

Historical Aerospace Software Errors Categorized to Influence Fault Tolerance

Spacecraft Anomalies and Failures Workshop March 2024

Lorraine Prokop, Ph.D.

Technical Fellow for Software NASA Engineering and Safety Center <u>lorraine.e.prokop@nasa.gov</u>

Flight Software Error Visualization

Flight Computer *without* Software Errors (Credit NASA)

a the the the

Flight Computer *with* Software Errors (Credit NASA)

Motivation

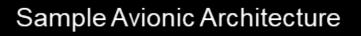
- Very little literature exists characterizing software errors in real-time avionic systems
 - *How, where, and why is software* most likely to fail?

• Purpose

- Raise awareness of how software fails through historical study
- Recommend improvements to software fault tolerant design based on historical study

Outline

- Discuss Software Failures Common Cause, Failure Classes, Mitigation strategies
- Review NASA Human Rating Requirements regarding software/automation


a second the

- Review Historical Software Failures
- Analyze failures and provide statistics
 - Erroneous vs. fail-Silent
 - Reboot recoverability likelihood
- Code location
- Missing code?
- Unknown unknowns
- Computer science related?

- What is Software "Common Cause" or "Common Mode" Failure?
 - In many avionic architectures, hardware replication into multiple "strings" is done for hardware fault tolerance
 - However, the *same software load* often runs on these multiple processors
 - In this case, a *single* software failure normally would affect all strings in the same way at the same time

 If only one processor is used, then any software failure could be considered "common mode" or "common cause"

Flight Computer Primary Flight Software

Flight Computer

Primary Flight Software

Flight Computer

Primary Flight Software

NASA Requirements for Software Fault Tolerance

- NPR 8705.2C: HUMAN-RATING REQUIREMENTS FOR SPACE SYSTEMS \bullet
 - 3.2.7 The space system shall provide the capability to mitigate the hazardous behavior of critical software where the hazardous behavior would result in a catastrophic event. The software system will be designed, developed, and tested to:
 - 1) Prevent hazardous software behavior.
- Pre-flight-2) Reduce the likelihood of hazardous software behavior.
- In-flight 3) Mitigate the negative effects of hazardous software behavior. However, for complex software systems, it is very difficult to definitively prove the absence of hazardous behavior. Therefore, the crewed system has the capability to mitigate this hazardous behavior if it occurs. The mitigation strategy will depend on the phase of flight and the time to effect of the potential hazard. Hazardous behavior includes erroneous software outputs or performance.
 - 3.2.3 The space system shall provide at least single failure tolerance to catastrophic events, with specific levels of failure tolerance • and implementation (similar or dissimilar redundancy) derived via an integration of the design and safety analysis.
 - 3.2.4 The space system shall provide the failure tolerance capability in 3.2.3 without the use of emergency equipment and systems. \bullet
 - 3.3.2 The crewed space system shall provide the capability for the crew to manually override higher level software control and \bullet automation (such as automated abort initiation, configuration change, and mode change) when the transition to manual control of the system will not cause a catastrophic event.
 - NPR 7150.2D: NASA SOFTWARE ENGINEERING REQUIREMENTS
 - 3.7.3 If a project has safety-critical software or mission-critical software, the project manager shall implement the following items in the software: [SWE-134] ...
 - No single software event or action is allowed to initiate an identified hazard.

and the state of the state

- Software Assurance Standards to Assure these Requirements are Met:
 - NPR 8739.8A: SOFTWARE ASSURANCE AND SOFTWARE SAFETY STANDARD
 - NASA-STD-8719.13B: SOFTWARE SAFETY STANDARD

Software Failure Classes & Categories

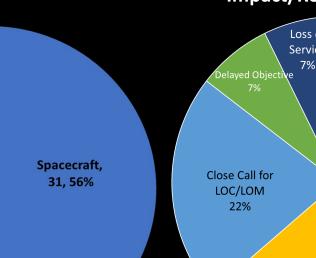
- Consider Two classes of software common cause:
 - Fail Silent Computers stop outputting, Ex: simultaneous "crash"
 - Erroneous output Software behaves unexpectedly / does the wrong thing Broader class
 - Both should be considered when designing for fault-tolerance
- Why distinguish?
 - Detection and response is different -- Easier to know if software "crashed" -- watchdog timer
 - How to determine if automation/software is doing something *wrong*? ex. Independent monitoring
 - Space systems approach these manifestations in different ways mainly human-in-the-loop
- Fail-Silent Cause Examples (loss of output)
 - Operating System Halt, memory access violation, infinite loop / process Starvation

The Product of the P

- Erroneous Output Causes Examples (wrong output)
 - Coding/Logic Error Missing/Wrong Requirements, Insufficient modeling of real-world, unanticipated situations
 - Data Parameter Misconfigured Wrong data input, database, Units, precision, sign
 - Unanticipated / Erroneous Sensor Input
 - Erroneous Command Input Operator / Procedural Error

States -

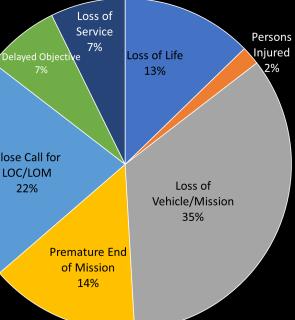
55 Significant Historical Software Incidents (1962 – 2023)


1962	1965	1965	1968	1969	
Mariner 1 – Atlas-	Gemini 3	Gemini 5	Apollo 8	Apollo 10	
Agena					Significant S
1981	1982	1985-87	1988	1988	
STS-1	Viking-1	Therac-25	Phobos-1	Soyuz TM-5	 Software,
1991	1991	1992	1994	1994	expected of
Aries - Red	Patriot Missile	F-22 Raptor	Clementine Lunar	Pegasus XL STEP-1	of mission
Tigress I			Mission		01111551011
1994	1995	1996	1997	1998	
Pegasus HAPS	SOHO	Ariane 5	Pathfinder	Delta III	• NOTE: The
1999	1999	1999	2000	2001	all be softv
Mars Polar	Mars Climate	Titan IV B Centaur	Zenit 3SL	Pegasus	that), but h
Lander	Orbiter			XL/HyperX / X-	during ope
				43A	during opc
			2003	2004	Indust
			North American	Spirit Mars	
110	Systems Radiation		Power Grid	Exploration Rover	
	Machine				Commerci
2005	2005	2006	2007	2008	3, 5%
CryoSat-1	DART	Mars Global	F22 First	STS-124	Medical,
		Surveyor	Deployment		3, 5%
		-	2015	2015	
-	•	Red Wings Flight		SpaceX CRS-7	
,	crash	9268 TU-204 crash	test flight		
303					Launch Vehicle,
2016		,	2019	2019	8, 15%
	SpaceX CRS-10	-	Boeing Orbital	Beresheet	8, 1570
space telescope			Flight Test (OFT)		
2019			2021	2021	
Chandrayaan-2			Global Facebook	ISS Attitude Spin	Aircraft,
Vicram Lunar		Infusion Pump	Outage		8, 15%
Lander	Kinesis				
2022	2023	2023	2023	2023	
CAPSTONE	NOTAM – Notice	ispace Hakuto-R	Launcher Orbiter	Voyager-2	
	To Air Mission		SN3 space tug		

ficant Software Failure –

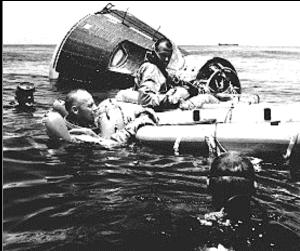
- oftware/automation *did not behave as* pected causing loss of life, injury, loss/end mission, or significant close-call
- OTE: The *root cause* of these failures may not be software (*why* it was programmed like hat), but how the incident *initially behaved* uring operations is characterized

ndustries in Data Set


Missile, Commercial, 2,4%

Impact/Result of Failure

• Categorization:


- Fail silent or erroneous?
- Correctable by reboot?
- Absence of Code?
- Unknown/unknown? •
- **Error Location?**
- **Computer Science** • Discipline?
- Unknown-unknown?

Historical Software Incidents (1962-1981)

Year	Flight or System		Result / Outcome			Missing Code?		Unknown- unknown
1962	Mission – Atlas-Agena	Programmer error in ground guidance veered launch vehicle off course	Loss of vehicle	Erroneous Output	No	No	Code/Logic	No
1965		short landing	Landed 84 km short, crew manually compensated, decreasing short landing error	Erroneous Output	No	Yes	Code/Logic	Yes
1965	Gemini 5	Data error of earth rotation lands Gemini 5 short	Landed 130 km short	Erroneous Output	No	No	Data	No
1968	Apollo 8	Memory Inadvertently Erased	Close Call fixed manually	Erroneous Output	No	No	Command Input	No
1969		Switch Misconfigured as bad input data to abort guidance	Vehicle tumbled, close call, recovered manually	Erroneous Output	No	No	Data	No
1981	STS-1	Failure of computers to sync	Launch Scrub of First Shuttle flight	Fail Silent	Yes	Yes	Code/Logic	No

(Photo Credits: NASA) okop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (1982-1994)

Photo Credits: The National Archives,

NAID: 6361754 (top), NAID: 6424495 (bottom)

	Flight or System			Erroneous or Silent?	Reboot Recoverable	Missing Code?	Error Location	Unknown- unknown?	
1982	Viking-1	Erroneous Commandcaused loss of comm	End of mission	Erroneous Output	No	No	Command Input	No	
1985-87	Therac-25	Radiation Therapy machine output lethal doses, user input speed	,	Erroneous Output	No	No	Code/Logic	No	
1988	Phobos-1	Erroneous unchecked uplinked command lost vehicle	Loss of vehicle/Mission	Erroneous Output	No	No	Command Input	No	
1988	Soyuz TM-5	-	, ,	Erroneous Output	No	No	Code/Logic	No	
	Aries - Red Tigress I	Bad command causes guidance error	Loss of Vehicle	Erroneous Output	No	No	Sensor Input	No	
1991	Patriot Missile	intercept due to 24-bit rounding error growth in time over time	Failed to intercept scud missile, resulting in American barracks being struck, 28 soldiers killed, 100 injured	Erroneous Output	Yes	No	Code/Logic	No	
1992	F-22 Raptor	Software failed to compensate for pilot- induced oscillation in presence of lag	Loss of test vehicle	Erroneous Output	No	Yes	Sensor Input	Yes	
1994	Clementine Lunar Mission	0	Failed mission objective	Erroneous Output	No	No	Code/Logic	No	10

Historical Software Incidents (1994-1999)

Twee The

	System			Erroneous or Silent?	Reboot Fix?	Missing Code?	Error Location	Unknown - unknown
	-0	Booster loss of control due to lateral instability	Loss of vehicle/Mission	Erroneous Output	No	Yes	Code/Logic	Yes
1994	Pegasus HAPS	Navigation software error prematurely shut down upper stage	Unintended/lo w orbit	Erroneous Output	No	Yes	Code/Logic	No
	Heliospheric Observatory	Gyro Data used from unpowered sensor spins vehicle out of communication	during extended use	Erroneous Output	No	Yes	Code/Logic	No
	Maiden Flight	Unprotected overflow in floating-point to integer conversion disrupted inertial navigation system	Loss of Vehicle	Erroneous Output	No	No	Code/Logic	No
1997		Software priority inversion caused images to stall	Close Call for Mission Loss	Erroneous Output	No	No	Code/Logic	No
1998		Unanticipated 4Hz Oscillation in control system led to vehicle loss	Loss of vehicle	Erroneous Output	No	Yes	Code/Logic	Yes
	Mars Polar Lander	Premature shut down of landing engine due to misinterpretation of landing signature	Loss of Vehicle/mission	Erroneous Output	No	Yes	Sensor Input	No
		Metric vs. imperial units error	Loss of vehicle/mission	Erroneous Output	No	No	Data	No

Mars Polar Lander (Credit: NASA)

Historical Software Incidents (1999-2003)

Year	Flight or System		Result / Outcome	Erroneou s or Silent?				Unknown- unknown
1999		5 5 5	Unintended orbit, Milstar Satellite lost 10 days after launch	Erroneous Output	No	No	Data	No
2000		Ground software error failed to close valve.	Loss of Vehicle	Erroneous Output	No	No	Code/Logic	No
	Pegasus XL/HyperX Launch Vehicle / X- 43A	Airframe failure due to inaccurate analytical models	Loss of vehicle/mission	Erroneous Output	No	Yes	Code/Logic	Yes
2001		controller mix-ratio software coefficient sign-flip error	Significant close call, SME underperformance, though not extreme enough to not reach orbit.	Erroneous Output	No	No	Data	No
		Radiation Therapy machine output lethal doses, counterclockwise user input	Many injured, 15 people dead.	Erroneous Output	No	No	Code/Logic	No
2003	Soyuz - TMA-1	Undefined yaw value triggered Ballistic reentry	landed 400 km short	Erroneous Output	No	No	Code/Logic	No
	Electric Power Grid	contribute to Widespread	Widespread Loss of Power Service (2 hr - 4 days)	Fail Silent	No	No	Code/Logic	No

NASA

STS-108 Crew (Credit: NASA)

Photo Attribution: Lokal_Profil, under <u>Creative Commons Attribution-Share Alike 2.5</u> <u>Generic license</u>

Historical Software Incidents (2005-2008)

Year	Flight or	Title	Result /	Erroneous	Reboot	Missing	Error	Unknown-
	System		Outcome	or Silent?	Fix?	Code?	Location	unknown
2005	CryoSat-1	Missing command causes loss of vehicle	Loss of Vehicle	Erroneous Output	No	Yes	Code/Logic	No
2005	DART (Demonstration	Navigation software errors fail mission	Loss of mission	Erroneous Output	No	No	Code/Logic	No
	of Autonomous	objectives.	objectives					
	Rendezvous							
	Technology)							
2006	Mars Global Surveyor	Erroneous command led to pointing	Premature Loss of	Erroneous Output	No	No	Code/Logic	No
	(MGS)	error and power/vehicle loss	vehicle					
2007	F22 First Deployment	International Date Line crossing crashed	Loss of navigation &	Fail Silent	No	Yes	Code/Logic	No
		computer systems	communication					
2008	STS-124	All 4 shuttle computers fail / disagree	Fueling stopped	Erroneous Output	No	Yes	Sensor Input	No
		during fueling						
2008	Quantas Flight 72,	Sensor Input spikes caused autopilot to	One crew member and	Erroneous Output	No	Yes	Sensor Input	Yes
	Airbus A330-303	pitch-down, resulting in crew and	11 passengers suffered					
		passenger injuries	serious injuries					

Historical Software Incidents (2008-2017)

	System		Outcome		Fix?	Code?	Error Location	Unknown- unknown
	Guam crash	computers with missing		Erroneous Output	No	Yes	Sensor Input	Yes
	9268 TU- 204 crash	circumstances coupled		Erroneous Output	No	Yes	Code/Logic	Yes
	test flight	Missing software parameters during installation cause crash		Erroneous Output	No	No	Data	No
2015		command invalidated after launch vehicle	/	Erroneous Output	No	Yes	Code/Logic	No
:	space	Error in computing spacecraft orientation led to spacecraft loss		Erroneous Output	No	No	Code/Logic	No
2017	•			Erroneous Output	No	No	Data	No
2018, 2019	737 Max crash	•		Erroneou s Output	No	Yes	Sensor Input	Yes

a the total fills

NA SI

CRS-7 Mishap (Credit: credit: Nathan Koga for NSF/L2)

Historical Software Incidents (2018-2021)

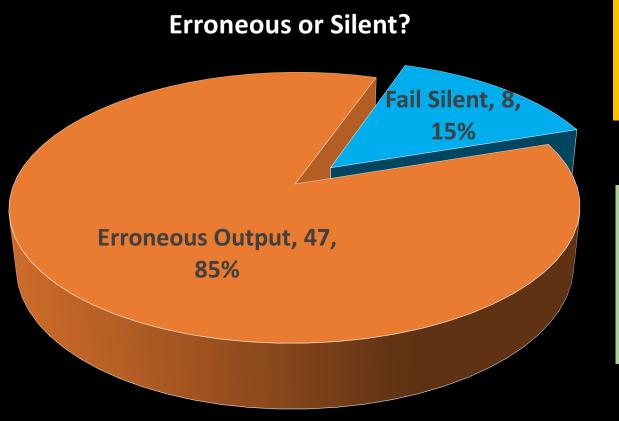
	Flight or System		-	Erroneous or Silent?				Unknown- unknown
	Flight Test (OFT)	no ISS rendezvous and	Failed ISS rendezvous, multi- year program delay	Erroneous Output	No	No	Code/Logic	No
2019		Reboots cause engine shutdown on lunar descent	Loss of vehicle	Fail Silent	No	No	Code/Logic	No
	Vicram Lunar Lander	Unexpected velocity behavior during descent caused crash landing	Loss of vehicle	Erroneous Output	No	Yes	Code/Logic	No
	Service (AWS)		Loss of service, revenues.	Fail Silent	No	Yes	Code/Logic	No
	Infusion Pump	Infusion delivery system software causes injury/death	55 injuries, 1 death	Erroneous Output	No	No	Code/Logic	No
-	Outage	global Facebook and	Disrupted communication, loss of revenues	Fail Silent	No	No	Command Input	No
2021		Uncontrolled ISS attitude spin from erroneous thruster firing software	Close Call	Erroneous Output	No	No	Code/Logic	No

NASA

Boeing OFT Landing (Photo Credit: NASA)

Historical Software Incidents (2022-present)

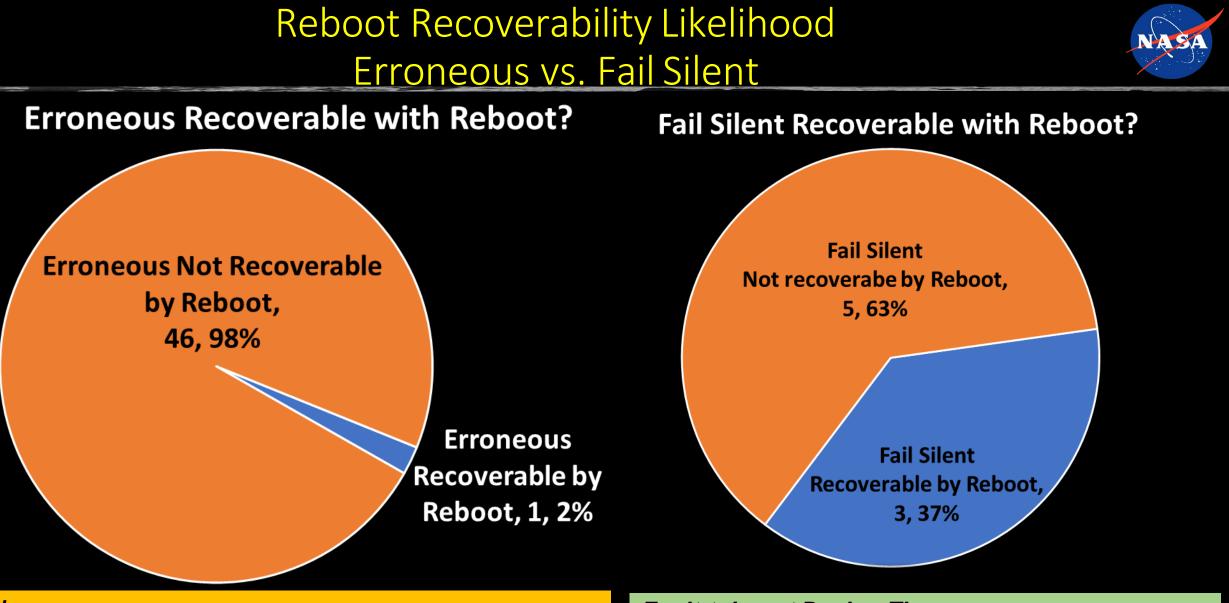
Year	Flight or	Title	Result /	Erroneous	Reboot	Missing	Error	Unknow
1	System		Outcome	or Silent?	Fix?	Code?	Location	n-
								unknown
2022		Bad Command causes Temporary Comm Loss	Delayed Trajectory Course Maneuver Objective, Close Call for LOM	Erroneous Output	No	No	Command Input	No
		Corrupted database file causes flight cancellations	Loss of Service	Fail Silent	No	Yes	Data	No
2023		Invalidated Altitude data during Lunar descent loses Lander	Loss of Mission	Erroneous Output	No	Yes	Sensor Input	No
	SN3 space tug	Uncontrolled attitude spin lost power and spacecraft	Loss of Mission	Erroneous Output	No	Yes	Code/Logic	No
2023		Bad command causes 2 [°] antenna shift	Temporary Loss of Communications (Close Call)	Erroneous Output	No	No	Command Input	No



Hakuto-R (Photo Credit: ispace)

Voyager-2 Rendition (Photo Credit: NASA)

Erroneous vs. Fail Silent

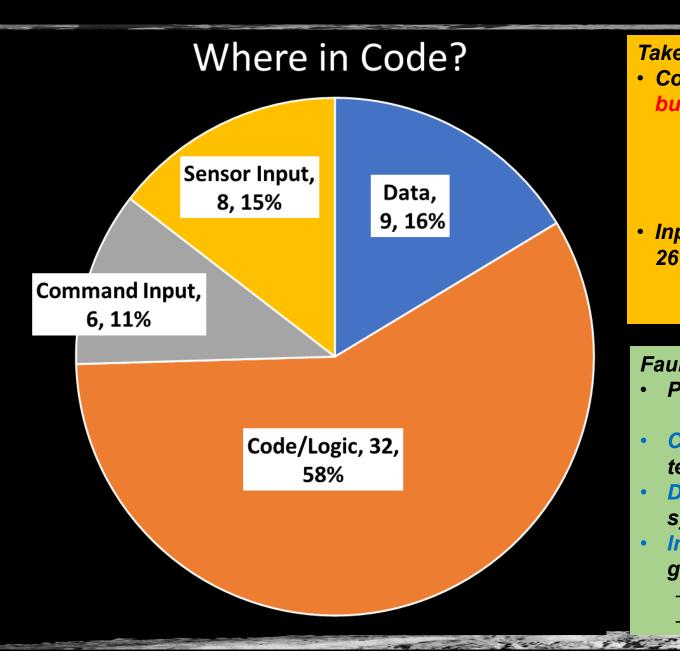


Takeaway:

- Historically, erroneous output situations were
 much more prevalent than fail-silent cases
- 85-15%, over 5 times as likely

Fault-tolerant Design Tip:

- Design should consider relative likelihoods of these manifestations
- Systems should consider the question, "What if the software does something wrong?" at critical moments


Takeaways:

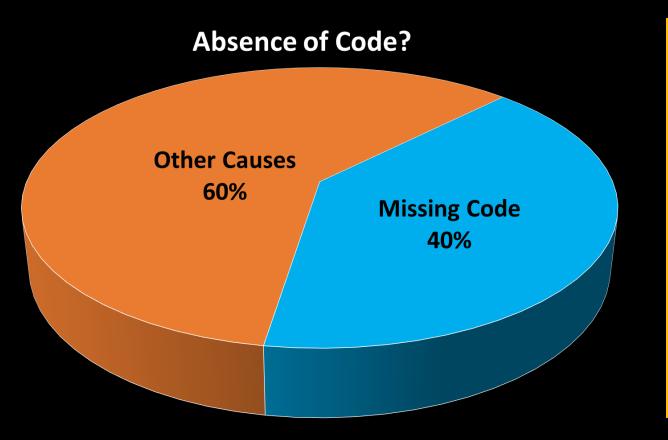
- Rebooting is predominantly ineffective to clear/recover from erroneous output situations
- Rebooting is a partial solution to clear fail-silent errors

Fault-tolerant Design Tip:

• Do not rely on reboot to clear all software faults

Error Location

Takeaway(s):


- Coding/logic errors account for most software incidents, but very few are "mistakes"
 - This category includes missing requirements, unknowns, unanticipated situations, misunderstanding or incomplete modeling of realworld
- Input Errors Command or Sensor Input Accounted for 26% of errors
 - Sensor Input are mainly unexpected code/logic errors as well

Fault-tolerant Code Tips:

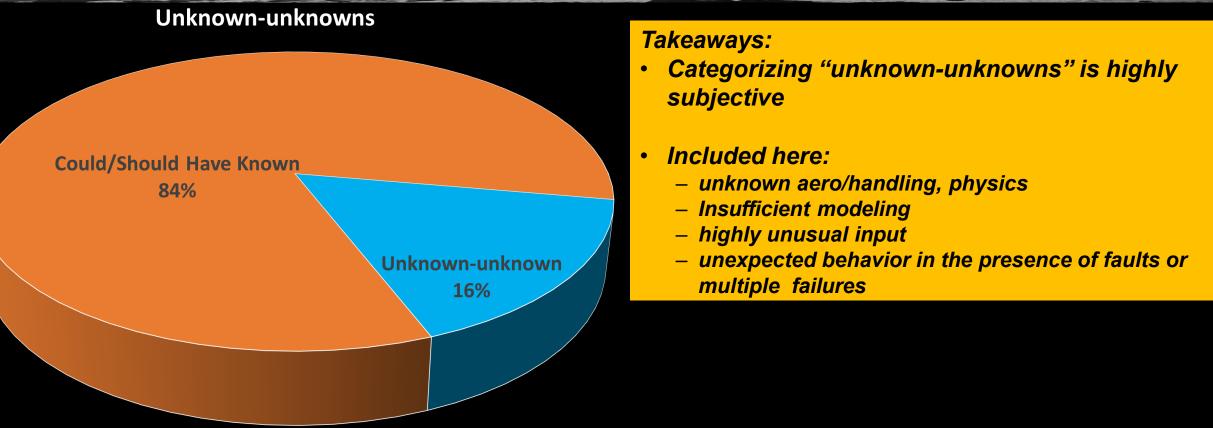
- Project should test according to likelihoods
- Code/Logic off-nominal testing, peer review, unit testing, increased simulation/modeling
- Data Misconfiguration data validation prior to use, system expert review
- Input Errors Off-nominal or random input test generation
 - Sensor input –hardware-in-the-loop testing
 - Command input validation, processes/procedures

Absence of Code ?

Takeaways:

- Many of the studied incidents (40%) could have been averted with the addition of code (in hindsight)
 - Missing Code arises from missing requirements, unanticipated situations, insufficient understanding or modeling of real-world
- Even fully tested code does not uncover errors that arise from missing code/unanticipated situations
 - Hard to test code that is not there off nominal testing may hep to uncover

Fault-tolerant Design Tip:

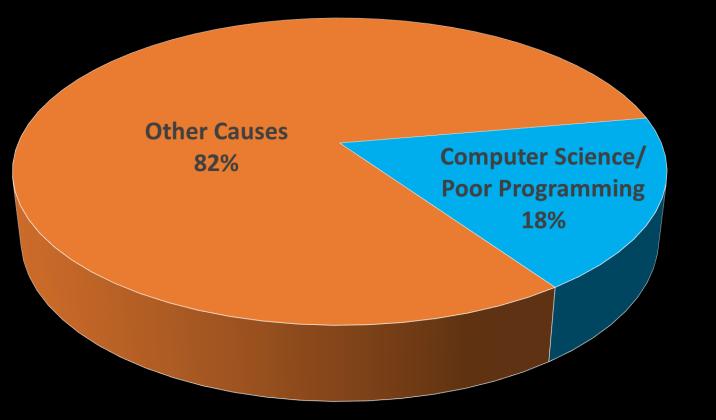

Projects should reserve test time to create off-nominal or unexpected conditions to expose absent code

Trans F

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

"Unknown Unknowns"

Fault-tolerant Design Tip:


• Backup strategies should be considered to protect for "unknown- unknowns" and other software error causes

• Projects should actively work to balance risk between "knowing everything" and project constraints (budget/schedule)

Computer Science Discipline?

Computer Science in Nature

Takeaways:

- Most software failures are not a result of something normally considered "computer science" or "software" discipline in nature
- No incidents studied resulted from operating system, programming language, tool chain, or development environment failure

Fault-tolerant Design Tip:

• Projects should consider requiring software "ownership" across multiple disciplines

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Software Errors - Preflight Prevention and In-Flight Mitigation

Z STAR THE

Captured in a NASA Engineering and Safety Center (NESC) Technical Bulletin "Considerations for Software Fault Prevention and Tolerance"

Pre-flight Software Error Strategies

- Utilize a disciplined software engineering approach
- Perform off-nominal scenario, fault, and sensor input testing to expose missing code
- Validate mission data prior to each use
- "Test like you Fly" with hardware-in-the-loop over expected mission durations
- Employ two-stage commanding with operator implication acknowledgement for critical commands

In-Flight Software Error Detection and **Strategies**

- Provide **crew/ground insight, control**, and override
- Employ **independent monitoring** of critical vehicle automation
 - Manual or automated detection, followed by response
- Employ **software backups** (targeted to full) which are:
 - Simple (compared to primary flight software)
 - Dissimilar (especially in requirements and test)
- Enter **safe mode** (reduced capability primary software subset)
 - Examples: restore power/communication, conserve fuel
- **Uplink new software** and/or data (time permitting)
- Design system to reduce/eliminate dependency on software
- **Reboot** (limited effectiveness)

Mitigation strategies should be evaluated considering criticality, phase dynamics, and time-to-effect.

Considerations for Software Fault Prevention and Toleranoe

Mission or safety-critical spacefight systems should be developed to both reduce the likelihood of software faults pre-flight and to detect/mitigate the effects of software errors should they occur in-flight. New data is available that categorizes software errors from significant historic spacefight software incidents with implications and considerations to better develop and design software to both mize and tolerate these most likely software failures.

cal Data Compilation Summary Best Practices for Safety-Critic Software Design ously unquantified in this manner, this data characterizes a set of

tistoric aerospace software failure" incidents. Key findtout rether than failing silent, and that rebooting is ineffective to clear situations. Forty percent (40%) of software errors were code, which includes missing requirements or capabil s and inability to handle unanticipated situations. Only 18% of these fail within the surgage discipline itself with no incidents related choice of platform or toolset. The origin of each error is categorized thous specific development, test, and validation techniques for end unacted flight software behavior independent of ultimate root cause n software errors and to aug thed processes for NASA software development

Although best efforts can be made prior to flight, software behavior reflects a model of real-world events that cannot be fully proven or predicted, and traditional system design usually employs only one prima fight software load, even if replicated on multiple strings. Like designing resilience to enoneous software behavior. NASA Human-Rating a overvide of automation, and at least single fault tolevance to software evaluate these requirements against safety hazards and time-to-effe and then invoke app sale automation fail-down strategies. Con

	Erroneous	Fall-Silent
rror Manifestations	85%	15%
aboot Effectiveness	25	30%
rror Origin, % of Total		
ode / Logic		58%
onfigurable Data		16%
inexpected Sensor Input		15%
ommand/Operator Input		11%
ther Categories, Individually % o	of Total	
beence of Code		40%
nknown-unknowna		16%
omputer Science Discipline		18%

light Software Error Detection and Mitigation Strategie

indicate that for software fault tolerance, primary consid space. New data has characterized the behavior of these failures to be ter understand manifestation patterns and origin. The strategies outlined here should be considered during vehicle design, and throughout the and be given to software behaving expression where then lable. Special care should be taken to validate configurable software development and operations lifecycle to minimize the occur and commands prior to each use. "Test-like-you-fly", includin rence and impact of event software behavio -the-loop, combined with robust off-nominal testi uid be used to uncover missing logic arising from unanticipated situ Terminology s. Some best prectice strategies to emphasize pre-flight and dur ons based on this data are shown below

"Software Failure - Software behaving in an unexpected manne causing loss of life, injury, loss/end of mission, or significant close-call Byzantine - Active, but possibly comupted unbusted communication

Historical Aerospace Softw Fault Tolerance, Releasing March 2024, https:// NASA/TP-20230012 NPR 8705.2C, Hum

/htsness.gov

bulletin

tech

С

S

Ш \sim

formation, contact Lorraine Prokon, Jorraine e prokooffinasa

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software the second second

- Software "common cause" or "common mode" errors occur when a single software error results in unexpected behavior, even if running on multiple strings
- Software in NASA Space Systems should be architected for redundancy based on criticality and time-toeffect, with requirements driven primarily by NPR 8705.2C and NPR 7150.2D
- Software Errors manifest in two ways: Silent or Erroneous
- Study of historical software incidents indicates the following
 - Erroneous output is much more prevalent 85% of the incidents
 - Rebooting is largely ineffective to recover from erroneous situations, and not reliable for silent software
 - Software logic errors are the most common form, then data config, and 26% of errors arise from input
 - Missing Code accounted for 36% (including requirements, unknowns) of historic software errors

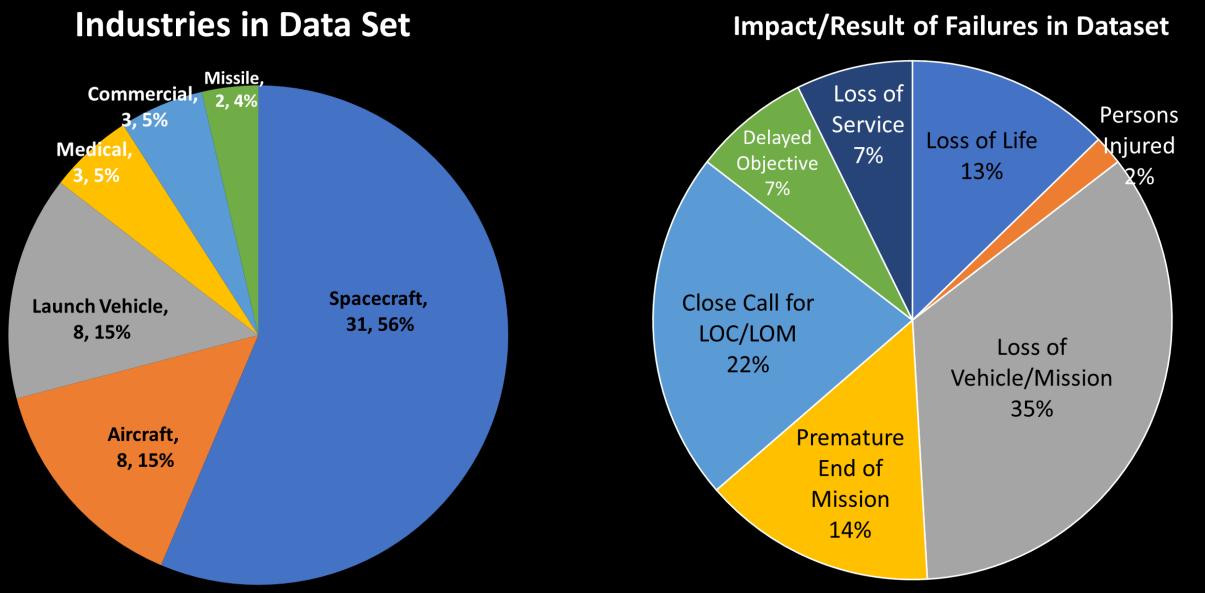
The P

- "Unknown-unknowns" account for over 15% of software error incidents, subjectively
- Fault-tolerant systems should be designed with these statistics in mind overall recommendations
 - Consider the Erroneous Case more than failing silent
 - Don't always rely on reboot
 - Employ hardware-in-the-loop, test-like-you-fly, and off-nominal testing
 - Validate configuration and command data prior to use
 - Consider use of backup strategies for critical events

References & Follow-on Work

- NESC Technical Bulletin 23-06: <u>Considerations for Software Fault Prevention and Tolerance</u>, September 2023.
- Prokop, Lorraine, E., "Software Error Incident Categorizations in Aerospace", NASA Technical Publication, NASA/TP-20230012154. August 2023.
- "Historical Aerospace Software Errors Categorized to Influence Fault Tolerance", March 2024, AIAA Aerospace Conference 2024, <u>https://ntrs.nasa.gov/citations/20230012909</u>
- Prokop, Lorraine, E., "Software Error Incident Categorizations in Aerospace", [Manuscript in publication], Journal of Aerospace Information Systems.
- The dataset used for this study, with more description and references, is available upon request

- Follow-on work:
 - This dataset can be used for further study, for example, to answer the following
 - What was the root cause of this error? (Why was the software programmed the way it was?)
 - Would a backup system have helped?
 - What kind of a backup system could have helped?"
 - Would a human-in-the-loop, a dissimilar backup, a monitor system, or no backup at all be best?
 - Was this a multi-string common-cause failure?
 - Was a manual or automated backup system used?
 - What phase of the project could/should this incident been averted?
 - How much and what type of testing may have uncovered these errors?



a start the start

Dataset Industry & Impact Breakdown

a the true the the

- Historic Failure Incidents Involving Software
 - We studied software significant failure incidents primarily within NASA and aerospace when automation did not behave as expected
 - Software Failure Software/automation did not behave as expected causing loss of life, injury, loss/end of mission, or significant close-call
 - **55 incidents** were characterized since beginning of computers

a the true the

- Aerospace (49) loss of life, mission, close-call
- Non-Aerospace (6) 3 Medical (loss of life), 3 Commercial (3) (loss of service)
- We categorized software errors to determine:
 - Which is more prevalent fail silent or erroneous?
 - Could the failure have been corrected by reboot?
 - Was this an unanticipated situation missing code, wrong code, or unknown unknown?
 - *Where* in the code was the failure introduced?
- NOTE: The root cause of these failures may not all be attributable to software (why it was
 programmed like that), but how the incident initially manifested during operations (how it behaved) is
 characterized

Dataset Sample: Historical Software Incidents (1982-1994)

Tour PH

Year	System	Title	Outcome	Erroneous or Silent?	Reboot Recoverable	Missing Code?	Error Location	Unknown- unknown?
1982	Viking-1	Erroneous Command caused loss of comm		Erroneous Output	No	No	Command Input	No
1985-87		Radiation Therapy machine output lethal doses, user input speed		Erroneous Output	No	No	Code/Logic	No
1988		Erroneous unchecked uplinked command lost vehicle		Erroneous Output	No	No	Command Input	No
1988	Soyuz TM-5	Wrong code executedto perform de-orbit burn	,,	Erroneous Output	No	No	Code/Logic	No
1991		Bad command causes guidance error		Erroneous Output	No	No	Sensor Input	No
1991		Patriot failed target intercept due to 24-bit rounding error growth in time over time		Erroneous Output	Yes	No	Code/Logic	No
1992		Software failed to compensate for pilot- induced oscillation in presence of lag		Erroneous Output	No	Yes	Sensor Input	Yes
1994	Lunar Mission	Erroneous thruster firing exhausted propellant, cancelling asteroid flyby		Erroneous Output	No	No	Code/Logic	No

Photo Credits: The National Archives, NAID: 6361754 (top), NAID: 6424495 (bottom)