Risk of Urinary Retention Revision A.4

Human System Risk Board (HSRB)

HSRB CR: SA-07566 Approved 2/13/2025 **Risk Custodian Team**

SD/Richard Cole SD/Sarah Mason

Purpose

- This package includes:
 - Updates the formats of the LxC Risk matrices from the 3x4 to the 5x5 format

Contents

1.	Risk Title and Risk Statement	3
2.	Risk History	3
3.	Executive Summary	4
4.	Directed Acyclic Graph (DAG)	5
5.	Risk Summary	7
6.	LxC Quick look	8
7.	HSRB Risk Likelihood x Consequence Matrix	<u>S</u>
8.	Risk Postures	10
9.	Overall Assessment of the Evidence	11
10.	State of Knowledge – New Evidence	11
11.	Metrics	20
12.	Risk Mitigation Framework – Color Changes	20
13.	Risk → Standards → Requirements Flow	21
14.	Proposed Standard Updates	22
15.	High Value Risk Mitigation Targets	22
16.	Conclusions	22
17.	Recommendations	23
18.	Reference Materials	23
19.	Acronyms and Abbreviations	32
Apı	pendix - Existing Evidence Base	33
E	xisting Evidence — Baseline	33

1. Risk Title and Risk Statement

Risk Title:

Risk of Urinary Retention

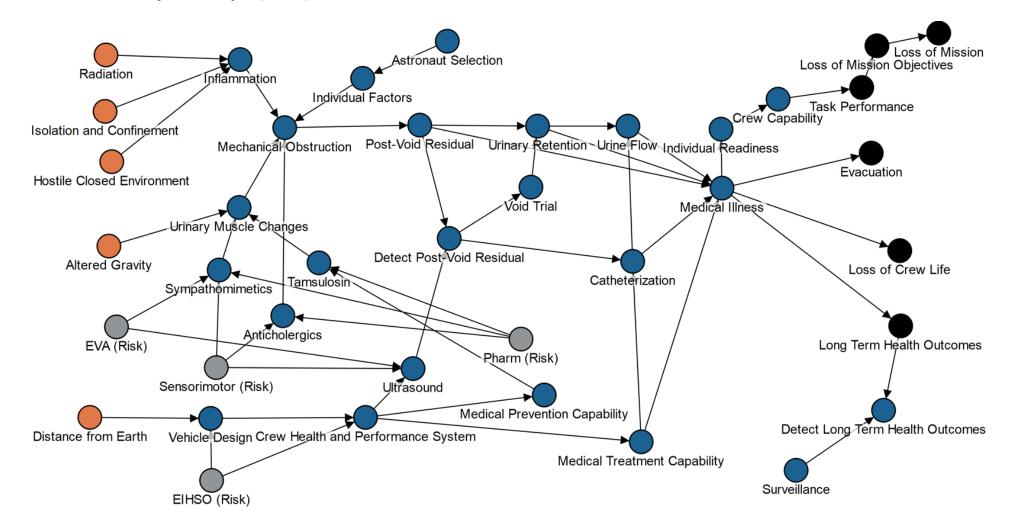
Risk Statement:

Given that the space flight environment alters the gravity vector involved in terrestrial micturition and causes physiological changes that may require use of predisposing medications, and that mission operational schedules may limit access to voiding, there is a possibility of performance impact during space flight by significant discomfort from urinary retention and associated urinary tract infection.

2. Risk History

Item	Date	Outcome/Status
HSRB Risk Presentation	02/13/2025	Decisional – CR SA-07566 HSRB
		DAGtionary Updates and DAG Corrections;
		CR approved with modifications. Rev A.4
HSRB Risk Presentation	02/23/2023	<u>Decisional</u> – CR SA-05752 HSRB Risk Matrix
		Format LxC Change from 3x4 to 5x5; CR
		Approved with Mods, Rev A.3
HSRB Risk Presentation	05/12/2022	<u>Decisional</u> – CR SA-05096 HSRB Directed
		Acyclic Graphs Errata Changes; CR Approved
		out of board, Rev A.2
HSRB Risk Presentation	12/16/2021	Decisional – CR SA-04403 Updates to Risk's
		Directed Acyclic Graphs (DAGs): Behavioral,
		Electric Shock, Toxic Exposure, Renal Stone, Urinary Retention and Sleep; CR Approved,
		Rev A.1
HSRB Risk Presentation	09/19/2019	Decisional – CR Approved with Mods.
HISKE HISK Freschiation	03/13/2013	Approved Rev A
Risk Evaluated via CR	03/12/2018	CR evaluation period closed 3/26/2018
HSRB Risk Presentation	04/22/2015	<u>Decisional</u> – Action Items (AI-HSRB-14-
		038, 039 & 14-040) Approved for closure
HSRB Risk Presentation	11/12/2014	Decisional – CR Approved with Mods.
		Approved Risk Baseline
Risk Evaluated via CR	10/02/2014	Decisional – Provide entire risk
		information based on new risk process (JSC 66705)
HSRB Risk Presentation	07/02/2014	Informational – Evaluate previous
TISKE KISK FTESEIILALIOII	07/02/2014	content, assess, and disposition risk
		based on new process. Risk will be
		evaluated via CR for baseline.
HSRB Risk Presentation	03/09/2011	<u>Decisional</u> – Content reviewed and approved
		by the board. It included LxC assessment.
		BASELINED
Risk Evaluated via CR	02/28/2011	<u>Decisional</u> – CR Released

3. Executive Summary


Some basic context

- Symptomatic urinary retention happens in flight and on landing day
- It happens more than we would expect for our populations
- It has a lot of contributing factors that we do not fully understand yet
- It is related to Urinary Tract Infections (UTIs) that can lead to urosepsis
- There are complex causal relationships we should be trying to understand that will be revisited at the end of the presentation

The following are the findings based on the newest evidence:

- Cause of urinary retention is multifactorial
 - · Prevalence of each factor may be different inflight vs terrestrial
 - · Sex based difference inflight compared to terrestrial
 - Inflight retention rate is higher in females (4.5:1) while terrestrial rate is higher in males (39:1)
 - Promethazine use increases (3X) the risk of developing urinary retention in spaceflight
 - Urinary retention and urinary tract infection (UTI) are highly associated
 - Both, with or without bladder catheterization, but catheterization further increases risk of infection
 - Asymptomatic crewmembers may have increased post void residual that could increase the risk of urinary infection
 - MOG was given catheter recommendations that may reduce infection rate
- Retention risk on postflight day 1, could impact planetary missions upon landing on target celestial body

4. Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG) (Narrative)

- ❖ The central focus of the Urinary Retention DAG begins with the Urinary Retention node which is the point at which the retention of urine in an astronaut reaches a clinically significant level. Inflammation can result from the hazards of Radiation, Hostile Closed Environment, and Isolation and Confinement. Prior to that, astronauts may retain urine that they are not aware of, and this is called Post-Void Residual. Retention may be intentional in some situations. When retained urine begins to affect Urine Flow, this can lead to several Medical Illnesses that can affect Individual Readiness and Crew Capability including:
 - Infectious processes like Urinary Tract Infections, Pyelonephritis (kidney infection) and potentially
 Sepsis if untreated, can result from Urinary Retention.
 - Renal Colic, Retention Pain, and Hydronephrosis can result from Urinary Retention or Urine Flow disruption.
 - All of these if untreated can potentially lead to **Renal Failure** which has implications for **Evacuation**, **Loss of Crew Life** and **Long-Term Health Outcomes**.
 - Retention of urine can be cause by Mechanical Obstruction at the level of the
 urinary bladder or prostate (in men). Retention may also be intentional in
 some situations (e.g., not wanting to use MAG). Retention is affected by
 Individual Factors like age, sex, and genetic predispositions and can be
 caused by
 - Urinary Muscle Changes that occur in Altered Gravity environments or due to Side Effects of certain medication classes including Sympathomimetics and Anticholinergics used for EVA (Risk) mitigation, Sensorimotor (Risk) mitigation, Space Motion Sickness, and congestion.
 - **Inflammation** in the bladder or prostate
- Countermeasures must be designed into the mass and volume allocations for the Vehicle Design and Crew Health and Performance System to effect risk mitigation. These are affected by the EIHSO (Risk) and include:
 - Ultrasound Monitoring is used to Detect Post-Void Residual when increased, and if severe can inform the use of countermeasures such as a Void Trial.
 - Medical Prevention Capability such as Tamsulosin can help to relax Urinary Muscle Changes.
 - Medical Treatment Capability such as Catheterization may be needed to relieve Urinary Retention and prevent the development of other Medical Illnesses. Other medical treatments may be needed if Medical Illness progresses (i.e., UTI -> Pyelonephritis -> Sepsis).
 - Effectiveness of the **Medical Prevention Capability** and the **Medical Treatment Capability** is dependent on the **Pharm (Risk)**.
- ❖ Long Term Health Outcomes may occur, and Surveillance is needed post-flight and post- mission to help Detect Long Term Health Outcomes and characterize the magnitude of the Long-Term Health risk contribution.

5. Risk Summary

Primary Hazard:

Altered gravity (hypo)

Secondary Hazard(s):

Closed environment (spacecraft/spacesuit design)

Countermeasures in use:

Prevention

Ground tests of pharmaceutical side-effects, education of crew on causes of urinary retention and on treatment protocols, preflight training on proper sterile technique for catheterization, and inflight ultrasound evaluation

Monitoring

Ultrasound (PVR and Prostate Size), Dipstick

Intervention

Pharmaceuticals, urinary catheters, ultrasound as adjunct for invasive treatment

Contributing Factors

Obstructive (anatomical), pharmacologic, neurogenic (SAS-Related), psychosocial, myopathic, infectious, gravitational vector (e.g., time on back during launch), increased post void residual, and cohort (primarily sex) factors.

State of Knowledge

Urinary retention (UR) is multifactorial: 1. Sex-based difference in mission compared to terrestrial — males have a higher retention rate on Earth and females have higher ones on orbit. 2. UR appears to be associated with medication use, occurring at any time during a mission whenever medications are in use, including in mission (EVA) and on R+0 (landing day) possibly impacting planetary missions. For example, PMZ increases the likelihood of developing UR threefold. 3. There is also a high association of UR with UTI (UR can cause UTI and vice versa). 4. Holding to urinate on orbit to finish tasks, are contributors to UR.

General Assumptions

- Assume that NASA Standards 3001 have been met
- · Countermeasures equivalent to current ISS countermeasures are in use
- Based on the HSRB LxC Matrix and the HSRB DRM Categories

6. LxC Quick look

Current (approved September 2019) 3x4 Matrix

DRM Categories	Mission Type and Duration	LxC Ops	Risk Disposition	LxC LTH	Risk Disposition
Low Earth	Short (<30 days)	3x2	Accepted	1x1	Accepted
Orbit (LEO)	Long (30 d - 1 yr.)	3x2	Accepted	1x1	Accepted
Lunar Orbital	Short (<30 days)	3x2	Accepted	1x1	Accepted
(LO)	Long (30 d - 1 yr.)	3x2	Accepted	1x1	Accepted
Lunar Orbital + Surface	Short (<30 days)	3x2	Accepted	1x1	Accepted
(LOS)	Long (30 d - 1 yr.)	3x2	Accepted	1x1	Accepted
14	Preparatory (<1 year)	3x2	Accepted	1x1	Accepted
Mars	Planetary (730-1224 days)	3x2	Accepted	1x1	Accepted

Current (approved February 2023) 5x5 Matrix

DRM Categories	Mission Type and Duration	LxC Ops	Risk Disposition	LxC LTH	Risk Disposition
Low Earth	Short (<30 days)	4x2	Accepted	1x1	Accepted
Orbit (LEO)	Long (30 d - 1 yr.)	4x2	Accepted	1x1	Accepted
Lunar Orbital	Short (<30 days)	4x2	Accepted	1x1	Accepted
(LO)	Long (30 d - 1 yr.)	4x2	Accepted	1x1	Accepted
Lunar Orbital + Surface	Short (<30 days)	4x2	Accepted	1x1	Accepted
(LOS)	Long (30 d - 1 yr.)	4x2	Accepted	1x1	Accepted
14 - 10	Preparatory (<1 year)	4x2	Accepted	1x1	Accepted
Mars	Planetary (730-1224 days)	4x2	Accepted	1x1	Accepted

7. HSRB Risk Likelihood x Consequence Matrix

		LIKE	LIHOOD RATI	NG					Li	C Mat	rix			Time	frame		
	In-Mission		Flight Recert	ification	Long Term Health		II.							Expected Need for			
			Very likely to hap		Likelihood is very high OF	igh OR >10% excess risk							1000 B	igation			
5 Very High	mission or probability	/ (P) >10%	insufficient or P>	10%	4x2 Ops:	All		5	10	16	20	23	25	Near	0 < 2 Yes		
4	Likelihood is high dur 1% <p≤10%< td=""><td>ing the mission or</td><td>Likely to happen.</td><td>ons or</td><td>Likelihood is high OR 6-10</td><td>0% excess risk</td><td>OD</td><td>4</td><td>7</td><td>13</td><td>18</td><td>22</td><td>24</td><td>Mid</td><td>2-7 Yea</td></p≤10%<>	ing the mission or	Likely to happen.	ons or	Likelihood is high OR 6-10	0% excess risk	OD	4	7	13	18	22	24	Mid	2-7 Yea		
High	uncertain		uncertainties or 1	%5 <p5 10%<="" td=""><td></td><td></td><td>ŏ</td><td>3</td><td>4</td><td>9</td><td>15</td><td>19</td><td>21</td><td>Far</td><td>> 7 Yea</td></p5>			ŏ	3	4	9	15	19	21	Far	> 7 Yea		
3 Moderate	May happen during t	he mission or 0.1% <p≤1%< td=""><td>Not likely to happ with some limitat uncertainties or 0</td><td>ions or</td><td>Likelihood is moderate O</td><td>R 3-6% excess risk</td><td>LIKELIHOOD</td><td>2</td><td>2</td><td>6</td><td>11</td><td>14</td><td>17</td><td></td><td></td></p≤1%<>	Not likely to happ with some limitat uncertainties or 0	ions or	Likelihood is moderate O	R 3-6% excess risk	LIKELIHOOD	2	2	6	11	14	17				
	Unlikely to happen during the mission or Not expected to I				excess risk			1	3	5	8	12					
2 Low	.01% <p≤0.1%< td=""><td></td><td>have minor limita uncertainties or 0</td><td></td><td colspan="2">1x1 LTH: All</td><td></td><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td></td><td></td></p≤0.1%<>		have minor limita uncertainties or 0		1x1 LTH: All				1	2	3	4	5				
1 Very Low	Nearly certain to not P≤0.01%	occur in-mission or	Extremely remote will happen. Stron or P≤0.01%	possibility that it ng controls in place	Likelihood is very low OR	< 1% excess risk			CONSEQUENCE			Risk Score Card values are co across all risks and prioritize consequence over likelihood.		nd prioritize			
CONSI	EQUENCES	1			2	3				4				5			
IN MISSION	Crew Health Impact	Temporary disc	comfort	by crew without	ess that can be dealt with t ground support, minor v discomfort	Significant injury/illnes that requires diagnosis support from ground, n safet	and/or treatm nay affect pers	ent	Critical injur requiring ea and suppo	tended m	edical inter sult in tem	rvention	injun	oth or permanent //illness affecting crewmember (LC	one or more		
N N	Mission Objectives Impact	Insignificant impact to co and operations – no add required	litional resources	operations – requ	crew performance and ires additional resources consumables)	Significant reduction in threatens loss of a m			Severe reduce results in loss				177010000000000000000000000000000000000	mission due to cre reductions or loss			
FLIGHT	Crew Flight Recertification Status	Immediate flight recer	Immediate flight recertification status		Flight recertification status within 3 months with limited intervention				atus within 1 y ition or restric	9.5	Flight red extended me			****	Unable 1	to be Recertified premature care	_
LONG TERM HEALTH	Health Outcomes	Career related short ter medical cond			ical conditions manageable nt medical treatments	Treatable career related that requires hospitalizat		requiring intermittent hospitalization or					Career related premature death or per disability requiring institutionaliza				
LONG	Quality of Life	No impact on quality of life in activities of da			impact on quality of life OR irred for activities of daily living	Moderate long-term imp OR may require some tim activities of d	e-limited supp		Major long-te requires inter		pport for a			ebilitating impac es continuous su of daily livi	pport for act		

Assumptions for Long Term Health Risk Matrix:

[•]Long Term Health extends from the end of the post mission time period and covers an astronaut's lifetime.

^{**}Conditions considered within the LTH files Matrix are those that 1] are related to the astronaut career, 2) are beyond those expected as part of natural aging, and 3) include acute, chronic and latent conditions.

**Quality of Life is defined as impact on day-to-day physical and mental functional capability and/or lifetime loss of years

8. Risk Postures

All DRMs Operations

4x2	Accepted

- LxC Drivers for Likelihood: >1% likelihood based on historical data collected via LSAH query (2014). Incidence includes cases that required catheterization and cases that resolved spontaneously (16 cases/908 person-fights). Regardless of whether catheterization is required, urinary retention can cause significant crew discomfort that impacts performance and require mission resources (e.g., unscheduled PMCs, deferring certain crew activities maybe even EVA). Even a case that resolves "spontaneously" may have benefited from catheterization.
- LxC Drivers for Consequence: : It is driven by effects on performance minor impact to performance requiring additional resources. Even for deep space missions where remote guidance for ultrasound is not available, Crew Medical Officer (CMO) training should include urinary retention diagnosis and treatment using ultrasound and suprapubic bladder aspiration; this countermeasure will maintain the consequence as "low" for these DRM categories.
- Rationale for Risk Disposition: Accepted for OPS regarding all DRMs based on the onset timeline combined with the available treatment options.

All DRMs

- LxC Drivers for Likelihood: < 0.1% likelihood of chronic consequences
- LxC Drivers for Consequence: Severity of consequence is directly tied to the successful treatment of urinary retention regardless of the mission duration; therefore, there are no impacts to quality of life.
- Rationale for Risk Disposition: Accepted for LTH regarding all DRMs as inflight episodes will have no impact on the quality of life.

9. Overall Assessment of the Evidence

Cause of urinary retention is multifactorial

- Prevalence of each factor may be different inflight vs terrestrial
- Sex based difference inflight compared to terrestrial
 - Inflight retention rate higher in females (4.5:1) while terrestrial rate higher in males (39:1)
 - Several cases of UTI in males have occurred in spaceflight. Matching terrestrial cohorts are almost exclusively females.
- Promethazine use increases (3X) the risk of developing urinary retention in spaceflight
- Urinary retention and urinary tract infection (UTI) are highly associated
 - Both with or without bladder catheterization, but catheterization further increases risk of infection
 - Asymptomatic crewmembers may have increased post void residual that could increase the risk of urinary infection
 - Catheter recommendations that may reduce infection rate were approved by the MOG and provided to HMS for implementation

Retention risk on postflight day 1, could impact planetary missions upon landing on target celestial body

10. State of Knowledge – New Evidence

What is Urinary Retention (UR)?

• For the purpose of this discussion, urinary retention is the inability, hesitancy, or difficulty to initiate urination. For spaceflight, there are several predisposing factors identified that may lead to urinary retention.

Urinary Retention Predisposing Factors

- Obstructive (anatomical) ex. enlarged prostate
- Psychosocial
- Infectious [urinary tract infection (UTI)]
- Cohort
- Gravity Vector
- Pharmacologic
- Neurogenic [space adaptation syndrome (SAS) Related]
- Myopathic

Incidence Rates (Shuttle vs ISS)

<u>Urinary</u> <u>Ret</u>	Incidence Rates*
Shuttle:	0.016 events/person flight
ISS:	0.019 events/person flight

	Shuttle	ISS	Catheter Required	EVA Related	SAS Med Usage
Symptomatic Urinary Retention	8	1	4	1	7
Bladder fullness/pressure	2	0	0	0	1
Difficulty initiating/hesitancy	5	0	0	1	4
TOTAL	15	1	4	2	12

^(*) Data as of February 2018

Sex Differences – Terrestrial vs Spaceflight

The odds of developing urinary retention inflight are 4.5 times higher among female astronauts.

P<0.01	Retention Rate	95% Confidence Limit				
Female	0.0510	0.0217	0.1151			
Male	0.0111	0.0053	0.0230			

Terrestrially urinary retention Male: Female ratio 39:1

Ugare UG, Bassey IA, Udosen EJ, Essiet A, Bassey OO. Management of lower urinary retention in a limited resource setting. Ethiopia Journal of Health Science. 2014 Oct,24(4):329-36.

Promethazine Use

- Promethazine (Phenergan)
 - The odds of developing urinary retention are **3 times** higher among astronauts who take promethazine.
 - **−2.6% urinary retention rate** if take promethazine

P<0.01	Retention Rate	95% Conf	idence Limits
Promethazine	0.0262	0.0139	0.0490
None	0.0088	0.0038	0.0197

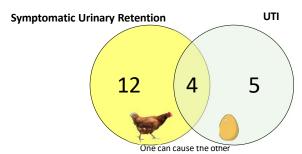
Based on US only ISS and all Shuttle crew

Urinary Tract Infection and Catheterization

- ❖ An astronaut with urinary retention is 25 times more likely to have a UTI
 - 14% Infection Rate
 - Urinary retention vs UTI which is the chicken, and which is the egg?

Based on all Crew
6
9
<u></u>
)
2
(

- ❖ An astronaut with a bladder catheter is 2.5 times more likely to have a UTI (not statistically significant; not enough cases to have adequate power)
 - 42% Infection Rate
 - Includes cases that prophylaxed with antibiotics


Urinary Tract Infection and Catheterization-cont'd

- ❖ Taking catheterization out of the picture...
- ❖ General astronaut population who did NOT get a bladder catheterization
 - Those who had urinary retention were 22 times more likely to have a UTI
 - 13% Infection Rate

P<0.0001	Infection Rate	95% Confidence Limits				
Retention	0.1299	0.0320	0.4030			
No Retention	0.0058	0.0024	0.0136			

Based on non-Cath Crew

Inflight Summary Numbers (UR+UTI)

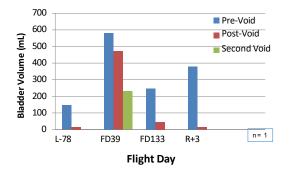
	Mission Events (Subjects)
Symptomatic Urinary Retention	12 (10)
Urinary Tract Infection	5 (5)
Symptomatic Urinary Retention + Urinary Tract Infection	4 (3)
Total Events	21 (15)
Total	843 person missions

Missions Included: STS 1-135 and Expedition 1-52.

Male UTIs

❖ STS (1)

- +Urine Dipstick
- Treated with Cipro
- Associated with Urinary Retention
- ❖ Apollo (1)#
 - Cultured- Pseudomonas aeruginosa
- ❖ Early Russian Space Station (1)*
- USOS ISS Crewmembers (2)*
 - +Dipstick


No ultrasound data available to rule out increased PVR

not included due to paper records

* Not in data set due to non-NASA crewmember

Spaceflight Characterization of Post Void Residual (PVR)

- ISS Crew Choice Activity Descriptive Data: (<u>not</u> counted as an episode of <u>Urinary Retention</u> during spaceflight as it was conducted deliberately)
 - Post-Void Residual (PVR) during Mission asymptomatic
 - Residual urine after void inflight (471 ml on FD39 & 45 ml on FD133) as opposed to (15 ml on ground) Pre/Post
 - No current plan to collect data on other subjects

Spaceflight Characterization of Post Void Residual (PVR) - cont'd

Ultrasound scans of urinary bladder to characterize PVR in mission and on the ground respectively:

- Potential decreased sensation to void due to lack of gravity vector may manifest as a subclinical increase in PVR
- Terrestrial UTI risk starts as low as 50 ml PVR

Kelly, C.E. Evaluation of Voiding Dysfunction and Measurement of Bladder Volume. Reviews in Urology. 2004. 6 (suppl. 1), S32-S37. Retrieved from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472847/pdf/RIU006001 0S32.pdf

Post-flight Urinary Retention (New Evidence)

P<0.001	Retention Rate	95% Confidence Limits	
ISS	0.0667	0.0253	0.1644
Shuttle	0.0026	0.0006	0.101

ISS

- 4 events/ 60 person*missions=6.67%
 - -3 of 4 crewmembers attempted to resolve by position adjustment (sitting up or standing). Did not resolve issue.
 - -3 resolved by single use catheterization
 - -1 resolved by sound of running water

Shuttle

- 2 events/783 person*missions=0.26%
 - -These events might have been a continuation of inflight event
 - -Both events resolved by catheterization (Inflight onset Stepaniak et al)

Data Limitations

- Expeditions 1-52
- 10 crewmembers with no record of office visit in the EMR within 2 weeks of landing

Urinary Infection Mission Impact

❖ IMM Emergent medical evacuation*

- 1. Kidney Stone
- 2. Sepsis
- 3. Smoke Inhalation
- 4. Stroke

UTI/Prostatitis

• 1 of 3 Russian medical evacuations

Barratt M. R. & Pool S. L. (Eds.), Principles of Clinical Medicine for Space Flight. 2008. (First Ed., pp. 141). New York, NY: Springer. doi:10.1007/978-0-387-68164-1

Apollo case

- Symptoms of urosepsis
- · Antibiotic resistance

(*) From IMM Service Request # S-20151123-341, Medical Updates to the ISS PRA Using the IMM

Urinary Catheter and UTI (Systematic Literature Review)

Systematic literature review

- 80 studies
- Intermittent and indwelling catheters evaluated separately
- · Compared various catheters infection or bacterial loads
 - No-touch catheter
 - Various catheter tip coatings
 - Silver
 - Antibiotic
 - Hydrophilic
 - Reuse
- Level of evidence and applicability scored by adding scores from each study and dividing by total possible score

UTI and Catheter Type (Results of Systematic Literature Review)

Intermittent Catheters (31 studies)

	Hydrophilic	No-touch	Reuse
Lower Infection Rate (Improvement)			
No Change in Infection Rate			
Higher Infection Rate (Worsening)			

Reviews: Prieto, 2014: evidence quality too low to draw conclusion

Shamout, 2017: evidence quality low, but likely lower for hydrophilic and aseptic technique

	Hydrophilic	Antibiotic	Silver
Lower Infection Rate (Improvement)			
No Change in Infection Rate			
Higher Infection Rate (Worsening)			

Reviews: Cohen, 1985: infection rate decreased with iodine lubricant

Brosnahan, 2004: combined silver and antibiotic coated may yield small clinical

benefit, but further research needed Schumm, 2008: both silver & antibiotic

catheters decrease asymptomatic bacteria

Jahn, 2012 & Lam, 2014: Not enough evidence for strong conclusion of catheter type. Silver and antibiotic coated may decrease infections in short durations, but difference is small and questioned clinical significance

Urinary Catheter and UTI (Limitations of Systematic Literature Review)

- Most studies compared bacteriuria (presence of bacteria in urine) and not actual urinary infections
- Studies centered around unhealthy population
 - Susceptible to infection
 - -Catheterizing multiple times a day
 - -Host factors from reason needing catheter (abnormal anatomy/spinal cord injury)
- Studies did not include training techniques
- Most reuse catheter studies compare sterilization technique and not to single disposable catheter as gold standard
- ❖ Hudson, 2005
 - No-touch study (1 of 2)
 - -Sponsored by manufacturer
 - -Compared no-touch catheter to intentionally placed bacteria load on gloved hand

Urinary Catheter (Recommendations based on Systematic Literature Review)

Recommendations – endorsed by MOG

- Catheter coating (silver-alloy, hydrophilic, antibiotic)
 - -Recommend non-urgent incorporation into med kit
- No-touch intermittent catheters
 - -Recommend non-urgent incorporation into med kit
- Reusable catheters
 - -Promising for exploration, **not** recommended for current med kits

Risk Mitigation Framework

- Tamsulosin (Flomax) available in med kit to improve urination
- Urinary Retention during a mission is generally treated successfully with urinary catheters (straight or indwelling) from medical kit
- Important to ensure adequate resources to support all urinary retention episodes throughout a mission
 - Medication supplies can become depleted
 - Exploration mission shelf-life issues
- * Report of two Shuttle flights of a crewmember with positive urine culture for *Escherichia coli* at landing
 - · Both cases had bladder catheterizations inflight
 - · Both cases resistance to prophylactic antibiotic given at time of bladder catheter placement

Stepaniak PC, Ramchandani, SR, Jones, JA. Acute Urinary Retention Among Astronauts. Aviation, Space, and Environmental Medicine. April 2007;78,4: A5-8

11. Metrics

2014 LSAH query found 16 events

- 4 of the 16 cases required catheterization (25%)
- 2 of the 16 cases were related to EVA (12.5%)
- USOS only data
- Among 908 person flights = 0.0176 events/person flight
 - Males: 9 events in 783 person flights = 1.1%
 - Females: 7 events in 125 person flights = 5.6%
 - Previous estimates per the report in 2011 were 0.8% (male) and 6.6% (female)
- Among <u>17,252.69-person mission days</u> = 0.000927 events/person mission days

Metrics

Inflight

By Program

- Shuttle: 1.6% events/person flight
- · ISS: 1.9% events/person flight

By Sex

- · Males: 1.11% events/person flight
- · Females: 5.1% events/person flight

Previous estimates per the report in 2014 were 1.1% (male) and 5.6% (female)

Promethazine use: 3X higher rate of urinary retention

Postflight

By Program

- · Shuttle: 0.26% events/person flight
- · ISS: 6.67% events/person flight

Overall Incidence Rate: 0.27 events/person years

(Combined Inflight and Postflight; First Event)

Catheterization (2.5X increase in UTI)

25% inflight cases required catheterization

75% post-flight ISS cases required catheterization

No terrestrial evidence of acute urinary retention has been determined based on promethazine use; but antihistamines and antiarrhythmic drugs increase the odds of developing acute urinary retention (1.11.3.30 Wuerstle et al 2011, Meigs et al., 1999)

12. Risk Mitigation Framework - Color Changes

Yellow -> Green will be achieved when:

 Medical capabilities are identified and fielded/utilized that enable prevention of urinary retention and sufficient intervention to prevent impact to mission objectives while also preventing infection and infection progression.

13. Risk → Standards → Requirements Flow

Risk

Risk of Urinary Retention

Standards

OCHMO 80771201MED

NASA Crewmembers Medical Standards Volume 1 - Selection and Periodic Certification

NASA Space Flight Human-System Standard

NASA-STD-3001, VOLUME 1, Crew Health -Rev. A w/Change 1, February 2015

- Level of Care One
- Level of Care Two
- Level of Care Three
- Level of Care Four
- Level of Care Five
- 4.4 Medical Diagnosis (d & e)
- 4.4.1 Training Section (a)
- 4. Level of Care One
- 5. Level of Care Two
- 6. Level of Care Three 7. Level of Care Four
- D.9 Level of Care Five

7.3.3.1.1 Body Waste Mgmt. Capability [V2 7020]

- Body Waste Management Privacy [V2 7022]
- Body Waste Mgmt. Provision [V2 7023]
- Body Waste Accommodation [V2 7024]
- Private Body Inspection Accom. [V2 7028]
- Body Waste Mgmt. Maint. [V2 7029]
- 7.3.2.5 Urine Capacity [V2 7034]

7.3.2.6 Urine per Crewmember [V2 7035]

NASA Space Flight Human-System Standard

NASA-STD-3001, VOLUME 2, HUMAN FACTORS...

Rev. A - February 2015

7.3.2.7 Urine Rate [V2 7036]

7.5.1 Medical Capability [V2 7043]

- 2. Medical Treatment Spatial Acc. [V2 7044]
- 3. Medical Equipment Usability [V2 7045]
- 4. Medical Treatment Restraints [V2 7046]

11.1.5.2 Suit Urine Collection [V2 11014]

11.1.5.3 Suit Urine /Day - Contingency [V2 11015]

Requirements

ISS

SSP 50260 ISS Medical Operations Requirement Document (MORD) - Rev. E

3.15 Crew Medical Officer (CMO) 4.1.3.2 CMO Training

6.1 Med. Intervention & Care during All Mission Phases 6.3.5.6 Ambulatory Med. Care

SSP 50005 International Space Station Flight Crew Integration Standard - Rev. F

7.2.7.3.3 Env. Monitor. Design Req. (B. (1) & (2)

7.3.3.3 Diagnosis Design Requirements

7.3.3.4 Treatment Design Requirements (A. Treatment - SMS Meds)

10.3.3.1 Defecation and Urination Facilities Design Req. (A. Use Accommodation, & C. Ease of Urination.)

10.9.3 HMS Performance Requirements (Diagnostic/Therapeutic, etc.)

Commercial Crew

CCT-REQ-1130 ISS Crew Transportation Requirements Document - Rev. F

3.2.5.11.4 Body Waste Management in Suit 3.10.10.4 Crew Limits in Launch Orientation

3.10.17.4 Body Waste Management

MPCV

MPCV 70024 Human System Integration Requirements - HSIR Rev. C

[HS6014] Simultaneous Defec. & Urinat. [HS6028] Body Self-Inspect. & Clean

[HS6021] Urine Collection

[HS6022] Urine Wipes

[HS6023] Urine per Crewmember

[HS6024 & 25B] Urine per Hour/Day

[HS6025] Urine Rate

[HS6027] Full Body Visual Privacy

[H S6069] Auditory & Olfactory Privacy

[H \$6083, 85, 86] Access to Med. Care, Equip., Kits

[HS6101] Medical Care Capabilities

[HS6105] Pers. Hygiene Items [HS11012] Nom. Urine Collect in Suit [HS11013] Suited Ur. Collection

Contingency

ESD 10024 MORD

[MO-16 & 17] Crew Med. Officer /Roles&Resp. [MO-43] Med. Intervention & Care [MO-45] Levels of Medical Int. & Care [MO-145] CMO Training

14. Proposed Standard Updates

None

15. High Value Risk Mitigation Targets

Need to understand:

- The likelihood and consequence of urinary tract infection as related to urinary retention in spaceflight considering contributions of:
 - Medication usage
 - Catheterization techniques
 - Incidence of asymptomatic urinary retention (Post Void Residual)
 - Pre-flight time on back
- The relationship between symptomatic/asymptomatic Urinary Retention and UTI in spaceflight and at landing
- The medical capabilities needed to prevent urinary retention leading to UTI and Urosepsis, especially for exploration missions

Outstanding Questions:

- Urinary retention risk appears multifactorial, what is the role of:
 - Preflight urinary diagnoses?
 - Reduced gravity?
 - Medications commonly used in space flight? (Answered for promethazine)
 - Intentionally "holding" urine secondary to operational concerns (ex. EVA, launch pad)?

❖ What is the risk over time?

- · Previously thought to occur early in flight and associated with Space Adaptation Syndrome
- · New evidence points to risk beyond first few days
- New evidence points to increased probability of UR immediately after landing
- Is UTI and/or urinary retention risk related to increased Post Void Residual (PVR) during spaceflight?
 - What is the updated risk of UTI's during space flight? (done)

16. Conclusions

- Cause of urinary retention is multifactorial
- Retention risk on postflight day 1, could impact planetary missions upon landing on target celestial body

17. Recommendations

Revise Risk Postures from the 3x4 format to the 5x5 format for Likelihood x Consequence.

18. Reference Materials

- Al-Habdan, Ibrahim, Mir Sadat-Ali, James Ran Corea, Abdullah Al-Othman, Baher A. Kamal, and Devdas Sheena Shriyan. "Assessment of Nosocomial Urinary Tract Infections in Orthopedic Patients: A Prospective and Comparative Study Using Two Different Catheters." International Surgery 88, no. 3 (September 2003): 152–54.
- Beattie, Michelle. "Can Silver Alloy Catheters Reduce Infection Rates?" Nursing Times 107, no. 29
 (August 26, 2011): 19–20, 22.
- Beattie, Michelle, and Julie Taylor. "Silver Alloy vs. Uncoated Urinary Catheters: A Systematic Review of the Literature." *Journal of Clinical Nursing* 20, no. 15–16 (August 2011): 2098–2108. https://doi.org/10.1111/j.1365-2702.2010.03561.x.
- Bermingham, Sarah L., Sarah Hodgkinson, Sue Wright, Ellie Hayter, Julian Spinks, and Carol Pellowe. "Intermittent Self Catheterization with Hydrophilic, Gel Reservoir, and Non-Coated Catheters: A Systematic Review and Cost Effectiveness Analysis. [Review]." BMJ, January 2013.
- Biering-Sorensen, F., K. Nielsen, and H. V. Hansen. "Urethral Epithelial Cells on the Surface on Hydrophilic Catheters after Intermittent Catheterization: Cross-over Study with Two Catheters." Spinal Cord 37, no. 4 (April 1999): 299–300.
- Bogaert, Guy A., Lieven Goeman, Dirk de Ridder, Martine Wevers, Jan Ivens, and Annette Schuermans. "The Physical and Antimicrobial Effects of Microwave Heating and Alcohol Immersion on Catheters That Are Reused for Clean Intermittent Catheterization." European Urology 46, no. 5 (November 2004): 641–46.
- Bologna, R. A., L. M. Tu, M. Polansky, H. D. Fraimow, D. A. Gordon, and K. E. Whitmore. "Hydrogel/Silver Ion-Coated Urinary Catheter Reduces Nosocomial Urinary Tract Infection Rates in Intensive Care Unit Patients: A Multicenter Study." *Urology* 54, no. 6 (December 1999): 982–87.
- Bonfill, Xavier, David Rigau, Maria Luisa Jauregui-Abrisqueta, Juana Maria Barrera Chacon, Sebastian Salvador de la Barrera, Carolina Maria Aleman-Sanchez, Manuel Bea-Munoz, et al. "A Randomized Controlled Trial to Assess the Efficacy and Cost-Effectiveness of Urinary Catheters with Silver Alloy Coating in Spinal Cord Injured Patients: Trial Protocol." BMC Urology, July 2013.
- Brosnahan, J., A. Jull, and C. Tracy. "Types of Urethral Catheters for Management of Short-Term Voiding Problems in Hospitalized Adults. [Review] [50 refs][Update in Cochrane Database Syst Rev. 2008;(2):CD004013; PMID: 18425896]." Cochrane Database of Systematic Reviews, 2004.
- Cardenas, D., K. N. Moore, A. Dannels-McClure, W. Scelza, D. Graves, and M. Brooks.
 "INTERMITTENT CATHETERISATION WITH HYDROPHILIC-COATED CATHETERS DELAYS THE

- ONSET OF URINARY TRACT INFECTION IN PATIENTS WITH ACUTE SPINAL CORD INJURY: AN INTERNATIONAL, MULTICENTER, RANDOMISED CONTROLLED TRIAL." *Neurourology and Urodynamics* 29, no. 6 (2010): 990–91.
- Cardenas, Diana D., and Jeanne M. Hoffman. "Hydrophilic Catheters versus Noncoated Catheters for Reducing the Incidence of Urinary Tract Infections: A Randomized Controlled Trial." Archives of Physical Medicine & Rehabilitation 90, no. 10 (October 2009): 1668–71.
- Cardenas, Diana D., Katherine N. Moore, Amy Dannels-McClure, William M. Scelza, Daniel E. Graves, Monifa Brooks, and Anna Karina Busch. "Intermittent Catheterization with a Hydrophilic-Coated Catheter Delays Urinary Tract Infections in Acute Spinal Cord Injury: A Prospective, Randomized, Multicenter Trial." Pm & R 3, no. 5 (May 2011): 408–17.
- Charbonneau-Smith, R. "No-Touch Catheterization and Infection Rates in a Select Spinal Cord Injured Population." Rehabilitation Nursing Journal 18, no. 5 (October 1993): 296–99.
- Chartier-Kastler, Emmanuel, and Pierre Denys. "Intermittent Catheterization with Hydrophilic Catheters as a Treatment of Chronic Neurogenic Urinary Retention." Neurourology and Urodynamics 30, no. 1 (January 2011): 21–31. https://doi.org/10.1002/nau.20929.
- Chung, Patrick H. Y., Carol W. Y. Wong, Christopher K. C. Lai, H. K. Siu, Dominic N. C. Tsang, K. Y. Yeung, Dennis K. M. Ip, and Paul K. H. Tam. "A Prospective Interventional Study to Examine the Effect of a Silver Alloy and Hydrogel-Coated Catheter on the Incidence of Catheter-Associated Urinary Tract Infection." Hong Kong Medical Journal 23, no. 3 (June 2017): 239–45. https://doi.org/10.12809/hkmj164906.
- Cindolo, Luca, Emiliano A. Palmieri, Riccardo Autorino, Luigi Salzano, and Vincenzo Altieri. "Standard versus Hydrophilic Catheterization in the Adjuvant Treatment of Patients with Superficial Bladder Cancer." *Urologia Internationalis* 73, no. 1 (2004): 19–22.
- Clark, J. F., S. J. Mealing, D. A. Scott, L. C. Vogel, A. Krassioukov, M. Spinelli, P. Bagi, and J.-J. Wyndaele. "A Cost-Effectiveness Analysis of Long-Term Intermittent Catheterization with Hydrophilic and Uncoated Catheters." *Spinal Cord* 54, no. 1 (January 2016): 73–77.
- * Cohen, A. "A Microbiological Comparison of a Povidone-Iodine Lubricating Gel and a Control as Catheter Lubricants." *The Journal of Hospital Infection* 6 Suppl A (March 1985): 155–61.
- Cooper, Ian Richard, Mauro Pollini, and Federica Paladini. "The Potential of Photo-Deposited Silver Coatings on Foley Catheters to Prevent Urinary Tract Infections." Materials Science & Engineering C-Materials for Biological Applications 69 (December 1, 2016): 414–20. https://doi.org/10.1016/j.msec.2016.07.004.
- Cox, A. J., R. S. Millington, D. W. Hukins, and T. M. Sutton. "Resistance of Catheters Coated with a Modified Hydrogel to Encrustation during an in Vitro Test." *Urological Research* 17, no. 6 (1989): 353–56.
- Dave, Rachna N., Hiren M. Joshi, and Vayalam P. Venugopalan. "Novel Biocatalytic Polymer-Based Antimicrobial Coatings as Potential Ureteral Biomaterial: Preparation and in Vitro Performance Evaluation." Antimicrobial Agents and

- *Chemotherapy* 55, no. 2 (February 2011): 845–53. https://doi.org/10.1128/AAC.00477-10.
- Davenport, K., and F. X. Keeley. "Evidence for the Use of Silver-Alloy-Coated Urethral Catheters." *Journal of Hospital Infection* 60, no. 4 (August 2005): 298–303. https://doi.org/10.1016/j.jhin.2005.01.026.
- De Ridder, D. J. M. K., K. Everaert, L. Garcia Fernandez, J. V. Forner Valero, A. Borau Duran, M. L. Jauregui Abrisqueta, M. G. Ventura, and A. Rodriguez Sotillo. "Intermittent Catheterization with Hydrophilic-Coated Catheters (SpeediCath) Reduces the Risk of Clinical Urinary Tract Infection in Spinal Cord Injured Patients: A Prospective Randomized Parallel Comparative Trial." European Urology 48, no. 6 (December 2005): 991–95.
- Drekonja, Dimitri M., Michael A. Kuskowski, Timothy J. Wilt, and James R. Johnson.
 "Antimicrobial Urinary Catheters: A Systematic Review." Expert Review of Medical Devices
 5, no. 4 (July 2008): 495–506. https://doi.org/10.1586/17434440.5.4.495.
- Getliffe, Kathryn, Mandy Fader, Colleen Allen, Kim Pinar, and Katherine N. Moore. "Current Evidence on Intermittent Catheterization: Sterile Single-Use Catheters or Clean Reused Catheters and the Incidence of UTI." Journal of Wound, Ostomy, and Continence Nursing: Official Publication of The Wound, Ostomy and Continence Nurses Society 34, no. 3 (June 2007): 289–96. https://doi.org/10.1097/01.WON.0000270824.37436.f6.
- Goessaert, An-Sofie, Stephanie Antoons, Melissa Van Den Driessche, Ali Tourchi, Ronny Pieters, and Karel Everaert. "No-Touch Intermittent Catheterization: Caregiver Point of View on Sterility Errors, Duration, Comfort and Costs." *Journal of Advanced Nursing* 69, no. 9 (September 2013): 2000–2007.
- Granados, D. L., A. Jimenez, and T. R. Cuadrado. "Assessment of Parameters Associated to the Risk of PVC Catheter Reuse." *Journal of Biomedical Materials Research* 58, no. 5 (October 2001): 505–10. https://doi.org/10.1002/jbm.1047.
- * Ha, U.-Syn, and Yong-Hyun Cho. "Catheter-Associated Urinary Tract Infections: New Aspects of Novel Urinary Catheters." *International Journal of Antimicrobial Agents* 28, no. 6 (December 2006): 485–90. https://doi.org/10.1016/j.ijantimicag.2006.08.020.
- * Hakansson, M. A. "Reuse versus Single-Use Catheters for Intermittent Catheterization: What Is Safe and Preferred? Review of Current Status." *Spinal Cord* 52, no. 7 (July 2014): 511–16. https://doi.org/10.1038/sc.2014.79.
- Hakansson, Maria Aberg, Kristian Neovius, Mattias Norrback, John Svensson, and Thomas Lundqvist. "Health Care Utilization and Complications Rates among Users Of Hydrophilic-Coated Catheters." *Urologic Nursing* 35, no. 5 (October 2015): 239–47.
- Hameed, Ammar, Frank Chinegwundoh, and Ali Thwaini. "Prevention of Catheter-Related Urinary Tract Infections. [Review] [33 Refs]." Journal of Hospital Medicine 71, no. 3 (March 2010): 148–50.
- Hedlund, H., K. Hjelmas, O. Jonsson, P. Klarskov, and M. Talja. "Hydrophilic versus Non-Coated Catheters for Intermittent Catheterization." Scandinavian Journal of Urology and Nephrology 35, no. 1 (February 2001): 49–53.
- Heidari Zare, Hamideh, Viktorija Juhart, Attila Vass, Gerhard Franz, and Dieter Jocham.
 "Efficacy of Silver/Hydrophilic Poly(p-Xylylene) on Preventing Bacterial Growth and

- Biofilm Formation in Urinary Catheters." Biointerphases 12, no. 1 (January 2017).
- Hudson, E., and R. I. Murahata. "The 'No-Touch' Method of Intermittent Urinary Catheter Insertion: Can It Reduce the Risk of Bacteria Entering the Bladder?" Spinal Cord 43, no. 10 (October 2005): 611–14.
- Jahn, Patrick, Katrin Beutner, and Gero Langer. "Types of Indwelling Urinary Catheters for Long-Term Bladder Drainage in Adults." Cochrane Database of Systematic Reviews, no. 10 (2012): CD004997. https://doi.org/10.1002/14651858.CD004997.pub3.
- Johansen, Truls Bjerklund, Claes Hultling, Helmut Madersbacher, Giulio Del Popolo, and Gerard Amarenco. "A Novel Product for Intermittent Catheterization: Its Impact on Compliance with Daily Life - International Multicentre Study." *European Urology* 52, no. 1 (July 2007): 213–20. https://doi.org/10.1016/j.eururo.2006.11.041.
- Johansson, Kerstin, Gunvor Greis, Birgit Johansson, Agneta Grundtmann, Yvonne Pahlby, Solveig Torn, Hanna Axelberg, and Petrea Carlsson. "Evaluation of a New PVC-Free Catheter Material for Intermittent Catheterization: A Prospective, Randomized, Crossover Study." Scandinavian Journal of Urology 47, no. 1 (February 2013): 33–37. https://doi.org/10.3109/00365599.2012.696136.
- Johnson, J. R., P. Delavari, and M. Azar. "Activities of a Nitrofurazone-Containing Urinary Catheter and a Silver Hydrogel Catheter against Multidrug-Resistant Bacteria Characteristic of Catheter- Associated Urinary Tract Infection." *Antimicrobial Agents & Chemotherapy* 43, no. 12 (December 1999): 2990–95.
- Johnson, J. R., P. L. Roberts, R. J. Olsen, K. A. Moyer, and W. E. Stamm. "Prevention of Catheter-Associated Urinary Tract Infection with a Silver Oxide-Coated Urinary Catheter: Clinical and Microbiologic Correlates." *Journal of Infectious Diseases* 162, no. 5 (November 1990): 1145–50.
- Johnson, James R., Brian Johnston, and Michael A. Kuskowski. "In Vitro Comparison of Nitrofurazone- and Silver Alloy-Coated Foley Catheters for Contact-Dependent and Diffusible Inhibition of Urinary Tract Infection-Associated Microorganisms." Antimicrobial Agents and Chemotherapy 56, no. 9 (September 2012): 4969–72. https://doi.org/10.1128/AAC.00733-12.
- Johnson, James R., Michael A. Kuskowski, and Timothy J. Wilt. "Systematic Review: Antimicrobial Urinary Catheters to Prevent Catheter-Associated Urinary Tract Infection in Hospitalized Patients. [Review] [44 Refs]." Annals of Internal Medicine 144, no. 2 (January 2006): 116–26.
- * Kannankeril, Annie J., Hong T. Lam, Emily B. Reyes, and Joe McCartney. "Urinary Tract Infection Rates Associated with Re-Use of Catheters in Clean Intermittent Catheterization of Male Veterans." *Urologic Nursing* 31, no. 1 (February 2011): 41–48.
- * Karchmer, T. B., E. T. Giannetta, C. A. Muto, B. A. Strain, and B. M. Farr. "A Randomized Crossover Study of Silver-Coated Urinary Catheters in Hospitalized Patients." *Archives of Internal Medicine*160, no. 21 (November 27, 2000): 3294–98. https://doi.org/10.1001/archinte.160.21.3294.
- Kiddoo, Darcie, Bonita Sawatzky, Chasta-Dawne Bascu, Nafisa Dharamsi, Kourosh Afshar, and Katherine N. Moore. "Randomized Crossover Trial of Single Use Hydrophilic Coated vs Multiple Use Polyvinylchloride Catheters for Intermittent Catheterization to Determine

- Incidence of Urinary Infection." Journal of Urology 194, no. 1 (July 2015): 174–79.
- Kilonzo, Mary, Luke Vale, Robert Pickard, Thomas Lam, and James N'Dow. "Cost Effectiveness of Antimicrobial Catheters for Adults Requiring Short-Term Catheterization in Hospital." European Urology 66, no. 4 (October 2014): 615–18. https://doi.org/10.1016/j.eururo.2014.05.035.
- Kovindha, A., W. Na Chiang Mai, and H. Madersbacher. "Reused Silicone Catheter for Clean Intermittent Catheterization (CIC): Is It Safe for Spinal Cord-Injured (SCI) Men?" Spinal Cord 42, no. 11 (November 2004): 638–42.
- Lai, Kwan Kew, and Sally A. Fontecchio. "Use of Silver-Hydrogel Urinary Catheters on the Incidence of Catheter-Associated Urinary Tract Infections in Hospitalized Patients." Journal of Infection Control 30, no. 4 (June 2002): 221–25.
- Lam, Thomas B. L., Muhammad Imran Omar, Euan Fisher, Katie Gillies, and Sara MacLennan. "Types of Indwelling Urethral Catheters for Short-Term Catheterization in Hospitalized Adults. [Review][Update of Cochrane Database Syst Rev. 2008;(2):CD004013; PMID: 18425896]." Cochrane Database of Systematic Reviews, September 2014.
- Lavallee, D. J., N. M. Lapierre, P. K. Henwood, J. R. Pivik, M. Best, V. S. Springthorpe, and S. A. Sattar. "Catheter Cleaning for Re-Use in Intermittent Catheterization: New Light on an Old Problem." Sci Nursing 12, no. 1 (March 1995): 10–12.
- Lazarus, S. M., J. N. LaGuerre, H. Kay, S. Weinberg, and B. S. Levowitz. "A Hydrophilic Polymer-Coated Antimicrobial Urethral Catheter." *Journal of Biomedical Materials Research* 5, no. 3 (May 1971): 129–38. https://doi.org/10.1002/jbm.820050302.
- Lederer, James W., William R. Jarvis, Lendon Thomas, and Jaime Ritter. "Multicenter Cohort Study to Assess the Impact of a Silver-Alloy and Hydrogel-Coated Urinary Catheter on Symptomatic Catheter-Associated Urinary Tract Infections." *Journal of Wound* 41, no. 5 (October 2014): 473–80.
- Lee, Seung-Ju, Sae Woong Kim, Yong-Hyun Cho, Wan-Shik Shin, Sang Eun Lee, Choung-Soo Kim, Sung Joon Hong, Byung Ha Chung, Jung Ju Kim, and Moon Soo Yoon. "A Comparative Multicentre Study on the Incidence of Catheter-Associated Urinary Tract Infection between Nitrofurazone-Coated and Silicone Catheters." Journal of Antimicrobial Agents, September 2004.
- Leuck, Anne-Marie, James R. Johnson, Matthew A. Hunt, Kush Dhody, Kazem Kazempour, Patricia Ferrieri, and Susan Kline. "Safety and Efficacy of a Novel Silver-Impregnated Urinary Catheter System for Preventing Catheter-Associated Bacteriuria: A Pilot Randomized Clinical Trial." Journal of Infection Control 43, no. 3 (March 2015): 260–65.
- Li, Li, Wenqin Ye, Hong Ruan, Baoyan Yang, Shuqi Zhang, and Li. "Impact of Hydrophilic Catheters on Urinary Tract Infections in People with Spinal Cord Injury: Systematic Review and Meta- Analysis of Randomized Controlled Trials." Archives of Physical Medicine and Rehabilitation 94, no. 4 (April 2013): 782–87. https://doi.org/10.1016/j.apmr.2012.11.010.
- Li, Xiang, Peng Li, Rathi Saravanan, Anindya Basu, Biswajit Mishra, Suo Hon Lim, Xiaodi Su, Paul Anantharajah Tambyah, and Susanna Su Jan Leong. "Antimicrobial Functionalization of Silicone Surfaces with Engineered Short Peptides Having Broad Spectrum Antimicrobial

- and Salt-Resistant Properties." *Acta Biomaterialia* 10, no. 1 (January 2014): 258–66. https://doi.org/10.1016/j.actbio.2013.09.009.
- Liedberg, H., and T. Lundeberg. "Silver Alloy Coated Catheters Reduce Catheter-Associated Bacteriuria."
 British Journal of Urology 65, no. 4 (April 1990): 379–81.
- Liedberg, H., and T. Lundeberg. "Silver Coating of Urinary Catheters Prevents Adherence and Growth of Pseudomonas Aeruginosa." *Urological Research* 17, no. 6 (1989): 357–58.
- Lucas, Elizabeth J., Cheryl Baxter, Chandra Singh, Ahmad Z. Mohamed, Birong Li, Jingwen Zhang, Venkata R. Jayanthi, Stephen A. Koff, Brian VanderBrink, and Sheryl S. Justice. "Comparison of the Microbiological Milieu of Patients Randomized to Either Hydrophilic or Conventional PVC Catheters for Clean Intermittent Catheterization." *Journal of Pediatric Urology* 12, no. 3 (June 2016).
- Monson, T., and C. M. Kunin. "Evaluation of a Polymer-Coated Indwelling Catheter in Prevention of Infection." *Journal of Urology* 111, no. 2 (February 1974): 220–22.
- Niel-Weise, B. S., S. M. Arend, and P. J. van den Broek. "Is There Evidence for Recommending Silver-Coated Urinary Catheters in Guidelines?" *The Journal of Hospital Infection* 52, no. 2 (October 2002): 81–87.
- Oie, S., A. Kamiya, T. Seto, A. Suga, and K. Naito. "Microbial Contamination of in-Use Lubricants for Non-Touch Urethral Catheters in Intermittent Self-Catheterization." Biological & Pharmaceutical Bulletin 23, no. 6 (June 2000): 781–83.
- * Pachler, J., and C. Frimodt-Moller. "A Comparison of Prelubricated Hydrophilic and Non-Hydrophilic Polyvinyl Chloride Catheters for Urethral Catheterization." *BJU International* 83, no. 7 (May 1999): 767–69.
- Parker, Diana, Laurie Callan, Judith Harwood, Donna L. Thompson, Mary Wilde, and Mikel Gray. "Nursing Interventions to Reduce the Risk of Catheter-Associated Urinary Tract Infection. Part 1: Catheter Selection." Journal of Wound, Ostomy, and Continence Nursing: Official Publication of The Wound, Ostomy and Continence Nurses Society 36, no. 1 (February 2009): 23–34. https://doi.org/10.1097/01.WON.0000345173.05376.3e.
- Pickard, R., T. Lam, G. Maclennan, K. Starr, M. Kilonzo, G. McPherson, K. Gillies, et al. "Types of Urethral Catheter for Reducing Symptomatic Urinary Tract Infections in Hospitalized Adults Requiring Short-Term Catheterization: Multicentre Randomized Controlled Trial and Economic Evaluation of Antimicrobial- and Antiseptic-Impregnated Urethral Catheters (the CATHETER Trial)." Health Technology Assessment (Winchester, England) 16, no. 47 (November 2012): 1–197.
- Pickard, Robert, Thomas Lam, Graeme MacLennan, Kath Starr, Mary Kilonzo, Gladys McPherson, Katie Gillies, et al. "Antimicrobial Catheters for Reduction of Symptomatic Urinary Tract Infection in Adults Requiring Short-Term Catheterization in Hospital: A Multicentre Randomized Controlled Trial." Lancet 380, no. 9857 (December 2012): 1927–35.
- Prieto, Jacqui, Catherine L. Murphy, Katherine N. Moore, and Mandy Fader. "Intermittent Catheterization for Long-Term Bladder Management. [Review][Update of Cochrane Database Syst Rev. 2007;(4):CD006008; PMID: 17943874]." Cochrane Database of Systematic Reviews, September 2014.

- Pugach, J. L., V. DiTizio, M. W. Mittelman, A. W. Bruce, F. DiCosmo, and A. E. Khoury. "Antibiotic Hydrogel Coated Foley Catheters for Prevention of Urinary Tract Infection in a Rabbit Model." *Journal of Urology* 162, no. 3 (September 1999): 883–87. https://doi.org/10.1097/00005392-199909010-00084.
- Riley, D. K., D. C. Classen, L. E. Stevens, and J. P. Burke. "A Large Randomized Clinical Trial of a Silver-Impregnated Urinary Catheter: Lack of Efficacy and Staphylococcal Superinfection." *Journal of Medicine* 98, no. 4 (April 1995): 349–56.
- Rognoni, Carla, and Rosanna Tarricone. "Healthcare Resource Consumption for Intermittent Urinary Catheterization: Cost-Effectiveness of Hydrophilic Catheters and Budget Impact Analyses. Bmj Open 7, no. 1 (January 2017): e012360. https://doi.org/10.1136/bmjopen-2016-012360.
- * Rognoni, Carla, and Rosanna Tarricone. "Intermittent Catheterization with Hydrophilic and Non-Hydrophilic Urinary Catheters: Systematic Literature Review and Meta-Analyses. [Review]." BMC Urology 17, no. 1 (January 2017).
- Rupp, Mark E., Theresa Fitzgerald, Nedra Marion, Virginia Helget, Susan Puumala, James R. Anderson, and Paul D. Fey. "Effect of Silver-Coated Urinary Catheters: Efficacy, Cost-Effectiveness, and Antimicrobial Resistance." *Journal of Infection Control* 32, no. 8 (December 2004): 445–50.
- Saint, S., J. G. Elmore, S. D. Sullivan, S. S. Emerson, and T. D. Koepsell. "The Efficacy of Silver Alloy-Coated Urinary Catheters in Preventing Urinary Tract Infection: A Meta-Analysis." *Journal of Medicine* 105, no. 3 (September 1998): 236–41.
- Saint, S., D. L. Veenstra, S. D. Sullivan, C. Chenoweth, and A. M. Fendrick. "The Potential Clinical and Economic Benefits of Silver Alloy Urinary Catheters in Preventing Urinary Tract Infection." Archives of Internal Medicine 160, no. 17 (September 2000): 2670–75.
- Salvarci, Ahmet, Mehmet Koroglu, and Berna Erayman. "Investigation of Antibacterial Activity and Biofilm Formation of Silicones Coated With Minocycline-Rifampicin, Silver Nitrate, and Nitrofurantoin for Short-Term Utilization in In Vitro Urinary System Models." *Urology* 88 (February 2016): 66–75. https://doi.org/10.1016/j.urology.2015.10.022.
- Salvarci, Ahmet, Mehmet Koroglu, and Tayfun Gurpinar. "Evaluation of Antimicrobial Activities of Minocycline and Rifampin-Impregnated Silicone Surfaces in an in Vitro Urinary System Model." Journal of the Pakistan Medical Association 65, no. 2 (February 2015): 115–19.
- Sankar, Sriram, and T. Rajalakshmi. "Application of Polyethylene Glycol Hydrogel to Overcome Latex Urinary Catheter Related Problems." *Biofactors* 30, no. 4 (2007): 217–25.
- Sarica, S., Y. Akkoc, H. Karapolat, and H. Aktug. "Comparison of the Use of Conventional, Hydrophilic and Gel-Lubricated Catheters with Regard to Urethral Micro Trauma, Urinary System Infection, and Patient Satisfaction in Patients with Spinal Cord Injury: A Randomized Controlled Study." Journal of Physical 46, no. 4 (December 2010): 473–79.
- Schlager, T. A., M. Clark, and S. Anderson. "Effect of a Single-Use Sterile Catheter for Each Void on the Frequency of Bacteriuria in Children with Neurogenic Bladder on Intermittent Catheterization for Bladder Emptying." *Pediatrics* 108, no. 4 (October 2001): art. no.-e71. https://doi.org/10.1542/peds.108.4.e71.
- Schumm, K., and T. B. L. Lam. "Types of Urethral Catheters for Management of Short-

- Term Voiding Problems in Hospitalized Adults: A Short Version Cochrane Review." *Neurourology and Urodynamics* 27, no. 8 (2008): 738–46. https://doi.org/10.1002/nau.20645.
- Sekiguchi, Yuki, Yanyan Yao, Yoshihisa Ohko, Katsuyuki Tanaka, Tetsuro Ishido, Akira Fujishima, and Yoshinobu Kubota. "Self-Sterilizing Catheters with Titanium Dioxide Photocatalyst Thin Films for Clean Intermittent Catheterization: Basis and Study of Clinical Use." Journal of Urology 14, no. 5 (May 2007): 426–30.
- Seymour, Coral. "Audit of Catheter-Associated UTI Using Silver Alloy-Coated Foley Catheters." *Journal of Nursing* 15, no. 11 (June 2006): 598–603.
- Shamout, S., X. Biardeau, J. Corcos, and L. Campeau. "Outcome Comparison of Different Approaches to Self-Intermittent Catheterization in Neurogenic Patients: A Systematic Review." Spinal Cord 55, no. 7 (July 2017): 629–43. https://doi.org/10.1038/sc.2016.192.
- * "Silver-Coated Catheter Reduces Hospital UTIs, Associated Costs." Health Care Cost Reengineering Report 4, no. 1 (January 1999): 13–14, 1.
- Spinu, A., G. Onose, C. Daia, C. Pantu, A. Anghelescu, L. Onose, and A. Mihaescu. "Intermittent Catheterization in the Management of Post Spinal Cord Injury (SCI) Neurogenic Bladder Using New Hydrophilic, with Lubrication in Close Circuit Devices--Our Own Preliminary Results." *Journal of Medicine and Life* 5, no. 1 (February 22, 2012): 21–28.
- Srinivasan, Arjun, Tobi Karchmer, Ann Richards, Xiaoyan Song, and Trish M. Perl. "A Prospective Trial of a Novel, Silicone-Based, Silver-Coated Foley Catheter for the Prevention of Nosocomial Urinary Tract Infections." *Infection Control and Hospital Epidemiology* 27, no. 1 (January 2006): 38–43. https://doi.org/10.1086/499998.
- Stenzelius, Karin, Liselott Laszlo, Magdalena Madeja, Helene Pessah-Rasmusson, and Magnus Grabe. "Catheter-Associated Urinary Tract Infections and Other Infections in Patients Hospitalized for Acute Stroke: A Prospective Cohort Study of Two Different Silicone Catheters." Journal of Urology 50, no. 6 (December 2016): 483–88.
- Stenzelius, Karin, Siv Persson, Ulla-Britt Olsson, and Monica Stjarneblad. "Noble Metal Alloy-Coated Latex versus Silicone Foley Catheter in Short-Term Catheterization: A Randomized Controlled Study." Scandinavian Journal of Urology and Nephrology 45, no. 4 (September 2011): 258–64. https://doi.org/10.3109/00365599.2011.560007.
- Stepaniak, Philip C., Suneil R. Ramchandani, and Jeffrey A. Jones. "Acute Urinary Retention among Astronauts." Aviation Space and Environmental Medicine 78, no. 4 (April 2007): A5–8.
- * Talja, M., A. Korpela, and K. Jarvi. "Comparison of Urethral Reaction to Full Silicone, Hydrogen-Coated and Siliconized Latex Catheters." *Journal of Urology* 66, no. 6 (December 1990): 652–57.
- Thibon, P., X. Le Coutour, R. Leroyer, and J. Fabry. "Randomized Multi-Centre Trial of the Effects of a Catheter Coated with Hydrogel and Silver Salts on the Incidence of Hospital-Acquired Urinary Tract Infections." *Journal of Hospital Infection* 45, no. 2 (June 2000): 117–24.
- * Tidd, M. J., J. G. Gow, J. H. Pennington, J. Shelton, and M. R. Scott. "Comparison of Hydrophilic Polymer-Coated Latex, Uncoated Latex and PVC Indwelling Balloon Catheters in the Prevention of Urinary Infection." *Journal of Urology* 48, no. 4 (August 1976): 285–

91.

- * Tu, L. M., M. A. Polanski, H. D. Fraimow, D. A. Gordon, and K. E. Whitmore. "Hydrogel/Silver Ion Coated Urinary Catheter Reduces the Nosocomial Urinary Infection Rates in Intensive Care Units." *Journal of Urology* 159, no. 5 (May 1998): 310–310.
- Vapnek, Jonathan M., Frederick M. Maynard, and Jiensup Kim. "A Prospective Randomized Trial of the LoFric Hydrophilic Coated Catheter versus Conventional Plastic Catheter for Clean Intermittent Catheterization." *Journal of Urology* 169, no. 3 (March 2003): 994–98.
- Waller, L., O. Jonsson, L. Norlen, and L. Sullivan. "Clean Intermittent Catheterization in Spinal Cord Injury Patients: Long-Term Follow-up of a Hydrophilic Low Friction Technique." Journal of Urology 153, no. 2 (February 1995): 345–48.
- Waller, L., M. Telander, and L. Sullivan. "The Importance of Osmolality in Hydrophilic Urethral Catheters: A Crossover Study." *Spinal Cord* 35, no. 4 (April 1997): 229–33. https://doi.org/10.1038/sj.sc.3100390.
- Wang, Jianzhong, Qinyu Liu, Ye Tian, Zhongyu Jian, Hong Li, and Kunjie Wang.
 "Biodegradable Hydrophilic Polyurethane PEGU25 Loading Antimicrobial Peptide Bmap-28: A Sustained-Release Membrane Able to Inhibit Bacterial Biofilm Formation in Vitro."
 Scientific Reports, March 2015.
- Wang, Rong, Kim Lee Chua, and Koon Gee Neoh. "Bifunctional Coating with Sustained Release of 4-Amide-Piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone." Acs Biomaterials Science & Engineering 1, no. 6 (June 2015): 405–15. https://doi.org/10.1021/acsbiomaterials.5b00031.
- Wang, Rong, Koon Gee Neoh, En-Tang Kang, Paul Anantharajah Tambyah, and Edmund Chiong. "Antifouling Coating with Controllable and Sustained Silver Release for Long-Term Inhibition of Infection and Encrustation in Urinary Catheters." *Journal of Biomedical Materials Research Part B-Applied Biomaterials* 103, no. 3 (April 2015): 519–28. https://doi.org/10.1002/jbm.b.33230.
- Watanabe, Toyohiko, Shingo Yamamoto, Momokazu Gotoh, Tadanori Saitoh, Osamu Yokoyama, Tatsunori Murata, and Masayuki Takeda. "Cost-Effectiveness Analysis of Long-Term Intermittent Self-Catheterization with Hydrophilic-Coated and Uncoated Catheters in Patients with Spinal Cord Injury in Japan." Luts-Lower Urinary Tract Symptoms 9, no. 3 (September 2017): 142–50. https://doi.org/10.1111/luts.12122.
- Wu, Y., B. B. Hamilton, M. A. Boyink, and J. B. Nanninga. "Reusable Catheter for Long-Term Sterile Intermittent Catheterization." Archives of Physical Medicine and Rehabilitation 62, no. 1 (January 1981): 39–42.
- Wyndaele, J., D. De Ridder, K. Everaert, A. Heilporn, and B. Congard-Chassol. "Evaluation of the Use of Urocath-Gel Catheters for Intermittent Self-Catheterization by Male Patients Using Conventional Catheters for a Long Time." Spinal Cord 38, no. 2 (February 2000): 97–99.
- Yang, Shu-Hua, Yu-Sheng J. Lee, Feng-Huei Lin, Jen-Ming Yang, and Ko-Shau Chen.
 "Chitosan/Poly(vinyl Alcohol) Blending Hydrogel Coating Improves the Surface
 Characteristics of Segmented Polyurethane Urethral Catheters." Journal of Biomedical

Materials Research. Part B, Applied Biomaterials 83, no. 2 (November 2007): 304–13. https://doi.org/10.1002/jbm.b.30796.

19. Acronyms and Abbreviations

CCT Commercial Crew Transportation

CMO Crew Medical Officer
CR Change Request

DAG Directed Acyclic Graph

ESD Exploration Systems Directorate

EVA Extravehicular Activity

HSIR Human System Integration Requirements

IMM Integrated Medical Model ISS International Space Station

LSAH Longitudinal Surveillance of Astronaut Health

LxC Likelihood x Consequence MOG Medical Operations Group

MORD Medical Operations Requirements Document

MPCV Multi-Purpose Crew Vehicle

Pharm Risk Risk of Ineffective or Toxic Medications During Long-Duration Exploration Spaceflight

PRA Probable Risk Assessment

PVR Post Void Residual

SAS Space Adaptation Syndrome SSP Space Shuttle Program UTI Urinary Tract Infection

Appendix - Existing Evidence Base

Existing Evidence — Baseline

Background

Male Urinary Tract Infection (UTI)

- · Extremely rare for healthy males to get UTI
- · Seen in spaceflight

Chicken vs Egg

- Urinary Tract Infection (UTI) is a cause of urinary retention
 - Terrestrial population: UTI risk with increased post void residual (PVR)
 - Reported risk starts at > 50 ml (PVR)

Kelly, C.E. Evaluation of Voiding Dysfunction and Measurement of Bladder Volume. *Reviews in Urology*. 2004. 6 (suppl 1), S32-S37. Retrieved from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472847/pdf/RIU006001 0S32.pdf

Increased probability of UTI at 79 ml (PVR)
 Takahashi S, et al., Do patients who complain of lower urinary tract symptoms frequently have clinically significant pyuria?, J Infect Chemother (2014),

http://dx.doi.org/10.1016/j.jiac.2014.08.022

Bladder catheterization is a cause of UTI

Terrestrial population: once a catheter is placed, the daily incidence of bacteriuria is 3-10%
 Brusch J. L. (Author) Bronze M.S. (Ed.). Catheter-Related Urinary Tract Infection. MedEscape. Jan (2013). Retrieved from: http://emedicine.medscape.com/article/2040035-overview

Evidence

- Report of two shuttle flights of crew member with positive urine culture for Escherichia coli at landing
 - · Both cases had bladder catheterization in-flight
 - First case prophylaxed with antibiotics at time of bladder cath
 - Switched to TMP/SMX (Bactrim) DS after exhausted supply of nitrofurantoin
 - Ground culture was resistant to TMP/SMX (Bactrim) DS while taking this med
 - · Second case received antibiotic prophylaxis and still had bacteriuria at landing

Stepaniak PC, Ramchandani, SR, Jones, JA. Acute Urinary Retention Among Astronauts. *Aviation, Space, and Environmental Medicine*. April 2007;78,4: A5-8

Urinary Retention in Limited Resource Setting

Developing Asia and Africa countries

- ❖ Male: Female ratio 39:1
 - Age 4 to 94
 - -48% in 6th and 7th decade of life
- Common causes
 - Prostatic diseases 77%
 - Infections 76%
 - Trauma 12%
 - · Congenital 12%
- ❖ Bladder catheterization 76%
- Complication
 - Pyuria 18%
 - Sepsis 18%
 - Hemorrhage from catheter 17%

Ugare UG, Bassey IA, Udosen EJ, Essiet A, Bassey OO. Management of lower urinary retention in a limited resource setting. Ethiopia Journal of Health Science. 2014 Oct,24(4):329-36.

Increased Post Void Residual Management and UTI Risk

- Catheterization: No current guidelines
 - <200 Trial without catheterization
 - >400: Catheter in place
- Pharmacologic management: alpha blocker
 - · Tamsulosin (Flomax) available on ISS
- Terrestrial UTI from PVR
 - Reported UTI risk starts at > 50 ml (PVR)

Kelly, C.E. Evaluation of Voiding Dysfunction and Measurement of Bladder Volume. Reviews in Urology. 2004. 6 (suppl 1), S32-S37. Retrieved from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472847/pdf/RIU006001_0S32.pdf

Increased probability of UTI at 79 ml (PVR)

Takahashi S, et al., Do patients who complain of lower urinary tract symptoms frequently have clinically significant pyuria?, J Infect Chemother (2014), http://dx.doi.org/10.1016/j.jiac.2014.08.022

• Terrestrial UTI correlated with two or more ultrasound readings of 150 ml (PVR)

May, M., Brookman-Amissah, S., Hoschke, B., Gilfrich, C., Braun, K.-P., & Kendel, F. (2009, June). Post-Void Residual Urine as a Predictor of Urinary Tract Infection—Is There a Cutoff Value in Asymptomatic Men? Journal of Urology, 181, 2540-2544.

Bladder Catheterizations and UTI

Terrestrial data

• Once a catheter is placed, the daily incidence of bacteriuria is 3-10%

Brusch J. L. (Author) Bronze M.S. (Ed.). Catheter-Related Urinary Tract Infection. Medscape. Jan (2013). Retrieved from: http://emedicine.medscape.com/article/2040035-overview

Implications

- Could asymptomatic astronauts be at higher risk for UTIs from increased PVR?
 - Terrestrial UTI from PVR
 - -Reported UTI risk starts at > 50 ml (PVR)

Kelly, C.E. Evaluation of Voiding Dysfunction and Measurement of Bladder Volume. Reviews in Urology. 2004. 6 (suppl 1), S32-S37.

Retrieved from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472847/pdf/RIU006001_0S32.pdf

-Increased probability of UTI at 79 ml (PVR)

Takahashi S, et al., Do patients who complain of lower urinary tract symptoms frequently have clinically significant pyuria?, J Infect Chemother (2014), http://dx.doi.org/10.1016/j.jiac.2014.08.022

—Terrestrial UTI correlated with two or more ultrasound readings of 150 ml (PVR) May, M., Brookman-Amissah, S., Hoschke, B., Gilfrich, C., Braun, K.-P., & Kendel, F. (2009, June). Post-Void Residual Urine as a Predictor of Urinary Tract Infection—Is There a Cutoff Value in Asymptomatic Men? Journal of Urology, 181, 2540-2544.

Bibliography

- Al-Habdan, Ibrahim, Mir Sadat-Ali, James Ran Corea, Abdullah Al-Othman, Baher A. Kamal, and Devdas Sheena Shriyan. "Assessment of Nosocomial Urinary Tract Infections in Orthopedic Patients: A Prospective and Comparative Study Using Two Different Catheters." International Surgery 88, no. 3 (September 2003): 152–54.
- ❖ Beattie, Michelle. "Can Silver Alloy Catheters Reduce Infection Rates?" *Nursing Times* 107, no. 29 (August 26, 2011): 19–20, 22.
- ❖ Beattie, Michelle, and Julie Taylor. "Silver Alloy vs. Uncoated Urinary Catheters: A Systematic Review of the Literature." *Journal of Clinical Nursing* 20, no. 15–16 (August 2011): 2098–2108. https://doi.org/10.1111/j.1365-2702.2010.03561.x.
- Bermingham, Sarah L., Sarah Hodgkinson, Sue Wright, Ellie Hayter, Julian Spinks, and Carol Pellowe. "Intermittent Self Catheterization with Hydrophilic, Gel Reservoir, and Non-Coated Catheters: A Systematic Review and Cost Effectiveness Analysis. [Review]." BMJ, January 2013.
- ❖ Biering-Sorensen, F., K. Nielsen, and H. V. Hansen. "Urethral Epithelial Cells on the Surface on Hydrophilic Catheters after Intermittent Catheterization: Cross-over Study with Two Catheters." Spinal Cord 37, no. 4 (April 1999): 299–300.
- Bogaert, Guy A., Lieven Goeman, Dirk de Ridder, Martine Wevers, Jan Ivens, and Annette Schuermans. "The Physical and Antimicrobial Effects of Microwave Heating and Alcohol Immersion on Catheters That Are Reused for Clean Intermittent Catheterization." European Urology 46, no. 5 (November 2004): 641–46.
- ❖ Bologna, R. A., L. M. Tu, M. Polansky, H. D. Fraimow, D. A. Gordon, and K. E. Whitmore. "Hydrogel/Silver Ion-Coated Urinary Catheter Reduces Nosocomial Urinary Tract Infection Rates in Intensive Care Unit Patients: A Multicenter Study." *Urology* 54, no. 6 (December 1999): 982–87.
- Bonfill, Xavier, David Rigau, Maria Luisa Jauregui-Abrisqueta, Juana Maria Barrera Chacon,

- Sebastian Salvador de la Barrera, Carolina Maria Aleman-Sanchez, Manuel Bea-Munoz, et al. "A Randomized Controlled Trial to Assess the Efficacy and Cost-Effectiveness of Urinary Catheters with Silver Alloy Coating in Spinal Cord Injured Patients: Trial Protocol." *BMC Urology*, July 2013.
- Brosnahan, J., A. Jull, and C. Tracy. "Types of Urethral Catheters for Management of Short-Term Voiding Problems in Hospitalized Adults. [Review] [50 refs][Update in Cochrane Database Syst Rev. 2008;(2):CD004013; PMID: 18425896]." Cochrane Database of Systematic Reviews, 2004.
- Cardenas, D., K. N. Moore, A. Dannels-McClure, W. Scelza, D. Graves, and M. Brooks. "INTERMITTENT CATHETERISATION WITH HYDROPHILIC-COATED CATHETERS DELAYS THE ONSET OF URINARY TRACT INFECTION IN PATIENTS WITH ACUTE SPINAL CORD INJURY: AN INTERNATIONAL, MULTICENTER, RANDOMISED CONTROLLED TRIAL." Neurourology and Urodynamics 29, no. 6 (2010): 990–91.
- Cardenas, Diana D., and Jeanne M. Hoffman. "Hydrophilic Catheters versus Noncoated Catheters for Reducing the Incidence of Urinary Tract Infections: A Randomized Controlled Trial." Archives of Physical Medicine & Rehabilitation 90, no. 10 (October 2009): 1668–71.
- Cardenas, Diana D., Katherine N. Moore, Amy Dannels-McClure, William M. Scelza, Daniel E. Graves, Monifa Brooks, and Anna Karina Busch. "Intermittent Catheterization with a Hydrophilic-Coated Catheter Delays Urinary Tract Infections in Acute Spinal Cord Injury: A Prospective, Randomized, Multicenter Trial." Pm & R 3, no. 5 (May 2011): 408–17.
- Charbonneau-Smith, R. "No-Touch Catheterization and Infection Rates in a Select Spinal Cord Injured Population." Rehabilitation Nursing Journal 18, no. 5 (October 1993): 296–99.
- Chartier-Kastler, Emmanuel, and Pierre Denys. "Intermittent Catheterization with Hydrophilic Catheters as a Treatment of Chronic Neurogenic Urinary Retention." Neurourology and Urodynamics 30, no. 1 (January 2011): 21–31. https://doi.org/10.1002/nau.20929.
- Chung, Patrick H. Y., Carol W. Y. Wong, Christopher K. C. Lai, H. K. Siu, Dominic N. C. Tsang, K. Y. Yeung, Dennis K. M. Ip, and Paul K. H. Tam. "A Prospective Interventional Study to Examine the Effect of a Silver Alloy and Hydrogel-Coated Catheter on the Incidence of Catheter-Associated Urinary Tract Infection." Hong Kong Medical Journal 23, no. 3 (June 2017): 239–45. https://doi.org/10.12809/hkmj164906.
- Cindolo, Luca, Emiliano A. Palmieri, Riccardo Autorino, Luigi Salzano, and Vincenzo Altieri. "Standard versus Hydrophilic Catheterization in the Adjuvant Treatment of Patients with Superficial Bladder Cancer." Urologia Internationalis 73, no. 1 (2004): 19–22.
- Clark, J. F., S. J. Mealing, D. A. Scott, L. C. Vogel, A. Krassioukov, M. Spinelli, P. Bagi, and J.-J. Wyndaele. "A Cost-Effectiveness Analysis of Long-Term Intermittent Catheterization with Hydrophilic and Uncoated Catheters." Spinal Cord 54, no. 1 (January 2016): 73–77.
- Cohen, A. "A Microbiological Comparison of a Povidone-Iodine Lubricating Gel and a Control as Catheter Lubricants." The Journal of Hospital Infection 6 Suppl A (March 1985): 155–61.
- Cooper, Ian Richard, Mauro Pollini, and Federica Paladini. "The Potential of Photo-Deposited Silver Coatings on Foley Catheters to Prevent Urinary Tract Infections." Materials Science & Engineering C-Materials for Biological Applications 69 (December 1, 2016): 414–20. https://doi.org/10.1016/j.msec.2016.07.004.
- Cox, A. J., R. S. Millington, D. W. Hukins, and T. M. Sutton. "Resistance of Catheters

- Coated with a Modified Hydrogel to Encrustation during an in Vitro Test." *Urological Research* 17, no. 6 (1989): 353–56.
- ❖ Dave, Rachna N., Hiren M. Joshi, and Vayalam P. Venugopalan. "Novel Biocatalytic Polymer-Based Antimicrobial Coatings as Potential Ureteral Biomaterial: Preparation and in Vitro Performance Evaluation." Antimicrobial Agents and Chemotherapy 55, no. 2 (February 2011): 845–53. https://doi.org/10.1128/AAC.00477-10.
- ❖ Davenport, K., and F. X. Keeley. "Evidence for the Use of Silver-Alloy-Coated Urethral Catheters." *Journal of Hospital Infection* 60, no. 4 (August 2005): 298–303. https://doi.org/10.1016/j.jhin.2005.01.026.
- ❖ De Ridder, D. J. M. K., K. Everaert, L. Garcia Fernandez, J. V. Forner Valero, A. Borau Duran, M. L. Jauregui Abrisqueta, M. G. Ventura, and A. Rodriguez Sotillo. "Intermittent Catheterization with Hydrophilic-Coated Catheters (SpeediCath) Reduces the Risk of Clinical Urinary Tract Infection in Spinal Cord Injured Patients: A Prospective Randomized Parallel Comparative Trial." *European Urology* 48, no. 6 (December 2005): 991–95.
- Drekonja, Dimitri M., Michael A. Kuskowski, Timothy J. Wilt, and James R. Johnson. "Antimicrobial Urinary Catheters: A Systematic Review." Expert Review of Medical Devices 5, no. 4 (July 2008): 495–506. https://doi.org/10.1586/17434440.5.4.495.
- Getliffe, Kathryn, Mandy Fader, Colleen Allen, Kim Pinar, and Katherine N. Moore. "Current Evidence on Intermittent Catheterization: Sterile Single-Use Catheters or Clean Reused Catheters and the Incidence of UTI." Journal of Wound, Ostomy, and Continence Nursing: Official Publication of The Wound, Ostomy and Continence Nurses Society 34, no. 3 (June 2007): 289–96. https://doi.org/10.1097/01.WON.0000270824.37436.f6.
- Goessaert, An-Sofie, Stephanie Antoons, Melissa Van Den Driessche, Ali Tourchi, Ronny Pieters, and Karel Everaert. "No-Touch Intermittent Catheterization: Caregiver Point of View on Sterility Errors, Duration, Comfort and Costs." *Journal of Advanced Nursing* 69, no. 9 (September 2013): 2000–2007.
- Granados, D. L., A. Jimenez, and T. R. Cuadrado. "Assessment of Parameters Associated to the Risk of PVC Catheter Reuse." *Journal of Biomedical Materials Research* 58, no. 5 (October 2001): 505–10. https://doi.org/10.1002/jbm.1047.
- ❖ Ha, U.-Syn, and Yong-Hyun Cho. "Catheter-Associated Urinary Tract Infections: New Aspects of Novel Urinary Catheters." *International Journal of Antimicrobial Agents* 28, no. 6 (December 2006): 485–90. https://doi.org/10.1016/j.ijantimicag.2006.08.020.
- ❖ Hakansson, M. A. "Reuse versus Single-Use Catheters for Intermittent Catheterization: What Is Safe and Preferred? Review of Current Status." Spinal Cord 52, no. 7 (July 2014): 511–16. https://doi.org/10.1038/sc.2014.79.
- ❖ Hakansson, Maria Aberg, Kristian Neovius, Mattias Norrback, John Svensson, and Thomas Lundqvist. "Health Care Utilization and Complications Rates among Users Of Hydrophilic-Coated Catheters." *Urologic Nursing* 35, no. 5 (October 2015): 239–47.
- ❖ Hameed, Ammar, Frank Chinegwundoh, and Ali Thwaini. "Prevention of Catheter-Related Urinary Tract Infections. [Review] [33 Refs]." Journal of Hospital Medicine 71, no. 3 (March 2010): 148-50.
- Hedlund, H., K. Hjelmas, O. Jonsson, P. Klarskov, and M. Talja. "Hydrophilic versus Non-Coated Catheters for Intermittent Catheterization." Scandinavian Journal of Urology and Nephrology 35, no. 1 (February 2001): 49–53.
- Heidari Zare, Hamideh, Viktorija Juhart, Attila Vass, Gerhard Franz, and Dieter Jocham. "Efficacy of Silver/Hydrophilic Poly(p-Xylylene) on Preventing Bacterial Growth and

- Biofilm Formation in Urinary Catheters." Biointerphases 12, no. 1 (January 2017).
- ❖ Hudson, E., and R. I. Murahata. "The 'No-Touch' Method of Intermittent Urinary Catheter Insertion: Can It Reduce the Risk of Bacteria Entering the Bladder?" Spinal Cord 43, no. 10 (October 2005): 611–14.
- ❖ Jahn, Patrick, Katrin Beutner, and Gero Langer. "Types of Indwelling Urinary Catheters for Long-Term Bladder Drainage in Adults." Cochrane Database of Systematic Reviews, no. 10 (2012): CD004997. https://doi.org/10.1002/14651858.CD004997.pub3.
- ❖ Johansen, Truls Bjerklund, Claes Hultling, Helmut Madersbacher, Giulio Del Popolo, and Gerard Amarenco. "A Novel Product for Intermittent Catheterization: Its Impact on Compliance with Daily Life International Multicentre Study." European Urology 52, no. 1 (July 2007): 213–20. https://doi.org/10.1016/j.eururo.2006.11.041.
- ❖ Johansson, Kerstin, Gunvor Greis, Birgit Johansson, Agneta Grundtmann, Yvonne Pahlby, Solveig Torn, Hanna Axelberg, and Petrea Carlsson. "Evaluation of a New PVC-Free Catheter Material for Intermittent Catheterization: A Prospective, Randomized, Crossover Study." Scandinavian Journal of Urology 47, no. 1 (February 2013): 33–37. https://doi.org/10.3109/00365599.2012.696136.
- ❖ Johnson, J. R., P. Delavari, and M. Azar. "Activities of a Nitrofurazone-Containing Urinary Catheter and a Silver Hydrogel Catheter against Multidrug-Resistant Bacteria Characteristic of Catheter- Associated Urinary Tract Infection." Antimicrobial Agents & Chemotherapy 43, no. 12 (December 1999): 2990–95.
- Johnson, J. R., P. L. Roberts, R. J. Olsen, K. A. Moyer, and W. E. Stamm. "Prevention of Catheter-Associated Urinary Tract Infection with a Silver Oxide-Coated Urinary Catheter: Clinical and Microbiologic Correlates." Journal of Infectious Diseases 162, no. 5 (November 1990): 1145–50.
- ❖ Johnson, James R., Brian Johnston, and Michael A. Kuskowski. "In Vitro Comparison of Nitrofurazone- and Silver Alloy-Coated Foley Catheters for Contact-Dependent and Diffusible Inhibition of Urinary Tract Infection-Associated Microorganisms." Antimicrobial Agents and Chemotherapy 56, no. 9 (September 2012): 4969–72. https://doi.org/10.1128/AAC.00733-12.
- ❖ Johnson, James R., Michael A. Kuskowski, and Timothy J. Wilt. "Systematic Review: Antimicrobial Urinary Catheters to Prevent Catheter-Associated Urinary Tract Infection in Hospitalized Patients. [Review] [44 Refs]." Annals of Internal Medicine 144, no. 2 (January 2006): 116–26.
- Kannankeril, Annie J., Hong T. Lam, Emily B. Reyes, and Joe McCartney. "Urinary Tract Infection Rates Associated with Re-Use of Catheters in Clean Intermittent Catheterization of Male Veterans."
- Urologic Nursing 31, no. 1 (February 2011): 41–48.
- Karchmer, T. B., E. T. Giannetta, C. A. Muto, B. A. Strain, and B. M. Farr. "A Randomized Crossover Study of Silver-Coated Urinary Catheters in Hospitalized Patients." Archives of Internal Medicine
- 160, no. 21 (November 27, 2000): 3294–98. https://doi.org/10.1001/archinte.160.21.3294.
- Kiddoo, Darcie, Bonita Sawatzky, Chasta-Dawne Bascu, Nafisa Dharamsi, Kourosh Afshar, and Katherine N. Moore. "Randomized Crossover Trial of Single Use Hydrophilic Coated vs Multiple Use Polyvinylchloride Catheters for Intermittent Catheterization to Determine Incidence of Urinary Infection." Journal of Urology 194, no. 1 (July 2015): 174–79.

- ❖ Kilonzo, Mary, Luke Vale, Robert Pickard, Thomas Lam, and James N'Dow. "Cost Effectiveness of Antimicrobial Catheters for Adults Requiring Short-Term Catheterization in Hospital." European Urology 66, no. 4 (October 2014): 615–18. https://doi.org/10.1016/j.eururo.2014.05.035.
- Kovindha, A., W. Na Chiang Mai, and H. Madersbacher. "Reused Silicone Catheter for Clean Intermittent Catheterization (CIC): Is It Safe for Spinal Cord-Injured (SCI) Men?" Spinal Cord 42, no. 11 (November 2004): 638–42.
- ❖ Lai, Kwan Kew, and Sally A. Fontecchio. "Use of Silver-Hydrogel Urinary Catheters on the Incidence of Catheter-Associated Urinary Tract Infections in Hospitalized Patients." Journal of Infection Control 30, no. 4 (June 2002): 221–25.
- ❖ Lam, Thomas B. L., Muhammad Imran Omar, Euan Fisher, Katie Gillies, and Sara MacLennan. "Types of Indwelling Urethral Catheters for Short-Term Catheterization in Hospitalized Adults. [Review][Update of Cochrane Database Syst Rev. 2008;(2):CD004013; PMID: 18425896]." Cochrane Database of Systematic Reviews, September 2014.
- ❖ Lavallee, D. J., N. M. Lapierre, P. K. Henwood, J. R. Pivik, M. Best, V. S. Springthorpe, and S. A. Sattar. "Catheter Cleaning for Re-Use in Intermittent Catheterization: New Light on an Old Problem." Sci Nursing 12, no. 1 (March 1995): 10−12.
- ❖ Lazarus, S. M., J. N. LaGuerre, H. Kay, S. Weinberg, and B. S. Levowitz. "A Hydrophilic Polymer-Coated Antimicrobial Urethral Catheter." Journal of Biomedical Materials Research 5, no. 3 (May 1971): 129–38. https://doi.org/10.1002/jbm.820050302.
- ❖ Lederer, James W., William R. Jarvis, Lendon Thomas, and Jaime Ritter. "Multicenter Cohort Study to Assess the Impact of a Silver-Alloy and Hydrogel-Coated Urinary Catheter on Symptomatic Catheter-Associated Urinary Tract Infections." Journal of Wound 41, no. 5 (October 2014): 473–80.
- ❖ Lee, Seung-Ju, Sae Woong Kim, Yong-Hyun Cho, Wan-Shik Shin, Sang Eun Lee, Choung-Soo Kim, Sung Joon Hong, Byung Ha Chung, Jung Ju Kim, and Moon Soo Yoon. "A Comparative Multicentre Study on the Incidence of Catheter-Associated Urinary Tract Infection between Nitrofurazone-Coated and Silicone Catheters." Journal of Antimicrobial Agents, September 2004.
- ❖ Leuck, Anne-Marie, James R. Johnson, Matthew A. Hunt, Kush Dhody, Kazem Kazempour, Patricia Ferrieri, and Susan Kline. "Safety and Efficacy of a Novel Silver-Impregnated Urinary Catheter System for Preventing Catheter-Associated Bacteriuria: A Pilot Randomized Clinical Trial." Journal of Infection Control 43, no. 3 (March 2015): 260–65.
- ❖ Li, Li, Wenqin Ye, Hong Ruan, Baoyan Yang, Shuqi Zhang, and Li. "Impact of Hydrophilic Catheters on Urinary Tract Infections in People with Spinal Cord Injury: Systematic Review and Meta- Analysis of Randomized Controlled Trials." Archives of Physical Medicine and Rehabilitation 94, no. 4 (April 2013): 782–87. https://doi.org/10.1016/j.apmr.2012.11.010.
- ❖ Li, Xiang, Peng Li, Rathi Saravanan, Anindya Basu, Biswajit Mishra, Suo Hon Lim, Xiaodi Su, Paul Anantharajah Tambyah, and Susanna Su Jan Leong. "Antimicrobial Functionalization of Silicone Surfaces with Engineered Short Peptides Having Broad Spectrum Antimicrobial and Salt-Resistant Properties." Acta Biomaterialia 10, no. 1 (January 2014): 258–66. https://doi.org/10.1016/j.actbio.2013.09.009.
- ❖ Liedberg, H., and T. Lundeberg. "Silver Alloy Coated Catheters Reduce Catheter-Associated Bacteriuria." British Journal of Urology 65, no. 4 (April 1990): 379–81.

- ❖ Liedberg, H., and T. Lundeberg. "Silver Coating of Urinary Catheters Prevents Adherence and Growth of Pseudomonas Aeruginosa." *Urological Research* 17, no. 6 (1989): 357–58.
- ❖ Lucas, Elizabeth J., Cheryl Baxter, Chandra Singh, Ahmad Z. Mohamed, Birong Li, Jingwen Zhang, Venkata R. Jayanthi, Stephen A. Koff, Brian VanderBrink, and Sheryl S. Justice. "Comparison of the Microbiological Milieu of Patients Randomized to Either Hydrophilic or Conventional PVC Catheters for Clean Intermittent Catheterization." Journal of Pediatric Urology 12, no. 3 (June 2016).
- Meigs JB, Barry MJ, Giovannucci E, Rimm EB, STampfer MJ, Kawachi I. Incidence rates and risk factors for acute urinary retention: the health professionals followup study. The Journal of urology. 1999 Aug;162(2):376-82.
- ❖ Monson, T., and C. M. Kunin. "Evaluation of a Polymer-Coated Indwelling Catheter in Prevention of Infection." *Journal of Urology* 111, no. 2 (February 1974): 220–22.
- ❖ Niel-Weise, B. S., S. M. Arend, and P. J. van den Broek. "Is There Evidence for Recommending Silver-Coated Urinary Catheters in Guidelines?" The Journal of Hospital Infection 52, no. 2 (October 2002): 81–87.
- Oie, S., A. Kamiya, T. Seto, A. Suga, and K. Naito. "Microbial Contamination of in-Use Lubricants for Non-Touch Urethral Catheters in Intermittent Self-Catheterization." Biological & Pharmaceutical Bulletin 23, no. 6 (June 2000): 781–83.
- Pachler, J., and C. Frimodt-Moller. "A Comparison of Prelubricated Hydrophilic and Non-Hydrophilic Polyvinyl Chloride Catheters for Urethral Catheterization." BJU International 83, no. 7 (May 1999): 767–69.
- ❖ Parker, Diana, Laurie Callan, Judith Harwood, Donna L. Thompson, Mary Wilde, and Mikel Gray. "Nursing Interventions to Reduce the Risk of Catheter-Associated Urinary Tract Infection. Part 1: Catheter Selection." Journal of Wound, Ostomy, and Continence Nursing: Official Publication of The Wound, Ostomy and Continence Nurses Society 36, no. 1 (February 2009): 23–34. https://doi.org/10.1097/01.WON.0000345173.05376.3e.
- ❖ Pickard, R., T. Lam, G. Maclennan, K. Starr, M. Kilonzo, G. McPherson, K. Gillies, et al. "Types of Urethral Catheter for Reducing Symptomatic Urinary Tract Infections in Hospitalized Adults Requiring Short-Term Catheterization: Multicentre Randomized Controlled Trial and Economic Evaluation of Antimicrobial- and Antiseptic-Impregnated Urethral Catheters (the CATHETER Trial)." Health Technology Assessment (Winchester, England) 16, no. 47 (November 2012): 1–197.
- Pickard, Robert, Thomas Lam, Graeme MacLennan, Kath Starr, Mary Kilonzo, Gladys McPherson, Katie Gillies, et al. "Antimicrobial Catheters for Reduction of Symptomatic Urinary Tract Infection in Adults Requiring Short-Term Catheterization in Hospital: A Multicentre Randomized Controlled Trial." Lancet 380, no. 9857 (December 2012): 1927–35.
- Prieto, Jacqui, Catherine L. Murphy, Katherine N. Moore, and Mandy Fader. "Intermittent Catheterization for Long-Term Bladder Management. [Review][Update of Cochrane Database Syst Rev. 2007;(4):CD006008; PMID: 17943874]." Cochrane Database of Systematic Reviews, September 2014.
- Pugach, J. L., V. DiTizio, M. W. Mittelman, A. W. Bruce, F. DiCosmo, and A. E. Khoury. "Antibiotic Hydrogel Coated Foley Catheters for Prevention of Urinary Tract Infection in a Rabbit Model." *Journal of Urology* 162, no. 3 (September 1999): 883–87. https://doi.org/10.1097/00005392-199909010-00084.
- Riley, D. K., D. C. Classen, L. E. Stevens, and J. P. Burke. "A Large Randomized Clinical Trial of a Silver-Impregnated Urinary Catheter: Lack of Efficacy and Staphylococcal

- Superinfection." Journal of Medicine 98, no. 4 (April 1995): 349-56.
- Rognoni, Carla, and Rosanna Tarricone. "Healthcare Resource Consumption for Intermittent Urinary Catheterization: Cost-Effectiveness of Hydrophilic Catheters and Budget Impact Analyses."
- Bmj Open 7, no. 1 (January 2017): e012360. https://doi.org/10.1136/bmjopen-2016-012360.
- Rognoni, Carla, and Rosanna Tarricone. "Intermittent Catheterization with Hydrophilic and Non-Hydrophilic Urinary Catheters: Systematic Literature Review and Meta-Analyses. [Review]." BMC Urology 17, no. 1 (January 2017).
- Rupp, Mark E., Theresa Fitzgerald, Nedra Marion, Virginia Helget, Susan Puumala, James R. Anderson, and Paul D. Fey. "Effect of Silver-Coated Urinary Catheters: Efficacy, Cost-Effectiveness, and Antimicrobial Resistance." Journal of Infection Control 32, no. 8 (December 2004): 445–50.
- Saint, S., J. G. Elmore, S. D. Sullivan, S. S. Emerson, and T. D. Koepsell. "The Efficacy of Silver Alloy-Coated Urinary Catheters in Preventing Urinary Tract Infection: A Meta-Analysis." Journal of Medicine 105, no. 3 (September 1998): 236–41.
- Saint, S., D. L. Veenstra, S. D. Sullivan, C. Chenoweth, and A. M. Fendrick. "The Potential Clinical and Economic Benefits of Silver Alloy Urinary Catheters in Preventing Urinary Tract Infection." Archives of Internal Medicine 160, no. 17 (September 2000): 2670–75.
- Salvarci, Ahmet, Mehmet Koroglu, and Berna Erayman. "Investigation of Antibacterial Activity and Biofilm Formation of Silicones Coated With Minocycline-Rifampicin, Silver Nitrate, and Nitrofurantoin for Short-Term Utilization in In Vitro Urinary System Models." Urology 88 (February 2016): 66–75. https://doi.org/10.1016/j.urology.2015.10.022.
- Salvarci, Ahmet, Mehmet Koroglu, and Tayfun Gurpinar. "Evaluation of Antimicrobial Activities of Minocycline and Rifampin-Impregnated Silicone Surfaces in an in Vitro Urinary System Model." Journal of the Pakistan Medical Association 65, no. 2 (February 2015): 115–19.
- Sankar, Sriram, and T. Rajalakshmi. "Application of Polyethylene Glycol Hydrogel to Overcome Latex Urinary Catheter Related Problems." Biofactors 30, no. 4 (2007): 217–25.
- Sarica, S., Y. Akkoc, H. Karapolat, and H. Aktug. "Comparison of the Use of Conventional, Hydrophilic and Gel-Lubricated Catheters with Regard to Urethral Micro Trauma, Urinary System Infection, and Patient Satisfaction in Patients with Spinal Cord Injury: A Randomized Controlled Study." Journal of Physical 46, no. 4 (December 2010): 473–79.
- Schlager, T. A., M. Clark, and S. Anderson. "Effect of a Single-Use Sterile Catheter for Each Void on the Frequency of Bacteriuria in Children with Neurogenic Bladder on Intermittent Catheterization for Bladder Emptying." Pediatrics 108, no. 4 (October 2001): art. no.-e71. https://doi.org/10.1542/peds.108.4.e71.
- Schumm, K., and T. B. L. Lam. "Types of Urethral Catheters for Management of Short-Term Voiding Problems in Hospitalized Adults: A Short Version Cochrane Review." Neurourology and Urodynamics 27, no. 8 (2008): 738–46. https://doi.org/10.1002/nau.20645.
- Sekiguchi, Yuki, Yanyan Yao, Yoshihisa Ohko, Katsuyuki Tanaka, Tetsuro Ishido, Akira Fujishima, and Yoshinobu Kubota. "Self-Sterilizing Catheters with Titanium Dioxide Photocatalyst Thin Films for Clean Intermittent Catheterization: Basis and Study of Clinical Use." Journal of Urology 14, no. 5 (May 2007): 426–30.
- Seymour, Coral. "Audit of Catheter-Associated UTI Using Silver Alloy-Coated Foley Catheters." Journal of Nursing 15, no. 11 (June 2006): 598–603.

- Shamout, S., X. Biardeau, J. Corcos, and L. Campeau. "Outcome Comparison of Different Approaches to Self-Intermittent Catheterization in Neurogenic Patients: A Systematic Review." Spinal Cord 55, no. 7 (July 2017): 629–43. https://doi.org/10.1038/sc.2016.192.
- ◆ "Silver-Coated Catheter Reduces Hospital UTIs, Associated Costs." Health Care Cost
 Reengineering Report 4, no. 1 (January 1999): 13–14, 1.
- Spinu, A., G. Onose, C. Daia, C. Pantu, A. Anghelescu, L. Onose, and A. Mihaescu. "Intermittent Catheterization in the Management of Post Spinal Cord Injury (SCI) Neurogenic Bladder Using New Hydrophilic, with Lubrication in Close Circuit Devices--Our Own Preliminary Results." Journal of Medicine and Life 5, no. 1 (February 22, 2012): 21–28.
- Srinivasan, Arjun, Tobi Karchmer, Ann Richards, Xiaoyan Song, and Trish M. Perl. "A Prospective Trial of a Novel, Silicone-Based, Silver-Coated Foley Catheter for the Prevention of Nosocomial Urinary Tract Infections." Infection Control and Hospital Epidemiology 27, no. 1 (January 2006): 38–43. https://doi.org/10.1086/499998.
- Stenzelius, Karin, Liselott Laszlo, Magdalena Madeja, Helene Pessah-Rasmusson, and Magnus Grabe. "Catheter-Associated Urinary Tract Infections and Other Infections in Patients Hospitalized for Acute Stroke: A Prospective Cohort Study of Two Different Silicone Catheters." Journal of Urology 50, no. 6 (December 2016): 483–88.
- Stenzelius, Karin, Siv Persson, Ulla-Britt Olsson, and Monica Stjarneblad. "Noble Metal Alloy-Coated Latex versus Silicone Foley Catheter in Short-Term Catheterization: A Randomized Controlled Study." Scandinavian Journal of Urology and Nephrology 45, no. 4 (September 2011): 258–64. https://doi.org/10.3109/00365599.2011.560007.
- ❖ Stepaniak, Philip C., Suneil R. Ramchandani, and Jeffrey A. Jones. "Acute Urinary Retention among Astronauts." Aviation Space and Environmental Medicine 78, no. 4 (April 2007): A5–8.
- ❖ Talja, M., A. Korpela, and K. Jarvi. "Comparison of Urethral Reaction to Full Silicone, Hydrogen-Coated and Siliconized Latex Catheters." Journal of Urology 66, no. 6 (December 1990): 652–57.
- ❖ Thibon, P., X. Le Coutour, R. Leroyer, and J. Fabry. "Randomized Multi-Centre Trial of the Effects of a Catheter Coated with Hydrogel and Silver Salts on the Incidence of Hospital-Acquired Urinary Tract Infections." Journal of Hospital Infection 45, no. 2 (June 2000): 117–24.
- ❖ Tidd, M. J., J. G. Gow, J. H. Pennington, J. Shelton, and M. R. Scott. "Comparison of Hydrophilic Polymer-Coated Latex, Uncoated Latex and PVC Indwelling Balloon Catheters in the Prevention of Urinary Infection." Journal of Urology 48, no. 4 (August 1976): 285– 91.
- Tu, L. M., M. A. Polanski, H. D. Fraimow, D. A. Gordon, and K. E. Whitmore. "Hydrogel/Silver Ion Coated Urinary Catheter Reduces the Nosocomial Urinary Infection Rates in Intensive Care Units."
- ❖ Journal of Urology 159, no. 5 (May 1998): 310–310.
- Vapnek, Jonathan M., Frederick M. Maynard, and Jiensup Kim. "A Prospective Randomized Trial of the LoFric Hydrophilic Coated Catheter versus Conventional Plastic Catheter for Clean Intermittent Catheterization." Journal of Urology 169, no. 3 (March 2003): 994–98.
- Waller, L., O. Jonsson, L. Norlen, and L. Sullivan. "Clean Intermittent Catheterization in Spinal Cord Injury Patients: Long-Term Follow-up of a Hydrophilic Low Friction Technique." Journal of Urology 153, no. 2 (February 1995): 345–48.

- Waller, L., M. Telander, and L. Sullivan. "The Importance of Osmolality in Hydrophilic Urethral Catheters: A Crossover Study." Spinal Cord 35, no. 4 (April 1997): 229–33. https://doi.org/10.1038/sj.sc.3100390.
- Wang, Jianzhong, Qinyu Liu, Ye Tian, Zhongyu Jian, Hong Li, and Kunjie Wang. "Biodegradable Hydrophilic Polyurethane PEGU25 Loading Antimicrobial Peptide Bmap-28: A Sustained-Release Membrane Able to Inhibit Bacterial Biofilm Formation in Vitro." Scientific Reports, March 2015.
- Wang, Rong, Kim Lee Chua, and Koon Gee Neoh. "Bifunctional Coating with Sustained Release of 4-Amide-Piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone." Acs Biomaterials Science & Engineering 1, no. 6 (June 2015): 405–15. https://doi.org/10.1021/acsbiomaterials.5b00031.
- Wang, Rong, Koon Gee Neoh, En-Tang Kang, Paul Anantharajah Tambyah, and Edmund Chiong. "Antifouling Coating with Controllable and Sustained Silver Release for Long-Term Inhibition of Infection and Encrustation in Urinary Catheters." Journal of Biomedical Materials Research Part B-Applied Biomaterials 103, no. 3 (April 2015): 519–28. https://doi.org/10.1002/jbm.b.33230.
- ❖ Watanabe, Toyohiko, Shingo Yamamoto, Momokazu Gotoh, Tadanori Saitoh, Osamu Yokoyama, Tatsunori Murata, and Masayuki Takeda. "Cost-Effectiveness Analysis of Long-Term Intermittent Self-Catheterization with Hydrophilic-Coated and Uncoated Catheters in Patients with Spinal Cord Injury in Japan." Luts-Lower Urinary Tract Symptoms 9, no. 3 (September 2017): 142–50. https://doi.org/10.1111/luts.12122.
- Wu, Y., B. B. Hamilton, M. A. Boyink, and J. B. Nanninga. "Reusable Catheter for Long-Term Sterile Intermittent Catheterization." Archives of Physical Medicine and Rehabilitation 62, no. 1 (January 1981): 39–42.
- Wyndaele, J., D. De Ridder, K. Everaert, A. Heilporn, and B. Congard-Chassol. "Evaluation of the Use of Urocath-Gel Catheters for Intermittent Self-Catheterization by Male Patients Using Conventional Catheters for a Long Time." Spinal Cord 38, no. 2 (February 2000): 97–99.
- ❖ Yang, Shu-Hua, Yu-Sheng J. Lee, Feng-Huei Lin, Jen-Ming Yang, and Ko-Shau Chen. "Chitosan/Poly(vinyl Alcohol) Blending Hydrogel Coating Improves the Surface Characteristics of Segmented Polyurethane Urethral Catheters." Journal of Biomedical Materials Research. Part B, Applied Biomaterials 83, no. 2 (November 2007): 304–13. https://doi.org/10.1002/jbm.b.30796.

Other Background

The content in this presentation has been extensively discussed in the following venues:

Board/Meeting	Date	Focus	
MOG Brief	02/13/2018	Introducing better catheters to lower the incidence of UTIs further – <u>HMS to implement</u> on ISS whenever possible	
SMOCB	02/26/2018	New risk package information including catheter information – <u>Approved to proceed to HSRB</u>	
HSRB CR Kick-Off Risk Package	03/01/2018	<u>Informational</u> – Risk scheduled "yearly" updates to include new evidence – <u>Approved</u> <u>to release CR</u>	
Risk Package Evaluated via HSRB CR	03/12/2018 (Released)	<u>Decisional</u> – <u>To update risk with new evidence</u> . Received evaluations against the Forward Plan from CH&S on 03/29/2018 and 04/26/2018 regarding proposed on-orbit activity to measure Post Void Residuals (PVR) on healthy asymptomatic individuals	
AOHMG – UR Forward Plan Pre-AOHMG Meeting with CMO 08/15/2018 Pre-AOHMG Meeting with HRP 09/13/2018	09/27/2018	[A new package focusing on the forward plan was developed throughout July and Aug for a meeting in late Aug. Due to AOHMG schedule conflicts, meeting postponed to Sept.] Based on the evidence presented, the AOHMG was not convinced that the proposed forward plan fell under Occ. Surveillance, as interventions stemming from this work were unclear	
Post-AOHMG Path Forward	11/07/2018	Initial meeting with HRP, CH&S, and CMO in an attempt to define what research and occupational surveillance activities are needed – work suspended	

• Due to open questions from the CR review (From-To Matrix) which remain unresolved regarding <u>a forward plan</u> that involves HRP and CH&S, the team requests to bring a mitigation plan at a later date.

Post Void Residual Crew Time

- ***** KU coverage required.
- ❖ Self-scan
- **❖** Worst case scenario per session
 - Ultrasound is unstowed and will be restowed at completion.
 - -70 min setup/power on/crew prep/data downlink/power off/stow
 - -10 min scan time

Best case scenario per session

- Ultrasound is already deployed and will remain partially deployed at completion.
 - -35 min setup/power on//crew prep/data downlink/power off/stow
 - -10 min scan time

Pharmacokinetic Study

- Two inflight ultrasound sessions (promethazine and placebo)
- · Ultrasound activity 2.5 hours after medication ingestion

Standalone study

· One inflight session at any time

Addition of USOS Data to Urinary Retention Incidence

Available sources of USOS data

- MSMB database-does not contain inflight medical events.
- SMOT notes- significant reporting bias especially if no operational impact; manual review
- Request data directly from partners.
- Given overwhelming new evidence, will this data add much?
- **❖** Analysis would take time to complete; should we pursue USOS data in the future?

Methods Urinary Catheter and UTI

Systematic literature review

- Ovid
- PubMed
- Defense Technical Information Center
- Institute for Scientific Information Web of Science
- Google Scholar

❖ 80 studies identified

- In vitro / model
- Animal
- · Human observational trials
- Randomized controlled clinical trials

❖ Level of evidence

- 1= Survey
- 2 = Randomized Control Trial
- 3= Review
- 0= Other

Applicability

- 1= In vitro
 - 2= Human proxy measure
 - 3= Human direct measure
- Level of evidence and applicability scored by adding scores from each study and dividing by total possible score

Infection vs Catheter Type Compared to Standard Catheter

Intermittent Catheters (31 studies)

	Hydrophilic	No-touch	Reuse
Lower Infection Rate			
(Improvement)			
No Change in			
Infection Rate			
Higher Infection Rate			
(Worsening)			

- Hydrophilic coatings (17 studies)
 - 35.5% level of evidence, 44.1% applicability
- Reuse (10 studies)
 - 60.0% level of evidence, 66.7% applicability
- No-touch technique (2 studies)
 - 66.7% level of evidence, 66.7% applicability

- Reviews (2 papers)
 - Prieto, 2014: evidence quality too low to draw conclusion
 - Shamout, 2017: evidence quality low, but likely lower for hydrophilic and aseptic technique

Infection vs Catheter Coating Compared to Standard Catheter

Indwelling Catheters (49 studies)

	Hydrophilic	Antibiotic	Silver
Lower Infection Rate			
(Improvement)			
No Change in			
Infection Rate			
Higher Infection Rate			
(Worsening)			

- Hydrophilic coatings (13 studies)
 - 66.7% level of evidence, 74.4% applicability
- Antibiotic coatings (9 studies)
 - 58.3% level of evidence, 63.9% applicability
- Silver-coatings (19 studies)
 - 66.7% level of evidence, 78.9% applicability
- Reviews or other techniques (5 papers)
 - Cohen, 1985: infection rate decreased with iodine lubricant
 - Brosnahan, 2004: combined silver and antibiotic coated may yield small clinical benefit, but further research needed
 - Schumm, 2008: both silver & antibiotic catheters decrease asymptomatic bacteria
 - Jahn, 2012 & Lam, 2014: Not enough evidence for strong conclusion of catheter type. Silver and antibiotic coated may decrease infections in short durations, but difference is small and questioned clinical significance

Results Urinary Catheter vs UTI

- Intermittent catheterization (31 studies)
 - Hydrophilic coatings (17 studies)
 - 25.8% reported lower "infection" rates
 - 19.4% reported lower complication rates
 - 35.5% level of evidence, 44.1% applicability
 - Reuse (10 studies)
 - 88.9% reported no difference or decreased "infection" rates

- Indwelling catheters (49 studies)
 - Hydrophilic coatings (13 studies)
 - 30.8% reported lower "infection" rates
 - 66.7% level of evidence, 74.4% applicability
 - 22.2% reported no difference in complications
 - 60.0% level of evidence, 66.7% applicability
 - · No-touch technique (2 studies)
 - 100% reported no difference or decreased

- "infection" rates
- 66.7% level of evidence, 66.7% applicability
- 2 general reviews and combination (3 papers)
 - Prieto, 2014: evidence quality too low to draw conclusion
 - Shamout, 2017: evidence quality low, but likely lower for hydrophilic and aseptic technique

- · Antibiotic coatings (9 studies)
 - 100% reported decreased "infection" rates
 - 58.3% level of evidence, 63.9% applicability
- · Silver-coatings (19 studies)
 - 78.9% reported lower "infection" rates
 - 66.7% level of evidence, 78.9% applicability
 - Silver oxide no longer available in US used in many negative trials
 - Silver alloy showed decreased infection rate in almost all related studies
- · Reviews or other techniques (5 papers)
 - Cohen, 1985: infection rate decreased with iodine lubricant
 - Brosnahan, 2004: combined silver and antibiotic coated may yield small clinical benefit, but further research needed
 - Schumm, 2008: both silver & antibiotic catheters decrease asymptomatic bacteria
 - Jahn, 2012 & Lam, 2014: Not enough evidence for strong conclusion of catheter type. Silver and antibiotic coated may decrease infections in short durations, but difference is small and questioned clinical significance

Results Summary Urinary Catheter vs UTI

Catheter coating (silver-alloy, hydrophilic, antibiotic)

- No difference to lower "infection" rates compared to controls
- Weak evidence of clinical benefit
- Recommend incorporation into med kit when convenient for HMS

❖ Reusable catheters

- No difference to higher "infection" rate
- · Not recommended for current med kits, promising for exploration

No touch intermittent catheters

- Lower "infection" rates compared to controls
- Weak evidence of clinical benefit
- Recommend incorporation into med kit when convenient for HMS