
Historical Aerospace Software Errors
Categorized to Influence Fault Tolerance

Spacecraft Anomalies and Failures Workshop
March 2024

Lorraine Prokop, Ph.D.

Technical Fellow for Software
NASA Engineering and Safety Center
lorraine.e.prokop@nasa.gov

mailto:lorraine.e.prokop@nasa.gov

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Flight Software Error Visualization

2

Flight Computer without Software Errors
(Credit NASA)

Flight Computer with Software Errors
(Credit NASA)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Introduction

• Motivation
• Very little literature exists characterizing software errors in real-time avionic systems

• How, where, and why is software most likely to fail?

• Purpose
• Raise awareness of how software fails through historical study
• Recommend improvements to software fault tolerant design based on historical study

• Outline
• Discuss Software Failures - Common Cause, Failure Classes, Mitigation strategies
• Review NASA Human Rating Requirements regarding software/automation
• Review Historical Software Failures
• Analyze failures and provide statistics

• Erroneous vs. fail-Silent
• Reboot recoverability likelihood

• Code location
• Missing code?

• Unknown unknowns
• Computer science related?

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Software Common-Cause Failure

• What is Software “Common Cause” or “Common Mode”
Failure?

• In many avionic architectures, hardware replication into
multiple “strings” is done for hardware fault tolerance

• However, the same software load often runs on these
multiple processors

• In this case, a single software failure normally would
affect all strings in the same way at the same time

• If only one processor is used, then any software
failure could be considered “common mode” or
“common cause”

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

NASA Requirements for Software Fault Tolerance

• NPR 8705.2C: HUMAN-RATING REQUIREMENTS FOR SPACE SYSTEMS
• 3.2.7 The space system shall provide the capability to mitigate the hazardous behavior of critical software where the

hazardous behavior would result in a catastrophic event. The software system will be designed, developed, and tested to:
1) Prevent hazardous software behavior.
2) Reduce the likelihood of hazardous software behavior.
3) Mitigate the negative effects of hazardous software behavior. However, for complex software systems, it is very difficult
to definitively prove the absence of hazardous behavior. Therefore, the crewed system has the capability to mitigate this
hazardous behavior if it occurs. The mitigation strategy will depend on the phase of flight and the time to effect of the
potential hazard. Hazardous behavior includes erroneous software outputs or performance.

• 3.2.3 The space system shall provide at least single failure tolerance to catastrophic events, with specific levels of failure tolerance
and implementation (similar or dissimilar redundancy) derived via an integration of the design and safety analysis.

• 3.2.4 The space system shall provide the failure tolerance capability in 3.2.3 without the use of emergency equipment and systems.
• 3.3.2 The crewed space system shall provide the capability for the crew to manually override higher level software control and

automation (such as automated abort initiation, configuration change, and mode change) when the transition to manual control of
the system will not cause a catastrophic event.

• NPR 7150.2D: NASA SOFTWARE ENGINEERING REQUIREMENTS
• 3.7.3 If a project has safety-critical software or mission-critical software, the project manager shall implement the following items in

the software: [SWE-134] …
• No single software event or action is allowed to initiate an identified hazard. …

• Software Assurance Standards to Assure these Requirements are Met:
• NPR 8739.8A: SOFTWARE ASSURANCE AND SOFTWARE SAFETY STANDARD
• NASA-STD-8719.13B: SOFTWARE SAFETY STANDARD

Pre-flight

In-flight

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Software Failure Classes & Categories

• Consider Two classes of software common cause:
• Fail Silent – Computers stop outputting, Ex: simultaneous "crash"
• Erroneous output – Software behaves unexpectedly / does the wrong thing – Broader class

• Both should be considered when designing for fault-tolerance

• Why distinguish?
• Detection and response is different -- Easier to know if software “crashed” – watchdog timer

• How to determine if automation/software is doing something wrong? – ex. Independent monitoring
• Space systems approach these manifestations in different ways – mainly human-in-the-loop

• Fail-Silent Cause Examples (loss of output)
• Operating System Halt, memory access violation, infinite loop / process Starvation

• Erroneous Output Causes Examples (wrong output)
• Coding/Logic Error - Missing/Wrong Requirements, Insufficient modeling of real-world, unanticipated situations
• Data Parameter Misconfigured - Wrong data input, database, Units, precision, sign
• Unanticipated / Erroneous Sensor Input
• Erroneous Command Input - Operator / Procedural Error

5

CUI//SP-EXPT/SP-PROPIN/DL ONLY55 Significant Historical Software Incidents (1962 – 2023)

7

• Categorization:
• Fail silent or erroneous?
• Correctable by reboot?
• Absence of Code?
• Unknown/unknown?
• Error Location?
• Computer Science

Discipline?
• Unknown-unknown?

*Not Included: 2022 Capstone, 2023 NOTAM, iSpace Hakato-R, SN3, Voyager-2, Luna-25

1962
Mariner 1 – Atlas-
Agena

1965
Gemini 3

1965
Gemini 5

1968
Apollo 8

1969
Apollo 10

1981
STS-1

1982
Viking-1

1985-87
Therac-25

1988
Phobos-1

1988
Soyuz TM-5

1991
Aries - Red
Tigress I

1991
Patriot Missile

1992
F-22 Raptor

1994
Clementine Lunar
Mission

1994
Pegasus XL STEP-1

1994
Pegasus HAPS

1995
SOHO

1996
Ariane 5

1997
Pathfinder

1998
Delta III

1999
Mars Polar
Lander

1999
Mars Climate
Orbiter

1999
Titan IV B Centaur

2000
Zenit 3SL

2001
Pegasus
XL/HyperX / X-
43A

2001
STS-108 through
110

2003
Multidata
Systems Radiation
Machine

2003
Soyuz - TMA-1

2003
North American
Power Grid

2004
Spirit Mars
Exploration Rover

2005
CryoSat-1

2005
DART

2006
Mars Global
Surveyor

2007
F22 First
Deployment

2008
STS-124

2008
Quantas Flight
72, Airbus A330-
303

2008
B-2 Spirit -Guam
crash

2012
Red Wings Flight
9268 TU-204 crash

2015
Airbus A400M
test flight

2015
SpaceX CRS-7

2016
Hitomi X-ray
space telescope

2017
SpaceX CRS-10

2018, 2019
Boeing 737 MAX

2019
Boeing Orbital
Flight Test (OFT)

2019
Beresheet

2019
Chandrayaan-2
Vicram Lunar
Lander

2020
Amazon Web
Service (AWS)
Kinesis

2020
BD Alaris™
Infusion Pump

2021
Global Facebook
Outage

2021
ISS Attitude Spin

2022
CAPSTONE

2023
NOTAM – Notice
To Air Mission

2023
ispace Hakuto-R

2023
Launcher Orbiter
SN3 space tug

2023
Voyager-2

Significant Software Failure –
• Software/automation did not behave as

expected causing loss of life, injury, loss/end
of mission, or significant close-call

• NOTE: The root cause of these failures may not
all be software (why it was programmed like
that), but how the incident initially behaved
during operations is characterized

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Year Flight or
System

Title Result /
Outcome

Erroneous
or Silent?

Reboot
Fix?

Missing
Code?

Error
Location

Unknown-
unknown

1962 Mariner 1
Mission –
Atlas-Agena

Programmer error
in ground guidance
veered launch
vehicle off course

Loss of vehicle Erroneous
Output

No No Code/Logic No

1965 Gemini 3 Incorrect lift
estimate causes
short landing

Landed 84 km
short, crew
manually
compensated,
decreasing short
landing error

Erroneous
Output

No Yes Code/Logic Yes

1965 Gemini 5 Data error of earth
rotation lands
Gemini 5 short

Landed 130 km
short

Erroneous
Output

No No Data No

1968 Apollo 8 Memory
Inadvertently
Erased

Close Call fixed
manually

Erroneous
Output

No No Command
Input

No

1969 Apollo 10 Switch
Misconfigured as
bad input data to
abort guidance

Vehicle tumbled,
close call,
recovered
manually

Erroneous
Output

No No Data No

1981 STS-1 Failure of
computers to sync

Launch Scrub of
First Shuttle
flight

Fail Silent Yes Yes Code/Logic No

Historical Software Incidents (1962-1981)

(Photo Credits: NASA)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (1982-1994)

12

Year Flight or
System

Title Result /
Outcome

Erroneous
or Silent?

Re
bo

ot

Re
co

ve
ra

bl
e

M
is

si
ng

Co

de
?

Error Location

U
nk

no
w

n-
un

kn
ow

n?

1982 Viking-1 Erroneous Commandcaused
loss of comm

End of mission Erroneous
Output

No No Command Input No

1985-87 Therac-25 Radiation Therapy machine
output lethal doses, user
input speed

Four deaths,two
chronic injured

Erroneous
Output

No No Code/Logic No

1988 Phobos-1 Erroneous unchecked
uplinked commandlost
vehicle

Loss of
vehicle/Mission

Erroneous
Output

No No Command Input No

1988 Soyuz TM-5 Wrong code executedto
perform de-orbit burn

Extra day in orbit,
New code uplinked

Erroneous
Output

No No Code/Logic No

1991 Aries -Red
Tigress I

Bad commandcauses
guidance error

Loss of Vehicle Erroneous
Output

No No Sensor Input No

1991 Patriot Missile Patriot failed target
intercept due to 24-bit
rounding error growthin
time over time

Failed to intercept
scud missile,
resulting in American
barracks being
struck, 28 soldiers
killed, 100 injured

Erroneous
Output

Yes No Code/Logic No

1992 F-22 Raptor Software failed to
compensate for pilot-
induced oscillation in
presence of lag

Loss of testvehicle Erroneous
Output

No Yes Sensor Input Yes

1994 Clementine
Lunar Mission

Erroneous thrusterfiring
exhausted propellant,
cancelling asteroid flyby

Failed mission
objective

Erroneous
Output

No No Code/Logic No
Photo Credits: The National Archives,
NAID: 6361754 (top), NAID: 6424495 (bottom)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (1994-1999)
Year Flight or

System
Title Result /

Outcome
Erroneous
or Silent?

Reboot
Fix?

M
is

si
ng

Co

de
?

Error
Location

U
nk

no
w

n
- un

kn
ow

n

1994 Pegasus XL
STEP-1

Booster loss of control
due to lateral instability

Loss of
vehicle/Mission

Erroneous
Output

No Yes Code/Logic Yes

1994 Pegasus HAPS Navigation software error
prematurely shut down
upper stage

Unintended/lo
w orbit

Erroneous
Output

No Yes Code/Logic No

1995 Solar and
Heliospheric
Observatory
(SOHO)

Gyro Data used from
unpowered sensor spins
vehicle out of
communication

Loss of mission
during extended
use

Erroneous
Output

No Yes Code/Logic No

1996 Ariane 5
Maiden Flight

Unprotected overflow in
floating-point to integer
conversion disrupted
inertial navigation system

Loss of Vehicle Erroneous
Output

No No Code/Logic No

1997 Pathfinder Software priority
inversion caused images
to stall

Close Call for
Mission Loss

Erroneous
Output

No No Code/Logic No

1998 Delta III Unanticipated 4Hz
Oscillation in control
system led to vehicle loss

Loss of vehicle Erroneous
Output

No Yes Code/Logic Yes

1999 Mars Polar
Lander

Premature shut down of
landing engine due to
misinterpretation of
landing signature

Loss of
Vehicle/mission

Erroneous
Output

No Yes Sensor Input No

1999 Mars Climate
Orbiter

Metric vs. imperial units
error

Loss of
vehicle/mission

Erroneous
Output

No No Data No

Mars Polar Lander (Credit: NASA)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (1999-2003)
Year Flight or System Title Result /

Outcome
Erroneou
s or
Silent?

Reboot
Fix?

Missing
Code?

Error
Location

Unknown-
unknown

1999 Titan IV B Centaur Programming erroromitting
decimal in data file caused
loss of control

Unintended orbit,
Milstar Satellite lost
10 days after launch

Erroneous
Output

No No Data No

2000 Zenit 3SL Ground software error failed
to close valve.

Loss of Vehicle Erroneous
Output

No No Code/Logic No

2001 Pegasus XL/HyperX
Launch Vehicle / X-
43A

Airframe failure due to
inaccurate analytical models

Loss of
vehicle/mission

Erroneous
Output

No Yes Code/Logic Yes

2001 STS-108 through 110 Shuttle main engine
controller mix-ratiosoftware
coefficient sign-flip error

Significant close call,
SME
underperformance,
though not extreme
enough to not reach
orbit.

Erroneous
Output

No No Data No

2003 Multidata Systems
Radiation Machine

Radiation Therapy machine
output lethal doses,
counterclockwise user input

Many injured,15
people dead.

Erroneous
Output

No No Code/Logic No

2003 Soyuz - TMA-1 Undefined yaw value
triggered Ballistic reentry

landed 400 km short Erroneous
Output

No No Code/Logic No

2003 North American
Electric Power Grid

Real-time software errors
contribute to Widespread
power outage

Widespread Loss of
Power Service (2 hr -
4 days)

Fail Silent No No Code/Logic No

STS-108 Crew (Credit: NASA)

Photo Attribution: Lokal_Profil, under
Creative Commons Attribution-Share Alike 2.5
Generic license

https://creativecommons.org/licenses/by-sa/2.5/deed.en

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (2005-2008)
Year Flight or

System
Title Result /

Outcome
Erroneous
or Silent?

Reboot
Fix?

Missing
Code?

Error
Location

Unknown-
unknown

2005 CryoSat-1 Missing command causes loss of vehicle Loss of Vehicle Erroneous Output No Yes Code/Logic No

2005 DART (Demonstration
of Autonomous
Rendezvous
Technology)

Navigation software errors fail mission
objectives.

Loss of mission
objectives

Erroneous Output No No Code/Logic No

2006 Mars Global Surveyor
(MGS)

Erroneous command led to pointing
error and power/vehicle loss

Premature Loss of
vehicle

Erroneous Output No No Code/Logic No

2007 F22 First Deployment International Date Line crossingcrashed
computer systems

Loss of navigation &
communication

Fail Silent No Yes Code/Logic No

2008 STS-124 All 4 shuttle computers fail / disagree
during fueling

Fueling stopped Erroneous Output No Yes Sensor Input No

2008 Quantas Flight 72,
Airbus A330-303

Sensor Input spikes caused autopilotto
pitch-down, resulting in crew and
passenger injuries

One crew member and
11 passengers suffered
serious injuries

Erroneous Output No Yes Sensor Input Yes

Quantas Flight 72 (Credit: Masakatsu Ukon, CC BY-SA 2.0, via Wikimedia Commons).

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (2008-2017)

Year Flight or
System

Title Result /
Outcome

Erroneous
or Silent?

Reboot
Fix?

Missing
Code?

Error
Location

Unknown-
unknown

2008 B-2 Spirit -
Guam crash

Miscalculation in flight
computers with missing
input data calculated
uncommanded pitch up

Crew members
successfully
ejected.

Erroneous
Output

No Yes Sensor Input Yes

2012 Red Wings Flight
9268 TU-
204 crash

Unanticipated landing
circumstances coupled
with design features
resulted in crash
landing

5 of 8
crewmembers
killed

Erroneous
Output

No Yes Code/Logic Yes

2015 Airbus A400M
test flight

Missing software
parameters during
installation cause
crash

Four fatalities Erroneous
Output

No No Data No

2015 SpaceX CRS-7 “Open Chute”
command invalidated
after launch vehicle
failure

Possibly could have
saved Dragon
capsule from crash
landing.

Erroneous
Output

No Yes Code/Logic No

2016 Hitomi X-ray
space
telescope

Error in computing
spacecraft orientation
led to spacecraft loss

Lost of vehicle Erroneous
Output

No No Code/Logic No

2017 SpaceX CRS-10 Erroneous relative state
vector transmitted to
Dragon

ISS rendezvous
delay

Erroneous
Output

No No Data No

2018,
2019

737 Max crash Unanticipated software
response to faulty
sensor input

346 people died
on two flights

Erroneou
s Output

No Yes Sensor Input Yes

CRS-7 Mishap (Credit: credit:
Nathan Koga for NSF/L2)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (2018-2021)
Year Flight or

System
Title Result /

Outcome
Erroneous
or Silent?

Reboot
Fix?

Missing
Code?

Error
Location

Unknown-
unknown

2019 Boeing Orbital
Flight Test (OFT)

Incorrect MET causes
no ISS rendezvous and
short mission, and
uncovers other latent
LOM softwareerrors.

Failed ISS
rendezvous, multi-
year program delay

Erroneous
Output

No No Code/Logic No

2019 Beresheet Reboots causeengine
shutdown on lunar
descent

Loss of vehicle Fail Silent No No Code/Logic No

2019 Chandrayaan-2
Vicram Lunar
Lander

Unexpected velocity
behavior during
descent caused crash
landing

Loss of vehicle Erroneous
Output

No Yes Code/Logic No

2020 Amazon Web
Service (AWS)
Kinesis

Maximum threads
reached caused
cascading server outage

Loss ofservice,
revenues.

Fail Silent No Yes Code/Logic No

2020 BD Alaris™
Infusion Pump

Infusion delivery
system softwarecauses
injury/death

55 injuries, 1 death Erroneous
Output

No No Code/Logic No

2021 Global Facebook
Outage

Bad commandcauses
global Facebook and
cascading
communication
outages.

Disrupted
communication, loss
of revenues

Fail Silent No No Command
Input

No

2021 ISS Uncontrolled ISS
attitude spin from
erroneous thruster
firing software

Close Call Erroneous
Output

No No Code/Logic No

Boeing OFT Landing (Photo Credit: NASA)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (2022-present)

Year Flight or
System

Title Result /
Outcome

Erroneous
or Silent?

Reboot
Fix?

Missing
Code?

Error
Location

Unknow
n-
unknown

2022 CAPSTONE Bad Command
causes Temporary
Comm Loss

Delayed Trajectory
Course Maneuver
Objective, Close
Call for LOM

Erroneous
Output

No No Command
Input

No

2023 NOTAM – Notice To
Air Mission

Corrupted
database file
causes flight
cancellations

Loss of Service Fail Silent No Yes Data No

2023 ispace Hakuto-R Invalidated
Altitude data
during Lunar
descent loses
Lander

Loss of Mission Erroneous
Output

No Yes Sensor Input No

2023 Launcher Orbiter
SN3 space tug

Uncontrolled
attitude spin lost
power and
spacecraft

Loss of Mission Erroneous
Output

No Yes Code/Logic No

2023 Voyager-2 Bad command
causes 2oantenna
shift

Temporary Loss of
Communications
(Close Call)

Erroneous
Output

No No Command
Input

No

Voyager-2 Rendition (Photo Credit: NASA)

Hakuto-R (Photo Credit: ispace)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Erroneous vs. Fail Silent

Takeaway:
• Historically, erroneous output situations were

much more prevalent than fail-silent cases
• 85-15%, over 5 times as likely

Fault-tolerant Design Tip:
• Design should consider relative likelihoods

of these manifestations
• Systems should consider the question,

“What if the software does something
wrong?” at critical moments

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Reboot Recoverability Likelihood
Erroneous vs. Fail Silent

Fault-tolerant Design Tip:
• Do not rely on reboot to clear all software faults

Takeaways:
• Rebooting is predominantly ineffective to clear/recover

from erroneous output situations
• Rebooting is a partial solution to clear fail-silent errors

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Error Location

Takeaway(s):
• Coding/logic errors account for most software incidents,

but very few are “mistakes”
• This category includes missing requirements,

unknowns, unanticipated situations,
misunderstanding or incomplete modeling of real-
world

• Input Errors – Command or Sensor Input Accounted for
26% of errors

• Sensor Input are mainly unexpected code/logic
errors as well

Fault-tolerant Code Tips:
• Project should test according to likelihoods

• Code/Logic – off-nominal testing, peer review, unit
testing, increased simulation/modeling

• Data Misconfiguration – data validation prior to use,
system expert review

• Input Errors – Off-nominal or random input test
generation
– Sensor input –hardware-in-the-loop testing
– Command input – validation, processes/procedures

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Absence of Code ?

Fault-tolerant Design Tip:
• Projects should reserve test time to create off-nominal or unexpected conditions to expose

absent code

Takeaways:
• Many of the studied incidents (40%) could

have been averted with the addition of
code (in hindsight)
• Missing Code arises from missing

requirements, unanticipated situations,
insufficient understanding or modeling of
real-world

• Even fully tested code does not uncover
errors that arise from missing
code/unanticipated situations
• Hard to test code that is not there – off

nominal testing may hep to uncover

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

“Unknown Unknowns”

Takeaways:
• Categorizing “unknown-unknowns” is highly

subjective

• Included here:
– unknown aero/handling, physics
– Insufficient modeling
– highly unusual input
– unexpected behavior in the presence of faults or

multiple failures

Fault-tolerant Design Tip:
• Backup strategies should be considered to protect for “unknown- unknowns” and

other software error causes
• Projects should actively work to balance risk between “knowing everything” and project

constraints (budget/schedule)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Computer Science Discipline?

Takeaways:
• Most software failures are not a

result of something normally
considered “computer science”
or “software” discipline in nature

• No incidents studied resulted
from operating system,
programming language, tool
chain, or development
environment failure

Fault-tolerant Design Tip:
• Projects should consider requiring software “ownership” across multiple disciplines

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Software Errors - Preflight Prevention and In-Flight Mitigation
Captured in a NASA Engineering and Safety Center (NESC) Technical Bulletin “Considerations for Software Fault Prevention and Tolerance”

Pre-flight Software Error Prevention Strategies
• Utilize a disciplined software engineering approach
• Perform off-nominal scenario, fault, and sensor input testing to expose missing code
• Validate mission data prior to each use
• “Test like you Fly” with hardware-in-the-loop over expected mission durations
• Employ two-stage commanding with operator implication acknowledgement for

critical commands

In-Flight Software Error Detection and Mitigation Strategies
• Provide crew/ground insight, control, and override
• Employ independent monitoring of critical vehicle automation

• Manual or automated detection, followed by response
• Employ software backups (targeted to full) which are:

• Simple (compared to primary flight software)
• Dissimilar (especially in requirements and test)

• Enter safe mode (reduced capability primary software subset)
• Examples: restore power/communication, conserve fuel

• Uplink new software and/or data (time permitting)
• Design system to reduce/eliminate dependency on software
• Reboot (limited effectiveness)

Mitigation strategies should be evaluated
considering criticality, phase dynamics,
and time-to-effect.

https://www.nasa.gov/centers-and-facilities/nesc/nesc-technical-bulletin-23-06considerations-for-software-fault-prevention-and-tolerance/

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Software Common Cause Failure Summary

• Software “common cause” or “common mode” errors occur when a single software error results in
unexpected behavior, even if running on multiple strings

• Software in NASA Space Systems should be architected for redundancy based on criticality and time-to-
effect, with requirements driven primarily by NPR 8705.2C and NPR 7150.2D

• Software Errors manifest in two ways: Silent or Erroneous
• Study of historical software incidents indicates the following

• Erroneous output is much more prevalent – 85% of the incidents
• Rebooting is largely ineffective to recover from erroneous situations, and not reliable for silent software
• Software logic errors are the most common form, then data config, and 26% of errors arise from input
• Missing Code accounted for 36% (including requirements, unknowns) of historic software errors
• “Unknown-unknowns” account for over 15% of software error incidents, subjectively

• Fault-tolerant systems should be designed with these statistics in mind – overall recommendations
• Consider the Erroneous Case more than failing silent
• Don’t always rely on reboot
• Employ hardware-in-the-loop, test-like-you-fly, and off-nominal testing
• Validate configuration and command data prior to use
• Consider use of backup strategies for critical events

23

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

References & Follow-on Work

• NESC Technical Bulletin 23-06: Considerations for Software Fault Prevention and Tolerance, September 2023.

• Prokop, Lorraine, E., “Software Error Incident Categorizations in Aerospace”, NASA Technical Publication,
NASA/TP−20230012154. August 2023.

• “Historical Aerospace Software Errors Categorized to Influence Fault Tolerance”, March 2024, AIAA Aerospace Conference
2024, https://ntrs.nasa.gov/citations/20230012909

• Prokop, Lorraine, E., “Software Error Incident Categorizations in Aerospace”, [Manuscript in publication], Journal of
Aerospace Information Systems.

• The dataset used for this study, with more description and references, is available upon request

• Follow-on work:
• This dataset can be used for further study, for example, to answer the following

• What was the root cause of this error? (Why was the software programmed the way it was?)
• Would a backup system have helped?

• What kind of a backup system could have helped?”
• Would a human-in-the-loop, a dissimilar backup, a monitor system, or no backup at all be best?

• Was this a multi-string common-cause failure?
• Was a manual or automated backup system used?
• What phase of the project could/should this incident been averted?
• How much and what type of testing may have uncovered these errors?

https://ntrs.nasa.gov/api/citations/20230013383/downloads/TB23%2006%20Software%20Errors%20FINAL%20091923.pdf
https://ntrs.nasa.gov/citations/20230012909

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Backup

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Dataset Industry & Impact Breakdown

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Analysis

• Historic Failure Incidents Involving Software
• We studied software significant failure incidents primarily within NASA

and aerospace – when automation did not behave as expected
• Software Failure – Software/automation did not behave as expected causing loss of

life, injury, loss/end of mission, or significant close-call
• 55 incidents were characterized – since beginning of computers

• Aerospace (49) – loss of life, mission, close-call
• Non-Aerospace (6) – 3 Medical (loss of life) , 3 Commercial (3) (loss of service)

• We categorized software errors to determine:
• Which is more prevalent – fail silent or erroneous?
• Could the failure have been corrected by reboot?
• Was this an unanticipated situation – missing code, wrong code, or unknown unknown?
• Where in the code was the failure introduced?

• NOTE: The root cause of these failures may not all be attributable to software (why it was
programmed like that), but how the incident initially manifested during operations (how it behaved) is
characterized

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Dataset Sample: Historical Software Incidents (1982-1994)

12

Year Flight or
System

Title Result /
Outcome

Erroneous
or Silent?

Re
bo

ot

Re
co

ve
ra

bl
e

M
is

si
ng

Co

de
?

Error Location

U
nk

no
w

n-
un

kn
ow

n?

1982 Viking-1 Erroneous Command caused
loss of comm

End of mission Erroneous
Output

No No Command Input No

1985-87 Therac-25 Radiation Therapy machine
output lethal doses, user
input speed

Four deaths,two
chronic injured

Erroneous
Output

No No Code/Logic No

1988 Phobos-1 Erroneous unchecked
uplinked commandlost
vehicle

Loss of
vehicle/Mission

Erroneous
Output

No No Command Input No

1988 Soyuz TM-5 Wrong code executedto
perform de-orbit burn

Extra day in orbit,
New code uplinked

Erroneous
Output

No No Code/Logic No

1991 Aries -Red
Tigress I

Bad commandcauses
guidance error

Loss of Vehicle Erroneous
Output

No No Sensor Input No

1991 Patriot Missile Patriot failed target
intercept due to 24-bit
rounding error growthin
time over time

Failed to intercept
scud missile,
resulting in American
barracks being
struck, 28 soldiers
killed, 100 injured

Erroneous
Output

Yes No Code/Logic No

1992 F-22 Raptor Software failed to
compensate for pilot-
induced oscillation in
presence of lag

Loss of testvehicle Erroneous
Output

No Yes Sensor Input Yes

1994 Clementine
Lunar Mission

Erroneous thrusterfiring
exhausted propellant,
cancelling asteroid flyby

Failed mission
objective

Erroneous
Output

No No Code/Logic No
Photo Credits: The National Archives,
NAID: 6361754 (top), NAID: 6424495 (bottom)

	Historical Aerospace Software Errors �Categorized to Influence Fault Tolerance
	Flight Software Error Visualization
	Introduction
	Software Common-Cause Failure
	NASA Requirements for Software Fault Tolerance
	Software Failure Classes & Categories
	 55 Significant Historical Software Incidents (1962 – 2023)
	Historical Software Incidents (1962-1981)
	Historical Software Incidents (1982-1994)
	Historical Software Incidents (1994-1999)
	Historical Software Incidents (1999-2003)
	Historical Software Incidents (2005-2008)
	Historical Software Incidents (2008-2017)
	Historical Software Incidents (2018-2021)
	Historical Software Incidents (2022-present)
	Erroneous vs. Fail Silent
	Reboot Recoverability Likelihood Erroneous vs. Fail Silent
	Error Location
	Absence of Code ?
	“Unknown Unknowns”
	Computer Science Discipline?
	Software Errors - Preflight Prevention and In-Flight Mitigation�Captured in a NASA Engineering and Safety Center (NESC) Technical Bulletin “Considerations for Software Fault Prevention and Tolerance”
	Software Common Cause Failure Summary
	References & Follow-on Work
	Backup	
	Dataset Industry & Impact Breakdown
	Historical Analysis
	Dataset Sample: Historical Software Incidents (1982-1994)

