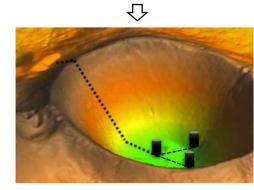
Title: Developing Oxychalcogenide Membranes for Superconducting Power Transmission

Shuolong Yang (PI)

Pritzker School of Molecular Engineering https://yanglab.uchicago.edu/


Approach

- Employ PI's molecular beam epitaxy setup to fabricate high temperature interfacial superconductors, FeSe/SrTiO₃.
- Fabricate SrTiO₃ membranes using the combination of a soluble-layer approach and remote epitaxy.
- Fabricate (FeSe/SrTiO₃)_n superlattice membranes to achieve high critical current density ~ 10⁶ A/cm².
- Fabricate (FeSe/SrTiO₃)_n superlattice membranes onto rollingassisted biaxially textured substrates, with the ultimate reach goal of a 1-meter-long superconducting cable.

FeSe

SrTiO₃

SrTiO₃ SrTiO₃ SrTiO₃ SrTiO₃

Developing FeSe/SrTiO $_3$ membranes as a material platform for superconducting power transmission near lunar stations.

Research Objectives

- Goal: Fabricate oxychalcogenide high-temperature superconducting (HTS) membranes for power transmission in permanently shadowed regions near the lunar south pole.
- Innovation: Leverage the Pl's newest developments in interfacial high-temperature superconductors, FeSe/SrTiO₃, and fabricate monolayer FeSe/SrTiO₃, superlattices, and proof-of-concept cables.
 - SOA: Copper-oxide-based HTS materials have high T_c's, but are harmed by the anisotropic critical current and the challenge of obtaining rare earth dopants.
 - TRL: Start with PI's prior fundamental research at TRL 1-2, building through systematic material innovation to achieve lab-based proof-of-concept at TRL 3.

Potential Impact

- Unlock new material potentials to enable sufficient power transmission for labs, sensors, rover vehicles and other work stations near a lunar base (addressing NASA shortfalls 1592 and 1597).
- Enable new modalities for powering manned and un-manned missions to
- exploit the frozen water in the permanently shadowed regions.
- Advance fundamental scientific research on novel high-temperature superconducting membranes
- Initiate efforts in utilizing interfacial high-temperature superconductors for realistic power transmission lines.
- Train the future material engineering workforce for space missions.