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Background- STS-400

* The STS-400 was the rescue contingency plan for the STS-125, the
servicing mission of the Hubble Space Telescope.

* The Endeavour sat on launchpad 39B ready to launch in short notice in
case the Atlantis suffered major damage during the launch to the

telescope

* Prepping for worst case scenario:
 Determined the CO, scrubbing capability of a canister (16-18 hours)
e <22 days
* Planned halting of all exercise when emergency was declared

* Planned to use contingency food bars on board
* Mixed diet of 40% fat, 20% carbohydrates, RQ=0.85

® 141 fOOd ba rson boa I’d = 8,291 gra ms https://www.nasaspaceflight.com/2019/05/
sts-400-endeavours-responder-role-atlantis-
hubble-mission‘
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Survival Modes

* Baseline « Severe
* Full performance » Strictly limit crew activity by 28% ideally
« Nominal operations sleepingoridle
* Extra Vehicular Activity (EVA)’s * No EVA’s
» Exercise * No exercise
« Full Caloric and water intake * Significant limit water and food intake by 1/3 of

basal metabolic rate needs
* Modify RQ by altering diet

) - _ * Might result in significant health implications
e Continuation of most tasks

* No EVA’s or exercise
* Reduced daily activity by approximately 15%
 Limitfood and water intake to 50% of baseline
* No long-term impacts

* Nominal environment control parameters
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Limit Consumables

* Oxygen

* Limited Carbon dioxide scrubbing
* Water
* Food
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* Activity

o i r = S Diet content affects RQ
e Diet C@ RQ | =CO2 |,02 1
Q"‘g& lliness
* [llness Metabolic rate 1 = 02 1, CO2 1

Environmental Temp | =
Metabolic rate 1, CO2 1+ O2 1

* Environmental Temperature

:a? Activity level | =02 |, CO2 |

Crew Mass
Masst =02 1 ,CO2 1
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Activity

* Assumption = 82kg, 45 ml/kg/min VO, max

e Sleep: 300 BTU/hr, (76 kcal/hr)
 Nominal ‘awake’ =474 BTU/hr, (119 kcal/hr)

* Exercise:

* Aerobic=3303 BTU/hr
* Resistive 1184 BTU/hr
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Diet
* Different diet compositions will affect the consumption of O, and CO, output

 Respiratory Quotient (RQ) is a measurement of energy expenditure
_ Volume of CO; Released

RO =
¢ Volume of 0, Consumed

* RQ=1 estimates carbohydrate metabolism
* RQ=0.7 estimates fat metabolism
* RQ=0.8 estimates a mixed diet metabolism

* RQ changes with intensity of activity
* Low activity = RQ is between 0.8-0.9 (fatty acid is primary fuel)
* Currently NASA uses 0.85 RQ for missions during sleep and nominal activities
 High activity = RQ is between 0.9 and 1.0 (carbohydrate is primary fuel)
* Currently NASA used 0.95 RQ for missions during exercise
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Ketosis

* A high fat and low carbohydrate diet to force metabolism of fat for
energy

e Starvation State

* Why not feed a solely fat diet?

» Ketoacidosis

* Too low of carbohydrates can lead to overproduction of ketone bodies resulting in a
very acidic blood pH

* Symptoms: nausea, vomiting, fast heartbeat, fruity breath, headache, confusion
* Long term effects: cognitive decline, brain damage, heart and kidney failure
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Daily CO2 Production |Ib
Effect of RQ and Activity Level
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Calculations based on NASA 41-Node Metabolic Man Model
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Daily O2 Consumption Ib
Effect of RQ and Activity Level
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Food/Nutrition

» Studies have been conducted on soldiers that limited their caloric
intake to half = 1800 kcal/day for 24 weeks
* Resting expenditure decreased by 40%

* Body weight loss of about 10% = 10-15% decline in VO, max

» Studies found that body mass loss of about 10% has no impairment on physical
performance

* Survival Modes: *Body weight assumption of 82 kg
* Moderate= 1,800 calories/day
» Severe=600 calories/day = 10% loss of body weight in 52 days
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Water

* General water recommendations are 1 to 1.5 ml/kcal expended per
day

* Higher water turnover at higher altitudes
* 1000m increase = approximately 500 mlincrease in water turnover
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Executive Summary
Nutrition has been critical in every phase of
exploration on Earth, from the time when scurvy
plagued seafarers to the last century when polar
explorers died from malnutrition or, in some
cases, nutrient toxicities.

The space food system must provide food that is
safe, nutritious, and acceptable to the crew to
maintain crew health and performance during
space flight. Nutritional standards in NASA-STD-
3001 are based on National Institutes of Healtt
(NIH) standards dietary recommended intake
(DR1). Achieving and maintaining food system
acceptability, nutrition, and safety for space flight
is complex and influenced by factors such as
availability of mass, volume, power, crew time,
food preparation capability, preference foods,
resupply, variety, mission duration, and required
shelf life.

NASA astronaut Kjell Lindgren (left) ond Jopan
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Relevant Technical
Requirements

NASA-STD-3001 Volume 1, Rev C

[V1 3002] Pre-Mission Preventive Health
Care

[V1 3003) In-Mission Preventive Health Care

[V1 3004] In-Mission Medical Care

[V1 3016) Post-Mission Health Care

[V1 3018) Post-Mission Long-Term
Monitoring

[V1 4019] Pre-Mission Nutritional Status

[V1 4020] In-Mission Nutrient Intake

[V1 4022] Post-Mission Nutritional
Assessment and Treatment

NASA-STD-3001 Volume 2, Rev D

[V2 3006) Human-Centered Task Analysis?
[v2 6026] Water Quality

[v2 6039] Water Dispensing Rate

[v2 6040] Water Dispensing Increments
[V2 6109] Water Quantity

[V2 6110) Water Temperature

[V2 7001) Food Quality

[V2 7002 Food Acceptability

[V2 7003) Food Caloric Content

[V2 7004] EVA Food Caloric Content

[V2 7007) Food Microorganism Levels
(V2 7008] Food Preparation

[V2 7009) Food Preparation and Cleanup
[V2 7010] Food Contamination Control

(continued on next page)

Executive Summary
Water is necessary for our bodies' proper
hydration, our health, and a full active life. In
spaceflight, water (including quantity and
quality) is a critical resource that needs to be
carefully managed for crew health and safety.
In the context of human spaceflight, water has
a variety of uses to support crew health
including hydration, food rehydration, and
personal hygiene. Being well hydrated during
operations is absolutely critical as dehydration
can result in decrements in decision-making,
concentration, and physiology of the crew. This
Technical Brief focuses on the water required
for human consumption during spaceflight
missions.
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Relevant Technical
Requirements

NASA-STD-3001 Volume 1, Rev C
[v1 3003] In-Mission Preventive Health Care

NASA-STD-3001 Volume 2, Rev D

[v2 3006) Human-Centered Task Analysis
[v2 6026] Potable Water Quality

[V2 6109) Water Quantity

[V2 6110) Water Temperature

[v2 6039) Water Dispensing Rate

[v2 6040] Water Dispensing Increments
[V2 6046) Water Quality Monitoring
[v2 6051) Water Contamination Control
[V2 7052] Stowage Location

[v2 8001) Volume Allocation

[V2 11029 LEA Suited Hydration

[V2 11030] EVA Suited Hydration

Aerospace Exploration Agency (JAXA) astronaut

From: NASA image and Video Library
Kimiya Yui, participate in a food tasting session
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Environmental Parameters

« Studies have found that temperatures at approximately 65°F and
below resultin an increase in energy expenditure
* Shivering
* Increased blood flow
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CO2 Consideration

* Hypercapnia
* described by the increase of CO, partial pressure to above 45 mmHg

 characterized by a variety of symptoms such as headache, fatigue, dyspnea, and space fog, a term
coined to describe poor concentration and delayed mental abilities during spaceflight

* Insevere cases can even lead to death by metabolic acidosis where significant CO, buildup leading to
very acidic blood resulting in kidney disease or failure
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Consideration of lllness

* Guidelines are based on the assumption that crewmembers are healthy

« State of health
* Impacts O, consumption and CO, production
* Food and nutritional needs
* Alter temperature/humidity needs
* Fever

* Physiological changes as the body fights off an infection

* Increased body temperature
* Increases metabolic rate by 10-12% for every 1 °C over 37 °C
* 0O, consumption rates of 1.86 lbs/day for a mild illness
* 0O, consumption rates of 2.86 |bs/day for a severe illness

» Elevated heart rate
» 1°Cincrease in body temperature = heart rate increases by 7Tbpm

* |nflammation

2025 Human Research Program + 17

Joanne Kaouk |
Investigators’ Workshop +

Joanne.l.kaouk@nasa.gov +




Joanne Kaouk |
Joanne.l.kaouk@nasa.gov

Crew Survivability

OCHMO-TB-047

Executive Summary

As future spaceflight missions become increasingly
complex, longer in duration, and a further distance
from Earth, readily available rescue and evacuation
options must be evaluated to protect
crewmembers during off-nominal survival
scenarios. This technical brief explores options to
support rescue scenarios by reducing the

human usage of consumables (i.e., oxygen, food,
water, power) to extend the mission to enable
rescue. By considering these potential survival
scenarios during the planning and design phase,
providers can make informed decisions on vehicle
capabilities, mission supplies, crew make-up and
rescue options.

Artemis | SLS waiting on the lounchpad

NASA-STD-3001 Technical Brief
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Relevant Technical
Requirements

NASA-STD-3001 Volume 1, Rev C
[V1 3004] In-Mission Medical Care

NASA-STD-3001 Volume 2, Rev D

[V2 4015) Aerobic Capacity

[V2 6001] Trend Analysis of Environmental
and Suit Data

[V2 6003] 02 Partial Pressure Range for
Crew Exposure

[V2 6004) Nominal Vehicle/Habitat
Carbon Dioxide Levels

(V2 6012] Crew Health Environmental
Limits

[V2 6014] Crewmember Heat Storage

[V2 6017] Atmospheric Control

[V2 6109] Water Quantity

[v2 7003] Food Caloric Content

[V2 7100] Food Nutrient Compaosition

NOTE: The parameters discussed in this technical brief are for
illustration purposes only. The details for a mission extension scenario
must consider exact circumstances and crew complement.

2025 Human Research Program
Investigators’ Workshop
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echnical Requirements

NASA-STD-3001 Volume 1 Revision C * [V26014] Crewmember Heat Storage
* [V13004] In-Mission Medical Care * [V26017] Atmospheric Control
NASA-STD-3001 Volume 2 Revision D * [V26109] Water Quantity should be t
* [V24015] Aerobic Capacity * [V27003] Food Caloric Content
* [V26001] Trend Analysis of * [V27100] Food Nutrient Composition

Environmental and Suit Data

 [V26003] O2 Partial Pressure Range for
Crew Exposure Levels

* [V26012] Crew Health Environmental
Limits

Joanne Kaouk | 2025 Human Research Program + *
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Thank youl

Questions?
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