{tabular}












OXSP
FT/S


N
N
N
N
SPACEーIXED




DOYSP
\(F T / S S G\)




\footnotetext{
 -
}
\begin{tabular}{|c|c|}
\hline au & \\
\hline ふ &  \\
\hline N゙ &  \\
\hline \[
5
\] & －19Yuif \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 6 & \\
\hline の &  \\
\hline ぶ &  \\
\hline い &  \\
\hline ート & NNNNNNNNNNNNNNNN \\
\hline
\end{tabular}




\begin{tabular}{|c|c|}
\hline  &  \\
\hline ＞ & \\
\hline コ & \\
\hline U & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{\text { 山己 }}{\underset{\sim}{\square}}
\] &  \\
\hline & \\
\hline &  \\
\hline ¢ &  \\
\hline \(\vec{\sim}^{\square}\) &  \\
\hline & \\
\hline & \\
\hline E &  \\
\hline & \\
\hline  &  \\
\hline U0 &  \\
\hline &  \\
\hline
\end{tabular}

















    TABLE XVI
GEOGRAPHIC COORDINATES
\begin{tabular}{cc}
\(V E L-E L E V\) & \(E F V E L\) \\
OEG & \(F T / S\)
\end{tabular}








\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{table XVI GEOGRAPHIC CQURDINATES} \\
\hline time SEC & \[
\begin{gathered}
\text { EC DIST } \\
\text { NM }
\end{gathered}
\] & LONG DEG & \[
\begin{aligned}
& \text { GC LAT } \\
& \text { DEG }
\end{aligned}
\] & \[
\begin{gathered}
\text { VEL-AZ } \\
\text { DEG }
\end{gathered}
\] & \[
\begin{gathered}
\text { VEL-ELEV } \\
\text { DEG }
\end{gathered}
\] & EF VEL FT/S & HEAD DEG & \[
\underset{\text { FLT }}{\substack{\text { FLPATH }}}
\] & SF VEL FT/S & rAnGE NN & \[
\underset{\text { ALTITUOF }}{\text { FT }}
\] \\
\hline 141.0 & 3472.113 & -80.0294 & 28.5105 & 72.30 & 32.48 & 630.8 & 75.86 & 27. 8 & 7430.9 & 29.487 & 18727 \\
\hline 142.\% & 3472.671 & -80.0137 & 28.5149 & 72.31 & 32.22 & 6359.6 & 75.83 & 26.91 & 7492.2 & 30.358 & 190662 \\
\hline 143.0 & 3473.229 & -79.9978 & 28.5193 & 72.32 & 32.00 & 6412.6 & 75.81 & 26.76 & 7547.3 & 31.240 & 194061 \\
\hline 144.0 & 3473.789 & -79.9817 & 28.5238 & 72.33 & 31.78 & 6464.7 & 75.79 & 26.61 & 76C1.5 & 32.131 & 197467 \\
\hline \multicolumn{12}{|l|}{OECO} \\
\hline 144.32 & 3473.968 & -79.9765 & 28.5252 & 72.33 & 31.69 & 6479.1 & 75.78 & 26.55 & 7610.8 & 32.418 & 198558 \\
\hline 145.0 & 3474.349 & -79.9654 & 28.5283 & 72.34 & 31.56 & 6481.1 & 75.79 & 26.43 & 7620.2 & 33.030 & 200876 \\
\hline \multicolumn{12}{|l|}{S-IB/S-IVB SEPARATION SIGNAL} \\
\hline 145.59 & 3474.678 & -79.9558 & 28.5317 & 72.35 & 31.44 & 6472.1 & 75.79 & 26.32 & 7612.6 & 33.561 & \(20287{ }^{\circ}\) \\
\hline 150.0 & 3477.085 & -79.8842 & 28.5509 & 72.39 & 30.48 & 6417.7 & 75.83 & 25.47 & 7568.8 & 37.524 & 217518 \\
\hline 155.0 & 3479.725 & -79.8023 & 28.5736 & 72.43 & 29.43 & 6443.6 & 75.82 & 24.60 & 7605.4 & 42.056 & 233545 \\
\hline 160.0 & 3482.297 & -79.7191 & 28.5966 & 72.47 & 28.40 & 6486.9 & 75.80 & 23.76 & 7658.7 & 46.657 & 249236 \\
\hline 165.0 & 3484.803 & -79.6345 & 28.6199 & 72.51 & 27.39 & 6534.8 & 75.79 & 22.93 & 7716.2 & 51.333 & 264490 \\
\hline \multicolumn{12}{|l|}{gUIDANCE INITIATION} \\
\hline 169.76 & 3487.130 & -79.5526 & 28.6424 & 72.54 & 26.46 & 6586.6 & 75.78 & 22.17 & 7776.6 & 55.854 & 278652 \\
\hline 170.0 & 3487.246 & -79.5484 & 28.6435 & 72.54 & 26.41 & 6589.4 & 75.78 & 22.13 & 7779.8 & 56.-84 & 279354 \\
\hline 175.0 & 3489.628 & -79.4610 & 28.6675 & 72.59 & 25.46 & 6648.1 & 75.77 & 21.36 & 7847.1 & 60.914 & 293851 \\
\hline 180.0 & 3491.952 & -79.3721 & 28.6918 & 72.69 & 24.62 & 6708.7 & 75.81 & 20.68 & 7915.4 & 65.821 & 378003 \\
\hline 185.0 & 3494.229 & -79.2818 & 28.7163 & 72.79 & 23.85 & 6771.0 & 75.86 & 20.05 & 7984.6 & 70.801 & 321860 \\
\hline 190.0 & 3496.458 & -79.1901 & 28.7411 & 72.88 & 23. 19 & 6834.9 & 75.9 r & 19.44 & \(8755 .:\) & 75.855 & 335432 \\
\hline 195.0 & 3498.641 & -79.0969 & 28.7660 & 72.98 & 22.35 & 6902.8 & 75.95 & 18.83 & 8129.4 & 80.983 & \(3487<1\) \\
\hline 200.0 & 3500.777 & -79.0023 & 28.7912 & 73.09 & 21.61 & 6973.7 & 76. 0 & 18.24 & 8206.4 & 86.187 & 361728 \\
\hline 205.0 & 3502.867 & -78.9062 & 28.8166 & 73.19 & 20.88 & 7047.5 & 76.5 & 17.64 & 8286.1 & 91.469 & 374452 \\
\hline 210.0 & 3504.911 & -78.8086 & 28.8423 & 73.30 & 2..17 & 7124.6 & 76.15 & 17. 77 & 8368.8 & 96.831 & 386899 \\
\hline 215.0 & 3506.910 & -78.7095 & 28.8682 & 73.41 & 19.47 & 7204.7 & 76.16 & 16.5 & 8454.3 & 102.273 & 399669 \\
\hline 220.0 & 3508.863 & -78.6087 & 28.8943 & 73.52 & 18.78 & 728 nc .1 & 76.202 & 15.94 & 8542.9 & 107.799 & 416965 \\
\hline 225.0 & 3510.771 & -78.5064 & 28.9206 & 73.64 & 18.11 & 7374.1 & 76.28 & 15.39 & 8633.9 & 113.408 & 422587 \\
\hline 230.0 & 3512.635 & -78.4023 & 28.9471 & 73.76 & 17.45 & 7463.: & 76.35 & 14.85 & 8727.5 & 119.163 & 433939 \\
\hline 235.0 & 3514.454 & -78.2966 & 28.9739 & 73.88 & 16.80 & 7555.1 & 76.42 & 14.33 & 8824.1 & 124.885 & 445021 \\
\hline 240.0 & 3516.230 & -78.1892 & 29.0008 & 74.00 & 16.18 & 7650.5 & 76.49 & 13.82 & 8923.8 & 130.756 & 455837 \\
\hline 245.0 & 3517.962 & -78.0801 & 29.0280 & 74.13 & 15.57 & 7748.9 & 76.56 & 13.32 & 9926.3 & 136.717 & 466393 \\
\hline 250.0 & 3519.652 & -77.9691 & 29.0554 & 74.25 & 14.97 & 7849.9 & 76.63 & 12.83 & 9131.1 & 142.771 & \(47669{ }^{2}\) \\
\hline 255.0 & 3521.300 & -77.8563 & 29.0830 & 74.37 & 14.39 & 7953.7 & 76.71 & 12.35 & 9238.7 & 148.917 & 486728 \\
\hline 260.0 & 3522.905 & -77.7417 & 29.1108 & 74.50 & 13.82 & 8060.3 & 76.78 & 11.88 & 9348.7 & 155.159 & 496512 \\
\hline 265.0 & 3524.469 & -77.6253 & 29.1388 & 74.63 & 13.27 & 8170.4 & 76.86 & 11.43 & 9462.1 & 161.498 & \(5: 6.44\) \\
\hline
\end{tabular}






\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
table XVI \\
geqgraphic coukdinates
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { TIME } \\
& \text { SEC }
\end{aligned}
\] & \[
\begin{gathered}
\text { EC DIST } \\
\text { NM }
\end{gathered}
\] & LONG DEG & \[
\begin{aligned}
& \text { GC LAT } \\
& \text { DEG }
\end{aligned}
\] & \[
\begin{gathered}
\text { VEL-AZ } \\
\text { DEG }
\end{gathered}
\] & \[
\begin{gathered}
\text { VEL-ELEV } \\
\text { DEG }
\end{gathered}
\] & \[
\begin{gathered}
\text { EF VEL } \\
\text { FT/S }
\end{gathered}
\] & HEAD
DEC & \[
\begin{gathered}
\text { FLT-PATH } \\
\text { DEG }
\end{gathered}
\] & SF VEL FT/S & RANCE
NM & altitude FT \\
\hline 490.0 & 3561.871 & -69.7179 & 30.5887 & \(80.9 \%\) & 1.21 & 16414.0 & 81.64 & 1.12 & 17756.6 & 582.253 & 734844 \\
\hline 495.0 & 3562.146 & -69.4669 & 30.6228 & 81.11 & 1.10 & 16644.9 & 81.78 & 1. 22 & 17987.7 & 595.386 & 736546 \\
\hline 500.0 & 3562.399 & -69.2121 & 30.6568 & 81.26 & 1.00 & 1688,.4 & 81.92 & . .93 & 18223.4 & 608.703 & 738122 \\
\hline 505.2 & 3562.632 & -68.9535 & 30.6905 & 81.44 & 0.91 & 17120.4 & 82.57 & 0.84 & 18463.6 & 622.209 & 739578 \\
\hline 510.0 & 3562.847 & -68.6910 & 30.7242 & 81.60 & -. 82 & 17365.0 & 82. 21 & 0.76 & 18708.4 & 635.907 & 740916 \\
\hline 515.0 & 3563.042 & -68.4246 & 30.7576 & 81.77 & -. 73 & 17615.7 & 82.36 & C.68 & 18959.1 & 649.81 & 742137 \\
\hline 520.0 & 3563.218 & -68.1541 & 30.7908 & 81.94 & . 65 & 17871. & 82.51 & 0.00 & 19214.6 & 663.895 & 743243 \\
\hline 525.0 & 3563.375 & -67.8794 & 30.8239 & 82.11 & 0.57 & 18132.3 & 82.66 & 0.53 & 19476.1 & 678.195 & 744235 \\
\hline 530.0 & 3563.514 & -67.6006 & 30.8567 & 82.28 & 0.49 & 18399.3 & 82.81 & 3. 46 & 19743.2 & 692.704 & 745115 \\
\hline 535.0 & 3563.635 & -67.3174 & 30.8892 & 82.46 & 0.42 & 18671.8 & 82.97 & U. 39 & 2-215.7 & 7.7.426 & 745887 \\
\hline 540.0 & 3563.739 & -67.0298 & 30.9215 & 82.63 & 0.35 & 18950. 3 & 83.12 & 0.33 & 2こ294.4 & 722.368 & 746553 \\
\hline 54.5 .0 & 3563.827 & -66.7377 & 30.9535 & 82.81 & 0.29 & 19235.3 & 83.28 & 0.27 & 20579.5 & 737.532 & 747120 \\
\hline 5.50 .0 & 3563.899 & -66.4409 & 30.9852 & 82.99 & 9. 23 & 19526.8 & 83.45 & 0.22 & 22871.0 & 752.926 & 747592 \\
\hline 555.0 & 3563.956 & -66.1394 & 31.0165 & 83.18 & 0.18 & 19825.2 & 83.61 & 3.16 & 21169.5 & 768.553 & 747973 \\
\hline 560.0 & 3564.390 & -65.8331 & 31.0475 & 83.36 & -. 13 & 2.13. 2 & 83.78 & 0.12 & 21474.5 & 784.420 & 748270 \\
\hline 565.0 & 3564.030 & -65.5219 & 31.0780 & 83.56 & 0.08 & 20442.3 & 83.95 & 0.08 & 21786.7 & 800.532 & 748489 \\
\hline 570.0 & 3564.050 & -65.2055 & 31.1081 & 83.75 & 0.05 & 20762.4 & 84.13 & 0.04 & 22106.8 & 816.894 & 748640 \\
\hline 575.0 & 3564.059 & -64.8840 & 31.1378 & 83.94 & 0.02 & 21090.0 & 84.31 & \(\therefore .2\) & 22434.4 & 833.514 & 748729 \\
\hline 580.0 & 3564.060 & -64.5572 & 31.1679 & 84.14 & -. 01 & 21424.9 & 84.49 & -0.01 & 22769.4 & 850.397 & 748768 \\
\hline 585.0 & 3564.055 & -64.2249 & 31.1957 & 84.34 & -0.03 & 21769.8 & 84.67 & -0.02 & 23114.3 & 867.550 & 748766 \\
\hline 590.0 & 3564.044 & -63.8871 & 31.2238 & 84.54 & -0.04 & 22122.7 & 84.86 & -0.04 & 23467.2 & 884.982 & 748732 \\
\hline 595.0 & 3564.031 & -63.5435 & 31.2513 & 84.75 & -0.04 & 22484.6 & 85.5 & -0. 4 & 23829.2 & 9.2 .694 & 74868 \% \\
\hline 600.0 & 3564.014 & -63.1940 & 31.2782 & 84.96 & -..06 & 22858.2 & 85.24 & -0.06 & 24202.8 & 920.700 & 748610 \\
\hline 605.0 & 3563.993 & -62.8385 & 31.3044 & 85.17 & -0.06 & 23239.6 & 85.43 & -0.06 & 24584.2 & 939.005 & 748512 \\
\hline 610.0 & 3563.973 & -62.4768 & 31.3300 & 85.38 & -0.05 & 23633.1 & 85.63 & -0.05 & 24977.7 & 957.618 & 748418 \\
\hline 615.0 & 3563.961 & -62.1088 & 31.3547 & 85.60 & -0.02 & 24037.9 & 85.83 & -0. 32 & 25382.6 & 976.549 & 748371 \\
\hline \multicolumn{12}{|l|}{S-IVB GUIDANCE CuTOFF} \\
\hline 616.76 & 3563.960 & -61.9777 & 31.3633 & 85.68 & -0.00 & 24181.2 & 85.91 & \(-i \cdot m\) & 25525.9 & 983.293 & 748374 \\
\hline 620.0 & 3563.961 & -61.7353 & 31.3787 & 85.82 & 0.00 & 24208.6 & 86.4 & \(0 . \mathrm{Cc}\) & 25553.3 & 995.747 & 748394 \\
\hline 625.0 & 3563.962 & -61.3611 & 31.4014 & 86.04 & 0.01 & 24208.6 & 86.25 & 0.00 & 25553.3 & 1\%14.975 & 748428 \\
\hline \multicolumn{12}{|l|}{URBIT INSERTION} \\
\hline 626.76 & 3563.963 & -61.2293 & 31.4091 & 86.11 & 0.01 & 24208.5 & 86.32 & U.01 & 25553.2 & 1.21.743 & 748439 \\
\hline 650.0 & 3563.978 & -59.4873 & 31.4969 & 87.13 & 0.01 & 24208.9 & 87.28 & 0.01 & 25553.7 & 1111.116 & 748627 \\
\hline 700.0 & 3564.001 & -55.7305 & 31.5935 & 89.33 & 0.03 & 24211.4 & 89.36 & 0.03 & 25556.3 & 1303.409 & 748878 \\
\hline 750.0 & 3564.129 & -51.9705 & 31.5697 & 91.53 & J. 65 & 24210.4 & 91.45 & 0.04 & 25555.4 & 1495.711 & 749628 \\
\hline 800.0 & 3564.314 & -48.2181 & 31.4231 & 93.72 & 0.06 & 24209.3 & 93.52 & -1. 6 & 25554.2 & 1687.998 & 75:588 \\
\hline 850.10 & 3564.553 & -44.4837 & 31.1550 & 95.89 & 0.08 & 24207.9 & 95.57 & 0.07 & 25552.7 & 1880.265 & 751747 \\
\hline 900.0 & 3564.845 & -40.7770 & 30.7673 & 98.02 & 0.09 & 24206.3 & 97.59 & 0.09 & 25550.8 & 2:72.5.6 & 7531:5 \\
\hline
\end{tabular}

RANGE
NN








\footnotetext{
TIME
SEC

}



\begin{tabular}{|c|}
\hline \[
\begin{gathered}
\text { ALTITUDE } \\
\text { FT }
\end{gathered}
\] \\
\hline 764632 \\
\hline 702556 \\
\hline 759728 \\
\hline 757646 \\
\hline 75588 \\
\hline \(7542 \times 4\) \\
\hline 752833 \\
\hline 751731 \\
\hline 753921 \\
\hline \(75 ; 415\) \\
\hline 750218 \\
\hline 750329 \\
\hline 750752 \\
\hline 751157 \\
\hline 752236 \\
\hline 75362 \\
\hline 755298 \\
\hline 757267 \\
\hline 759518 \\
\hline 762046 \\
\hline 764848 \\
\hline 767926 \\
\hline 771302 \\
\hline 775617 \\
\hline 779059 \\
\hline 783382 \\
\hline 787979 \\
\hline 792847 \\
\hline 797978 \\
\hline 813364 \\
\hline 838999 \\
\hline 814873 \\
\hline 82.0976 \\
\hline 827298 \\
\hline 833826 \\
\hline 840546 \\
\hline 847442 \\
\hline 8545. \\
\hline 861701 \\
\hline 869025 \\
\hline 876452 \\
\hline 883957 \\
\hline 891524 \\
\hline \(89912=\) \\
\hline
\end{tabular}




\begin{tabular}{|c|c|}
\hline &  \\
\hline \(\rightarrow\) &  \\
\hline 4. &  \\
\hline س &  NNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNの \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\#}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline - &  \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(>\)}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{}} \\
\hline & \\
\hline \& &  \\
\hline 1 U &  \\
\hline -0 &  \\
\hline \(\xrightarrow{4}\) &  \\
\hline
\end{tabular}



N-TNのOOMmomanNom
 \(n\)
0
0
\(\vdots\)
in
n



 0
0
0
\(n\)
0
0
0
0
in
nn \(\infty\)
\(=0\)
0
0
0
0
0
0
0 \(\infty\)
 0
0
0
0
0
0
0
0
 \(n\)
\(N\)
\(N\)
0
0
0
0
\(n\)
\(n\)
ALTIUOE
FT
976721
914303
921836
929297
936637
943847
\(95 C 892\)
957735
964352
970712
976783
982540
987954
992997
997646
1601878
1.95668
1008999
1011854
1614213
1016068
1617406
1018219
1618512
1018252
1017468
1616153
1014313
1011956
1009095
160576
\(10319 \% 7\)
977616
992886
987741
\(9822 \% 6\)
476324
970567
963521
956698
949630
942348
934885
927274




FLT-PATH
DEG
 N
\(\dot{\infty}\)
\(\dot{8}\)



TIME
SEC



LCNG
DEG

RANGE
M


```

N゙N
DZE
M / S

```










earth-fixed plumbline positions earth-fixed plumbline velocities



RANGE
NM
DXE
FT／S

```

$$
\begin{aligned}
& \text { ZE } \\
& \text { FT }
\end{aligned}
$$

Nル

```



－

M\(\sim\)
\(\sim\)
\(\sim\)
\(N\)
\(\sim\)\(\underset{\sim}{\sim}\)0
\(\underset{N}{N} \underset{\sim}{\sim}\)
1
662829
716476716476
770014
823438mo
o
0
0
o
a
\(=\)
\(=1\)0
0
0
M
0
0
0
0
0
0
010
n
0
0
0
0
0
0
0
0\(N\)
0
0
0
0
0
0
-10
4
0
0
0
0
0
0\(N\)
\(\sim\)
\(\underset{\sim}{\circ}\)
0
0\(a\)
\(n\)
0
0
0
0
0\(n\)
0
0
0
0
0
0
0\(\pm\)
\(N\)
\(\infty\)
0
0
0608513


``` M
－
－
－ in No
No
no
N
```



``` 0
0
0
0
0
0 \(\stackrel{+}{4}\) -1
0
0
0 1
0
0
0
0 \(o\)
0
0
0 \begin{tabular}{l}
\(n\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
-1 \\
\hline
\end{tabular} on \begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} N
N
-1
-1 \(n\)
0
0
0
0
0
0
0
0
```

```
YE
```

```
YE
```



APPENDIX A
DEFINITIONS OF SYMBOLS

## Symbol

$\mathrm{XE}, \mathrm{YE}, \mathrm{ZE}$
DXE, DYE, DZE
DDXE, DDYE, DDZE

XSP, YSP, ZSP
DXSP, DYSP, DZSP
DDXSP, DDYSP, DDZSP
E. C. DIST

LONG
G.C. LAT

## Definitions

Position, velocity and acceleration components in the Earth-Fixed Cartesian Coordinate System. The origin of this system is the projection of the center of gravity of the complete vehicle at first motion onto the Fischer Ellipsoid of 1960. The Y-Z plane is tangent to the reference ellipsoid at the origin of the coordinate system. The positive $Z$-axis is oriented in the flight azimuth direction, 72 deg $E$ of $N$. The $X$-axis is normal to the $Y-Z$ plane and is positive above the origin. The Y-axis is normal to the X-Z plane and is in a right hand relation to the $X-Z$ axes with the positive direction 162 deg $E$ of $N$. The origin of this earth-fixed system rotates with an angular velocity identical to that of the earth. The earth-fixed coordinate system is shown in Figure 1.

Position, velocity and acceleration components in the Space-Fixed Ephemeris Coordinate System. The origin of this system is located at the geocentric center of the earth. The Z-axds points north along the earth's axis of rotation (through the north pole). The $X-Y$ plane is coincident with the equatorial plane. The X-axis points through the vernal equinox. The reference equinox and equator are the mean equinox and equator of date for the epoch of midnight or zero hours on the day of launch. The Y-axis is normal to the X-Z plane and in a right hand relation to the X -, Z-axes. The direction of the coordinate axes remain fixed in space although the origin continues to move with the center of the earth. The space-fixed ephemeris coordinate system is shown in Figure 1.

Position of vehicle in the Geographic Coordinate System. Position in this system is defined by the radius vector from the vehicle to the geocentric center of the earth (E.C.DIST), geocentric latitude (G.C. LAT) and longitude (LONG). Geocentric latitude is the angle between the radius vector of the subvehicle point and the equatorial plane, positive north of the equator. Longitude is the angle between the projection of the radius vector into the equatorial plane and the Greenwich meridian, measured positive east of the Greenwich meridian.

## DEFINITIONS OF STMBOLS (CONTID)

Symbols	Definitions
E.F. VEL	Earth-fixed velocity of the vehicle in the Geographic Coordinate System. Velocity in this system is given
VEL-AZ	in terms of azimuth (VEL-AZ), elevation (VEL-ELEV), and magnitude of the velocity vector (E.F.VEX). Azimuth
VEI-ELEV	is the angle between the projection of the velocity vector into the local horizontal plane and the north direction in this plane. Elevation is the angle between the velocity vector and the local horizontal plane. The local horizontal plane is defined as the plane perpendicular to the radius vector from the vehicle to the geocentric center of the earth. The geographic coordinate system is shown in Figure 1.
S.F. VEL	Space-fixed velocity of vehicle in the Geographic Coordinate System. Velocity is given in terms of
FLT-PATH	flight-path angle (FLT-PATH), heading angle (HEAD), and magnitude of the velocity vector (S.F.VEL).
HEAD	The flight-path angle is the angle between the space fixed velocity vector and the plane normal to the radius vector from the vehicle to the geocentric center of the earth, measured positive upward from this plane. The heading angle is measured positive clockwise from north to the projection of the space-fixed velocity vector in the plane normal to the radius vector.
Lat	Geodetic latitude of vehicle.
MACH	Mach number.
DFN PRES	Dynamic Pressure.
ALTITUDE	Distance from the reference ellipsoid to the center of gravity of the vehicle measured along the radius vector from the vehicle to the geocentric center of the earth.
RANGE	Surface range measured along a spherical earth from the launch site to the subvehicle point. The subvehicle point is defined as the intersection of the reference ellipsoid and the reference ellipsoid normal passing through the vehicle.
DEC	The Declination angle is the angle between the radius vector from the center of the earth to the vehicle and the equatorial plane, positive north of the equator.

TABLE XIX

GOVERNMENT FURNISHED DOCUMENTATION DELIVERABLE ITEM NO. BB-3.1.5-4-202			
GFDA NO.	DATE MSFC APPROVAL	DESCRIPTION OF GFD REQUIRED	IDENTIFICATION OF GFD
05A00109	9/17/68	AS-205 Final Predicted Mass Characteristics, Depletion Cutoff	R-P\&VE-VAW-68-36
05A00109	9/17/68	SA-204/SA-205 Vehicle Antenna Locations	BB-3.16.10-1
05A00109	9/17/68	Tracking and Telemetry Station Locations (Updated Coordinates for Tananarive)	OD Item 9.2.1.3-11
05400109	9/17/68	AS-205/CSM-101 Launch Vehicle Operational Trajectory	R-AERO-FMR-170-68
05A00109	10/10/68	Tracking Tape Format	Report \#L200, Section 2600
05400109	10/10/68	AS-205 Processed Data Requirement Docunent	MSFC PDRD (AS-205)
$05 A .00146$   05400146	$\begin{aligned} & 11 / 12 / 68 \\ & 11 / 12 / 68 \end{aligned}$	Preliminary Guidance Velocities (IEM Cards on Tape)   Preliminary Tracking Data (Radars)	Preliminary guidance velocities (IBM cards)   IP sort quick look radars, Tape No. 3858
05A00146	11/12/68	Orbital Radar Tracking and Insertion State Vector	Orbital radar tracking and insertion state vector
05A00146	11/12/68	Preliminary T-0 meteorological magnetic tape	Preliminary T-O meteorological data tape No. 6928
05A00146	11/12/68	Preliminary Postflight Trajectory	Preliminary Postflight Trajectory, tape No. 9255
05A00147	11/12/68	Final T-0 meteorological magnetic tape	Final T-O meteorological data, tape No 9933
05A00148	11/12/68	Updated guidance velocities	Use preliminary guidance velocities for final trajectory (update not required)
05A00148	11/12/68	Corrected measured parameters (radars)	Corrected measured parameters (radars) tape No. 1641
05A00149	11/12/68	Orbital venting accelerations	Orbital venting acceleration polynominals

1. Solmon, Gordon W., Operational Trajectory Data Report, "AS-205/CSM-101 Launch Vehicle Operational Trajectory, Revision I", dated September 10, 1968, NASA George C. Marshall Space Flight Center, Huntsville, Alabama.
2. Hill, R.E. and Rich, N.E., "Manusl For The GATE Program", TM 54/30-150, LMSC/HREC A784527, dated September 1967.
3. Saturn Flight Evaluation Working Group, "Results of the Fifth Saturn IB Launch Vehicle Test Flight AS-205", to be published by the Saturn IB Flight Evaluation Working Group.

DISTRIBUTION

Mr. Germany
Mr . Mann
Mr. Sisson
Mr. Jackson

I-I/IB-E
I-I/IB-E
I-I/IB-E
R-AERO-P
(1)
(1)
(1)
(176 plus 1 reproducible)


[^0]:    Earth-Fixed Velocity Accurracy
    OECO $\quad \pm 0.4 \mathrm{~m} / \mathrm{s}( \pm 1.3 \mathrm{ft} / \mathrm{s})$
    $\mathrm{S}-\mathrm{IVB} \mathrm{CO} \quad \pm 0.7 \mathrm{~m} / \mathrm{s}( \pm 2.3 \mathrm{ft} / \mathrm{s})$

[^1]:    $\underset{>}{\boldsymbol{\sim}} \boldsymbol{x}$
    

[^2]:    

