

Alternative Approaches to the Application of QBDs in Detailed Design

NASA Cost & Schedule Symposium Langley, VA April 24, 2024

Dewey E. Barlow and Andrew Soukup Dr. Charles Parker - Contributor

Dewey.barlow@jhuapl.edu Andy.soukup@jhuapl.edu

Alternative Approaches to the Application of QBDs in Detailed Design

Agenda

- Brief History of Earned Value (EV)
- Evolution of Invention to Mass Manufacturing
- Challenges of Implementing EV in the NASA Environment
- Problem Statement
- Alternative Approaches
- Proposed Solution
- Proposed Solution Mechanics
- Conclusion
- Contact Information

Alternative Approaches to the Application of QBDs in Detailed Design

Brief History of Earned Value (EV)

As originally conceived, EVM was meant to provide timely, reliable management data reflecting performance on complex projects. In other words, a "good enough" snapshot of a moving train to inform management decisions. But as time passed, that objective increasingly was supplanted by a demand for more "accurate, timely" data, with emphasis on contractor compliance enforced by punitive contractual provisions. EVM's original purpose—a timely, reliable management information system—is compromised to the extent it is redefined as an audit-oriented oversight system with punitive consequences for noncompliance. DAU 2017

Evolution - Invention to Mass Manufacturing

Challenges of Implementing EV in the NASA Environment

NASA explores the unknown in air and space, innovates for the benefit of humanity, and inspires the world through discovery.

Alternative Approaches to the Application of QBDs in Detailed Design

Challenges of Implementing EV in the NASA Environment

- Flight Software (FSW)
- Ground Software (GSW)
- FPGA Design/Development
- Firmware Design/Development
- Detailed Design
- Flight Parts Procurement
- Thermal Design
- Test and Tailor/Rework

There are many challenges associated with implementing earned value in the NASA environment. Our focus is on the Application of EV in Detailed Design hereafter.

Problem Statement

Detailed design presents an EV challenge because changes in design result from testing at the part, component, board, board interface, box, subsystem/instrument, and system interface level over the course of six to eight months while the Engineering Model (EM) is being assembled and tested.

<u>This iterative design process is reactive to test anomalies that are unknown prior to the performance of the tests</u>. Although past experience has shown that some level of design change will occur during detailed design, it is difficult to predict the level of design change, or at what point in the process the anomalies will occur that spur the design change.

If we plan detailed design as a single 6-8 month activity with a percent complete EV type at the board/component level we are required to establish Quantifiable Backup Data (QBDs) for each detailed design activity to ensure that the claimed percent complete is objective.

If we do not know if, and at what point, the test anomalies/redesign will occur how do we establish QBDs?

Alternative Approach - Distributed Design Sprints

Insert design sprint activities immediately after each test

EM Test Program	110d	0%	4/1/24	8/30/24			•
Slice Testing	10d	0%	4/1/24	4/12/24		4/1/	24 📕 4/12/24
Slice Interface Testing	10d	0%	4/29/24	5/10/24		4/	29/24 🔳 5/10/24
Box Level Testing	10d	0%	5/27/24	6/7/24		5/27/24 📕 6/7/24	
Box Level Environmental Testing	10d	0%	6/24/24	7/5/24			6/24/24 🔳 7/5/24
Subsystem/Instrument Level Testing	10d	0%	7/22/24	8/2/24	K		7/22/24 🔳 8/2/24
Subsystem/Instrument Level Environmental Testing	10d	0%	8/19/24	8/30 ^{/24}	esian effort	$\left \right\rangle$	8/19/24 📕 8/30/24
Detailed Design	110d	0%	4/15/24	9/13 in	nmediately lowing test		
Slice Testing Update	10d	0%	4/15/24	4/26/24		4/1	5/24 📕 4/26/24
Slice Interface Testing Update	10d	0%	5/13/24	5/24/24		:	5/13/24 📕 5/24/24
Box Level Testing Update	10d	0%	6/10/24	6/21/24			6/10/24 🗧 6/21/24
Box Level Environmental Testing Update	10d	0%	7/8/24	7/19/24			7/8/24 📕 7/19/24
Subsystem/Instrument Level Testing Update	10d	0%	8/5/24	8/16/24			8/5/24 📕 8/16/24
Subsystem/Instrument Level Environmental Testing Update	10d	0%	9/2/24	9/13/24			9/2/24 📕 9/13/24

In lieu of 6-8 month single design activity (PCT with QBDs) establish pockets of distributed design sprints (0100 or 5050)

Alternative Approach - Distributed Design Sprints

Advantages

- Plans effort where it is likely to be expended
- Shorter 10-20 day design sprints can be 0100 or 5050 to avoid PCT with QBDs

Disadvantages

- The activity count would increase substantially
- Added administrative cost of schedule planning and management
- Implies a level of accuracy that does not exist level of effort of each distributed design activity is still unknown

So our high tech Software can	
turn your low quality (ne2
so complex people will	Long the second se
it's accurate.	

Adding more granularity does not ensure additional accuracy but it does ensure additional cost

Alternative Approach - QBDs Based on EM Test Program

▲ EM Test Program	110d	0%	4/1/24	8/30/24	
Slice Testing	10d	0%	4/1/24	4/12/24	4/1/24 4/12/24
Slice Interface Testing	10d	0%	4/29/24	5/10/24	4/29/24 5/10/24
Box Level Testing	10d	0%	5/27/24	6/7/24	5/27/24 🔳 6/7/24
Box Level Environmental Testing	10d	0%	6/24/24	7/5/24	6/24/24 🔳 7/5/24
Subsystem/Instrument Level Testing	10d	0%	7/22/24	8/2/24	7/22/24 🗧 8/2/24
Subsystem/Instrument Level Environmental Testing	10d	0%	8/19/24	8/30/24	8/19/24 🔳 8/30/24
Detailed Design	110d	0%	4/15/24	9/13/24	4/15/24 9/13/24

Quantifiable Backup Data	Weight
Slice Testing Update	10%
Slice Interface Testing Update	15%
Box Level Testing Update	15%
Box Level Environmental Testing Update	25%
Subsystem/Instrument Level Testing Update	15%
Subsystem/Instrument Level Environmental Testing Update	20%
	100%

6-8 month single design activity (PCT with QBDs where QBDs are based on EM Test Protocol)

Alternative Approach - QBDs Based on EM Test Program

Advantages

- · Earns performance where work is likely to be expended
- Single design activity at the board level eliminates need for added activities and complexity

Disadvantages

- Added administration of verifying test completion
- Completion of test does not equal completion of design update
- Added administration of QBDs
- Implies a level of accuracy that does not exist level of effort of each distributed design activity is still unknown

If we do not know if, and at what point, the test anomalies and redesign will occur how can we establish QBDs?

Alternative Approach – Apportioned to EM Test Program

Alternative Approaches to the Application of QBDs in Detailed Design

Alternative Approach – Apportioned to EM Test Program

Advantages

- Earns performance where work is likely to be expended
- Simple solution to a more complex problem
- Final design activity can be weighted to avoid over-earning
- Eliminates administration of QBDs

Disadvantages

- Doubles the number of design activities (1 automatically updates)
- Added administration of dynamic links

Alternative Approaches to the Application of QBDs in Detailed Design

Proposed Solution Mechanics

APL01	APL03	APL04	APL24	APL25 - EV	Design Delta			%	Physical %			4
WBS -	- WP # 👻	Туре 🔻	Weigh -	Calculation 👻	Gate 💌	Name 👻	Duration -	Complet 🗸	Complet •	Start 🚽	Finish 👻	Feb Mar Apr May Jun Jul Aug Sep Oct
			200	55		NASA Presentation	115d	43%	0%	4/1/24	9/6/24	
			100	55		▲ EM Test Program	75d	50%	0%	4/1/24	7/12/24	•
55G	WP01	0100	20	20		Slice Testing	10d	100%	100%	4/1/24	4/12/24	4/1/24 = 4/12/24 4/1/24 = 4/12/24
55G	WP01	0100	15	15		Slice Interface Testing	10d	100%	100%	4/22/24	5/3/24	4/22/24 📻 5/3/ <mark>2</mark> 4 4/15/24 📷 4/26/24
55G	WP01	0100	20	20		Box Level Testing	10d	100%	100%	5/20/24	5/31/24	5/20/24 5 /31/24 4/29/24 5 /10/24
55G	WP01	0100	25	C		Box Level Environmental Testing	10d	0%	0%	6/3/24	6/14/24	6/3/24 6/14/24 5/13/24 5/24/24
55G	WP01	0100	10	C		Subsystem/Instrument Level Testing	10d	0%	0%	6/17/24	6/28/24	6/17/24 💼 6/28/24 5/27/24 💼 6/7/24
55G	WP01	0100	10	C		Subsystem/Instrument Level Environmental Testing	10d	0%	0%	7/1/24	7/12/24	7/1/24 🗾 7/12/24 6/10/24 🛄 6/21/24
			100	C		Detailed Design	115d	39%	0%	4/1/24	9/6/24	•
55J	WP01	APP	60	C		Detailed Design (Hammock Task)	75d	60%	55%	4/1/24	7/12/24	4/1/24 7/12/24 4/1/24 6/21/24
55J	WP01	5050	40	C		Final Detailed Design	40d	0%	0%	7/15/24	9/6/24	7/15/24 9/6/24 6/24/24 8/16/24

Detailed Design Performance is Apportioned to EM Test Execution (can be set up in Cobra) Note that slips in EM Test Program are automatically reflected in the Detailed Design Hammock Activity

APL,

Alternative Approaches to the Application of QBDs in Detailed Design

Conclusion

There are many challenges associated with EV implementation in the NASA environment. There are innovative solutions to these challenges but we need to be flexible in our approach. We have an opportunity to tailor our EVM Systems to the NASA environment to reduce cost and optimize value, but to do so, NASA leadership must be willing to challenge the norm and adopt more flexible practices that add value without adding cost.

The Defense Innovation Board (DIB) recently released a report on Software Acquisition (based in part on JHU/APL software development processes and metrics) that reinforced prior recommendations to eliminate EVM on software programs using agile methods. Change is on the horizon.

D4.4	Modify DoDI 5000.02, DoDI 5000.75, and DoDI 5105.84	A&S	Q1 FY20
	to reflect use of updated methods and remove earned		
	value management (EVM) for software programs.		

Related recommendations from previous studies

DSB87	Rec 19: DoD should develop metrics and measuring techniques for software quality and completeness and incorporate these routinely in contracts.
DSB87	Rec 20: DoD should develop metrics to measure implementation progress.
Sec809	Rec 19: Eliminate the Earned Value Management (EVM) mandate for software programs using agile methods.

Software Is Never Done

Refactoring the Acquisition Code for Competitive Advantage

Alternative Approaches to the Application of QBDs in Detailed Design

Contact Information

- Dewey E. Barlow
 - 443-630-9389
 - <u>Dewey.barlow@jhuapl.edu</u>
- Andrew Soukup
 - 240-592-2987
 - Andy.Soukup@jhuapl.edu

APL,

JOHNS HOPKINS APPLIED PHYSICS LABORATORY