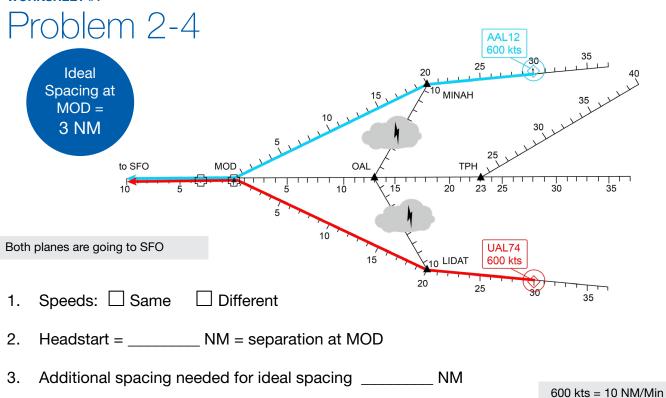


LineUp with Math


Math-Based Decisions in Air Traffic Control STUDENT WORKBOOK E

Resolving Air Traffic Conflicts by Changing Speed

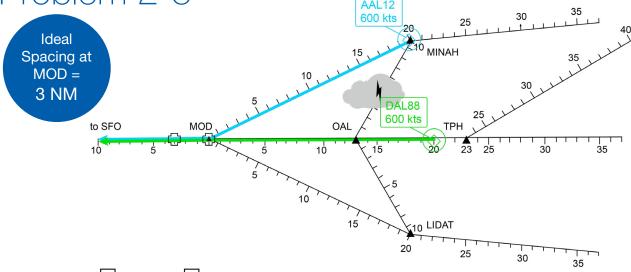
- * 2 planes, each at the same starting speed.
- * Simulator Problems 2-4, 2-5, 2-6, 2-7.

Simulator at: https://atcsim.nasa.gov/simulator/sim2/sector33.html

How Much Time Before You Need Ideal Spacing?

4. At 600 knots, how many minutes will it take the planes to reach MOD? mins

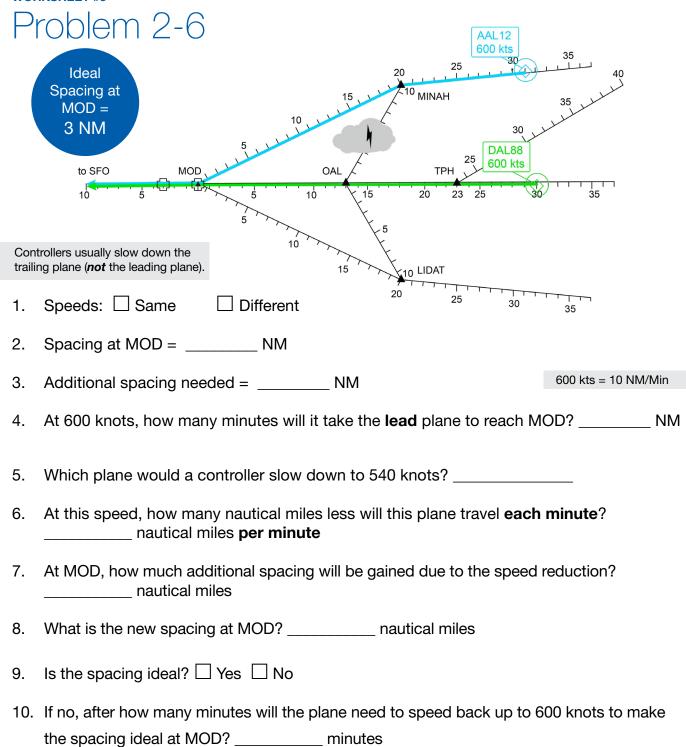
What Speed Change Will Solve the Problem?


The planes are traveling at the maximum speed of 600 knots.
 Reduce the speed of one plane by 60 knots. Which plane will you choose to slow down to 540 knots? _______
 At 540 knots, how many nautical miles less will this plane travel each minute? ______ nautical miles per minute
 In 3 minutes, how much additional spacing will be gained due to the speed reduction? ______ nautical miles

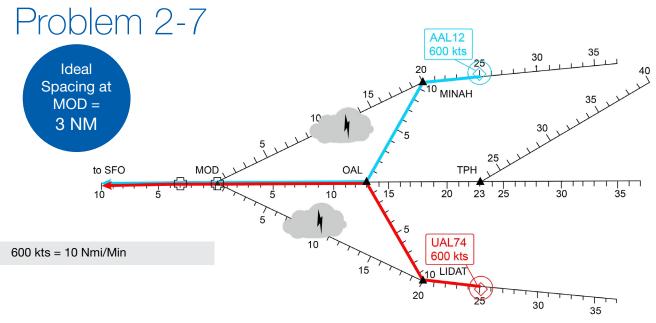
Does the 60-knot speed drop give ideal spacing at MOD? \square Yes \square No

8.

WORKSHEET #2



- Speeds:


 Same ☐ Different 1.
- Spacing at MOD = _____NM 2.
- Additional spacing needed _____ NM 3.
- 4. At 600 knots, how many minutes will it take the planes to reach MOD? minutes
- Air traffic controllers change speed in 60-knot increments. A 60-knot difference in speed causes a 1 nautical mile difference in distance each minute. 600 kts = 10 NM/Min
- → First, slow AAL12 (or DAL88) by 60 knots, to 540 knots.
- 5. At MOD, how much spacing will be gained? _____ nautical miles
- Did the 60-knot speed drop give ideal spacing at or before MOD? \square Yes \square No Try a greater speed drop. Slow AAL12 by 60 more miles, totaling 120 knots. The new speed will be _____ knots.
- Now how much spacing will be gained at MOD? _____ nautical miles 7.
- Did the 120-knot speed drop give Ideal Spacing at MOD? ☐ Yes ☐ No 8.
- What could the controller do to achieve at least ideal spacing? 9.

WORKSHEET #3

^{*} A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.

WORKSHEET #4

Air traffic controllers change speed in 60-knot increments. A 60-knot difference in speed causes a 1 nautical mile difference in distance each minute.

- → Analyze the problem at OAL. Does it meet or exceed minimum separation.
 □ Yes
 □ No
- Spacing at OAL = _____ NM
 Additional spacing needed for minimum separation = _____ NM
- 2. Solve the problem by slowing down one plane by 60 knots making the new speed knots.
- 3. Which plane will slow down? _____
- 4. At OAL, how much additional spacing will be added due to the speed reduction?

 _____ NM
- 5. At 540 knots, will the planes have at least minimum separation?
 - \square Yes \square No If no, what will be the new speed? ____ knots
- 6. At the new speed, what will the separation be at OAL? _____ nautical miles
- 7. At the final speed change, do the planes reach **minimum separation** at OAL? \square Yes \square No
- 8. If yes, when must the planes speed back up to 600 knots to get **ideal spacing** at MOD?

National Aeronautics and Space Administration

NASA Headquarters 300 E. Street, SW Washington, DC 20546

nasa.gov