JSC TOXICOLOGY AND ENVIRONMENTAL CHEMISTRY GROUP

E. Spencer Williams, PhD DABT

Toxicology and Environmental Chemistry NASA JSC/SK4 Houston, TX 77058

Memorandum Number TOX-SW-2025-01

Voice: (281) 483-8921 Fax: (281) 483-3058 edward.s.williams@nasa.gov

DATE: April 4, 2025

SUBJECT: Toxicological Assessment of ISS Air and Water Quality: September 27, 2023 to March

26, 2024 (Increment 70) Including SpaceX-29, Axiom-3, NG-20, and SpaceX-30

Ingresses

SUMMARY: Based on these data, air quality was acceptable on ISS for this period, and potable water

remains acceptable for crew consumption.

AIR QUALITY

Fifteen archive air samples were collected in mini grab sample containers (mGSCs) on ISS during Increment 70: 10 routine, 1 contingency, and 4 ingress samples. The contingency sample was collected in Node 3 soon after the docking of 86-P on December 3, 2023 (GMT 337). The crew noticed a "paint thinner type smell" near T2 and believed the source could have been 86-P as the smell was near the ventilation path. A sample was also collected in Crew-8 during its ascent to ISS in March 2024. A summary of the key air quality indicators from the Increment 70 mGSC samples is provided in Table 1A. Additionally, five sets of formaldehyde badges were deployed in the US Lab and the Russian Service Module (SM) during Increment 70. Table 1B includes a summary of the formaldehyde levels measured on ISS during the Increment. Data from three sets of badges are not reportable due to concerns about the validity of control samples.

Data tables containing measured concentrations and corresponding T-values based on appropriate Spacecraft Maximum Allowable Concentrations (SMACs) for compounds present at levels above the laboratory reporting limit are attached to this report. Complete data tables, which include compounds assessed but not detected, are available upon request. Pressure readings for the mGSCs indicate that all samples collected during Increment 70 were within acceptable limits. The mean relative recoveries of the three surrogate standards were all within acceptable limits for the reported samples.

Toxicological Evaluation of ISS Air Quality

Since 2013, ISS air quality monitoring is performed in-flight using the Air Quality Monitors (AQMs). During this Increment, NASA received additional information on trace contaminant levels in ISS from the ESA tech demo, ANITA-2 (Analyzing Interferometer for Ambient Air, a Fourier-transform infrared spectrometer built by Sintef and flown to ISS by the European Space Agency). Archive air samples (mGSCs and formaldehyde badges) are collected during each Increment and returned for analysis in the Environmental Chemistry Laboratory. Data from the ground analyses complement the in-flight data and provide a more complete understanding of air quality on the ISS. Analytical results from the routine mGSC samples that returned on SpX-29 and -30 confirmed that air quality was acceptable during this Increment. T-values calculated using data from all routine archive samples met the 180-d T-value guideline (T<1), indicating no concern for crew health.

Table 1A. Analytical summary of ISS air analyses from mGSCs during Increment 70

Return Flight	Sample Location	Sample Date	Alcohols ^a (mg/m ³)	T-Value ^b (units)
SpaceX-29	US Lab	10/2/2023	4.8	0.1
SpaceX-29	Columbus	10/2/2023	5.0	0.2
SpaceX-29	SpX-29 Ingress	11/11/2023	1.8	0.1 (0.1)
SpaceX-29	US Lab	11/13/2023	3.6	0.1
SpaceX-29	JPM	11/13/2023	3.8	0.1
SpaceX-29	Node-3, near T2 (contingency)	12/3/2023	4.0	0.1
SpaceX-30	US Lab	12/28/2023	6.5	0.2
SpaceX-30	Columbus	12/28/2023	5.4	0.2
Axiom-3	Axiom-3 Ingress	1/20/2024	1.0	0.3 (0.1)
SpaceX-30	NG-20 Ingress	2/1/2024	3.0	1.0 (0.4)
SpaceX-30	US Lab	2/13/2024	4.7	0.1
SpaceX-30	SM	2/13/2024	4.5	0.2
Crew-8	Crew-8 ascent	3/4/2024	0.5	0.1 (<0.1)
SpaceX-30	SpX-30 Ingress	3/23/2024	3.9	0.2 (0.1)
SpaceX-30	US Lab	3/26/2024	5.8	0.1
SpaceX-30	JPM	3/26/2024	5.2	0.4
Guideline			< 5	<1c

^a Includes acetone

Table 1B: Analytical summary of formaldehyde samples from Increment 70

Return Flight	Sample Location	Sample Date	Formaldehyde (µg/m³)
SpaceX-29	US Lab	10/2/2023	29
SpaceX-29	SM	10/2/2023	27
SpaceX-29	US Lab	11/13/2023	28
SpaceX-29	SM	11/13/2023	29
SpaceX-31	US Lab	12/27/2024	NR
SpaceX-31	SM	12/27/2024	NR
SpaceX-31	US Lab	2/13/2024	NR
SpaceX-31	SM	2/13/2024	NR
SpaceX-31	US Lab	3/26/2024	NR
SpaceX-31	SM	3/26/2024	NR
Guideline			<120

NR: Not reportable

b Sum of the ratios of the measured concentrations and the corresponding 180-day SMAC for each compound; parenthesis indicate value based on 7-day SMACs and applicable to first ingress

 $[^]c$ T-value <1 used to evaluate routine monthly sampling; <3 used to evaluate first ingress.

The average, rounded T-value calculated from the nominal Increment 70 mGSC samples was 0.2 (Figure 1). This value continues Increment 68's trend of lower T-values compared to Increment 65-67 (0.5 - 1.2) which were mostly attributable to periodic detections of acrylonitrile from the ISS atmosphere. The temporary source of acrylonitrile in earlier Increments was not determined despite evaluation of several potential sources; acrylonitrile was detected in the JPM in March 2024 (0.016 mg/m³), and the T-value of that sample was 0.4.

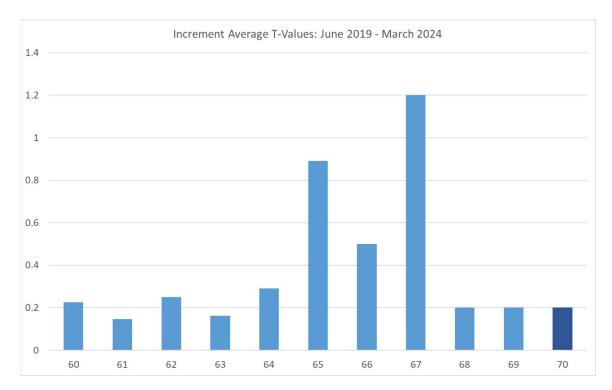


Figure 1. mGSC-Derived T-values for Increments 60-70 (does not include CO₂, first ingress, or contingency samples)

Alcohol values for five of the ten routine mGSC samples returned on SpX-29 and -30 exceeded the ECLS guideline of <5 mg/m³, and several others were relatively close to the target level. The levels are mostly attributable to ethanol. Measured levels do not present a risk to crew health but are a potential concern for the water recovery system. Data from ANITA-2 indicates that average ethanol levels dropped below 3 mg/m³ in November, December, and January but rose again in February.

Levels of octafluoropropane (Freon 218) continue to be very low in ISS air compared with historical measurements due to continued operation of a CO₂ removal technology demonstration unit that very efficiently scrubs octafluoropropane from the ISS atmosphere. As a result, octafluoropropane was removed from Table 1. ANITA-2 observed very low average octafluoropropane concentrations across the Increment (0.05-12.8 mg/m³) (Table 3).

All ten routine mGSC samples collected and analyzed during Increment 70 contained a CO₂ concentration below the limit documented in Flight Note F091532D, which requests that the 24-hour average concentration not exceed 3.0 mmHg (7100 mg/m³, 4000 ppm) on the US segment. While mGSC CO₂ sampling provides a snapshot of the CO₂ concentration, real-time CO₂ data are available from the Commercial Major Atmospheric Constitutents Sensors (CMACS), from ANITA-2 in Columbus, and intermittently from the Major Constituent Analyzers (MCAs) in Node 3 and the US Lab (daily average CO₂ concentrations are

represented in Figure 2). To preserve the longevity of the instrumentation, MCAs are only activated during EVA activities, crew metabolic characterization, tech demo analysis, anomaly resolution, and when requested by crew surgeons.



Figure 2. Environmental ppCO₂ Concentrations on ISS During Increment 70 (mmHg)

Five sets of passive formaldehyde badges were deployed on ISS during Increment 70. Results from analysis of the remaining badges indicated that formaldehyde remains at or below the historical range observed on ISS, and concentrations are well below the SMAC of $120~\mu g/m^3$ (Figure 3). Data from badges deployed on ISS in December 2023 and February and March of 2024 were considered non-reportable due to analytical issues with the controls. ANITA-2 has the capability to measure formaldehyde at levels on the order of 80 $\mu g/m^3$, but this instrument did not report any detections of formaldehyde during Increment 70.

On-orbit, the Air Quality Monitors (AQMs) nominally collect and analyze samples every 73 hours, which results in 2-3 sampling sessions per unit per week. However, both AQMs failed during Increment 69 and were replaced during Increment 70. Monthly average concentrations for compounds measured on the AQMs are presented in Table 2. As a result of concerns about the age of the AQM fleet and difficulties in resupply for consumables, AQMs will be decommissioned in 2025 and will no longer be operational on ISS.

ANITA-2 began operations on ISS as a technological demonstration unit in March 2022 and provides data on up to 48 analytes every 6-10 minutes. Initially, ANITA-2 was installed in the US Lab but has since been relocated to the Columbus module. Recently (early 2025), NASA has selected ANITA-2 as its primary trace contaminants monitor for ISS after a review of its performance against archive samples and AQM readings. Monthly average readings for several of ANITA-2's target compounds are presented in Table 3. Detailed information about the ANITA-2 hardware is available upon request.

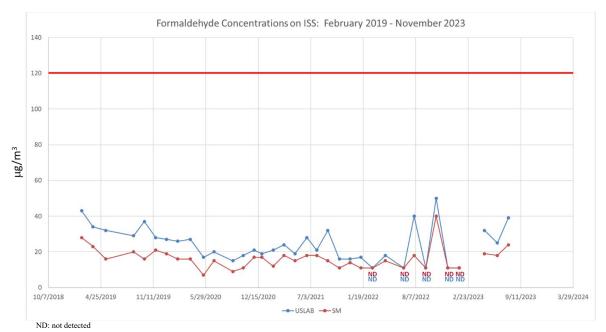


Figure 3: Formaldehyde Concentrations from February 2019 to November 2023

Table 2. Average monthly concentrations (mg/m³) of AQM target compounds (Increment 70)

Compound	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Increment Average
2-Butanone				ND	ND	ND	ND	ND
2-Propanol							0.2	0.2
Acetaldehyde								
Acetone							0.1	0.1
Acrolein							ND	ND
Benzene							MI	MI
1,2-Dichloroethane							ND	ND
Dichloromethane				ND	ND	ND	ND	ND
Decamethylcyclopentasiloxane#				ND	ND	ND	ND	ND
Ethanol					3.0	2.9	3.0	3.0
Ethyl Acetate				ND	ND	ND	ND	ND
Hexanal				ND	ND	ND	ND	ND
Hexane				ND	ND	ND	ND	ND
Hexamethycyclotrisiloxane#				ND	ND	ND	ND	ND
Methanol							0.1	0.1
m,p-Xylenes#				ND	ND	ND	ND	ND
n-Butanol				ND	ND	ND	ND	ND
Octamethylcylcotetrasiloxane#				ND	ND	ND	ND	ND
o-Xylene#				ND	ND	ND	ND	ND
Toluene#				ND	ND	ND	ND	ND
Trimethylsilanol							0.05	0.05

ND: Not detected; <MDL (Minimum Detection Limit)
MI: Matrix Interference
Black cells indicate AQM failures during the Increment, during which no analysis was performed.

Table 3: Monthly average concentrations (mg/m³) of ANITA-2 target compounds (Increment 70)

Compound	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Increment Average
Methanol	0.37	0.39	0.50	0.51	0.39	0.36	0.42	0.42
Ethanol	3.92	3.44	2.93	2.78	2.81	3.12	3.52	3.22
2-Propanol	0.54	0.56	0.55	0.60	0.52	0.48	0.44	0.53
PFP	0.53	0.14	0.07	0.05	12.80	0.18	0.14	1.99
R134a	0.09	0.09	0.09	ND	ND	ND	0.11	0.09
DMCPS	0.03	ND	0.05	0.04	0.44	0.92	1.02	0.42
SF ₆	0.24	0.13	0.05	0.04	0.01	0.04	0.04	0.08
Ammonia	0.02	0.02	0.02	ND	0.02	0.02	ND	0.02
СО	1.83	1.57	1.47	1.72	1.79	1.47	1.68	1.65
Methane	178	127	76.5	62.7	54.1	60.9	60.7	88.6
CO ₂	2.08	1.84	1.97	2.09	2.06	2.19	2.32	2.08
Isobutane	ND	ND	ND	ND	ND	ND	0.43	0.43
N ₂ O	ND	ND	ND	ND	0.15	ND	0.18	0.17
CF4	0.13	0.11	0.09	0.09	0.11	0.14	0.13	0.11

ND: Not detected

PFP: perfluoropropane, octafluoropropane, Freon 218

R134a: R-134a, 1,1,1,2-tetrafluoroethane DMCPS: Decamethylcyclopentasiloxane

SpaceX-29 Ingress

An mGSC sample was collected upon ingress on SpX-29 on November 11, 2023. The hatch was opened at 11:48, and the sample was taken 5 minutes thereafter. Analytical results from the sample indicate a lower level of methane (14 mg/m³) than found on ISS (~160 mg/m³), which indicates low levels of mixing between the visiting vehicle and the full ISS volume. Levels of ethanol were also markedly lower. The vehicle also had levels of the coolant R-134A (0.42 mg/m³) higher than expected on ISS (~0.05 mg/m³). The T-value for this sample was 0.1, well below levels of concern for crew health.

Node 3 Contingency

On December 3, 2023, crew collected a contingency mGSC near T2 (15:55), after they reported a "paint" smell after the hatch opening for 86-P (15:13). The only interesting finding in this mGSC is the presence of ethyl acetate (0.42 mg/m³); this compound is occasionally detected after docking for visiting vehicles. However, its odor threshold is on the order of 15 mg/m³ and the odor is usually described as "sweet." ANITA-2 did not detect any changes in the ISS atmosphere during this period, either. As is often the case, the source of the odor remains unknown.

Axiom-3 Ingress

An ingress sample was collected in Axiom-3, a private astronaut mission using a SpaceX vehicle, on January 20, 2024, at 12:20 GMT. The hatch was opened at 12:13 GMT. Methane, ethanol, and CO₂ levels in the visiting vehicle were both markedly lower than expected in the ISS volume, consistent with a low extent of atmospheric mixing at the time the sample was collected. As with SpX-29, R-134a was detected in the Ax-3 atmosphere (0.18 mg/m³) at levels slightly higher than would be expected on ISS (~0.07 mg/m³). The T-value for this sample was 0.1, well below levels of concern for crew health.

NG-20 Ingress

An ingress sample was collected in NG-20 on February 1, 2024 at 16:54, approximately 7 minutes after hatch opening. Concentrations of ethanol, CO₂, and methane were all markedly lower than expected on ISS, indicating a low level of mixing with ISS air. **The T-value for this sample was 0.4, well below levels of concern for crew health.** The primary contributor to the T-value was trimethylsilanol (0.18). C-11 alkanes were also detected in this sample (7.1 mg/m³) but contributed very little to the T-value.

Crew-8 Ascent

A sample was taken in Crew-8 during ascent to ISS on March 4, 2024. The T-value of this sample is 0.1, indicative of excellent air quality.

SpaceX-30 Ingress

An ingress sample was collected in SpX-30 on March 23, 2024 at 13:16, two minutes after hatch opening. R-134a was detected at 1.5 mg/m³. Other analytes indicate a low level of mixing with ISS atmosphere prior to sampling. The T-value for this sample was 0.1, well below levels of concern for crew health.

WATER QUALITY

In total, six water samples were collected from the US Segment during Increment 70 and returned on SpX-29, -30, and Crew-7. Three of these were ambient and hot potable water samples collected from the US Potable Water Dispenser (PWD) and the Exploration Potable Water Dispenser (xPWD), which fall under the ISS Crew Health Care System (CHeCS). The remaining three samples were non-potable water, including one wastewater and one condensate samples as well as a sample collected from the PWD Auxiliary Port (ECLS). Summaries of select analytical results from the Increment 70 samples are provided in Tables 4A and 4B.

Table 4A. Analytical Summary of ISS Water Analyses for CHeCS Samples (Increment 70)

Return Mission	Sample Location	Sample Date	TOC (mg/L)	DMSD (mg/L)	Methyl Sulfone (mg/L)	Conductivity (μS/cm)	Total Iodine (mg/L)
SpX-29	xPWD Hot	11/7/2023	0.8	<1	0.07	2	< 0.05
SpX-29	PWD Ambient	11/27/2023	0.4	<1	0.11	<1	< 0.05
SpX-30	PWD Ambient	4/2/2024	0.7	<1	0.15	<1	0.05

Table 4B. Analytical Summary of ISS Water Analyses for ECLS Samples (Increment 70)

Return Mission	Sample Location	Sample Date	TOC (mg/L)	DMSD (mg/L)	Methyl Sulfone (mg/L)	Conductivity (µS/cm)	Total Iodine (mg/L)
Crew-7	Condensate	11/29/2023	20.8	1.4	< 0.02	118	NA
SpX-29	PWD Aux Port	12/1/2023	0.4	<1	0.07	<1	2.1
Crew-7	Wastewater	12/1/2023	4.5	1.1	0.02	90	NA

NA: not analyzed

Toxicological Evaluation of ISS Water Quality

Routine water quality monitoring is performed in-flight using the total organic carbon analyzer (TOCA). Results from these analyses provide a general indication of overall water quality. Typically, archive water

samples are also collected during each Increment and returned for comprehensive analysis in ground laboratories (Table 3A, 3B). Data from the ground analyses complement the in-flight data and provide a more complete understanding of water quality on the ISS.

Potable Water

Concentrations of all chemicals detected in the potable water samples met the requirements listed in SSP 41000, System Specification for the International Space Station and JSC 63414, Spacecraft Water Exposure Guidelines (SWEGs). Total organic carbon (TOC) concentrations from in-flight (PWD TOC and WPA TOC) and ground analyses (Archive TOC) performed between March 2023 and March 2024 are shown in Figure 4. The TOC concentrations in the five potable samples continued to be low and were well below both the specification for the US segment (<3 mg/L) and the 100-day SWEG (5 mg/L). Methyl sulfone was detected in all potable water samples at levels well below the SWEG of 1,500 mg/L. Silicon was also detected in all potable samples (0.2 – 1 mg/L).

Iodine is a biocide used on the US Segment. It is added to the water produced by the WPA but removed prior to crew consumption to avoid potential thyroid dysfunction. The total iodine level in two of the three potable samples collected from the PWD were below the reporting limit and the third was at the reporting limit (0.05 mg/L), indicating effective removal of iodine in water intended for consumption. For additional information regarding microbial analyses, see the Increment 70 post-flight report generated by the JSC Environmental Microbiology Laboratory.

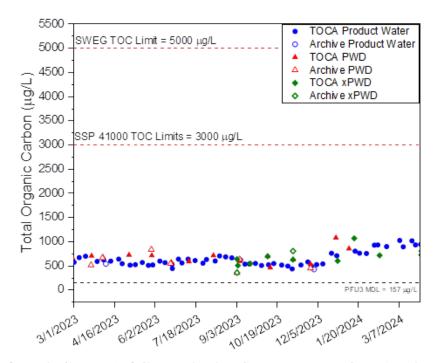


Figure 4. Total Organic Carbon (TOC) trending in US Potable Water from Archive Water Samples and On-Orbit TOCA (PFU3) for March 2023 to March 2024

Condensate (November 29, 2023)

The condensate sample collected on November 29, 2023, contained TOC levels of 20.8 mg/L, well below the historical average of 147 mg/L. Organic compounds detected at or above 1 mg/L are listed in Table 5. Zinc was the only metal detected above 0.1 mg/L (1.83 mg/L). The concentration of ammonium was 15.1 mg/L.

Table 5: Organic Compounds Detected >1 mg/L in US Condensate Sampled on November 29, 2023

Compound	Condensate (mg/L) November 29, 2023	Historical average (mg/L)
Ethanol	27	49
Methanol	7.9	4.9
Acetone	5.9	2.0
2-propanol (isopropanol)	1.6	1.4
Dimethylsilanediol (DMSD)	1.4	34.3

WPA Product Water (PWD Aux Port)

The sample from the PWD Aux Port on December 1, 2023, contained TOC levels of 0.42 mg/L, below the historical average. Methyl sulfone was detected at levels well below the SWEG of 1500 mg/L. The total iodine level of this sample was 2.1 mg/L, but otherwise the chemical results from this sample were consistent with potable water.

Wastewater (December 1, 2023)

The wastewater sample collected on December 1, 2023, contained TOC levels of 4.5 mg/L, below the historical average of 40 mg/L. The only organic compound detected above 1 mg/L was DMSD (1.1 mg/L). Nickel was present at 0.1 mg/L, and zinc was detected at 1.4 mg/L. No other metals were detected at levels above 0.1 mg/L. Ammonium was present at a concentration of 11.4 mg/L.

Given the results from wastewater and condensate, the cleanliness of potable water dispensed from the PWD and xPWD provide strong evidence that the Water Recovery System is performing well on ISS. Expanded summary tables containing organic carbon recoveries and results for all analytes present at concentrations above reporting limits are included as attachments to this report.

E. Spencer Williams, PhD DABT NASA Toxicologist

Valerie E. Ryder, PhD DABT NASA Toxicologist

Enclosures

- Table S-1: Analytical concentrations of compounds quantified in mGSCs collected in and returned on SpaceX-29, SpaceX-30, Crew-8, and Axiom-3
- Table S-2A: T-values corresponding to concentrations for routine mGSC samples returned on SpaceX-29, SpaceX-30, Crew-8, and Axiom-3
- Table S-2B: T-values corresponding to concentrations for SpaceX-29, Axiom-3, NG-20, and SpaceX-30 ingress air samples, based on 7-day and 180-day SMACs
- Table S-3A: Analytical concentrations of compounds quantified in hot and ambient water samples returned on SpaceX-29 and SpaceX-30
- Table S-3B: Analytical concentrations of compounds quantified in US condensate, wastewater, and PWD Aux Port water samples returned on SpaceX-29 and Crew-7

TABLE S-1: ANALYTICAL RESULTS FOR SPACEX-29, AXIOM-3, SPACEX-30, AND CREW-8

Increment									70							
Mission			SpX-29			SpX-30							SpX-29	Axiom-3	Sn	X-30
		Columbus	US Lab					1	1	1		Crew-8	-			1
Sample Location	Lab Nominal air	Module Nominal air	Center Nominal air	JPM Nominal air	Node 3, T2 Contingency air	Lab	Columbus Module	Lab	Service Module	Lab	JPM	Dragon Module	Dragon Module Ingress air sample,	Dragon Module Ingress Air	NG-20	Dragon
Sample Description	sample, S/N	sample, S/N	sample, S/N	sample, S/N	sample,	Nominal air	Nominal air	Nominal air	Nominal air	Nominal air	Nominal air	Crew 8 Ascent,	SpX-	Sample, Ax-3,	Ingress air sample	, Ingress air sample,
Sample Description	2074	2072	2106	2108	S/N 2104	sample, S/N 2101	sample, S/N 2105	sample, S/N 2067	sample, S/N 2010	sample, S/N 2047	sample, S/N 2044	S/N 2076	29 S/N 2107	S/N 2087	S/N 2109	SpX-30, S/N 2034
Sample Date	10/2/2023	10/2/2023	11/13/2023	11/13/2023	12/3/2023	12/28/2023	12/28/2023	2/13/2024	2/13/2024	3/26/2024	3/26/2024	3/4/2024	11/11/2023	1/20/2024	2/1/2024	3/23/2024
Sample Time	12:49	12:53	19:06	19:08	15:00	13:34	13:37	13:45	13:48	14:43	14:45	10:36	11:53	12:20	16:55	13:16
Analysis/Sample ID	AQ240112	AQ240113	AQ240115	AQ240116	AQ240117	AQ240431	AQ240432	AQ240437	AQ240438	AQ240443	AQ240444	AQ250059	AQ240114	AQ240180	AQ240436	AQ240441
Volatiles Targets GCMS (TO-15 mod)	mg/m3															
1,1,1,2-Tetrafluoroethane	0.052	0.064	< 0.19	< 0.21	0.074	0.080	0.072	0.078	0.073	0.092	0.086	0.066	0.42	0.18	< 0.046	1.5
1-Butanol	< 0.0091	0.027	< 0.081	< 0.089	< 0.018	< 0.020	< 0.026	< 0.020	< 0.020	< 0.021	< 0.022	< 0.019	< 0.018	< 0.018	0.040	< 0.024
1-Propanol	0.011	0.013	< 0.066	< 0.073	0.018	0.023	0.031	0.021	0.020	0.020	0.033	< 0.016	< 0.015	< 0.015	0.022	< 0.019
2-Butanone (Methyl ethyl ketone)	< 0.0088	< 0.0097	< 0.078	< 0.086	< 0.018	< 0.019	< 0.026	< 0.019	< 0.019	< 0.020	< 0.021	< 0.018	< 0.018	< 0.018	0.022	< 0.023
2-Methyl-1-propene	< 0.0069	< 0.0076	< 0.061	< 0.068	< 0.014	< 0.015	< 0.020	< 0.015	< 0.015	< 0.016	< 0.017	< 0.014	< 0.014	< 0.014	0.055	< 0.018
2-Propanol (Isopropanol)	See GC-FID	See GC-FID	0.51	0.54	See GC-FID	See GC-FID	0.74	0.50	0.52	0.42	0.53	0.13	See GC-FID	0.57	See GC-FID	See GC-FID
Acetaldehyde	0.078	0.14	0.12	0.16	0.10	0.15	0.098	0.13	0.12	0.13	0.12	0.020	0.050	0.023	0.18	0.072
Acetone	0.20 <0.0050	0.24 0.0074	0.32 <0.045	0.32 <0.049	0.19 <0.010	0.28 <0.011	0.22 <0.014	0.24 <0.011	0.30 <0.011	0.22 <0.011	0.25 <0.012	0.15 <0.011	0.11 <0.010	0.094	0.25 <0.011	0.14 <0.013
Acetonitrile Acrylonitrile	< 0.0050	<0.0074	<0.045	<0.049	<0.010	<0.011	< 0.014	<0.011	<0.011	<0.011	0.012	<0.011	< 0.010	< 0.013	< 0.011	< 0.013
Carbon disulfide	0.0065	0.0072	<0.058	<0.064	<0.013	<0.014	<0.019	<0.014	<0.014	<0.015	<0.016	<0.014	< 0.013	<0.013	0.014	<0.017
Carbonyl sulfide (Carbon oxide sulfide)	< 0.010	<0.002	<0.066	< 0.073	< 0.019	< 0.020	<0.027	< 0.020	<0.020	< 0.021	<0.022	<0.020	< 0.019	< 0.019	0.043	< 0.024
Ethanol	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	0.079	See GC-FID	0.20	See GC-FID	See GC-FID
Ethyl acetate	< 0.011	<0.012	<0.098	<0.11	0.042	< 0.024	<0.032	< 0.024	<0.024	<0.025	<0.026	<0.023	< 0.022	<0.022	< 0.024	< 0.029
Hexamethylcyclotrisiloxane (HMCTS)	< 0.091	0.036	< 0.81	< 0.89	0.056	0.12	< 0.26	<0.20	< 0.20	< 0.21	<0.22	< 0.19	< 0.18	< 0.18	0.11	< 0.24
Isobutane	0.036	0.037	< 0.063	< 0.070	0.043	0.048	0.045	0.042	0.039	0.049	0.048	0.037	0.027	0.19	0.77	0.52
Isoprene (2-Methyl-1,3-butadiene)	< 0.0084	0.0097	< 0.075	< 0.082	< 0.017	< 0.018	< 0.024	< 0.018	0.021	< 0.019	< 0.020	< 0.018	< 0.017	< 0.017	< 0.018	< 0.022
Methanol	See GC-FID	See GC-FID	0.85	0.82	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	0.15	See GC-FID	0.15	0.23	0.28
Methylene chloride (Dichloromethane)	< 0.010	0.012	< 0.089	< 0.098	< 0.020	< 0.022	< 0.029	< 0.022	< 0.022	< 0.023	< 0.024	< 0.021	< 0.020	< 0.020	0.061	< 0.026
Pentane	< 0.0089	< 0.0098	< 0.079	< 0.087	< 0.018	0.16	0.14	0.097	0.10	< 0.020	< 0.021	0.024	< 0.018	< 0.018	0.19	0.32
Perfluoro(2-methylpentane)	< 0.041	0.10	< 0.36	< 0.40	< 0.082	< 0.090	< 0.12	< 0.090	< 0.090	< 0.094	< 0.098	< 0.086	< 0.082	< 0.082	< 0.090	< 0.11
Propanal (Propionaldehyde)	< 0.0071	< 0.0078	< 0.063	< 0.070	< 0.014	0.061	0.050	0.057	0.068	0.060	0.067	< 0.015	< 0.014	< 0.014	0.059	0.056
Propane	< 0.0054	< 0.0059	< 0.048	< 0.053	< 0.011	< 0.012	< 0.016	< 0.012	< 0.012	0.040	< 0.013	< 0.011	0.012	0.017	< 0.012	< 0.014
Styrene (Ethenylbenzene)	< 0.013	< 0.014	< 0.12	< 0.13	< 0.026	< 0.029	< 0.038	< 0.029	< 0.029	< 0.030	< 0.031	< 0.027	< 0.026	< 0.026	0.051	< 0.034
Toluene	< 0.011	< 0.012	< 0.098	< 0.11	< 0.022	< 0.024	< 0.032	< 0.024	<0.024	< 0.025	< 0.026	<0.023	< 0.022	<0.022	0.30	<0.029
Trimethylsilanol	0.015	0.018	< 0.098	< 0.11	0.023	0.025	< 0.032	< 0.024	< 0.024	< 0.025	0.054	< 0.023	0.023	< 0.022	0.70	< 0.029
Volatiles Non-Targets GCMS (estimated conc.) 1.1-Difluoroethane	not found	not found	not found	not found	not found	not found	not found	not found	not found	not found	not found	not found	not found	not found	< 0.016	0.12
1,1-Difluoroethane C11-Alkanes	not found not found	not found	not found not found	not found not found	not found not found	not found not found	not found not found	not found not found	not found 0.11	not found	not found	not found not found	not found not found	not found not found	<0.016 7.1	0.12
Volatiles Targets GCFID	not tound	not tound	not tound	not found	not found	not found	not found	not found	0.11	\U.U38	\U.U38	not found	not found	not found	/.1	0.18
2-Propanol (Isopropanol)	0.61	0.56	NR	NR	0.55	1.1	NR	NR	NR	NR	NR	NR	0.69	NR	0.94	1.8
2-Propanoi (Isopropanoi) Ethanol	3.6	3.8	1.9	2.1	2.8	4.5	3.9	3.6	3.4	NR 4.6	3.9	NR NR	0.69	NR NR	1.5	1.8
Methanol	0.37	0.35	NR	NR	0.41	0.55	0.49	0.32	0.30	0.51	0.52	NR NR	0.71	NR NR	NR	NR
Octafluoropropane (Perfluoropropane)	<1.5	<1.6	<6.9	<7.5	<1.5	<1.7	<2.2	<1.7	<1.7	<1.8	<1.8	<1.6	<1.5	7.0	<1.7	<2.0
Volatiles Targets TGA	-1.0	-1.0	-0.7	-713		-4.7				-1.0	-1.0	-1.0	-1.5	7.0		
Carbon dioxide	4.000	4.900	4.400	4.300	4.500	5.000	4.100	4.000	6.400	5,600	6.000	1.900	5.700	1.900	2,700	1.300
Carbon monoxide	1.3	1.4	<2.0	<2.3	< 0.46	1.6	1.8	1.2	1.2	1.4	1.4	1.8	1.4	5.5	1.1	1.8
Hydrogen	7.2	7.6	4.9	4.7	6.4	6.3	6.4	7.0	7.0	7.0	6.8	2.2	1.2	18	3,0	1.8
Methane	160	160	59	57	65	54	55	58	58	61	59	<2.7	14	32	21	10
					•						•					
	GMT 275	GMT 275	GMT 317	GMT 317	GMT 337	GMT 362	GMT362	GMT 044	GMT 044	GMT 086	GMT 086	GMT 064	GMT 315	GMT 020	GMT 032	GMT 083

Comments: NR= Not Reported

Not Found =No unknown peaks above the threshold limit

AQ240115: Low Pressure: 3.4 psia

AQ240116: Low Pressure: 3.1 psia

AQ240117: Collected after 86P docking

Project Specific SMACs: 1,1-Difluoroethane: 7 and 180d-(2701mg/m³) C11-Alkanes: 7d-(383mg/m3) and 180d-(19mg/m3)

TABLE S-2A: T-VALUES FOR SPACEX-29, AXIOM-3, SPACEX-30, AND CREW-8

Increment						70					
Mission			SpX-29						SpX-30		
1711551011			Sp.1 25		Т.	-Value (180-da	v)		ориго		
		Columbus	US Lab	1		,	Columbus	1	Service		
Sample Location	Lab	Module	Center	JPM	Node 3, T2	Lab	Module	Lab	Module	Lab	JPM
	Nominal air	Nominal air	Nominal air	Nominal air	Contingency	Nominal air	Nominal air	Nominal air	Nominal air	Nominal air	Nominal air
Sample Description		sample, S/N	sample, S/N	sample, S/N	air sample,	sample, S/N	sample, S/N	sample, S/N	sample, S/N	sample, S/N	sample, S/N
Sample Description	2074	2072	2106	2108	S/N 2104	2101	2105	2067	2010	2047	2044
Sample Date		10/2/2023	11/13/2023	11/13/2023	12/3/2023	12/28/2023	12/28/2023	2/13/2024	2/13/2024	3/26/2024	3/26/2024
Sample Time	12:49	12:53	19:06	19:08	15:00	13:34	13:37	13:45	13:48	14:43	14:45
Analysis/Sample ID	-	AQ240113	AQ240115	AO240116	AQ240117	AO240431	AO240432	AO240437	AO240438	AQ240443	AQ240444
Volatiles Targets GCMS (TO-15 mod)	AQ240112	AQ240113	AQ240113	AQ240110	AQ240117	AQ240431	AQ240432	AQ240437	AQ240436	AQ240443	AQ240444
1.1.1.2-Tetrafluoroethane	0.000	0.000	ND	ND	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1,1,1,2-1 etramuoroetnane 1-Butanol	0.000 ND	0.000	ND ND	ND ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND
1-Propanol	0.000	0.001	ND	ND ND	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2-Butanone (Methyl ethyl ketone)	0.000 ND	0.000 ND	ND ND	ND ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND	0.000 ND
2-Butanone (Methyl ethyl ketone) 2-Methyl-1-propene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Propanol (Isopropanol)	See GC-FID	See GC-FID	0.003	0.004	See GC-FID	See GC-FID	0.005	0.003	0.003	0.003	0.004
Acetaldehyde	0.019	0.036	0.003	0.004	0.026	0.039	0.005	0.003	0.003	0.003	0.004
Acetone	0.019	0.036	0.030	0.039	0.020	0.039	0.023	0.005	0.029	0.032	0.029
Acetonic	ND	0.003	ND	ND	0.004 ND	0.003 ND	ND	0.003 ND	ND	0.004 ND	0.003 ND
Accelonatrile	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	0.234
Carbon disulfide	0.009	0.011	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon district Carbon vide (Carbon oxide sulfide)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	See GC-FID		See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID
Ethyl acetate	ND	ND	ND	ND	0.000	ND	ND	ND	ND	ND	ND
Hexamethylcyclotrisiloxane (HMCTS)	ND	0.004	ND	ND	0.006	0.013	ND	ND	ND	ND	ND
Isobutane	0.000	0.000	ND	ND	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Isoprene (2-Methyl-1,3-butadiene)	ND	0.003	ND	ND	ND	ND	ND	ND	0.007	ND	ND
Methanol	See GC-FID		0.033	0.031	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID	See GC-FID
Methylene chloride (Dichloromethane)	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentane	ND	ND	ND	ND	ND	0.018	0.016	0.011	0.011	ND	ND
Perfluoro(2-methylpentane)	ND	0.000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Propanal (Propionaldehyde)	ND	ND	ND	ND	ND	0.005	0.004	0.005	0.006	0.005	0.006
Styrene (Ethenylbenzene)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trimethylsilanol	0.004	0.004	ND	ND	0.006	0.006	ND	ND	ND	ND	0.013
Volatiles Non-Targets GCMS (estimated conc.)											
1,1-Difluoroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C11-Alkanes	ND	ND	ND	ND	ND	ND	ND	ND	0.006	ND	ND
Tetradecafluorohexane	ND	0.000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatiles Targets GCFID				•					•	•	
2-Propanol (Isopropanol)	0.004	0.004	NR	NR	0.004	0.007	NR	NR	NR	NR	NR
Ethanol	0.002	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002
Methanol	0.014	0.014	NR	NR	0.016	0.021	0.019	0.012	0.012	0.020	0.02
Octafluoropropane (Perfluoropropane)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatiles Targets TGA				•		•		•	•	-	
Carbon monoxide	0.077	0.084	ND	ND	ND	0.097	0.104	0.072	0.073	0.081	0.084
Total T-Value	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.4
10tal 1-value	V.1	0.2	V.1	0.1	V.1	U.2	0.4	V.1	U.4	0.1	V.4

Comments: ND= Value is less than the laboratory reporting limit.

NR= Not Reported

AQ240115: Low Pressure: 3.4 psia

AQ240116: Low Pressure: 3.1 psia

AQ240117: Collected after 86P docking

Project Specific SMACS: 1,1-Difluoroethane: 7 and 180d-(2701mg/m3)

C11-Alkanes: 7d-(383mg/m3) and 180d-(19mg/m3)

TABLE S-2B: T-VALUES FOR SPACEX-29, AXIOM-3, AND SPACEX-30

Increment				7	0			
Mission	Sp	K-29	Axio	om-3		SpX	K-30	
	T-Value (7-	T-Value (180-	T-Value (7-	T-Value	T-Value (7-	T-Value (180	T-Value (7-	T-Value (180
	Day)	day)	day)	(180-day)	Day)	day)	Day)	day)
Con L. London	Dragon	Dragon	Dragon	Dragon	NG-20	NG-20	D	D
Sample Location	Module	Module	Module	Module	NG-20	NG-20	Dragon	Dragon
	Ingress air	Ingress air	Ingress Air	Ingress Air	Ingress air	Ingress air	Ingress air	Ingress air
Sample Description	sample, SpX-	sample, SpX-	Sample, Ax-	Sample, Ax-	sample, S/N	sample, S/N	sample, SpX-	sample, SpX-
	29 S/N 2107	29 S/N 2107	3, S/N 2087	3, S/N 2087	2109	2109	30, S/N 2034	30, S/N 2034
Sample Date	11/11/2023	11/11/2023	1/20/2024	1/20/2024	2/1/2024	2/1/2024	3/23/2024	3/23/2024
Sample Time	11:53	11:53	12:20	12:20	16:55	16:55	13:16	13:16
Analysis/Sample ID	AQ240114	AQ240114	AQ240180	AQ240180	AQ240436	AQ240436	AQ240441	AQ240441
Volatiles Targets GCMS (TO-15 mod)								
1,1,1,2-Tetrafluoroethane	0.000	0.000	0.000	0.000	ND	ND	0.000	0.000
1-Butanol	ND	ND	ND	ND	0.001	0.001	ND	ND
1-Propanol	ND	ND	ND	ND	0.000	0.000	ND	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	ND	0.001	0.001	ND	ND
2-Methyl-1-propene	ND	ND	ND	ND	0.000	0.000	ND	ND
2-Propanol (Isopropanol)	See GC-FID	See GC-FID	0.004	0.004	See GC-FID	See GC-FID	See GC-FID	See GC-FID
Acetaldehyde	0.013	0.013	0.006	0.006	0.046	0.046	0.018	0.018
Acetone	0.002	0.002	0.002	0.002	0.005	0.005	0.003	0.003
Acetonitrile	ND	ND	0.000	0.001	ND	ND	ND	ND
Carbon disulfide	ND	ND	ND	ND	0.041	0.041	ND	ND
Carbonyl sulfide (Carbon oxide sulfide)	ND	ND	ND	ND	0.000	0.001	ND	ND
Ethanol	See GC-FID	See GC-FID	0.000	0.000		See GC-FID	See GC-FID	See GC-FID
Hexamethylcyclotrisiloxane (HMCTS)	ND	ND	ND	ND	0.001	0.013	ND	ND
Isobutane	0.000	0.000	0.001	0.001	0.004	0.004	0.003	0.003
Methanol	See GC-FID	See GC-FID	0.006	0.006	0.009	0.009	0.011	0.011
Methylene chloride (Dichloromethane)	ND	ND	ND	ND	0.001	0.006	ND	ND
Pentane	ND	ND	ND	ND	0.001	0.021	0.002	0.036
Propanal (Propionaldehyde)	ND	ND	ND	ND	0.005	0.005	0.005	0.005
Styrene (Ethenylbenzene)	ND	ND	ND	ND	0.007	0.169	ND	ND
Toluene	ND	ND	ND	ND	0.020	0.020	ND	ND
Trimethylsilanol	0.006	0.006	ND	ND	0.176	0.176	ND	ND
Volatiles Non-Targets GCMS (estimated conc.)								
1,1-Difluoroethane	ND	ND	ND	ND	ND	ND	0.000	0.000
C11-Alkanes	ND	ND	ND	ND	0.019	0.373	0.000	0.009
Volatiles Targets GCFID								
2-Propanol (Isopropanol)	0.005	0.005	NR	NR	0.006	0.006	0.012	0.012
Ethanol	0.000	0.000	NR	NR	0.001	0.001	0.001	0.001
Methanol	0.010	0.010	NR	NR	NR	NR	NR	NR
Octafluoropropane (Perfluoropropane)	ND	ND	0.000	0.000	ND	ND	ND	ND
Volatiles Targets TGA								
Carbon monoxide	0.022	0.082	0.088	0.325	0.018	0.067	0.028	0.104
Total T-Value	0.1	0.1	0.1	0.3	0.4	1.0	0.1	0.2
	•							

Comments: ND= Value is less than the laboratory reporting limit.

NR= Not Reported

AQ240115: Low Pressure: 3.4 psia

AQ240116: Low Pressure: 3.1 psia

AQ240117: Collected after 86P docking

Project Specific SMACs: 1,1-Difluoroethane: 7 and 180d-(2701mg/m3)

C11-Alkanes: 7d-(383mg/m3) and 180d-(19mg/m3)

TABLE S-3A: ANALYTICAL CONCENTRATIONS OF COMPOUNDS QUANTIFIED IN HOT AND AMBIENT POTABLE WATER RETURNED ON SPACEX-29 AND SPACEX-30

Increment						70	
Mission					Sp	K-29	SpX-30
				<u>'</u>	WPA xPWD	WPA PWD	WPA PWD
Sample Location					Hot	Ambient	Ambient
			Potable Water		пот	Ambient	Ambient
6 15 14			Maximum	Maximum	D 4 11 377 4	D 4 11 W/4	D 4 11 W 4
Sample Description		Test	Contaminant	Contaminant	Potable Water	Potable Water	Potable Water
Sample Date		Conducted	Level	Level	11/7/2023	11/27/2023	4/2/2024
Analysis/Sample ID	Units	by	(MCL)	Source	WQ240009	WQ240010	WQ240196
Physical Characteristics							
Conductivity	μS/cm	U.S.			2	< 1	< 1
pH	pH units	U.S.	4.5-8.5	41000	5.35	5.52	5.83
Iodine LCV			<u> </u>				
T 12	/7	11.0	10.40	41000 (residual iodine in	.0.05	.0.05	0.05
Iodine	mg/L	U.S.	1.0-4.0	product water)	< 0.05	< 0.05	0.05
				41000 (tl I max in product water/tl I at pt of			
Total I	mg/L	U.S.	6/0.2	consumption)	< 0.05	< 0.05	0.05
Minerals ICPMS			0.0.=	1 /		0.00	0.00
Calcium	mg/L	U.S.	30	41000	0.06	0.01	0.02
Trace Metals ICPMS	- 0						
Boron	μg/L	U.S.			4	< 1	10
Chromium	μg/L	U.S.	230	41000	5	< 1	< 1
Copper	μg/L	U.S.	1,000	41000	5	< 1	< 1
Iron	μg/L	U.S.	300	41000	61	< 5	< 5
Manganese	μg/L	U.S.	300	SWEG&41000	40	< 1	< 1
Nickel	μg/L	U.S.	300	SWEG&41000	17	2	7
Zinc	μg/L	U.S.	2,000	SWEG&41000	1	< 1	< 1
Silicon ICPMS							
Silicon	μg/L	U.S.			239	424	1,050
Total Organic Carbon-Sievers							
Total Inorganic Carbon (TIC)	mg/L	U.S.			0.654	0.895	0.835
Total Organic Carbon (TOC)	mg/L	U.S.	5 / 3	SWEG / 41000	0.799	0.446	0.721
Semi-volatile Organics-Targets							
bis-(2-Ethylhexyl)adipate	μg/L	U.S.	400	EPA	116	75	< 20
Methyl sulfone	μg/L	U.S.	1,500,000	interim SWEG (06-2017)	69	111	149
Base and Neutral Extractables-EPA 625 List GCMS				T			
bis-(2-Ethylhexyl)phthalate	μg/L	U.S.	20,000/6	SWEG/EPA	1,690	< 40	< 20
Silanols LCRI (Semi-Quantitative-NIST traceable sta	ndard not	available)					
Monomethylsilanetriol (MMST)	μg/L	U.S.	110,000	SWEG	< 1000	1,500	3,300
Aldehydes GCMS				•			•
Formaldehyde (Methanal)	μg/L	U.S.	12,000	SWEG	34	< 10	< 10
Organic Carbon Recovery	percent	U.S.			173	61.1	63.7
Unaccounted Organic Carbon	mg/L	U.S.			0.00	0.170	0.260

Comments: NR= Not Reported NA=Not Analyzed

Data Qualifiers: WQ240009&10-Data Qualifier-Nitrobenzene and Freon 12 (Dichlorodifluoromethane) - Possible low bias in volatiles analysis

 $\begin{tabular}{ll} TABLE S-3B: ANALYTICAL CONCENTRATIONS OF COMPOUNDS QUANTIFIED IN WASTEWATER AND US CONDENSATE WATER SAMPLES RETURNED ON SPACEX-29 AND CREW-7 \\ \end{tabular}$

Increment						70	
Mission					SpX-29		ew-7
Wission					SpA-23	WPA	WPA
C					WPA PWD		
Sample Location					Aux Port	Wastewater ORU	Condensate
			Potable Water				Sample Port
Sample Description			Maximum	Maximum	WPA Product	WPA	US Condensate
• •		Test	Contaminant	Contaminant	Water	Wastewater	
Sample Date Analysis/Sample ID	*****	Conducted	Level	Level	12/1/2023	12/1/2023	11/29/2023
į .	Units	by	(MCL)	Source	WQ240011	WQ240126	WQ240127
Physical Characteristics							
Conductivity	μS/cm	U.S.	4505	41000	< 1	90	118
pH	pH units	U.S.	4.5-8.5	41000	5.55	7.45	7.51
Iodine ICPMS		** **			37.1	0.005	0.025
Total I	mg/L	U.S.			NA	0.085	0.027
Iodine LCV		11.0		1	0.240	37.	37.
Iodide	mg/L	U.S.		41000 / 11 11 5 1	0.240	NA	NA
Iodine	mg/L	U.S.	1.0-4.0	41000 (residual iodine in product water)	1.83	NA	NA
	g. 2	0.0.	1.0 1.0	41000 (tl I max in product	1.00		
				water/tl I at pt of			
Total I	mg/L	U.S.	6/0.2	consumption)	2.07	NA	NA
Cations IC							
Ammonium (as N)	mg/L	U.S.	1	SWEG&41000	< 0.25	11.4	15.1
Minerals ICPMS							
Calcium	mg/L	U.S.	30	41000	0.01	0.03	0.02
Magnesium	mg/L	U.S.	50	41000	< 0.01	0.01	< 0.01
Phosphate (as P)	mg/L	U.S.			< 0.01	0.32	< 0.01
Potassium	mg/L	U.S.	340	41000	< 0.01	0.19	< 0.01
Sodium	mg/L	U.S.			< 0.01	0.20	< 0.01
Trace Metals ICPMS							
Aluminum	μg/L	U.S.			< 1	4	3
Boron	μg/L	U.S.			< 1	6	6
Chromium	μg/L	U.S.	230	41000	< 1	45	< 1
Manganese	μg/L	U.S.	300	SWEG&41000	< 1	< 1	1
Nickel	μg/L	U.S.	300	SWEG&41000	35	118	99
Silver	μg/L	U.S.	400	SWEG&41000	< 1	2	2
Zinc	μg/L	U.S.	2,000	SWEG&41000	< 1	1,440	1,830
Silicon ICPMS	/T	TI C		1	619	510	(50
Silicon	μg/L	U.S.			619	310	659
Total Organic Carbon-Sievers		***			0.600	11.0	12.0
Total Inorganic Carbon (TIC) Total Organic Carbon (TOC)	mg/L mg/L	U.S. U.S.	5/3	SWEG / 41000	0.689	11.8 4.51	13.9 20.8
Volatile Organics-Targets	mg/L	U.S.	3/3	SWEG/41000	0.420	4.31	20.6
Semi-volatile Organics-Targets							-
Methyl sulfone	μg/L	U.S.	1,500,000	interim SWEG (06-2017)	76	20	< 20
Base and Neutral Extractables-EPA 625 List GCMS		U.S.	1,300,000	interim SWEG (00-2017)	70	20	× 20
Alcohols & Acetone GCMS							
2-Propanol (Isopropanol)	μg/L	U.S.			< 400	< 400	1.610
Acetone	μg/L μg/L	U.S.	15,000	SWEG	See Volatiles	See Volatiles	5,930
Ethanol	μg/L μg/L	U.S.	13,000	SWEG	< 400	< 400	27,200
Methanol	μg/L μg/L	U.S.	40,000	SWEG	< 400	< 400	7,880
Silanols LCRI (Semi-Quantitative-NIST traceable st			70,000	51120	100	\ 100	7,000
Dimethylsilanediol (DMSD)	μg/L	U.S.	35,000	SWEG	< 1000	1,100	1,400
Monomethylsilanetriol (MMST)	μg/L	U.S.	110,000	SWEG	2,500	< 1000	< 1000
Aldehydes GCMS	L-9		,		-,		
Formaldehyde (Methanal)	μg/L	U.S.	12,000	SWEG	< 10	< 10	24
Organic Carbon Recovery	percent	U.S.	12,000	5.120	80.5	6.47	107
Unaccounted Organic Carbon	mg/L	U.S.			0.080	4.22	0.00

Comments: NR= Not Reported NA=Not Analyzed WQ240011 is noted to have a slight leak in the bag.

Data Qualifiers: WQ240011-Data Qualifier-Nitrobenzene and Freon 12 (Dichlorodifluoromethane) - Possible low bias in volatiles analysis

WQ240126-Matrix Interference: Possible low bias of all B/N analytes