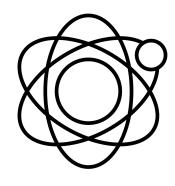


Mars Surface Power

Clark Esty Executive Officer Exploration Systems Development NASA – ESDMD



Introduction

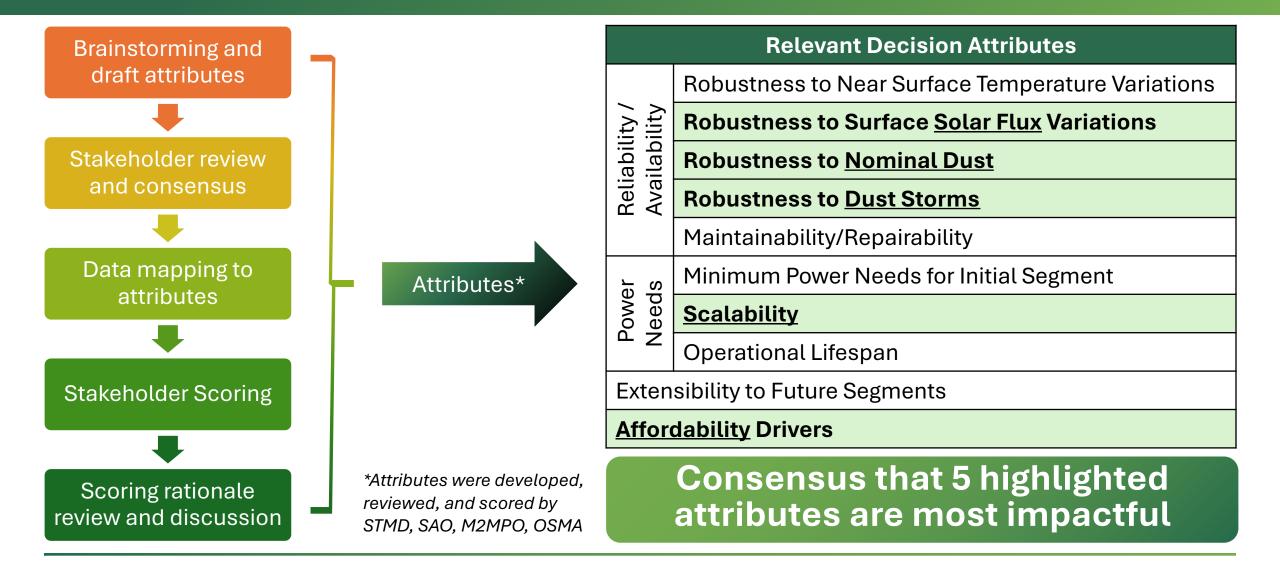
National Aeronautics and Space Administration

Nuclear fission power selected as primary surface power generation technology for initial crewed missions to Mars

- 2024 Architecture Concept Review outcome
- Exercise in process as much as decision outcome
- Documented in Appendix B of the Architecture Definition Document

Background

National Aeronautics and Space Administration


- Decision identified due to impacts on the architecture
- Assessment process involved numerous stakeholders, technical experts, and technical authorities
- Primarily driven to mitigate loss of mission risks

Lays the groundwork for future architecture implementation decisions

Decision Attributes

Technology Trade Space and Down Select

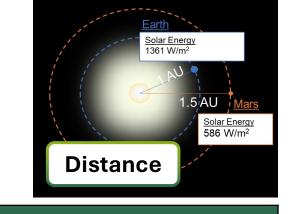
National Aeronautics and Space Administration

Nuclear Technologies

- Fission surface power systems (FSP)
- Radioisotope thermoelectric generators (RTGs)

Non-Nuclear Technologies

- Photovoltaic array with energy storage
- Primary batteries
- Primary fuel cells
- Wind power generation
- Geothermal power generation
- Biogeneration concepts

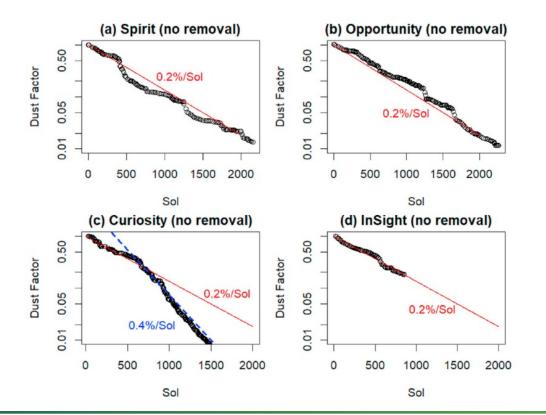

RTG	PRIMARY BATTERIES	PRIMARY FUEL CELLS	WIND	GEOTHERMAL	BIO- GENERATION
Scalability issues Pu-238 production limit & low TRL alt. fuels	Poor scalability Not practical (mass) even for 2 crew/30 sol/no ISRU	Energy to make reactants exceeds energy generated Needs reactant delivery	Insufficient sustained winds for reliable power production	Energy-intensive infrastructure build needed to implement	Complicated by planetary protection constraints

February 2025

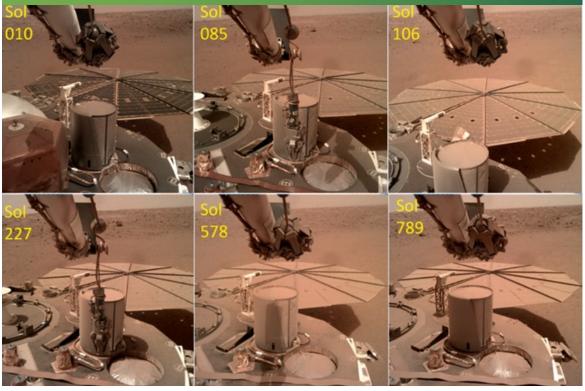
Reliability/Availability: Robustness to Reduced Solar Flux on Mars

- Mars is 1.5x farther from the Sun than Earth, so ~57% less solar energy reaches Mars' atmosphere
 - Larger solar array surface area (more mass) is needed on Mars
- Mars has a day/night cycle like Earth, so no solar power is generated about half of each Martian day
 - Energy storage mass is needed for continuous ops and keep-alive

Fission power output is		Reference Mission		
Fission power output is not affected by solar flux		2009 DRA 5	2016 EMC	2020 POD
Day/Night Equatorial Surface Flux Variation, $\tau = 0.2$	Cargo Need	26 kW ISRU	26 kW ISRU	9 kW No ISRU
	Crew Need	~35 kW (Hab, Lab, rover MAV)	31 kW (Hab, Lab, Rover, MAV)	9 kW (MAV, rover, prop transfer)
XIII 200	Mass Comparison Solar vs. Fission			
Day/Night	Solar	22.5 t Solar	11. 7 t Solar (N. hem.)	11.22 t Solar
	Fission	6 to 8 t (40 kW)	9 t (5 x 10 kWe)	7.93 t (10 kW + spare)
Sol				



Reliability/Availability: Robustness to Nominal Mars Dust


- Nominal dust reduces solar array performance
- Dust suspended in the atmosphere exacerbates seasonal flux variation issues

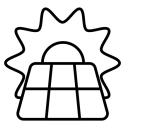
National Aeronautics and Space Administration

Steady accumulation of dust on the InSight solar arrays

Data from multiple Mars assets shows solar **power degradation of ~ 0.2 % per sol** without active dust mitigation

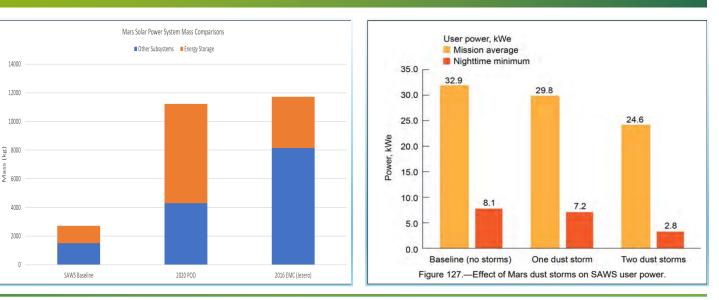
Reliability/Availability: Robustness to Dust Storms

National Aeronautics and Space Administration



Suspended atmospheric dust prevents solar energy from reaching the surface

View of the Sun as the 2018 storm progressed



Fission power output is independent of solar availability, so fission power mass is stable regardless of storm severity or duration

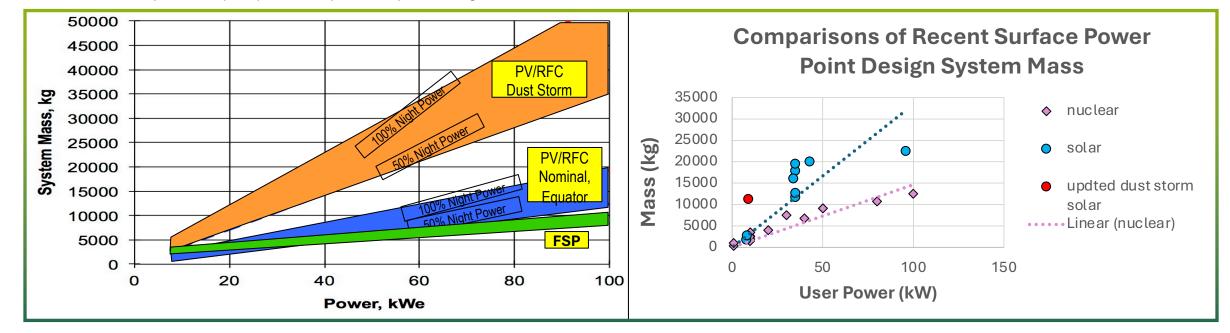
Power studies prior to 2018 underestimated solar power mass based on storms less than half as severe ($\tau = 5$) as 2018 storm ($\tau = 10.8$)

Solar power mass increases with storm severity/duration

Scalability

National Aeronautics and Space Administration

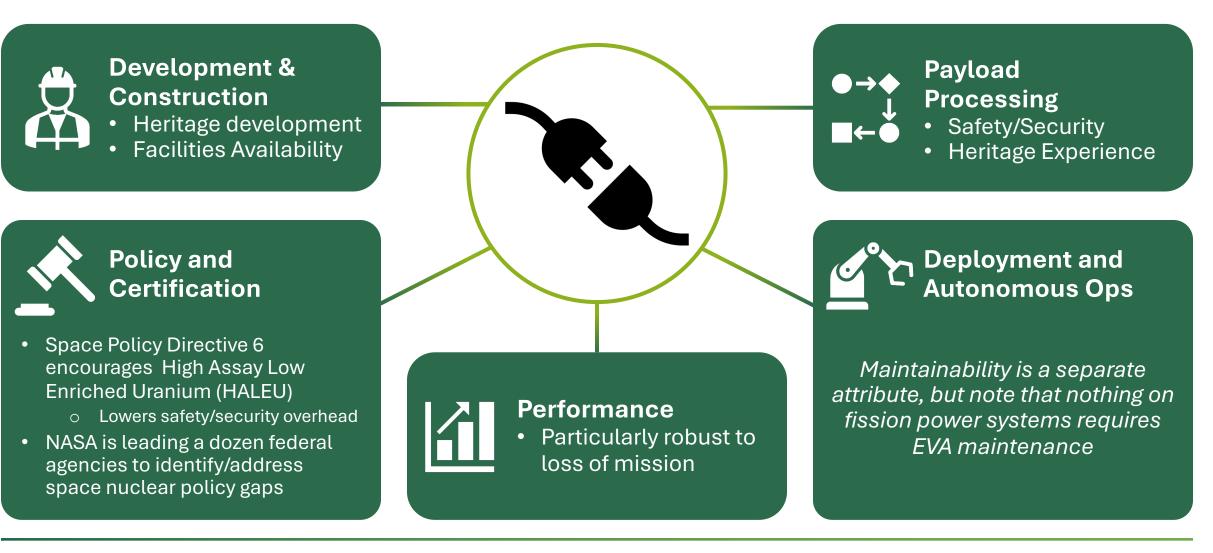
Fission Power


Solar Power w/Energy Storage

Trends higher mass above 10 kW, dependent on

ops, latitude, and dust storm assumptions

☑ Lower, linear mass with increasing power


Fission vs. Sun-tracking PV arrays with RFC energy storage –-Assumes 450 W/m2 (Nominal, Equator), 100 W/m2 (Dust Storm), 12 Hour Night

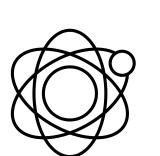
X

Affordability Drivers

Architecture Measure of Effectiveness

Decision Attributes were defined		Potential Im	pact from
specifically for the Mars Surface Power decision to represent the trade-offs of	Measure of Effectiveness (MOE)	Fission Power	Photovoltaic with Storage
how well the decision options can <i>potentially</i> satisfy agency objectives.	Surface Location Access	•	\diamond
potontiatty satisfy agency objectives.	Environmental Access	\diamond	•
Decision Attributes	Power	•	\diamond
	Crew Utilization	\diamond	\diamond
Robustness to Solar Flux Robustness to Dust Storms	Uncrewed Utilization	\diamond	\diamond
Scalability O	Mass		•
Affordability Drivers O	Cost		
	Development Complexity		
Note: This is the first decision to be added to the Mars architecture. A baseline Mars MOE assessment does not yet exist.	Major Moderate Neutral Impact -2 -1 0	ACT Moderate Improvement 1	Major Improvement 2

Conclusion: Fission Trades More Favorably



	Attribute	Nuclear (F	ission)	Non-Nuclear (Solar)
0	Robustness to Dust Storms	Reliable power through severe	0	Limited/no reliable power generation during storms with tau >7 increases system mass energy storage
2	Scalability	Mass advantage increasing power	e Increases with 🗹 er 🔀	Competitive mass at/below 10 kW Mass disadvantage grows with power need
3	Robustness to Solar Flux	Power not appre by season, latitu	ciably affected 🔀 Ide, or day/night	Mass/volume dependent on season/location; need energy storage mass for night-time operations
		K Higher develop	ment & unit cost 🛛 🗹	Lower development & unit cost
4	Affordability	Potential lunar down	cost/risk buy 🗹	Potential for lunar activity cost/risk buy down
6	Robustness to Nominal Dust	Dust build-up o require active/p mitigation	· _	Dust build-up on arrays will require active mitigation Dust suspended in the atmosphere will reduce power generation and increase stored energy mass needed

Summary of Decision

National Aeronautics and Space Administration

Nuclear fission power

selected as primary surface power generation technology for initial crewed missions to Mars

Read the White Paper *https://bit.ly/3VN2Z1r*

