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Earth-like exoplanets are dim

des Marais et al. 

Astrobiology (2002)

Fluxes are measured in 

photons per few minutes

For spectroscopy, photons per hour

Can take months to characterize 
a single exoplanet
using a space telescope

(Menneson et al 2024)

10 billion !

Vis / near-UV/ near IR Mid IR

Need:

• Photon-counting detectors that are 
highly efficient

• A light bucket to collect more photons
(a huge telescope)



Earth-like exoplanets are close to their host star

des Marais et al. 

Astrobiology (2002)

10 billion !

Vis / near-UV/ near IR Mid IR

Need:

• High Contrast Imaging:
coronagraph, starshade

• large ultrastable telescopes, 
interferometry

Star and planet through a 6m telescope:
/D scaling of resolution

0.1 arcsec



External Occulter (Starshade)

Nulling Interferometry

Internal Occulter 

(Coronagraph)

Starlight Suppression Techniques

~30-60m ~100,000 km ~1 cm



HABITABLE WORLDS 
OBSERVATORY

• A FLAGSHIP MISSION WITH A ~6M

IR/VIS/UV TELESCOPE DESIGNED TO

DETECT AND CHARACTERIZE TERRESTRIAL

EXOPLANETS

• CURRENTLY DEVELOPING TECHNOLOGY

• AIMING FOR MATURITY BY ~2030; 

LAUNCH WOULD BE ~2040S

• WILL BE SERVICEABLE

KEY TECHNOLOGY CHALLENGES

• STARLIGHT SUPPRESSION WITH A 

CORONAGRAPH

• ULTRASTABLE TELESCOPE

• UV INSTRUMENTATION

One architecture concept for HWO



CURRENT GAPS – CORONAGRAPH SYSTEM

1. Starlight Suppression

 Overall ability to achieve desired raw contrast, bandwidth, inner working angle, etc.

2. Deformable Mirrors

 High actuator count; stable smooth surface; robust, precision electronics and interconnects

3. Coronagraph Sensing & Control

 Achieve and maintain contrast stability during observations

4. Low-noise/Noiseless Detectors

 Photon-counting, low-noise, rad-hard capability with high QE at biomarker wavelengths

5. Spectroscopy

 Resolve questions about speckle chromaticity; achieve desired R for key biomarkers

6. Near-UV Capability

 Achieve high contrast between 250-450 nm for key ozone features

7. Post-processing

 Achieve desired SNR in context of observatory stability and sensing & control

1/16/2025 HWO Tech. Roadmaps, 245th Meeting of AAS 7

State-of-the-Art: 

Roman CGI

Ref Star Target Star Target Star - roll

Con-ops and Post Processing:

Reference Differential Imaging (RDI)
➔ FRN = 3.94×10-9

(Courtesy of B. Kern)

48x48 Deformable Mirror

4.0e-8 

Raw Contrast
3-9 λ/D

CGI/JPL

CGI/JPL

CGI/JPL

Slide credit: Matt Bolcar (GSFC) & Feng Zhao (JPL)



CURRENT GAPS – ULTRA-STABLE TELESCOPE

8. Ultra-stable Mirrors 

 Mirror cell that meeting required stability and optical performance

9. Ultra-stable Structures 

 Composites and joints with low creep and high-stiffness

10. Thermal Control System

 Milli-kelvin control with compact Flight electronics, low-vibe thermal control systems

11. Telescope Sensing & Control

 Sense and control segment-level and global telescope alignment at picometer level

12. Low-disturbance Systems

 Active and passive isolation, Microthrusters, and low-disturbance mechanisms

13. Deployable Systems

 Large deployable baffle, stable hinge and latch systems

1/16/2025 HWO Tech. Roadmaps, 245th Meeting of AAS 8

State-of-the-Art: 

JWST, Roman

Roman Instrument Carrier achieves 10 mk stability
218.1

218.2

Roman Telescope 

thermal vacuum test 
results consistent with 
10s of pm wavefront 

error stability.

NASA/GSFC

L3Harris

JWST continues to exhibit 

extraordinary on-orbit passive 
stability.

Slide credit: Matt Bolcar (GSFC) & Feng Zhao (JPL)



CURRENT GAPS – HIGH-SENSITIVITY UV/VIS INSTRUMENTS

14. Far-UV Mirror Coatings 

 Broadband with high reflectivity down to 100 nm; high-uniformity and low scattering

15. Near UV/VIS Detectors

 Large format, low noise, high-QE

16. Far-UV Detectors

 Large format and high-QE, with high solar-blindness

17. Multi-object Selection

 Microshutters, micro-mirrors, or slicers for multi-object or integral field spectroscopy

18. UV Gratings and Filters

 High out-of-band rejection; curved substrates for aberration control

1/16/2025 HWO Tech. Roadmaps, 245th Meeting of AAS 9

State-of-the-Art: 

Sub-orbital & Lab

SPRITE mirror coating

20x20 cm MCP for 

DEUCE

FORTIS & JWST microshutters (left) with next gen devices (right)

See: Tuttle, et al. 2024 for comprehensive 

review of state-of-the-art.

Slide credit: Matt Bolcar (GSFC) & Feng Zhao (JPL)



HWO IS PLANNED TO BE AN IN-SPACE ROBOTIC-
SERVICEABLE MISSION AT EARTH-SUN L2

Feinberg and Ziemer (Jan 2025)



Astrometry

~ 1 microarcsecond 

precision

Exoplanet Mass Measurement Technology Gaps

Extreme Precision 

Radial Velocity

~1 cm/s precision

• Detectors for High-res Spectrographs
• Dispersive Optics
• Advanced Photonics
• Ground-based Visible-light Adaptive Optics
• Precision Calibration

• Detector Metrology
• Optical Field Distortion Stability 

and Metrology

Challenge:

• Measuring recoil motion of stars to detect an  orbiting Earth-mass 
planet



Mid-Infrared

des Marais et al. 

Astrobiology (2002)

In mid-IR:

Richer biosignatures

Contrast is more 104 times
favorable than in Visible

1 million!

Mid IR

Challenges:

• Enormous telescope
or Interferometer

• Optics/detectors must be cold

BUT:

Angular resolution is a problem



# Gap Name # Gap Name

Gap 
#1

Cryogenic single mode spatial 
filters

Gap #6 Cryogenic four-beam nulling

Gap 
#2

Cryogenic deformable mirrors Gap #7 Cooling

Gap 
#3

Cryogenic delay lines Gap #8 Detector technology 

Gap 
#4

Laser metrology systems Gap #9 Mirror technology

Gap 
#5

Cryogenic broadband nulling 
at N-band

Gap #10 Formation flying technology

Mid-Infrared Interferometer Technology Gaps

Martin, Mennesson, Serabyn, Danchi, Chen, Siegler priv. comm (2021)





NEW SOLUTIONS TO OLD PROBLEMS?

• CONVENTIONAL TECHNOLOGIES DRIVE US TOWARDS

EXPENSIVE, COMPLEX SOLUTIONS THAT TAKE A LONG TIME

TO DEVELOP AND IMPLEMENT

• USING EMERGING TECHNOLOGIES CAN WE FIND BETTER 
WAYS TO SEARCH FOR LIFE IN THE UNIVERSE?



BACKUP



LINKS TO MORE INFORMATION

• NASA ASTROPHYSICS TECHNOLOGY GAP LIST

• NASA ASTROPHYSICS BIENNIAL TECHNOLOGY REPORT (2024)

• NASA EXOPLANET EXPLORATION PROGRAM TECHNOLOGY GAP LIST (INCLUDING SUBGAPS)

• WHITEPAPERS AND FINAL REPORTS FOR EXOPLANET RELATED STRATEGIC ASTROPHYSICS 
TECHNOLOGY AWARDS

• PROGRESS IN TECHNOLOGY FOR EXOPLANET MISSIONS (2023) 

https://apd440.gsfc.nasa.gov/tech_gap_priorities.html
https://apd440.gsfc.nasa.gov/images/tech/2024_ABTR.pdf
https://exoplanets.nasa.gov/internal_resources/3125
https://exoplanets.nasa.gov/exep/technology/TDEM-awards/
https://exoplanets.nasa.gov/exep/technology/TDEM-awards/
https://exoplanets.nasa.gov/internal_resources/2595
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