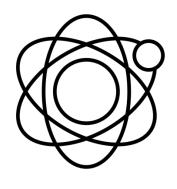


Mars Surface Power


Michael Chappell Deputy Mars Architecture Lead Strategy and Architecture Office NASA – ESDMD – SAO

Introduction

Nuclear fission power selected as primary surface power generation technology for initial crewed missions to Mars

- 2024 Architecture Concept Review outcome
- Exercise in process as much as decision outcome
- Documented in Appendix B of the Architecture Definition Document

Background

- Decision identified due to impacts on the architecture
- Assessment process involved numerous stakeholders, technical experts, and technical authorities
- Primarily driven to mitigate loss of mission risks

Lays the groundwork for future architecture implementation decisions

Decision Attributes

Brainstorming and draft attributes

Stakeholder review and consensus

Data mapping to attributes

Stakeholder Scoring

Scoring rationale review and discussion

Attributes*

*Attributes were developed, reviewed, and scored by STMD, SAO, M2MPO, OSMA

Relevant Decision Attributes				
Reliability / Availability	Robustness to Near Surface Temperature Variations			
	Robustness to Surface <u>Solar Flux</u> Variations			
	Robustness to <u>Nominal Dust</u>			
Reli Ava	Robustness to <u>Dust Storms</u>			
	Maintainability/Repairability			
er S	Minimum Power Needs for Initial Segment			
Power Needs	Scalability			
	Operational Lifespan			
Extensibility to Future Segments				
Affordability Drivers				

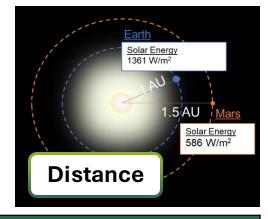
Consensus that 5 highlighted attributes are most impactful

Technology Trade Space and Down Select

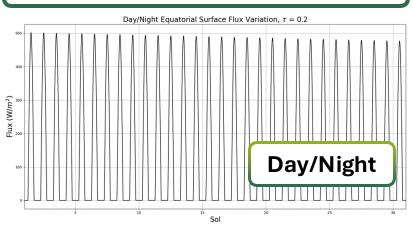
Nuclear Technologies

- Fission surface power systems (FSP)
- Radioisotope thermoelectric generators (RTGs)

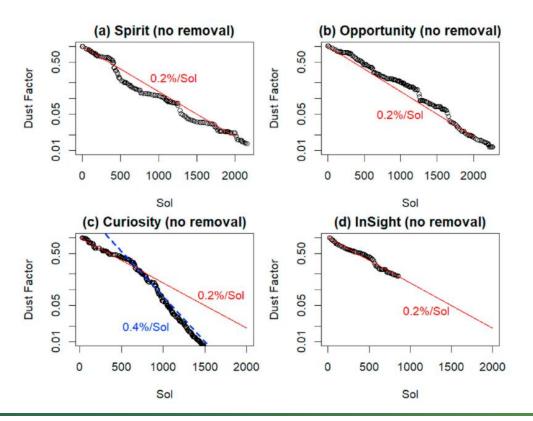
Non-Nuclear Technologies

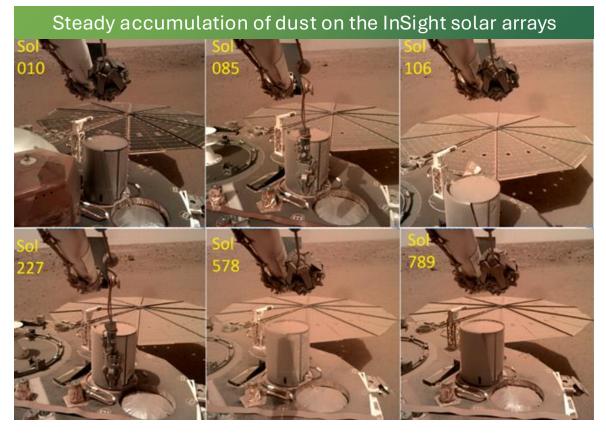

- Photovoltaic array with energy storage
- Primary batteries
- Primary fuel cells
- Wind power generation
- Geothermal power generation
- Biogeneration concepts

RTG	PRIMARY BATTERIES	PRIMARY FUEL CELLS	WIND	GEOTHERMAL	BIO- GENERATION
Scalability issues Pu-238 production limit & low TRL alt. fuels	Poor scalability Not practical (mass) even for 2 crew/30 sol/no ISRU	Energy to make reactants exceeds energy generated Needs reactant delivery	Insufficient sustained winds for reliable power production	Energy-intensive infrastructure build needed to implement	Complicated by planetary protection constraints


Reliability/Availability: Robustness to Reduced Solar Flux on Mars

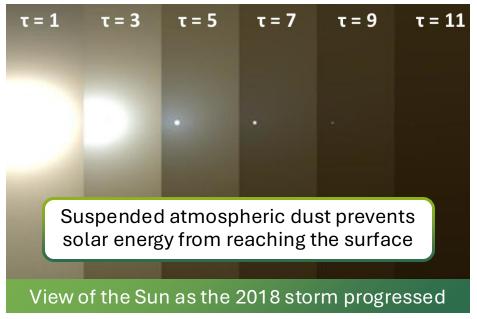
- Mars is 1.5x farther from the Sun than Earth, so ~57% less solar energy reaches Mars' atmosphere
 - o Larger solar array surface area (more mass) is needed on Mars
- Mars has a day/night cycle like Earth, so no solar power is generated about half of each Martian day
 - Energy storage mass is needed for continuous ops and keep-alive




	Reference Mission				
	2009 DRA 5 2016 EMC		2020 POD		
Cargo Need	26 kW ISRU	26 kW ISRU	9 kW No ISRU		
Crew Need	~35 kW (Hab, Lab, rover MAV)	31 kW (Hab, Lab, Rover, MAV)	9 kW (MAV, rover, prop transfer)		
Mass Comparison Solar vs. Fission					
Solar	22.5 t Solar	11. 7 t Solar (N. hem.)	11.22 t Solar		
Fission	6 to 8 t (40 kW)	9 t (5 x 10 kWe)	7.93 t (10 kW + spare)		

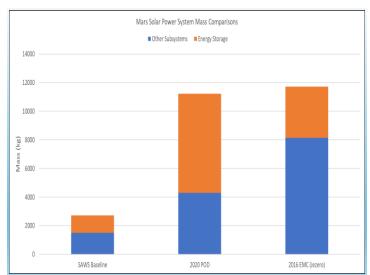
Reliability/Availability: Robustness to Nominal Mars Dust

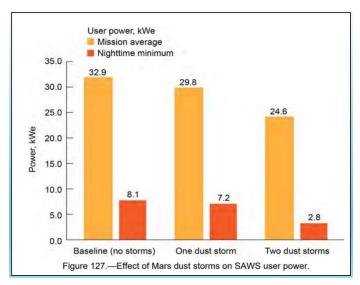
- Nominal dust reduces solar array performance
- Dust suspended in the atmosphere exacerbates seasonal flux variation issues



Data from multiple Mars assets shows solar **power degradation of ~ 0.2 % per sol** without active dust mitigation

Reliability/Availability: Robustness to Dust Storms

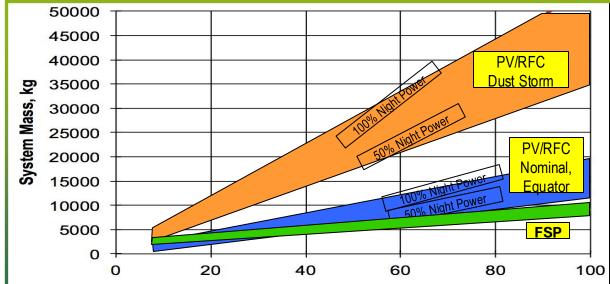



Fission power output is independent of solar availability, so fission power mass is stable regardless of storm severity or duration

Power studies prior to 2018 underestimated solar power mass based on storms less than half as severe (τ = 5) as 2018 storm (τ = 10.8)

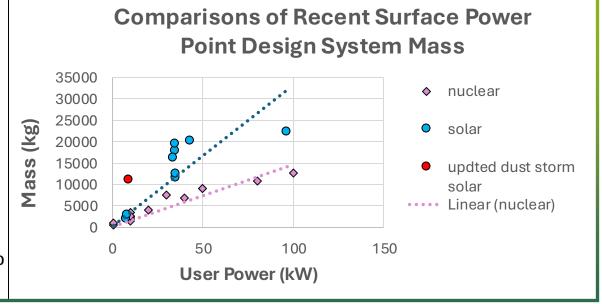
Solar power mass increases with storm severity/duration

Scalability



Fission Power

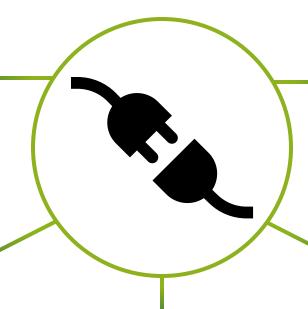
Solar Power w/Energy Storage


☑ Lower, linear mass with increasing power

Fission vs. Sun-tracking PV arrays with RFC energy storage —
Assumes 450 W/m2 (Nominal, Equator), 100 W/m2 (Dust Storm), 12 Hour Night

Power, kWe

Trends higher mass above 10 kW, dependent on ops, latitude, and dust storm assumptions


Affordability Drivers

Development & Construction

- Heritage development
- Facilities Availability

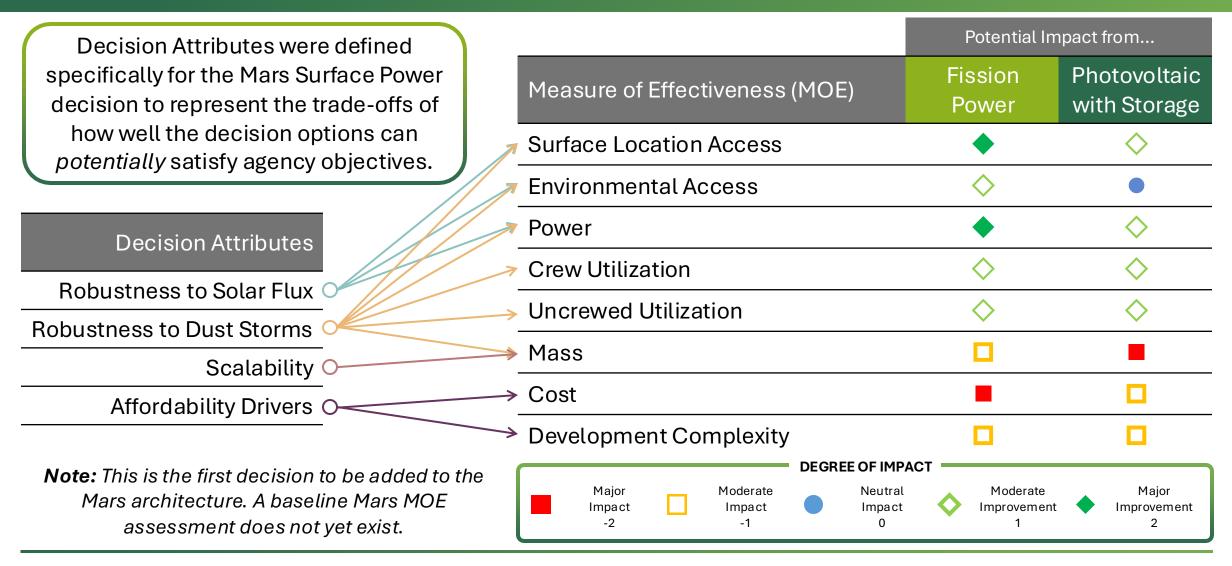
- Safety/Security
- Heritage Experience

Policy and Certification

- Space Policy Directive 6
 encourages High Assay Low
 Enriched Uranium (HALEU)
 - Lowers safety/security overhead
- NASA is leading a dozen federal agencies to identify/address space nuclear policy gaps

Performance

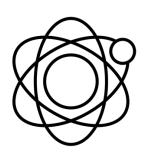
 Particularly robust to loss of mission


Deployment and Autonomous Ops

Maintainability is a separate attribute, but note that nothing on fission power systems requires

EVA maintenance

Architecture Measure of Effectiveness


Conclusion: Fission Trades More Favorably

	Attribute	tribute Nuclear (Fission)		Non-Nuclear (Solar)	
0	Robustness to Dust Storms	V	Reliable power generation through severe storms	×	Limited/no reliable power generation during storms with tau >7 increases system mass energy storage
2	Scalability	V	Mass advantage Increases with increasing power	×	Competitive mass at/below 10 kW Mass disadvantage grows with power need
3	Robustness to Solar Flux	V	Power not appreciably affected by season, latitude, or day/night	×	Mass/volume dependent on season/location; need energy storage mass for night-time operations
		×	Higher development & unit cost	V	Lower development & unit cost
4	Affordability	V	Potential lunar cost/risk buy down	V	Potential for lunar activity cost/risk buy down
5	Robustness to Nominal Dust	×	Dust build-up on radiators may require active/passive mitigation	X	Dust build-up on arrays will require active mitigation Dust suspended in the atmosphere will reduce power generation and increase stored energy mass needed

Summary of Decision

Nuclear fission power selected as primary surface power generation technology for initial crewed missions to Mars

Read the White Paper https://bit.ly/3VN2Z1r

