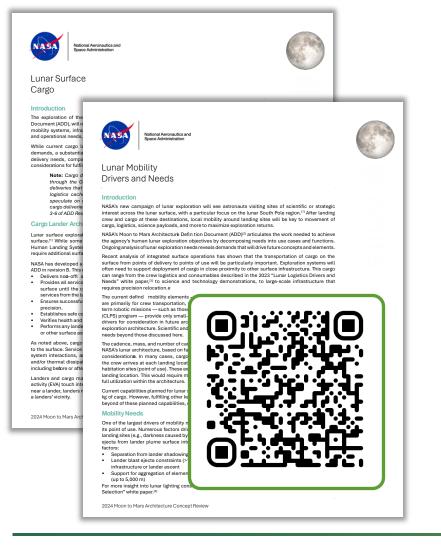


# Lunar Logistics, Mobility, and Cargo


**Kandyce Goodliff** Deputy Lunar Architecture Lead *Strategy and Architecture Office* NASA – ESDMD - SAO



### **Architecture White Papers**

National Aeronautics and Space Administration





#### NASA's Moon to Mars Architecture defines the capabilities and elements needed for long-term, human-led scientific discovery in deep space.

- Through detailed architectural assessments of lunar surface needs, capability gaps have been identified in:
  - Logistics Systems elements that play a role in the containment and transportation of Logistics Items or Cargo, and
  - Uncrewed Mobility Systems elements capable of delivering items to their point of use
- Given the scope and scale of forward demand, NASA published multiple white papers to grow awareness across industry and the NASA stakeholder community, including
  - o Lunar Logistics Drivers and Needs (2023 White Paper)
  - o Lunar Surface Cargo (2024 White Paper)
  - o Lunar Mobility Drivers and Needs (2024 White Paper)

### Lunar Surface Cargo Background

National Aeronautics and Space Administration



- The architecture includes several surface cargo delivery or support functions, with some but not all needs current fulfilled by the Human Landing System (HLS), Human-class Delivery Lander (HDL), and Commercial Lunar Payload Services (CLPS)
- Analysis leading to and supporting the small cargo lander mission concept review (MCR) also revealed implications across the architecture strategy (e.g., available/contracted cargo capacity today versus aggregated future cargo demand)
- NASA allocated 17 functions to lunar surface cargo delivery in ADD Rev-A:
  - Nine identified as key; Eight identified as potential. (Potential reflects optional services that may be needed on some but not all landers.)
  - $\circ$  The ability to deliver cargo to the lunar surface is critical to the architecture

| Кеу | Potential | Lunar Surface Cargo Delivery Functions |                                                                                                                                                     |
|-----|-----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Х   |           | FN-018-L                               | Transport cargo from Earth to the lunar surface                                                                                                     |
| Х   |           | FN-088-L                               | Provide precision landing for cargo transport to the lunar surface                                                                                  |
| Х   |           | FN-122-L                               | Decommission surface delivery system(s) and /or surface asset(s)                                                                                    |
| Х   |           | FN-126-L                               | Reduce blast ejecta                                                                                                                                 |
| Х   |           | FN-141-L                               | Deliver cargo(s) to distributed sites on the lunar surface                                                                                          |
| Х   |           | FN-256-L                               | Provide physical and electronic safeguards for automated asset(s) operating near crew                                                               |
| Х   |           | FN-257-L                               | Detect and avoid hazards during landing in darkness, high contrast, and long shadowed lighting conditions in the presence of lun ar dust and debris |
| Х   |           | FN-277-L                               | Unload large utilization assets on the lunar surface                                                                                                |
| Х   |           | FN-280-L                               | Deliver cargo(s) to south polar region sites on the lunar surface                                                                                   |
|     | х         | FN-066-L                               | Transport cargo from Earth to the far side of the lunar surface                                                                                     |
|     | х         | FN-123-L                               | Provide propellant/fluid transfer through common interface(s) between assets on the lunar surface (demonstration)                                   |
|     | х         | FN-129-L                               | Transfer of propellant/fluids between assets on the lunar surface (demonstration)                                                                   |
|     | х         | FN-139-L                               | Dep loy (including setup, activation, and operation) science and/or monitoring utilization payload(s) on the lun ar surface                         |
|     | х         | FN-144-L                               | Transport large exploration asset(s) from Earth to the lunar surface                                                                                |
|     | х         | FN-148-L                               | Perform robotic manipulation of payloads, logistics, and/or equipment at multiple scales                                                            |
|     | х         | FN-254-L                               | Provide safety features, including shutoff, on robotic and/or autonomous system(s)                                                                  |
|     | Х         | FN-255-L                               | Robotic system(s) interaction with logistics carriers on the lunar surface                                                                          |

Architecture functions are intentionally decoupled from performance or demand to enable system analysis and trades.

### Lunar Surface Cargo Capacity Estimates

National Aeronautics and Space Administration



| Lander Type                  | Mass Delivery Capability (t)          | Provider      |
|------------------------------|---------------------------------------|---------------|
| CLPS - Current Task Orders   | 0.07 – 0.475 for existing task orders | U.S.          |
| HDL Cargo Lander             | 0 - 12 or 15 t                        | U.S.          |
| ESA Argonaut Lander          | Up to 2.1 t                           | International |
| JAXA Cargo Lander Capability | Under study                           | International |

# Current capabilities beyond HDL are not available from 500 kg to 12,000 kg, for which significant demand exists.









## Lunar Mobility Drivers and Capacity

National Aeronautics and Space Administration



| • | Analysis leading to and supporting surface logistics, potential utility rover |
|---|-------------------------------------------------------------------------------|
|   | concepts, and initial surface habitation mission concept review (MCR)         |
|   | revealed implications across the architecture strategy:                       |

- Functional gaps and services not yet available for mobility of large uncrewed assets
- Relocation and surface placement demand
- Technological gaps in performance for mobility assets
- Integrated architectural strategic considerations
- Lunar surface mobility is allocated to 22 functions in M2M ADD Rev-B
- Demand for mobility is driven by integrated architectural operations:
  - Relocation out of lander shadows or engine blast range
  - Deployment to optimal solar points
  - Aggregation of logistics to point of use
  - o Infrastructure deployment


| Mobility Asset                                 | Mass Transport Capability (kg)                                   |
|------------------------------------------------|------------------------------------------------------------------|
| Lunar Roving Vehicle<br>(Apollo)               | 490 kg                                                           |
| Lunar Terrain Vehicle<br>(uncrewed capability) | 800 kg<br>(full performance)<br>1600 kg<br>(reduced performance) |
| JAXA Pressurized Rover                         | TBR                                                              |

Mobility mass demand ranges are similar to those of landed cargo demand, but capabilities are not available for cargo or assets greater than 1,600 kg; No mobility assets exist that can relocate large elements (e.g., initial surface habitat)

### Lunar Mobility Demand

National Aeronautics and Space Administration







Foundational Exploration


Mobility payload mass demand forecasts range from 500 kg to 15,000 kg per asset during the Foundational Exploration segment

### Lunar Mobility Demand Range

National Aeronautics and Space Administration



- Assessment of range per asset deployed could be driven by multiple factors:
  - $\circ$  Min relocation distance to avoid lander shadows >50m
  - Min relocation distance to avoid lander blast ejecta >1,000m
  - Relocation from potential lander sites to optimal/aggregate surface locations up to 5,000m
- Attempting multi-region mobility would require a capability of hundreds to thousands of kilometers





Integrated architecture operations will necessitate non-trivial relocation and aggregation range demand for cargo and assets.

### White Paper Key Takeaways

<ey Takeaways

National Aeronautics and Space Administration



- Foundational Exploration and Sustained Lunar Exploration segment goals require significant transportation of cargo to the lunar surface
- NASA anticipates an aggregate demand for lunar surface cargo on the order of 2,000 to 10,000 kg per year
- To mitigate this capability gap, strategic considerations include engaging multiple providers across both international partners and industry over time, offering dissimilar redundancy
- Communication of cargo demand to the exploration community helps enable industry and international engagement
- Lunar exploration objectives require significant mobility of cargo and assets across the lunar surface from landing site to point of use at ranges of 5 to 5,000 m
- Currently, the surface mobility capability expressed in the architecture is limited to 800 kg. However, future mobility demands include aggregated logistics and larger elements as massive as 12,000 kg or more
- Large-scale mobility is not simply scaled up small-scale mobility; energy and environmental considerations are crucial to the design process
- Interoperability and autonomous or semi-autonomous capabilities on mobility systems enable mission planning flexibility and increase available crew utilization time

