

PCEC Robotic Missions

Graphics are New Missions in PCEC v2.4

Updates for v2.4

Shawn Hayes & Mark Jacobs NASA Cost & Schedule Symposium April 24, 2024

Arget the binary asteroid Didymos system
Impact Dimorphos and change its orbital period
Impact Dimpact and change its orbital period
I

1.PCEC Robotic Mission Database

New missions since v2.3, Robotic Mission CER Development Database & Input Candidates, Data Normalization Updates

2.PCEC v2.4 Robotic Mission CER Updates

> Characterize the evolving PCEC database, characterize data outliers, and examine model performance

3.Future Plans

PCEC Robotic Mission Database

Mission Risk

Database covers
59 missions and
70 separate
flight elements

MISSION	Date	PM	Flt Sys	NASA Program	Class
Missions for PCEC v2.3					
1 TDRSS K-L	1/23/14	GSFC	Boeing	Space Comm	Class A
2 MAVEN	11/18/13	GSFC	LMA	Planetary	Class C/D
3 LADEE	9/6/13	GSFC	ARC	Planetary	Class B
4 IRIS	6/27/13	GSFC	LMMS	Astrophysics/SMEX	Class C/D
5 Van Allen Probes	8/30/12	GSFC	APL	Heliophysics/LWS	Class B
6 NuSTAR	6/13/12	JPL	OSC	Astrophysics/Explorer	Class C/D
7 MSL	11/26/11	JPL	JPL/LMA	Planetary/Mars Expl	Class B
8 GRAIL	9/10/11	JPL	LMA	Planetary/Discovery	Class C/D
9 Juno	8/5/11	JPL	LMA	Planetary/New Frontiers	Class B
10 Glory	3/4/11	GSFC	OSC/Swales	Earth Sciences	Class C/D
11 GOES (-P)	3/4/10	GSFC/NOAA	Boeing/SGT	Earth Sciences	Class A
12 SDO	2/11/10	GSFC	GSFC	Heliophysics	Class B
13 WISE	12/14/09	JPL	BATC	Astrophysics/Explorer	Class C/D
14 LCROSS	6/18/09	ARC	NG	Planetary/Discovery	Class C/D
15 LRO	6/18/09	GSFC	GSFC	Planetary	Class B
16 KEPLER	3/6/09	JPL	BATC	Astrophysics/Discovery	Class C/D
17 000	2/24/09	JPL	OSC	Earth Science	Class C/D
18 IBEX	10/19/08	SwRI	OSC	Astrophysics/Explorer	Class C/D
19 Dawn	9/27/07	JPL	OSC/JPL	Planetary/Discovery	Class B
20 Phoenix	8/4/07	JPL	LMA	Planetary	Class B
21 AIM	4/25/07	LASP	OSC	Heliophysics	Class C/D
22 THEMIS	2/17/07	UCB	Swales	Astrophysics/Explorer	Class C/D
23 STEREO	10/26/06	GSFC	APL	Heliophysics	Class B
24 CLOUDSAT	4/28/06	GSFC	BATC	Earth Sciences	Class C/D
25 NEW HORIZONS	1/19/06	APL	APL	Planetary/New Frontiers	Class B
26 MRO	8/12/05	JPL	LMA	Planetary/Mars Expl	Class B
27 DEEP IMPACT	1/12/05	JPL	BATC	Planetary/Discovery	Class B
28 Swift	11/20/04	GSFC	Spectrum Astro	Astrophysics/Explorer	Class C/D
29 MESSENGER	8/3/04	APL	APL	Planetary/Discovery	Class B
30 Spitzer	8/25/03	JPL	LMA	Astrophysics	Class A
31 MER	6/10/03	JPL	JPL	Planetary/Mars Expl	Class B
32 GALEX	4/28/03	JPL	OSC	Astrophysics/Explorer	Class C/D
33 RHESSI	2/5/02	UCB	Spectrum Astro	Heliophysics	Class C/D
34 TIMED	12/7/01	APL	APL	Earth Sciences	Class C/D
35 GENESIS	8/8/01	JPL	LMA	Planetary/Discovery	Class C/D
36 Mars Odyssey	7/7/01	JPL	LMA	Planetary/Mars Expl	Class C/D
37 WMAP	6/30/01	GSFC	GSFC	Astrophysics/Explorer	Class C/D
38 WIRE	3/5/99	GSFC	GSFC	Astrophysics/Explorer	Class C/D
39 TRACE	4/2/98	GSFC	GSFC	Astrophysics/Explorer	Class C/D
40 Cassini	10/15/97	JPL	JPL	Planetary/Outer Planets	Class A
41 Mars Global Surveyor	11/7/96	JPL	LMA	Planetary/Mars Expl	Class B
42 NEAR	2/17/96	APL	APL	Planetary/Discovery	Class B
43 GPM	2/27/14	GSFC	BATC	Earth Sciences	Class B
44 OCO-2	7/2/14	JPL	OSC	Earth Sciences	Class C/D
45 MMS	3/12/15	GSFC	GSFC	Astrophysics/Explorer	Class C/D
46 OSIRIS-REx	9/8/16	GSFC	LMA	Planetary/New Frontiers	Class B
47 GOES-R	11/19/16	GSFC/NOAA	Boeing/SGT	Earth Sciences	Class B
48 CYGNSS	12/15/16	SwRI	SwRI	Earth Sciences	Class C/D
49 InSight	5/5/18	JPL	LMA	Planetary/Discovery	Class B

Lead Org

Lead Org

MISSION	Launch Date	Lead Org PM	Lead Org Fit Sys	NASA Program	Mission Risk Class
New Missions with Norn	nalized Data				
50 SMAP	1/31/15	JPL	JPL	Earth Sciences	Class C/D
51 JPSS-1	11/10/17	GSFC	BATC	Earth Sciences	Class B
52 Solar Probe	8/6/18	GSFC	APL	Heliophysics	Class B
53 Mars 2020	7/30/20	JPL	JPL	Planetary	Class B
54 TESS	3/20/18	GSFC	OSC	Astrophysics/Explorer	Class C/D
55 IXPE	12/9/21	MSFC	Ball	Astrophysics/Explorer	Class C/D
56 DART	11/23/21	APL	APL	Planetary	Class C/D
57 JWST	12/25/21	GSFC	NG	Astrophysics	Class A
58 Lucy	10/16/21	GSFC	LMSS	Planetary	Class B
59 GOES-T	3/1/22	GSFC	LMSS	Earth Sciences	Class B

- Data includes 10 new missions available for the next version of PCEC CERs for Robotic Missions
- Updates include an expanded set of CER input candidates

• Distributions of missions across SMD Division Launch Year, Risk Class, and Directed vs PI-led are shown here

NASA

PCEC Robotic Mission CER Development Database

- PCEC's CER Development Database includes over 500 data fields for 70 flight elements including normalized costs & technical/schedule input candidates; Includes all data needed to run PCEC (& SOCM)
- CER development is an iterative process with significant identification and testing of new input candidates

CER Input

INPUT CANDIDATES

PCEC CER Input Candidates, 1 of 3

GLOBAL	STRUCTURES	THERMAL				
Mission Target/Type	STR Mass, kg	THM Mass, kg				
Mission Risk Class	Radiation Environment, krads TID	Radiation Environment, krads TID				
Power (EOL)	Number of Flight Elements	Project Lead Organization				
Flight System Type	Primary Structure Material	THM Secondary, YorN				
Environment	Flight SystemType	THM Heritage				
No. of Flight Elements	Project Lead Org	THM Parts Rating				
No. of Deployments	Operation Env	Environment				
Progam	STR Secondary, YorN	Thermal Control Type				
S/C Mass, kg	STR Heritage	Heater Power, W				
	STR Parts Rating	Radiator Material				
	No. of Articulated Devices	Project Lead Organization				
	No. of Deployments	Thermal Control Type				

Note: Schedule inputs are also considered including s/c subsystem Design, Fabrication, I&T, and Launch Ops; Cruise and Encounter times for Planetary operations; and Primary Mission duration for Near-Earth operations

INPUT CANDIDATES

PCEC CER Input Candidates, 2 of 3

	PROPULSION	POWER	COMMUNICATIONS				
	PRP Mass, kg	Flight System Power, W BoL @1AU	TCM Mass, kg				
	Max Engine Thrust	Operating Environment	TCM Parts Rating				
	Tank Material	Number of Boards	Transmitter Power, W				
	Number of Thrusters	CDH Secondary, YorN	Band Type				
	Subsystem Heritage Rating	End of Life Power, W@1AU	TCM Secondary, YorN				
J	PRP Secondary, YorN	CDH Mass, kg	TCM Heritage				
	PRP Heritage	CDH Heritage	U/L Band				
	PRP Parts Rating	CDH Parts Rating	Peak U/L Rate, kbps				
	Max Engine Thrust, N	Processor Type	D/L Band				
	Propulsion System Type	Data Storage Capacity, GB	Peak D/L Rate, Mbps				
	Tank Material	Operating Environment	Number of Bands				
	Propulsion System Type	Processor Type	Amp Type				

Note: Schedule inputs are also considered including s/c subsystem Design, Fabrication, I&T, and Launch Ops; Cruise and Encounter times for Planetary operations; and Primary Mission duration for Near-Earth operations

7

NPUT CANDIDATES

GNC	POWER	OPERATIONS						
GNC Mass, kg	PWR Mass, kg	SOCM Level 1 Score	Data Storage Capacity, GB					
Operating Environment	Operating Environment	Launch Date	U/L Band					
Radiation Environment, krads TID	Radiation Environment	Flight System Type	Peak U/L Rate, kbps					
GNC Subsystem Fab Time	End of Life Power, W@1AU	Mission Target/Type	D/L Band					
Mission Target/Type (Robotic SC)	RTG, YorN	Mission Risk Class	Peak D/L Rate, Mbps					
GNC Secondary, YorN	Harness Mass, %	Project Lead Organization	Daily D/L Volume, GB/day					
GNC Heritage	PWR Secondary, YorN	S/C Lead Organization						
GNC Parts Rating	PWR Heritage	S/C Lead Experience						
GN&C Type	PWR Parts Rating	Mass						
Pointing Accuracy, arcsecs	BOL Power @ 1 AU	Power (EOL)						
Pointing Knowledge, arcsecs	Solar Array Area, m2	Heritage						
GNC Type2	Avg Payload Power, W	Parts Rating						
Operating Environment	Battery Capacity, Ahrs	# of Flight Elements						
Mission Target/Type (Robotic SC)	Harness Mass, kg	Operating Environment						
 GN&C Type	Avg Operating Power, W	Radiation Environment						

Note: Schedule inputs are also considered including s/c subsystem Design, Fabrication, I&T, and Launch Ops; Cruise and Encounter times for Planetary operations; and Primary Mission duration for Near-Earth operations

Normalization Change for Mars Landed Missions

Issue: Allocations of cost to individual flight elements has been entirely mass-based

Mars Landed Mission Flight Elements

ENTRY SYSTEM

LANDER/ROVER

- Since the hardware providing the primary capability for the Cruise Stage and Entry System typically reside within the Lander/Rover, this approach over-costs these elements and under-costs the Lander/Rover
- Adjustments have been applied to the mass-based approach
 - Adjustments performed at the subsystem level
 - Two adjustments: Subsystem inputs include Reliance on External Hardware (Y/N) and Heritage (assessed relative to Lander/Rover)
- Initial CER development demonstrated the revised normalization approach reduced the number of outliers for the s/c subsystem CERs
 - > This is the approach used for PCEC v2.4 CERs
 - Impacted Projects: InSight, MER, MSL, and Mars 2020

Separation of MO & DA for PCEC Phase E CERs

- To provide enhanced insight into Phase E costs, separate CERs for Mission Operations and Data Analysis were developed but not yet adopted
 - > CERs cover Planetary Cruise & Encounter phases and Near-Earth Primary Mission

Mission Operations (MO)		NASA WBS		Data Analysis (DA)	
Next level of detail needed to		1 Project Management			
separate engineering from	\neg	2 Systems Engineering			
science			3 Mission Assurance		Science Team efforts include
		4 Science Team		EPO; Payload only included	
Next level of detail needed to		5 Payload		if Science Team book-kept in	
separate engineering from		6 Spacecraft		WBS 5	
science for WBS 7; Typically,		7 Mission Operations System			
no post-launch S/C \$s		8 Launch Vehicle		Next level of detail needed	
		9 Ground Data System	}	to separate engineering	
Typically, no post-launch I&T \$s	-{	10 I&T		from science	

Directed/Pi-Led History by Mission Launch Year

- Mission data mix in the PCEC database has evolved over time
 - During PCEC v2.3 CER development, the database contained a higher percentage of PI-Led missions (69%) when compared to Directed missions (31%)
 - Today, with the addition of new data points, the gap narrowed (61% vs. 39%)
 - This change in the data mix has introduced some challenges in the development of new CERs

PCEC v2.4 Outlier Summary

Identifi B	ed Outliers y CER	GOES-R	Cassini	JWST	MSL-Rover	Mars 2020 - Rover	TDRSS K-L	PSP	MESSENGER	MSL-EDL	JPSS-1	Spitzer	GOES (-P)	GOES-T	GPM	Mars 2020 - EDL	Van Allen Probes	Juno	LRO	MER - EDL	MRO	MSL-Cruise Stage	SDO	STEREO	MAVEN	MER - Rover	NEAR	New Horizons	WMAP
	STR NRC	X	X	X	X	Х		Х		X						Х				Х									
	STR RC		x	x	x	x				x						x				x									
S	THM NRC			X	X			Х								Х						Х							
eπ	THM RC	x	x		X			х											x			x	X						x
/st	PRP NRC	X	X	X					Х	X						Х											X		
(so	PRP RC	x	x	x						X				x														x	
Sul	CDH NRC	X	X	X	X																								
Ŧ	CDH RC	x	x		x							x																	
Cra	TCM NRC	X	X	X	X		X	Х	Х												X								
ĕ	TCM RC	x	X				x				х																		
bai	GNC NRC	X	X							X					Х														
S	GNC RC	x	x	x						x			х		х								X						
	PWR NRC	X	X	X			X	Х									X												
	PWR RC	x	x	x	X										х														
	PM-Tot	X		X							Х		Х																
Support	SE-Tot	х	X	X	X	X					Х		X																
Function	MA-Tot	X	X	X	X	X	X				X		X					х								х			
	landT-To	X		X	X	X	X																						
Phase E	MODA TOT	X		X								X		X	X		X							X					

- Inclusion of several new directed/flagship type missions in the PCEC database has shifted the CER trade space
 - JWST, Cassini, GOES-R and the newest Mars rovers are the worst outliers across most of the CER categories due to their high degree of complexity not seen in most other SMD missions in the PCEC database
 - Several missions that were considered to be outliers in PCEC v2.3 are now included in the new CERs (e.g. TDRSS K-L, GPM)

CER Performance Comparison

PCEC Perf	orm	ance Comparison	RMSE # of Data Point						
TCECTER		ance companison	PCEC v2.3	PCEC v2.4	PCEC v2.3	PCEC v2.4			
Support	Tot	al Project Management	251	265	47	53			
Functions	Tot	tal Systems Engineering	254	164	47	48			
(Phase P. D)	Т	otal Mission Assurance	111	113	41	43			
(Pliase D-D)	То	otal Integration & Test	753	863	43	48			
		Structures & Mechanisms	2,279	4,529	50	60			
		Propulsion	2,672	2,149	40	45			
	rring	Telecommunications	2,700	2,520	49	58			
	n-Recu	Guidance, Navigation and Control	2,870	3,319	51	63			
	Nor	Thermal	484	722	52	63			
		Command & Data Handling	5,322 4,950		44	57			
Spacecraft		Power	3,396	4,532	43	62			
(Phase B-D)		Structures & Mechanisms	5,710	11,226	51	62			
		Propulsion	4,069	4,064	38	46			
	g	Telecommunications	5,847	5,782	52	63			
	ecurrir	Guidance, Navigation and Control	4,235	5,535	49	60			
	R	Thermal	1,197	1,970	50	62			
		Command & Data Handling	8,508	6,585	44	58			
		Power	5,221	5,568	45	64			
Mission Operations (Phase E)	Mis	sion Operations & Data Analysis	699	1,977	38	42			
		CER Performanc	e as good	as or bett	er than v2	.3			

- PCEC v2.4 CER performance is the same or better for many of the newly developed CERs when compared to PCEC v2.3
 - In the cases where performance trended down, there is a significant increase in the number of data points informing the CER
 - In these cases, the number of data points increased 20% on average and ultimately made the CERs more inclusive of the entire SMD portfolio
 - Several missions that were considered to be outliers in PCEC v2.3 are now included in the new CERs

Visualization of PCEC v2.4 Performance

NOTE: Development costs do not include Payload (WBS 5) or Launch Vehicle (WBS 8), Science Team (WBS 4) Phase F or Pre-Launch MOS_GDS (WBS 7/9)

- The preliminary PCEC v2.4 spacecraft model is performing as expected
 - The updated model at the mission level appears to be generating results on par or better than v2.3
 - Red diamonds highlight the new missions added to the PCEC database (e.g. TESS, GOES-T, PSP)
 - > Although not shown here, JWST has the highest error which is expected given the uniqueness and complexities of this mission

Future Plans

• Finalize v2.4 spacecraft CERs in preparation for the next PCEC release which is scheduled for late 2024

> Update PCEC whitepaper to reflect updates to the modeling process and document relevant results

Further investigation of Phase E/F CERs is needed

Re-examine Mission Operations & Data Analysis CERs in an attempt to find an approach that better captures Mission Operations and Data Analysis as separate CERs

• Re-visit pre-launch MOS/GDS and Science CERs

> Explore alternate scenarios that may better identify drivers of these costs

Improve database storage and manipulation using commercial solutions such as those offered by Amazon Web Services (AWS)

> Although widely used across NASA, recent events may prohibit the use of a third party solution

Importance of CADRe

- CADRe is the "Pot of Gold" for programmatic analysts at the end of each critical phase
- When funding is tight, it is even more important to collect programmatic data to improve prediction capabilities
- PCEC (and other tools) would not be possible without availability of CADRe

