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To better understand the high energy rocket propellant

work at the NACA Lewis Flight Propulsion Laboratory during

the fifties, we need to take a look at the origins of the

work in the forties. Rocket research at the Cleveland lab-

oratory began with the Big Switch in the fall of 1945. The

laboratory had been slow in recognizing the advantages of

the turbine engine,.b During the war years, the work was

concentrated on ad hoc problem solving for military piston

engines. While the laboratory was thus engaged, others were

rapidly progressing in jet engine R&D. The moment of truth

carne to NACA in 1945 and overnight the NACA management

switched the laboratory emphasis from piston engines to jet

aAssistant Associate Administrator for Advanced Research
and Technology, National Aeronautics and Space Admin­
istration.

bThere were a few, exceptions. Some may recall Eastman
Jacob's "Jeep" an experimental jet engine at Langley
which the author helped to operate in 1942.
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engines and the staff was reorganized from stem to stern

in the process. A small group was even assigned to rocket

engine research. c But the political climate in Washington

was such that NACA leaders in Washington did not want to

proclaim publicly that they were sanctioning work on guided

missiles in an aeronautical laboratory so the group was

officially called the High Pressure Combustion Section. The

name remained until 1949 when Abe Silverstein, taking over

technical management of the laboratory, upgraded the impor-

tance and status of the rocket effort and the small group

became the Rocket Research Branch.

When the rocket group first got organized in 1945 and

surveyed the field, it quickly became apparent that we had

a lot of catching up to do. The German work was read with

great interest. The publications of the prestigious Jet

Propulsion Laboratory, the u. S. leader, became our textbooks.

To make a contribution so late and with so few, our leaders

cThe sweeping reorganization caught the lower-level super­
visors and researchers by surprise. The author went home
one night deeply engaged in writing a report on spark plug
fouling to find in the morning that his desk was in another
building and he was now officially engaged in rocket engine
cooling research.
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wisely directed that we work in lesser ploughed fields.

That is why we concentrated on high-energy liquid rocket

propellants, combustion, and cooling and left solid rockets

to others. It has remained so to this day.

The propellant work was straightforward. We first

computed the theoretical performance of candidate high

energy propellant combinations and then selected the most

promising for experimental evaluation. This sometimes led

into more detailed investigations of propellant character-

istics, starting, combustion, and cooling--technical areas

being studied in parallel using more conventional propellants.

Because of this interaction, and for general interest, a

bibliography of the rocket papers published by NACA from

. 1-177
1948 through 1960 for Lewis research is glven here.

Although not first in the field of theoretical perfor-

mance calculations of propellants, Vearl Huff and his

associates made a major contribution in 1948. They developed

a rapidly convergent successive approximation process for

the laborous calculations.
6

Huff's method was ideally

suited for programming on a computer, which was beginning

to come into greater use, and he took full advantage of this
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powerful aid. Huff, Gordon, and others explored theoret-

ically the field of high energy propellants and provided

a guide and reference framework for experimental inves-

tigators. By the end of the fifties they had published

1-29, 1 d' f' h' b .many reports lnc u lng a re lnement to t elr aS1C

1 1 , hn' 27ca cu atlon tec lque. They developed the capability to

respond rapidly to the varying needs of analyst and

experimentor alike and ground out reams of machine tab-

ulations in the process.

Paul Ordin headed the early work on high energy

propellants. The first fuels he and his group investigated

were hydrazine,d diborane,e and ammonia. Oxidizers were

30-33chlorine trifluoride, hydrogen peroxide, and liquid oxygen.

~he enthusiasm of rocket men sometimes led to taking calcu­
lated risks. The author recalls one Lewis man who was
given a sample of hydrazine in another city and was con­
fronted with the problem of transporting it. The stability
of hydrazine was in question and it could not be readily
shipped. He solved the problem by simply putting the sample
in his pocket and bringing it home with him on the train.

eour first diborane carne from Buffalo Electrochemical
Company and the engineer delivered it in his own car. The
author remembers walking out to see it nestled in
dry ice in a box on the rear seat, complete with a safety
device, a whisk broom. The latter was soon put into use. As
a small amount of diborane leaked past the valve and ignited,
he neatly whisked the flame and problem away.
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In May 1948, the Lewis laboratory held a conference

on its latest fuels research. Nine papers were presented:

two on knock-limited performance of piston engines by some

die-hard investigators, six on fuels for turbojets and

178
ramjets, and one on diborane as a rocket fuel. Both

theoretical and experimental performance of diborane was

presented~ the latter with hydrogen peroxide and liquid

oxygen as oxidizers. Deposits of boron oxides were encountered

and discussed but their significance with regard to later

events was not fully realized. Several years later boron

hydrides as high energy fuels for jet engines were the

focus of a major effort by the Navy (Project ZIP). One of

the problems that contributed to its demise was the gluey

combustion products of boron that stuck to turbihe blades

179
like ice to a wing.

In the late forties, we became intrigued with the

ultimate stable oxidizer, liquid fluorine. Our early

investigations gave us a healthy respect for this powerful

oxidizer which others had already tested in gaseous form.

Ordin wanted to use it as a liquid oxidizer and was, we

believe, the first to do so. William Rowe devised a fancy
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rig that served both as a rocket oxidizer system for the

test and the fluorine transport trailer. The fluorine

tank was suspended on a weigh beam and immersed in a liquid

nitrogen bath. The gaseous fluorine from the supplier,

Harshaw Chemical Company in Cleveland, was fed directly to

the propellant tank and liquefied. Working with local

authorities, the best route and time were selected to

minimize risk of collision during transport. In the dark

hours of early morning, the caravan travelled the streets of

Cleveland to the laboratory led by a police car, then a

NACA car, the trailer, another NACA car with a police car

bringing up the rear. It worked well without mishap.

Of all the fuels he could have chose, Ordin selected

diborane for his first experiments with liquid fluorine.

Huff's calculations showed the specific impulse to be high,

the density to be high, and there would be no deposit problems

from boron fluorides. The hooker was the combustion temper­

ature which peaks at nearly 5400 degrees Kelvin at 300

pounds per square inch chamber pressure: On our first

attempt, the engine melted so rapidly that we believed that

we had achieved everyone of those 5400 degrees Kelvin. Ordin

and Howard Douglass finally succeeded in operating an engine
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long enough to measure performance but it required some

ingenuity. They had to surround the diborane jet with a

flowing sheath of helium to prevent the fluorine from

reacting with the diborane at the injector face and burning

34
the wall in the process. After that we became somewhat

disenchanted with diborane as a fuel. We saw no reasonable

way to cool a diborane-fluorine engine for diborane is not

very good as a coolant . Interest in diborane continues,

. 11 bl f ,180-183 b . , t'llespec~a y as a space-stora e ue~ ut ~t ~s s ~

handicapped by cooling problems.

with Rocketdyne on this problem.)

(NASA has a current contract

Our first experience with fluorine only intensified

our interest. We worked with fluorine throughout the fifties.

. . 35 . 36, 38
We used it neat with ammon~a-hydraz~ne, ammon~a, and

h
. 47

ydraz~ne. Our biggest effort with fluorine, however, came

in the second half of the decade in using it with liquid

f
hydrogen.

We also became interested in oxygen bifluoride but did

not obtain enough to use it in a rocket engine. Instead we

f
Sometime around the mid-fifties Ordin was carried away in
another of those laboratory reorganizations and the experi­
mental propellant work was continued by Howard Douglass,
George Kinney, Edward Rothenberg, William Tomazic, and others.
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turned to fluorine-oxygen mixtures for use with hydrocarbons.

Fluorine added to oxygen looked like a promising way to boost

the performance of oxygen-JP (jet fuel) engines for rocket

boosters. Best performance comes from mixtures where the

fluorine-oxygen atom ratio matches the carbon-hydrogen atom

ratio. Many experiments were conducted on this combination

37, 40, 41, 43, 45
from 1953 to 1958.

As any student of rocket propulsion quickly finds,

liquid hydrogen is an ideal rocket fuel for obtaining high

thrust per pound expended. Tsiolkovsky, the Russian rocket

pioneer, considered hydrogen-oxygen in 1903 and Goddard in

1909. By the latter forties interest in hydrogen was fairly

strong. Dr. Herrick Johnston, his assistants, and students

were deeply involved in the study of hydrogen properties

and liquefaction and established a rocket laboratory in

184
1946. By the end of the forties Ohio State University,

Jet Propulsion Laboratory;85 and Aerojet Engineering

. 186 187Corporatlon' had conducted rocket experiments with

hydrogen. The largest of these activities was the Navy

188sponsored work at Aerojet which has recently been documented

Aerojet built a hydrogen liquefaction plant, pumped liquid

hydrogen, and operated a 3000 pound thrust rocket by 1949.



adequate facilities. At a November 1952 meeting of the

the author described a $8.5 million facility which was

NASA research, would remove hydrogen fluoride from the

9

The

1) the

program. We wanted to work with high energy propellants

using larger engines and longer times than had been done

in the early fifties as part of our high energy propellant

interest were hydrogen-oxygen, hydrogen-fluorine, and

Plans for experimenting with hydrogen at Lewis began

previously. The high energy combinations of particular

ammonia-fluorine but we were hampered by the lack of

useful for high-availability, low-cost propellants.

Special Subcommittee on Rocket Engines, Walter Olson and

primarily for high energy propellants but would also be

d f . l' 189 . . f fpropose aC1 1ty was un1que 1n our eatures:

thrust for high energy propellants was to be 20,000

pounds, 2) fluorine was to be generated and liquefied at

the site and hydrogen was to be liquefied at the site, 3)

special exhaust gas treatment, designed from results of

exhaust, and 4) silencing equipment would muffle the noise
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of rocket operation. The Subcommittee endorsed the research

program and facility proposal?

By the time it was authorized, the facility had been

considerably pared down in cost and capability including

elimination of the second feature. However, we retained

the capability to operate 20,000 pound thrust fluorine-

h
hydrogen rockets and the scrubbing and silencing features.

The facility was placed into operation in 1956 and

performed as designed. The engines exhausted into a large

duct. Over 50,000 gallons of water per minute, in hundreds

of sprays, absorbed the hydrogen fluoride and completely

gSubcommittee membership was: M. J. Zucrow, Chairman, Lt.
Col. L. F. Ayers, USAF, R. B. Canright, R. B. Foster, S. L.
Gendler, P. R. Hill, Eugene Miller, G. E. Moore, T. E.
Myers, J. H. Sheets, J. L. Sloop, R. J. Thompson, P. F.
Thompson, P. F. Winternitz, D. A. Young, Cdr. K. C. Childers
USN, Capt. Levering Smith USN, and B. E. Gammon (see'y).
Cdr. Childers and Capt. Smith were unable to attend the
November 13-14, 1952 meeting.

h In negotiations for the facility with NACA Headquarters and
with the Bureau of the Budget, we were considerably aided
by the hearty endorsement of M. J. Zucrow. In addition to
being Chairman of the NACA Special Subcommittee on Rocket
Engines, Zucrow as past chairman of the Panel on Propulsion
and Fuels of the Research and Development B8ard and was
familiar with rocket facilities and needs~9
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muffled the noise. The water was held in a tank and later

treated with calcium hydroxide and the inert calcium fluoride

precipitate was hauled away. We were ahead of the environ-

1
mentalists.

The supply problems for fluorine and liquid hydrogen

were eventually resolved. Hans Newmark of Allied Chemical

was interested in fluorine manufacture and transport for

rockets and developed a safe method for transporting liquid

fluorine. Earlier we had requested and received authori-

zation for a small hydrogen cryostat for making liquid

hydrogen and it was placed into operation. About the same

time we obtained surplus military equipment of greater

capacity. Later, and because of interest in liquid hydrogen

for aircraft, we were able to get liquid hydrogen t~ucked

in from an Air Force plant in Painsville, Ohio. During these

developments, however, we-had to resort to operating first

48with gaseous hydrogen.

During the build-up of facilities, Huff made a major

contribution to experimental testing. About 1952 he proposed

iGeorge Kinney, a key man in the rocket effort, was detached
from research to be the principal design engineer of the
new facility. He did an outstanding job of making it a
success. (A brief description of the facility is in refer­
ences 48 and 193).
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that the rocket's own exhaust could be used in an ejector

action to simulate altitude performance of rocket nozzles.

with this technique we could test large area ratio nozzles

that are characteristic of upper stage engines. Moreover,

the concept fitted neatly into plans for scrubbing and

silencing the exhaust. Huff, Fortini, and others experi­

49, 52, 58, 60
mentally tried the concept and it works.

As we continued to increase our capability in the mid

fifties, we received an extra boost from the laboratory

director. Silverstein became very enthusiastic about the

potentials of liquid hydrogen both as a high energy fuel for

191
high-altitude aircraft and as a high energy rocket fuel.

with his strong backing we began to make more rapid progress

in our objective to build and test lightweight, regenerative

cooled hydrogen-oxygen and hydrogen-fluorine engines of

j
5000 and 20,000 pounds thrust.

With characteristic confidence, Silverstein announced a

propulsion conference for November 195~ Liquid hydrogen as a

jane afternoon after work hours, Silverstein held one of
his famous bull sessions. This one was a "design conference"
complete with beer furnished at his own expense. From this
session came his approval of our showerhead injector design
which later proved so successful. A description of the injector
design is in reference 48 and the chamber design in reference
56.
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fuel for turbojets, ramjets, and rockets was a major topic

192
of the conference. The conference required much data that

was yet to be obtained. To us it meant much night and weekend

work to meet the tight schedule with meaningful data. To

Douglass it meant a little more. He was to report on the

experimental performance of hydrogen-fluorine using our

lightweight regeneratively cooled chamber but he encountered

an unusual amount of difficulty. He and his team worked

around the clock several times and finally, in the early

morning hours of the conference day, he achieved success.

At the scheduled time, Douglass casually presented the perfor-

mance curves with a five hour old key data point dubbed in

with grease pencil.

Work continued on both hydrogen-fluorine and hydrogen-

oxygen. During 1959 and using our simulated altitude

technique, we operated a regeneratively cooled hydrogen-

flourine engine with area ratios of 25:1 and 100:1. Actual

performance was almost 100 percent of theoretical performance.

Measured specific impulse was 480 Ib-sec/lb., the highest

60
attained by a chemical rocket at that time.

The difficulties of operating with liquid fluorine,

however, had not been lost on Silverstein. Later when he
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witnessed a hydrogen-oxygen rocket engine operation, the

sweetness of the hydrogen-oxygen combination came through

to him, and to us, loud and clear. Everything worked smoothly,

easily, and performance was high.

By the late fifties, interest in rocket propulsion

had greatly increased and Lewis began to shift more emphasis

to it. Much consideration was given to rocket propulsion

193, 194
for space vehicles including satellites and moon missions.

We believe that the Lewis work on hydrogen in rocket

engines, although not first, was both timely and significant.

We showed that lightweight, regeneratively cooled thrust

chambers of 5000 and 20,000 pounds thrust could operate at

very high efficiencies. We believe this work was significant

in the ARPA initiation of the Centaur contract to Pratt &

Whitney. Richard Canright, then with ARPA, was a member of

the NACA Special Subcommittee for Rocket Engines and was

very familiar with our work. Charles King and others from

united Aircraft and Pratt & Whitney, who had been working with

195
hydrogen on their own, visited us several times. They

later acknowledged the usefulness of our injector design and

experimental data in their development of the XLR-15, the
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first commercial liquid hydrogen-liquid oxygen engine.

But perhaps the greatest contribution of the Lewis work

was its key role in influencing later decisions regarding

Saturn development.

When NASA was established, Silverstein was called to

Washington to be the Director of Space Flight Development.

The President had determined that the Army Saturn rocket

was to be transferred to NASA~ In preparation for this,

the NASA Associate Administrator named Silverstein to head

an interagency committee to prepare recommendations on

Saturn development and specifically for the selection of

upper stage configurations. Wernher von Braun, then with the

ABMA, was a member of the committee:

The committee reported to the NASA Administrator on

December IS, 1959. with a persuasive Chairman occupying a

key position and sold on hydrogen-oxygen, it is not

kThe Saturn project was initiated 15 August 1958 by ARPA
to the Army Ordnance Command to develop a 1.5 million
pound thrust booster using available engines. Emphasis
was on the first stage; three launchings were to be with'
dummy upper stages and one with a live upper stage.

1
Other members were Col. N. Appold, USAF, Mr. Abe Hyatt, NASA
Mr. T. C. Muse ODDR&D, Mr. G. P. Sutton ARPA, and Mr. E. Hall
(See'y) NASA.
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surprising that the group recommended that the upper stages

196
of Saturn be hydrogen-oxygen and it became so. Saturn

and Apollo success has demonstrated the soundness of the

decision.

The Lewis group worked with other propellants and on

other significant improvements in rocket engines but these

must await another opportunity for recounting.
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