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Abstract Structured Outputs from LLLLM

The Al for Curation project aims to integrate advanced LLM models into various aspects of our data In our efforts to enhance the Al for Curation project, we've

(BaseModel):

curation workflow, enhancing the efficiency and accuracy from submission to user interaction. This ini- developed advanced tools for automated tagging that signifi- 1 ] 1 1
Title: = Field(description=

tiattve will impact multiple touchpoints, including data ingestion, curation processes, and user engage- cantly streamline the curation process. These tools are adept at 1 1 ) 1
ment with our curated datasets, affecting various centers, domains, and a broad user base. First, we are identifying patterns within diverse datasets, automatically sug- Accssion: = Field [E:IEEEl‘l[]tlﬂﬂ:

developing tools capable of parsing incoming data across all formats and utilizing LLLLMs to convert un- gesting context-relevant metadata tags. This capability not only Cells: Field(description=

structured data into structured, standardized formats. This process streamlines curation by converting facilitates the initial organization of newly ingested data but

data into community-standard formats like ISA-Tab, significantly reducing the time and effort required also allows for the retrospective curation and categorization of

by curators. This allows curators to allocate more resources to scientific analysis rather than data for- existing datasets. Once data is aligned with community stan- Astronaut: = Field(descr iption=

matting tasks. Second, we are implementing AI/MIL models to automate and enhance the accuracy of dards, these tools apply contextual tags to meticulously orga-

data validation and verification. These models ensure that the curated data adheres to high standards of nize the information, rendering it Al-ready for subsequent

quality and reliability, benefiting researchers and data users by providing them with rigorously verified training processes. For example, they can generate specific tags

datasets. Finally, we are developing a conversational agent (chatbot) that interfaces with our extensive for studies involving astronauts or particular experimental con-

repository of curated scientific studies on the Open Science Data Repository (OSDR). The chatbot en- ditions, ensuring a high level of precision and relevance in data Pydantic, a Python library for data validation and settings management, facilitates the creation of schemas that ensures responses from large language
hances data discoverability by assisting users in navigating the knowledge base and referencing relevant handling. This method greatly enhances the accessibility and models (LLMs) conform to a specified structure. Here, a Pydantic class is used to define the structure for automated tagging of OSDR studies, illustrat-
studies. This improvement in accessibility makes scientific data more available to the community, there- utility of the curated data, supporting more efficient research ing how data is organized and standardized for Al processing,

by promoting the principles of open science. and analysis.
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face (GUI) provides a suite of intuitive tools. These GUI capabilities are in-

ports file imports, as well as intelligent extraction techniques using generative Al to parse and in-
terpret data directly from scientific papers. This capability automates the visualization of complex
experiments, transforming dense textual information into clear, informative graphical abstracts.

Users can choose from predefined templates, which promote consistency across different datasets. Once a template is selected, the system auto-
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Additionally, the chatbot incorporates a Retrieval-Augmented Generation (RAG) model, which enhances its ability to generate precise and contextually relevant responses.
The RAG model first retrieves relevant information from a vast database of scientific literature before producing a coherent reply, thereby improving the chatbot’s effective-
ness 1n navigating and discovering scientific studies. These integrated features ensure that critical information 1s not only more discoverable but also more understandable and
secure within the scientific community.

This chatbot initiative aligns with our commitment to open science, facilitating broader access to knowledge and fostering a collaborative environment for innovation.
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