

Technology Gaps Definition and Prioritization

Audrey Morris-Eckart

Deputy Manager Science, Technology Utilization and Integration (STUI) STRATEGY AND ARCHITECTURE OFFICE

NASA Architecture-Driven Technology Gaps (Why and What)

National Aeronautics and Space Administration

Objectives and

Goals

How does NASA define a technology gap? From the Architecture

Decomposing from Agency Objectives

 Demand signal used globally to inform technology investments that align to NASA's Moon to Mars Architecture

Characteristics

and Needs

- Derived from needed capability in the architecture but **solution-agnostic**
- Included in Shortfalls list, providing technology pull from the architecture for Moon to Mars missions
- **Updated annually** as architecture evolves and technology development close gaps

Use Cases and

Functions

Decisions

NASA Architecture-Driven Technology Gaps Annual Definition and Prioritization Process (How)

National Aeronautics and Space Administration

NASA identifies technology and capability gaps in the Moon to Mars Architecture through the objective decomposition process.

NASA prioritizes and documents gaps in the Architecture Definition Document and relies on technology development to close them. Annual processes using systems engineering tools governed by strict principles to enable rigorous, repeatable results

White Paper: Architecture-Driven Technology Gaps <u>https://go.nasa.gov/4goQ9iq</u>

NASA Technology Gaps (in ADD Rev B, Appendix C) Communicating Details (Example Gap Shown)

National Aeronautics and Space Administration

Gap Details

- Gap number, title, and description
- Architecture impact and benefits from architecture teams
- Current state-of-the art metrics sourced from technology development domain experts
- Target performance metrics sourced from architecture teams
- **Traceability** to sub-architectures, segments, UC/Fs and decisions
- **Priority bin** based on Gap Overall Prioritization Rating sourced from architecture teams
- Related **Child Gaps** are more specific

Gap ID	Gap Title						
ESDMD #0301	SDMD #0301 Systems to Survive and Operate through Extended Periods of Lunar Shadow						
Gap Description		Architecture-Driven Child Gaps					
Assets on the su and induced en- extreme variation or improved pow required and will experiments, m	Irface of the Moon will be subjected to large variations in natural vironments. The ability to survive and operate through these ins is required to enable long-duration surface operations. New ver, thermal management, and actuation technologies are l need to work together to accomplish this goal for science obility assets, habitats, and more.	 0301-01: Freeze-tolerant thermal components 0301-02: Extreme temperature-tolerant mechanisms and electronics 0301-03: Energy storage for extreme temperatures 0301-04: Heat rejection systems for the lunar thermal environment 	•				
Architecture In	npact and Benefits	Architecture Traceability					
Without gap clo will impact the o inability to reuse	sure, the inability to survive extended periods of lunar shadow operating lifespan of surface assets. There may also be an a surface assets if systems cannot survive shadowed periods.	UC/Fs • UC-H-105 L FN-H-201 L Key Decision	- Higher Priori				
Metrics Current State of the Art Small spacecraft have survived extended periods of lunar shadow with damage to subsystems and degraded capability. There is currently no state of the art for any human-scale elements successfully functioning through extended lunar shadow periods. Performance Target Survive continuous shadow for 150 (TBR) hours or more several times a year for 10 years.		Sub-Architecture(s) We have a constraint of the second se	ity —				

NASA Technology Gaps Priority Bin Results (in ADD Rev B, Appendix C)

National Aeronautics and Space Administration

Gap ID	Gap Title	Priority Ranking	Priority Bin	Γ	Gap ID	Gap Title	Priority Ranking	Priority Bin	
0801	Lunar Dust Tolerant Systems and Dust Mitigation	1			0803	Extravehicular Activity (EVA) and Intravehicular Activity (IVA) Suit System Capabilities for Mars Missions	28		
0301	Systems to Survive and Operate through Extended Periods of Lunar Shadow	2			1101	Lunar Precision Landing and Hazard Avoidance for Human Exploration	29	1	
0103	High-bandwidth. High-reliability Surface-to-Surface Communications	3	1		1004	Trustworth y Auton omy for Planning and Decision-making	30		
1104	Mars Transportation Propulsion	4			1002	Autonomous Monitoring for Exploration Missions	31	4	
0201	Extreme Environment Avionics	5			0802	Mars Dust-Tolerant Systems and Dust Mitigation	32	1	
0805	Autonomous Surface Mobility and Navigation	6			0501	Robotic and Human-Robot Inspection, Maintenance, and Repair	33		
0305	Food and Nutrition Capabilities for Missions with Long-duration Storage	7			1102	Mars Precision Landing and Hazard Avoidance for Human Exploration	34	4	
1103	Mars Entry Descent and Landing for Human Exploration				1201	In-Situ Sample Storage and Processing	35	-	
0806	Payload Offloading Handling and Maninulation for Surface Assets	9			0402	Sen sori motor Countermeasures to Support Extended Habitation in Space	36	4	
0304	Habitat Environmental Manitars Canable of Sunnarting Deen Snace Missions	10			0401	Crew Exercise Countermeasures to SupportExtended Habitation in Space	37		
1107	Cruodonia Eluid Transfor	11	2		0403	Physiological Countermeasures for Extended Habitation in Space	37		
1107		10	-	_	0404	Behavior al Countermeasures for Extended Habitation in Space	37	l _	
1105	Mars Ascent Propulsion for Human Exploration	12	-		0406	Spaces uit Physiology for Deep Space Missions	40	5	
0901	Scalable Lunar Surface Power Generation	13	-		1202	Planetary Protection Technologies for Human Exploration	41	4	
1001	High-performance Actuators, Sensors, and Interfaces	14		4 /		0405	Exploration Medical Capabilities for Deep Space Missions	42	4
0807	Docking and Berthing between Surface Elements on the Moon and Mars	15			1106	Cryogenic Fluid Storage	43	4	
0303	Dormancy Recovery for Habitat Water Storage, Distribution, and Reclamation	16			0308	Radiation Counter measures	44	4	
0307	Radiation Monitoring and Modeling	17			0902	Scalable Mars Surface Power Generation	45	1	
1003	Integrated System Fault/Anomaly Diagnosis, Decision Support, and Response	18			0104	Earth-IndependentSurface Positioning, Navigation, and Timing for Deep Space Missions	46		
0804	Robotic and Mobility Systems in Extreme Cold Environments	19			0306	Advanced Structures and Materials to Enable Mass-Efficient Habitats	47		
0101	Lugar Surface Basitian Nevigatian and Timing Sustame for Extrame Temporature Badiation Dust	20			0602	In-Situ Resource Identification, Characterization, and Mapping	48		
0702	Lunal Sunace Position, Navigation, and hinning Systems for Extreme Temperature, Radiation, Dust	20	-		0503	In-Space & Surface Transfer of Earth Storable Propellants	49		
0702		21	3		0102	High-band width, High-reliability Deep Space Communications	50		
0302	Fire Safety Upgrades for Surviving Exploration Mission Environments	22	-		0606	Mars ISRU to Support Human Exploration	51	6	
0903	Power Management and Distribution between Surface Elements	23			0605	Lunar Regolith Excavation, Manipulation, and Transportation	52	0	
0808	Relocation of Large Assets on the Lunar Surface	24			0601	Oxygen Extraction from Lunar Regolith	53		
0202	High-Performance Onboard Computing	25			0603	Water Recovery from Lunar Regolith/Ice	53		
0701	Packaging, Transport, and Use of Conditioned Supplies and Commodities	26			0604	Metal Extraction from Lunar Regolith	55		
1005	Safe Human-Robot Interaction and Teaming	27			0502	In-situ Manufacturing of Spares, Repairs, and New Parts	56		

Prioritized technology gaps are grouped in bins by similar levels of preference according to the Moon to Mars Architecture perspective

nasa.gov/architectur

NASA Architecture-Driven Technology Gaps Looking Forward and Summary Overview

National Aeronautics and Space Administration

Updates to gap definition and priorities occur annually in our strategic analysis cycle

- As architecture evolves (new functions, decisions, priorities)
- As technologies are developed (gap closure)
- Coordinated with NASA Civil Space Shortfalls

What: Prioritized technology development demand signal from architecture *Where*: Architecture Definition Document

When: 2024 \rightarrow Annually revised

Why: Focus resources to enable critical technologies for Moon to Mars exploration

How: Rigorous systems engineering processes and stakeholder integration

nasa.gov/architecture