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DARES Alignment 

·   Primary Topic: Identify Emerging Themes and Technologies 
·   Secondary Topic(s): Review Recent Advancements, Strengthen Community 

Motivation 

Astrobiology, perhaps more than any other field, is inherently cross-disciplinary.  It studies 
the origin, history, status, and fate of habitable planets, life, ecosystems, and civilizations.  
This requires understanding complex and deeply intertwined physical, chemical, biological 
and social phenomena integrated across vastly different scales of time, space, and energy.  
Machine learning (ML), and the broader set of related models and techniques that are 
currently called artificial intelligence (AI), offer a rapidly expanding and unparalleled ability 
to reveal, connect, and model relationships – including non-linear and context-dependent 
ones – between large numbers of features in data of many different types [1, 2].  
Astrobiology, therefore, may have a uniquely high potential to benefit from these tools.   

Recent astrobiology AI/ML implementations include identifying mineral types associated 
with habitability from Raman and LIBS spectra [3], classifying the transit signals of Kepler 
and TESS to find new exoplanets [4], and distinguishing mass spectra [5, 6], XRF spectra 
[7], or isotopic signatures [8] of biogenic and abiogenic organic compounds. The greater 
benefit is likely to come from use of multi-modal data to explore the boundaries that separate 
life from non-life, the processes that characterize them, and the path(s) towards life’s 
emergence.  Multi-modal data can be any combination of visible imagery, reflectance 
spectroscopy, mass spectrometry, fluorescence spectrometry, micrography, isotope ratio 
analysis, Raman spectroscopy, X-ray diffraction, morphology, topography, metagenomics, 
and many more.  However, to tap into the full potential of ML, there is a requirement for 
sufficient depth and breadth of cross-compatible data in order to create robust models – and 
these requirements scale upwards with the complexity and diversity of the systems under 
study.  If astrobiology is to take advantage of these tools, we must invest in making both the 
data we already have and the data we take in the future suitable for AI/ML applications. 

These data requirements are synergistic with the emerging shift within the scientific 
community towards open science, typified by NASA’s Open Science Initiative.  Open 
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science practices, such as compatibility with the FAIR principles [9], can reduce unneeded 
duplication of effort, improve scientific reproducibility, increase the value of historical and 
future data, and lower barriers to innovation, especially in cross-disciplinary fields.  
Astrobiology particularly benefits from open data and sample sharing, as it relies on 
measurements and materials from difficult-to-access field sites, rare laboratory facilities that 
simulate hypothetical or real off-world environments, or unique and irreplaceable planetary 
exploration operations.  Many fields within or overlapping with astrobiology are making 
progress building local open data ecosystems, such as the Planetary Data Ecosystem, 
Astrobiology Habitable Environments Database, the Metabolomics Workbench, and the 
NASA Open Science Data Repository.  Yet even if these efforts were integrated, major gaps 
in the quantity, quality, and types of data and samples currently covered would remain.   

This white paper represents a collection of ground-level observations on the current state 
of the astrobiology data ecosystem and anticipated needs for the emerging era of open 
data and AI applications, drawn from the authors’ recent experiences and conversations.  
While they skew towards field and laboratory work, several apply to mission and exoplanet 
observation data as well.  They are grouped into four areas, emphasizing cross-disciplinary 
and multi-modal applications, with accompanying recommendations:  

1. finding and unifying the data we already have;  
2. getting the data we need but don't have;  
3. improving access to unique resources; and 
4. lowering barriers to implementation with streamlining and support. 

Needs and Recommendations 

1. Finding what we have: data labeling, indexing, and search 

Observations: Consider a simple project to compare images, Raman spectra, and elemental 
composition of two leeward cold basaltic rock faces, one from Earth and one from Mars.  
All the data necessary to do this exists within resources like RRUFF, the USGS Spectral 
Library, and the PDS Geosciences Node.  However, finding it requires days of reading 
through extensive annotations to identify and extract the correct data files, and those files 
often require (or have been subjected to) processing that is only documented in publications 
several links away – if at all.  This difficulty substantially lowers the value of past mission, 
field, and laboratory data, and is currently one of the largest barriers to assembling a multi-
modal astrobiology data set large enough to be useful for AI/ML work. 

Many disciplines within astrobiology’s broad umbrella have established their own 
ontologies, ranging from naming schemes like IUPAC nomenclature, to keyword thesauri 
like MeSH, to frameworks like BLAST.  The Life Detection Knowledge Base is a broader-
scale attempt with a different focus.  However, even repositories using the same ontologies 
frequently have incompatible or poorly implemented APIs for automated data retrieval and 
interaction.  This proliferation of incompatible standards may only make it more difficult in 
the long run to assemble the necessary breadth of unified data needed for effective and 
efficient ML work. 

https://www.go-fair.org/fair-principles
https://planetary.data.nasa.gov/
https://ahed.nasa.gov/
https://www.metabolomicsworkbench.org/
https://www.nasa.gov/osdr
https://rruff.info/
https://www.usgs.gov/labs/spectroscopy-lab/usgs-spectral-library
https://www.usgs.gov/labs/spectroscopy-lab/usgs-spectral-library
https://pds-geosciences.wustl.edu/
https://iupac.org/what-we-do/nomenclature
https://www.ncbi.nlm.nih.gov/mesh
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://lifedetectionforum.com/categorie/filter


3 

Recommendations: A working group of subject-matter experts from across the discipline 
could set the scope and implementation plan for an astrobiology-wide ontology and API 
standard.  It would have to encompass descriptors for microbiological, plant, animal, 
ecological, fossil, rock, sediment, chemical, water, air, geological, mineralogical, planetary, 
orbital, and astronomical systems as well as the diversity of instruments and techniques used 
to measure them.  It would also need to be robust to cross-disciplinary terminology 
differences, such as species, particle, cell, plant, habitat, quadrant, mesoscale, cloud, or 
matrix.  This is not a trivial task.  It could be assisted, though not automated, by text-based 
AI tools capable of rapidly parsing the existing literature and databases and recommending 
commonalities [10].  Its adoption could then be supported through providing a list of 
repositories and archives compatible with it. 

Beyond organizational recommendations, there is also substantial work to do in 
standardizing and unifying existing bodies of astrobiology-relevant data to make them more 
useful to the community.  Subject matter experts with data science support are best placed 
to do this work; however, such efforts do not easily fit into existing ROSES solicitations.  A 
new ROSES call, similar to PDART but scoped to include all astrobiology-relevant data as 
well as standardization and API improvements, would provide much-needed support for 
work with existing data; alternately, or in parallel, a dedicated line in existing ROSES 
programs for making data open science and AI-ready would support for future data. 

2. Getting what we don’t have: data breadth and coverage gaps 

Observations:  Most research work performed on non-living systems uses different handling 
methods, techniques, scales, instruments, and assumptions than on living systems, even 
when the description of the methods is similar.  For instance, geological samples are 
commonly baked out to remove volatiles before analysis, but biological samples are not.  
Aseptic technique, or lack thereof, hampers cross-project use of physical samples.  Very few 
samples have been assessed with both biological and physicochemical techniques outside 
of work where biosignature or prebiotic signature detection was an explicit goal.  Satellite 
imagery is a counterexample only because the entire Earth’s surface has been mapped 
several times for independent applications– but even in this data, temporal, resolution, 
scale, and instrument differences can be confounding [11].  

Similarly, field expeditions rarely, if ever, take the same sets of measurements across 
environmental, biological, and physicochemical contexts as each other.  This lack of 
simultaneous, comparable measurements for biological and non-biological systems is 
compounded by the low level of detail provided in most published protocols, where phrases 
like “spectra were baseline corrected” or “instrument artifacts were removed” are common.  
Examples of data and metadata frequently not covered in OSDMPs include duplicate field 
samples for archiving alongside those to be analyzed; coupons or readings from 
intermediate steps in analysis; as-run protocols in sufficient detail to allow replication; raw 
instrument files; and any processing steps, whether manual or scripted, to reproduce the 
“final” data from the raw instrument readings. 

https://astrobiology.nasa.gov/research/astrobiology-at-nasa/pdart
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Recommendations:  The overhead of assembling and standardizing past data can be 
reduced by developing clear and common AI-ready standards for data generators and 
principal investigators (PIs).  A working group could establish a recommended minimum 
set of context measurements and metadata to be taken in all future astrobiological field 
work or sample analysis.  A more expansive solution would be a “library” available for 
checkout of core equipment for field measurements, including mission-analog instruments 
– such arrangements are now usually made through networks of individual PIs, which 
creates barriers to entry and exclusivity.  In parallel, a wiki-like collection of standard 
protocols in sufficient detail to allow replication (a level beyond what is included in most 
publications) could be created for proposing PIs to reference and future PIs to be required 
to contribute to.  AI/ML tools may even be able to use such a collection to help identify 
ways to improve comparability among various projects. Lastly, repositories recommended 
for use should be verified to provide support for physical samples and both raw and 
processed data, as well as specific protocols or scripts for all processing that takes place.  

3. Improving access: unique samples and instruments 

Observations:  The best data often comes from work with astrobiological flight-analog 
instruments, which explicitly target biological or habitability-related signatures.  However, 
access to these instruments is usually tightly controlled and saturated with mission-critical 
experiments.  Additionally, many do not approve work with biological materials for fear of 
contamination.  This significantly limits the community’s ability to provide support to 
planetary exploration efforts and to take advantage of the large investment that developing 
and ground-truthing such instruments requires. 

Guidelines and options for archiving physical samples from field analogue sites are also 
particularly lacking.  The Astromaterials Data System and the NASA Biological Institutional 
Scientific Collection are very specific in their coverage.  There are no dedicated archives 
for field samples, despite the expense and effort associated with planetary analogue 
expeditions.  Synthetic laboratory materials and most biological materials (derived cell 
cultures, DNA extracts, etc.) are rarely even addressed in OSDMPs.   

An enormous wealth of expensive, valuable, and difficult-to-obtain field samples, derived 
materials, images, and other data languishes at the bottom of various lab freezers and on 
old hard drives, and has been and will continue to be lost when the responsible PI passes 
away, moves institutions, or simply loses funding or interest. 

Recommendations:  One mitigation could be a requirement in instrument development 
calls to provide a “community access” version, which would then be archived for long-
term access under a proposal model similar to that used for astromaterials.  Though this 
would require an additional funding line, the community version could be a significantly 
cheaper build (not miniaturized, not hardened, etc.) as long as it produces equivalent data.  
Alternatively, there could be a requirement to produce sufficient documentation to allow 
other researchers to build an “open-source clone” of the core functionality where 
appropriate commercial-off-the-shelf parts exist.  At a minimum, a public list of field 
samples collected through funded work and contact information should be created to 

https://www.astromat.org/
https://www.nasa.gov/osdr-about-nbisc
https://www.nasa.gov/osdr-about-nbisc
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which future PIs must add their entries.  This could be accompanied by a set of 
recommended protocols for long-term storage of different sample types.  Providing these 
resources would enhance the science return of these instruments by allowing more scientists 
to replicate results, make improvements, or conduct new foundational research.   

4. Making it happen: lowering barriers to implementation with streamlining and support 

Observations: The best recommendations are useless if they aren’t followed.  More 
researchers than will admit choose what to write in their OSDMPs based on a last-minute 
Google search for “example of a data archive”.  This leads to an over-reliance on general 
repositories and archives such as Github and Zenodo, even though more specialized ones 
with better support and integration may exist.  Combined with the aforementioned lack of 
standardization in tagging, formatting, and APIs, the end result is that the final data products 
end up difficult to find and difficult to use, undoing much of the intended benefit. 

There is also simply a lack of expertise and resources.  Preparing data for upload, 
documenting protocols, aliquoting samples for storage all take substantial time and effort.  
However, they are not treated equivalently to "getting publications out” or even “getting the 
final report in”. 

Recommendations:  Providing researchers a list of self-identified astrobiology-specific 
repositories and archives would be a good start.  The development of an astrobiology 
ontology and a minimum standard of metadata would make it further possible to generate 
a list of “certified” repositories and archives compatible with it.  While changing the 
paradigm for open science credit entirely is beyond programmatic reach, providing equal 
acknowledgment, publicity, and outreach for data releases would be a start.  In a best-case 
world, there would be one or more program staff data scientists available to work with the 
PI after award to approve the details of OSDMP implementation and provide support for 
the actual upload and release process. 
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