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— Mission Overview

Build the first lunar railway, to provide reliable, autonomous, efficient payload transport on the Moon.

Deploy 100-1000s of unpowered, individually-controllable, meter-scale levitating magnet robots
over a flexible track to perform the repetitive transportation tasks between a lunar base, ISRU mining /

refining sites, lunar landers, and other outposts.

Challenge — Provide autonomous, reliable payload transport across the inhospitable lunar environment to
facilitate ISRU and long-term base operations. Existing concepts require significant site preparation and
substantial infrastructure, or consume operational life of sophisticated robots.

— Robotic Lunar Surface Operations 2 (RLS0O2)

Jet Propulsion Laboratory
California Institute of Technology

@ SRI @ rerrine

The Robotic Lunar Surface Operations 2 (RLS02) [1] mission concept
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— Human-tended base at the lunar south pole, near the Shackleton Crater
— ISRU of water ice deposits used to support base operations and refuel
spacecraft (multiple visits planned per year)

3 site layouts are explored (see figure to right), including establishing a
complete lunar base within Shackleton Crater near resource-rich regolith, or

establishing the lunar base on the Shackleton Crater rim and transporting
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over a 3-layer flexible film track:

— Thin-film solar panel generates power

— Graphite layer enables robots to passively float over
tracks using diamagnetic levitation

— Flex-circuit layer generates electromagnetic fields to
controllably propel robots along tracks

to avoid major on-site construction.

Innovation — FLOAT consists of unpowered magnet robots that levitate

Robots have no moving parts and support 30+ kg/m? payloads on the
Moon, and tracks unroll directly onto lunar regolith (with limited preparation)

Builds on the Diamagnetic Micro-Manipulator system invented at SRI International.
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Graphite Layer

(for Diamagnetic Levitation)
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Option 1 Bucket Excavator

Option 2 Pneumatic Beneficiator

beneficiated regolith or refined water ice from more remote mining sites.

Various resource extraction robots are proposed for each mission option:

Option 3 Mobile Volatile Extractor

[1] Austin, A., et al. “Robotic Lunar Surface Operations 27, Acta Astronautica, vol. 176, 2020
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Base / mining in 236,000
Shackleton crater (raw regolith)

Base on Shackleton rim 80,000
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Concept of Design + Deployment
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@ Prepare Lunar Terrain using ~ =

existing construction robots on
the Moon, leveraging commercial
vehicle development.
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@ FLOAT Robots consist of magnet arrays linked by flexures, and support

Regolith Containers that passively align and secure to magnet arrays
while maintaining robot compliance. Magnet + film construction is
lightweight, low-cost, and uses flight-qualified materials.

FLOAT Track Segments are composed of self-contained meter-scale
panels, connected by flexible linkages to minimize thermal expansion
effects. Magnetic sensing + feedback used to correct for in-plane
misalignment of track segments / robots. FLOAT Robot

Shielded /L

— Environmental Considerations

Goal: study / mitigate challenges to operating FLOAT in a lunar env.
(on regolith, at vacuum / cold, with radiation / electrostatic charging)

Approach:
— Define the expected lunar south pole environment in / around
permanently shadowed craters and identify relevant hazards
— Test sub-scale FLOAT prototypes to characterize performance
in relevant environments and identify / mitigate failure modes

Lunar Environment Hazards Definition: (based on NASA DSNE)
— Temperatures — coldest PSR at 18 K and <-85 deg Lat. at 61 K

— Robot Control

Goal: develop reliable closed-loop control of robot state (position +
velocity) via low-power sensing hardware integrated in the track

Approach:
— 3 Sensor Strategies: Back-EMF, Hall-Effect, Magneto-Inductive
— Use sensor arrays to constrain robot’s 3D position
— Minimize (unpowered) hardware on robots
— Prototype / calibrate sensors with open-loop robot control
— Implement closed-loop control with 1+ sensor types

mean (41 K, 1-sigma) to 182 K (224 K)
Radiation — Total lonizing Dose (TID), Displacement Damage
Dose (DDD), and Single Event Effects (SEE) quantified
— Controller boxes to be buried under 10+ cm regolith
— In-track sensors must be radiation tolerant + redundant
Micrometeroids + Orbital Debris (MMOD) — >1 particle/m?/ yr
able to penetrate graphite, need circuit redundancy in tracks
Surface Charging — 0 to -50V (sun), -100 to -1000V (shadows)
— Need electrical bleed path between load / track (graphite?)
— Currents + dust transport at sunlit-shadow terminator

Environmental Testing: developed 3 testbeds for robot mobility
experiments; actively testing in a thermal-vacuum chamber
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in the track traces, induced
by magnet motion

Back-
EMF

Hall Measure magnetic field
Effect  strength over sensor array

Measure electromagnetic

GEETEE induction through encoder

Robot Track
PCB

Voltage prop. to robot
position, speed, size, and N/A

mag. strength over traces Traces
Signal prop. to robot

osition and local ma N/A SMT
4 g Chips

strength over sensors

Signal prop. to encoder

" Flex-PCB SMT
shape and position over

Back-EMF Trace =

Hall-Effect Sensor:

HE Sensor Board

Inductive » Encoder Chips
pOSItloned over sensor array Sensors
Robot — | MI Linear Encoder
Graphite
Flex Track =m0 e/ 0/ == 00— 00— == == =—=— =——
G10 I il [ E— E—

M| Sensor Board

— In-chamber instrumentation + cameras to measure operating
power, hardware temp., and robot levitation height / motion

«o , =
Racetrack, sinusoid, and ramp testbeds designed for vacuum / thermal testing w/ HE sensor boards.
Initial testing with 1 cm?2 Robots (7 x 7 array, rigid, levitated, 2.5 x 10- Torr).

Next Steps:

— Continued thermal / vacuum testing, to
expand operational limits of system speed,
payload, size, and temperature

— Testing in Lunar regolith analogues

— Testing track misalignment + mitigations

— Pursue reduced-gravity flight opportunity

— Demonstrations of 2D robot position / velocity control,
including suppression of under-damped oscillations
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Magneto-Inductive Sensor:

position measurement
— Stable across Z-offsets

Back-EMF (V,) Sensor:
— Observation of V,, from
robot driven over control
zones in a rigid-PCB track

Next Steps:

— Demonstration of 1D encoder
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0.5 cm2Robot (5 x 5 array, levitated) driven in a circle via HE sensor board + closed-loop control.
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Goal: manufacture and operate FLOAT robots / tracks at
increasingly large sizes (targeting 1/10-scale)

Approach:

— Employ flight-qualified materials for robots + tracks

— Scaling up tracks via increased area flex-PCB, precision-
machined graphite plates, and testing new strategies for
bonding layers, connecting wiring, and linking track segments

— Scaling up robots via automated assembly, and testing new
strategies for intra-robot flexible linkages

— Document costs, challenges, and vendor constraints

Robot Scaling:
— Automated assembly of individual magnets into robots
— Automated re-magnetization for in-situ robot fab. + repair
— Testing linkages with different materials / degrees of compliance

Automated 2D robot manufacturing system (left) and sample assembled robots (right).
Currently assemble ~1 magnet / 8 seconds, and have fabricated up to 3.8 cm? area robots.
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1 cm? Robots (w/ carbon fiber reinforcing) and 2 x 1 cm? Robots (w/ Kapton, brass, and wire flexures).
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Track Scaling: robots successfully maneuver on larger flex-PCBs
— Fabricated 1- and 3-zone flex-PCB tracks for <10 cm? robots
— New methods to machine / bond graphite to PCBs at >10x area

3-zone flex track w/ graphite plates (5 mm wide x 0.5 mm thick, 100 ym spacing) on Sinusoid Testbed.
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1-zone flex track (3 x 60 cm) with robot in sliding-mode can overcome Earth gravity.
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Next Steps:
— Finalize intra-robot flexible linkage design
— Fabricate robots at increasing sizes via automated assembly
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@ Deploy FLOAT Tracks directly onto lunar regolith. L A e e =
Construction robots deploy rolls of track via conveyor belts , — B —
and recover track rolls for repair / reconfiguration. Precision FLOAT Track il | |
mobility + manipulation required to link adjacent segments. - hower “g:ﬁgf:;’ L':i:‘e;‘;';fs
— Robot + Track Scaling — Simulation

Goal: study FLOAT robot-level and system-level performance via
analytical, finite-element, and path-planning / scheduling models

Approach:

— Robot-level simulations to test new control strategies and
balance robot performance (speed, payload, levitation height)
with terrain curvature and track power

— System-level simulations to plan track routes on Lunar DEMs
and optimize robot scheduling (via extrapolated performance)

— Combine with RLSO2 / Artemis mission parameters to size
potential lunar FLOAT systems

— Calculate system mass, volumetric flow rate, power
consumption, power generation, etc.

Robot-Level Simulations:
— Implemented electro-magnetic simulation for dynamic control
— New, unstable operating point accessible w/ closed-loop
control for greater payload capacity or levitation height
— Implemented 3D rigid-body dynamics model with force-
functions (from EM simulation) mapped to non-flat tracks

Robot-level EM simulation, showing two operating modes and corresponding control signals.

—t— : Repulsive Mode Attractive Mode
— : ; (Unstable) (Stable)

I:Graphite I:Graphite

f
|
*=

——— I
A

“«— ! | —>

R L

: Robot |:Track ] !

I:Track
«—
E

IaVAVA)

Y

Track

Magnetic Field in Track
(shown by polarity)

— Finalize sensor selection and configuration
— Fabricate sensor arrays directly into future track iterations
— Continued testing at greater robot speeds / sizes

— Targeting 10 cm?, 40 cm?, and 100 cm? robots
Fabricate tracks at increasing sizes using commercial vendors
— Targeting 10 x 100 cm tracks, plus junctions

This document has been reviewed and determined not to contain export controlled CUI.
Pre-Decisional Information — For Planning and Discussion Purposes Only. © 2025. All rights reserved.

Stable Equilibrium in Y
(Attracts Robot)

Unstable Equilibrium in Y
(Repels Robot)

Robot-level rigid-body dynamics simulation, showing robot and mag-field over curved track.

Next Steps:
— Continued study of robot-level dynamics modeling
— ldentify tradeoffs in robot speed / payload vs. track
curvature / slope and operating power
— Develop system-level simulations of optimized track pathing
and robot scheduling on lunar DEMs
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