Augmented Intelligence for Cost Estimation

Eric Sick Matt McDonald

Focus on New Implementation New models aren't needed to improve output

Reparameterization

System level WBS breakdown based on simulated requirements decomposition

\bigcirc

Improved Data Utilization

System granularization increases applicability of already available data

GALORATH

Standardized

Automated Bayesian inferential models reduce bias and enable upscaling of data

Introduction

We will discuss the use of AI and ML as data imputation techniques to assist in Cost estimation of small dataset domains

Focus on New Implementation New models aren't needed to improve output

It looks like you're trying to perform a cost estimate.

No

Would you like help?

Yes

Introduction

We will discuss the use of AI and ML as data imputation techniques to assist in Cost estimation of small dataset domains

Objective

Toolset accepts system-level requirements as inputs

Yields as an output, a detailed product-oriented work breakdown structure

NASA WBS Elements	Le
System Name	
Project Management	1
Systems Engineering	1
Safety and Mission Assurance	1
Science/Technology	
Payload(s)	
Payload Management	
System Engineering	
Payload Product Assurance	
Instrument n	
Instrument // Management	
Instrument / Systems Engineering	
Instrument // Assurance	
Antenna	
Optics	
Sensors/Detectors	
Structures & Mechanisms	
Thermal Control	
Electronics	(
Power	
Pointing Subsystem	
Harness & Cabling	
C&DH	
Ground Support Equip	
Integration, Assembly Test & Check out	
Flight System I Spacecraft	
Flight System Project Management	
Flight System Systems Engineering	:
Flight System Product Assurance	:
Spacecraft	;
Spacecraft Management	
Spacecraft Systems Engineering	
Spacecraft Product Assurance	
Spacecraft Structures & Mechanisms	
Spacecraft Thermal Control	
Spacecraft Electrical Power &	
Spacecraft GN&C	
Spacecraft Propulsion	
Spacecraft Communications	
Spacecraft C&DH	
Spacecraft Software	
CSCIName 1	ţ
CSCI Name 2	ļ
Software Subsystem I&T	ļ
Spacecraft I&T	
Entry/Decent/Lander	

Power Distribution Board Input Power 61.7 – 84.0 W Output Power 4 – 8 W

Central Processing Board Clock Speed 600 – 1000 MHz

Tx/Rx Board Voltage Gain +9.7 – 11.6 dB Frequency

8.2 – 8.6 GHz

Backplane Data Rate 160 – 200 Mbit/s

Goals

To achieve:

What are the parts of the system?

Conceptual linkage between system-level specifications and the presence of specific subordinate-level hardware, software, and firmware

What drives the complexity of each of these parts?

Qualify/characterize each respective subordinate-level WBS based on requirements flow-down

How complex is each of these parts?

Quantify each respective subordinate-level WBS performance metric(s) based on requirements flow-down

Descriptive Prediction Model

Conceptual

Automated WBS Generation and Performance Estimation

Historical

Based on and describes real decision-making processes

Realistic

(X)

Non-normative Non-prescriptive

Supplemental

Workflow Tool and ROM Concept Generation

Bayesian Inference

Broad Applicability

Uses range from heuristics to artificial neural networks

Statistical Process

Describes how prior knowledge can be used to predict future probabilities

Bayes Theorem

Where the predictive probability distribution of the hypothesis, given a set of data, is the product of the prior probability distribution and a likelihood function.

Neural and Bayesian Networks

Describes learning, or the updating of a hypothesis given additional data

Artificial Intelligence

Recently AI has made great advancements in learning and generation within a variety of domains

- Image
- Video
- Music

66

Artificial intelligence, or AI, is technology that enables computers and machines to simulate human intelligence and problem-solving capabilities

AI Evolution

Decomposition

ALOR

Recipe Example

Please give me a recipe for a chocolate cake...

Recipe Example

Please give me a recipe for a flourless, low-carb, keto-friendly chocolate cake...

Case Study

Optical Communications System

1000 Iterations sampling of pseudorandom seeded trials Reconstructed highest likelihood WBS child elements High variance in naming conventions

Optical Subsystem

Telescope Lens Mirror Filters, Collimators, etc...

Receiver Assembly

Photodetector Signal Amplifier Demodulator Signal Processing

Electronics Power Distribution Control Electronics

06

Median Rate of Occurrence

01

03

05

Conclusions

Integrated Solution

Process can be integrated into existing workflow

End-to-end integrated solution requires optimal Systems Engineering AI

Deeper Analysis

ROM Imputation process ideal for qualitative analysis of small data domains

Established domains and quantitative analysis steps best served via other methods

GALORATH

Variational Autoencoder

