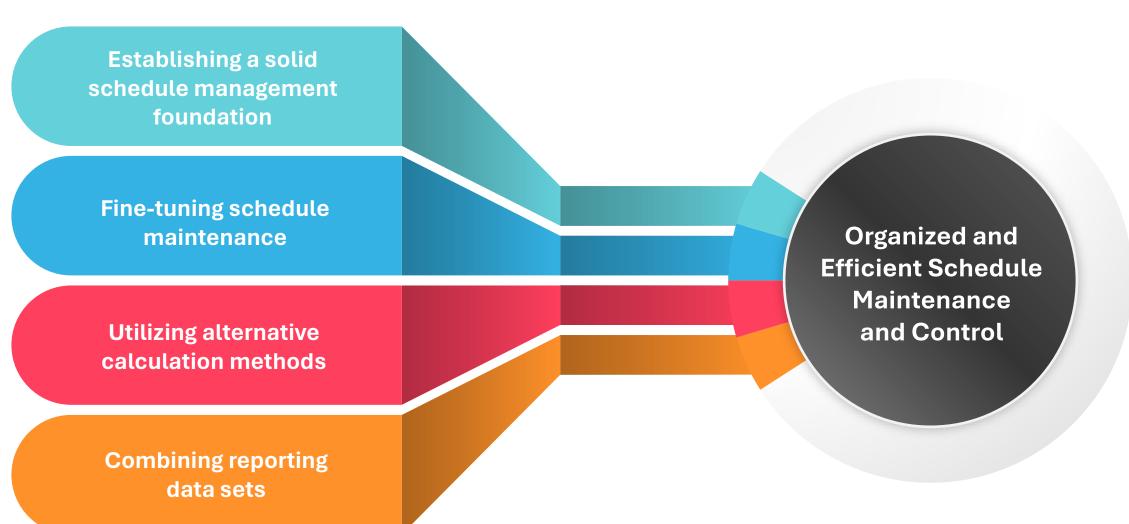
How Focusing on Schedule Maintenance and Control Improves Projects

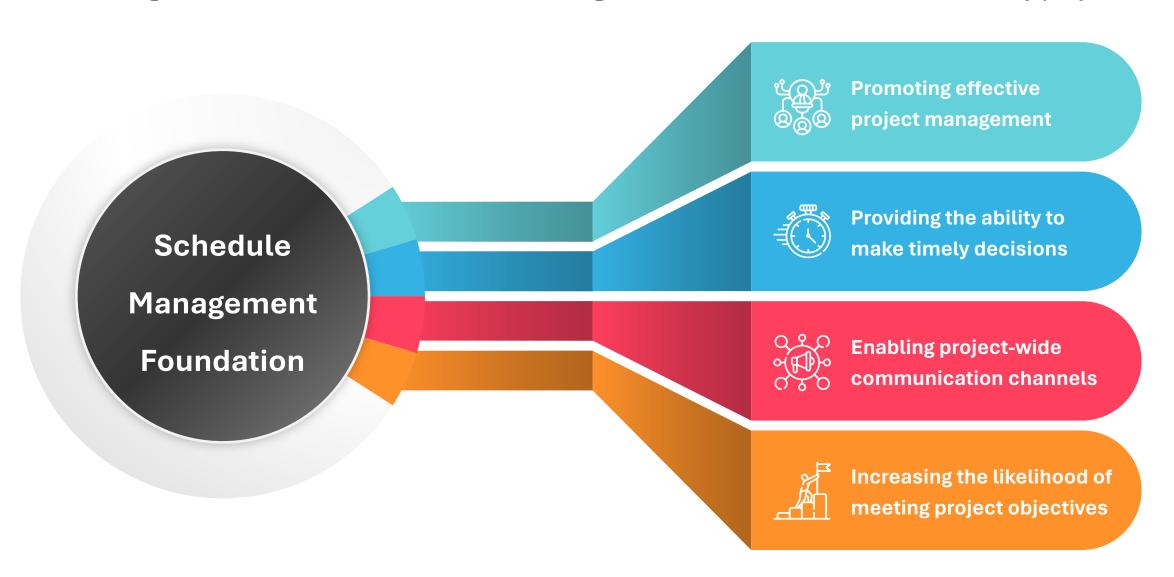

2024 NASA COST & SCHEDULE SYMPOSIUM

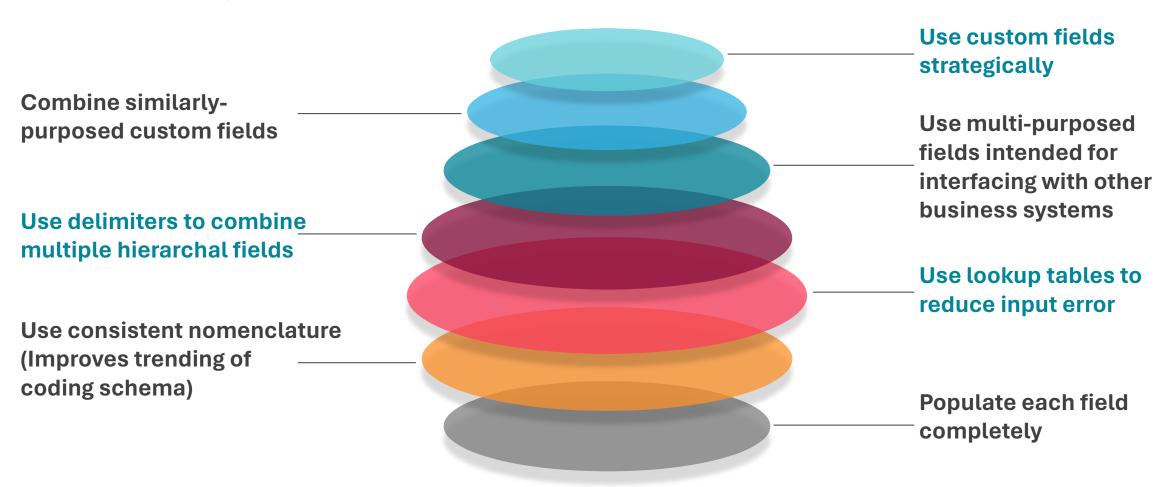
Zachary Dolch

NASA GSFC Program Analysis & Control (PAAC) V Contract

Overview

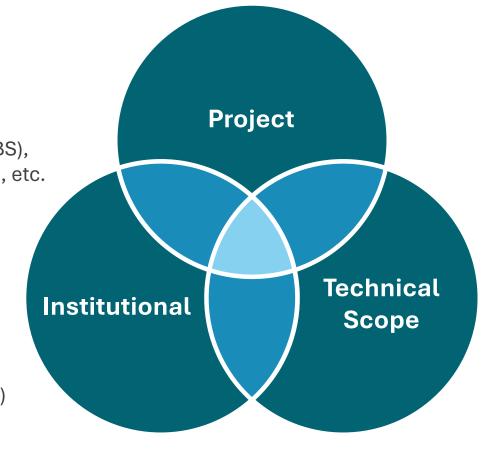
A discussion of the best practices for gaining insight to month-to-month schedule performance through organizational and efficiency processes


The first step for success is to establish a solid foundation for schedule management



Establishing a solid foundation for schedule management is crucial to the success of any project:

Customize and organize the data structure of the schedule with the future in mind


Customized and organized coding facilitates consistent vertical schedule traceability and helps to filter, aggregate, and summarize your schedule data.

Utilize simple coding structures to identify a schedule breakdown structure, critical paths, delay cause codes, variance explanations, and tracking event categories

Reasons for coding can vary and overlap functionality.

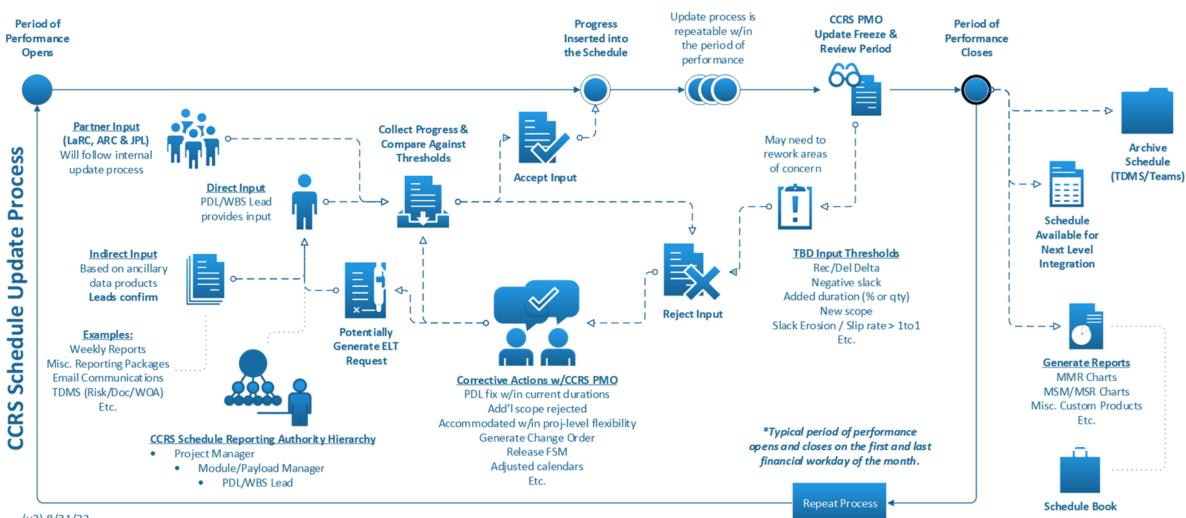
Examples:

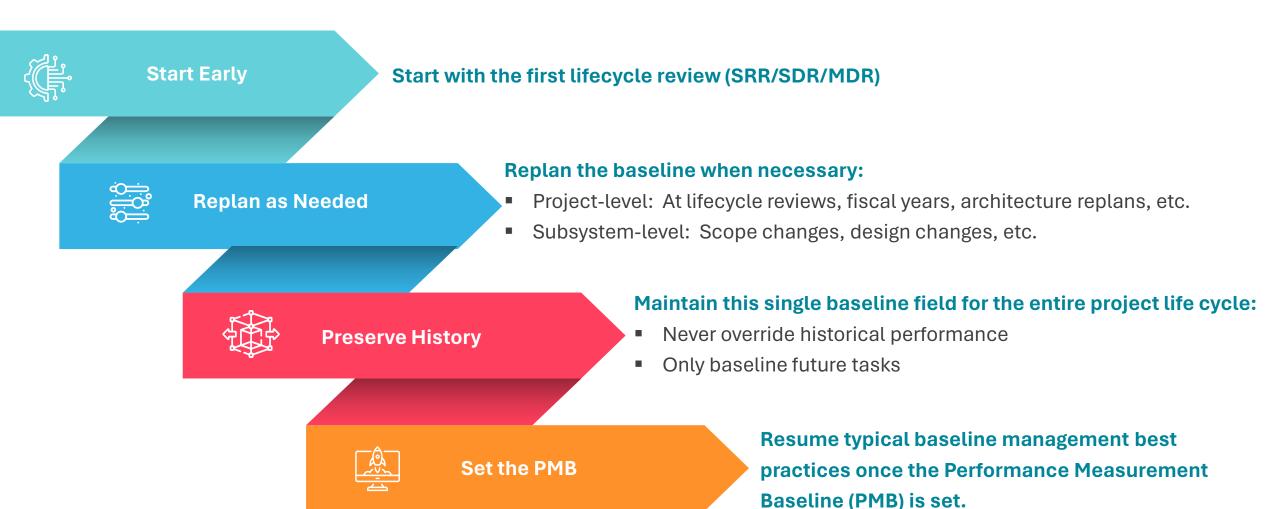
- Responsibility, Resources, Point of Contact (POC),
 Control Account Manager (CAM), etc.
- Work Breakdown Structure (WBS), Organizational Breakdown Structure (OBS),
 Product Breakdown Structure (PBS), *Schedule Breakdown Structure (SBS), etc.
- Phase
- Company, Department, Organization, etc.
- Location, Facility, etc.
- Configuration, Deliverable Unit, etc.
- Business System Interfaces: Cost, Earned Value Management (EVM),
 Risk, Configuration Management (CM) (Documents/Drawings/Work Orders)

Organized coding promotes vertical schedule traceability and increases reporting effectiveness

CM Interface SBS Hierarchy Control Event ID

WBS	РОС	Org	Phase	Facility	Doc Info	SBS L1 (Subsystem)	SBS L2 (Component)	SBS L3 (Config)	SCHD Event	Task Name
5.5	Nelson	545	B/C			S&D	S&D	S&D		Structures & Deployables
5.5	Nelson	545	В			S&D	Structure	ETU		Structure Engineering Test Unit (ETU)
5.5	Nelson	545	В			S&D	Structure	ETU		STR ETU – Design
5.5	Nelson	545	В			S&D	Structure	ETU	PDR	STR ETU – PDR EPR
5.5	Nelson	545	В	B5/N150	DWG-5347	S&D	Structure	ETU		STR ETU – Fab
5.5	Nelson	545	В	B5/N250	PROC-12	S&D	Structure	ETU		STR ETU – Assemble
5.5	Nelson	545	В	B7/W107	WOA-237	S&D	Structure	ETU	RR	STR ETU – Test
5.5	Nelson	545	В			S&D	Structure	ETU	DIP	STR ETU – Deliver in Place
5.5	Nelson	545	С			S&D	Structure	FM		Structure Flight Model (FM)
5.5	Nelson	545	С			S&D	Structure	FM		STR FM – Design
5.5	Nelson	545	С			S&D	Structure	FM	CDR	STR FM – PDR EPR
5.5	Nelson	545	С	B5/N150	DWG-5347.1	S&D	Structure	FM		STR FM – Fab
5.5	Nelson	545	С	B5/N250	PROC-25	S&D	Structure	FM		STR FM – Assemble
5.5	Nelson	545	С	B7/W107	WOA-531	S&D	Structure	FM		STR FM – Test
5.5	Nelson	545	С			S&D	Structure	FM	FM DEL	STR FM – Deliver in Place


Once the schedule management foundation is secure, focus is placed on the routine maintenance and its supporting documentation



An example of a Project's typical Period of Performance (POP) activity

Unofficially baseline the schedule as early as possible

Improve the Period of Performance (POP) status process

Look Beyond

Broaden the status window to include the next POP:

- Status current POP and confirm plan for next POP
- Accurately sets the Current Execution Index (CEI) plan for the next month

Take Notes

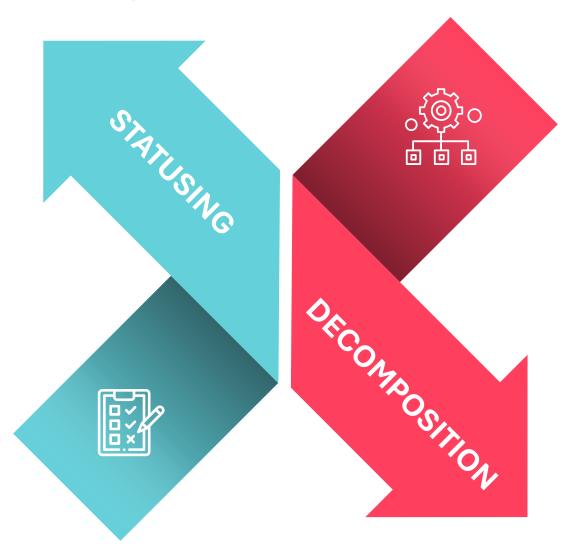
Utilize the notes field to document task changes:

- Date stamp every new entry and place each entry on a separate line
- Use this to jump-start your task-level variance explanations

Track Delays

Codify reasons for the change in the schedule:

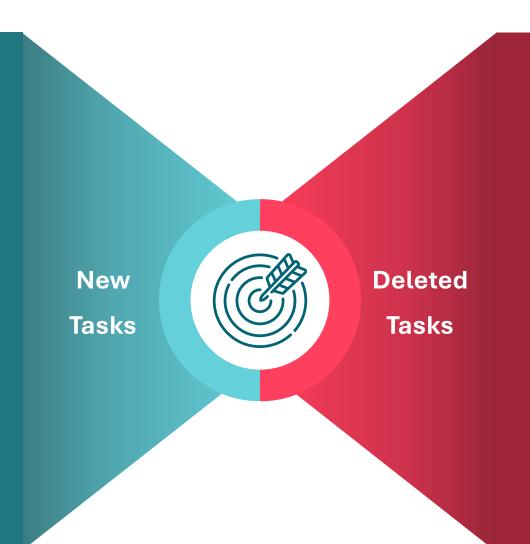
- Use Delay Cause Codes
 (DCCs) to capture why tasks
 changed
- DCCs can be used during statusing or any time updates are made


Use other Project business systems/tools to inform schedule progress

Schedule status can be gleaned from regular project communications:

- Weekly Reports
- Electronic Work Order Authorizations (WOAs)
- Production Planning Reports

BONUS: Configuration Management (CM) systems have products to help with decomposition:


- Engineering Drawings (DWG)
- Master Equipment Lists (MELs)
- Cost Basis of Estimates (BOE)
- Hardware Plan/Procedures
- Contract Statements of Work (SOWs)

Establish a scope management and control process:

New tasks should be reviewed and approved:

- Approval comes from the management level
- Updates may require formal Encumbrance, Lien, Threat (ELT) request and/or Baseline Change Request (BCR)
- Add to the baseline once approved

Don't immediately remove deleted tasks from the schedule:

Establish a process to review and approve the removal. Examples:

- 1. Mark as inactive
- 2. Label as descoped (in the task name and activity attribute fields)
- 3. Ensure the task(s) are not control events for reporting
- 4. Remain in the schedule until management provides acceptance for removal

Improve the status closeout process

Data Scrub

Implement a freeze period to allow time to close out the schedule.

Pencils Down

Process Checklist

Preset Schedule Views

Use preset views to configure your activity attributes:

- WBS/SBS coding
- Critical path coding
- LOE identification
- Date trending
- etc. .

Use a checklist to ensure efficiency:

- Useful for multipleschedule team member environments
- Outline steps logically to avoid repeating any steps due to finding corrections

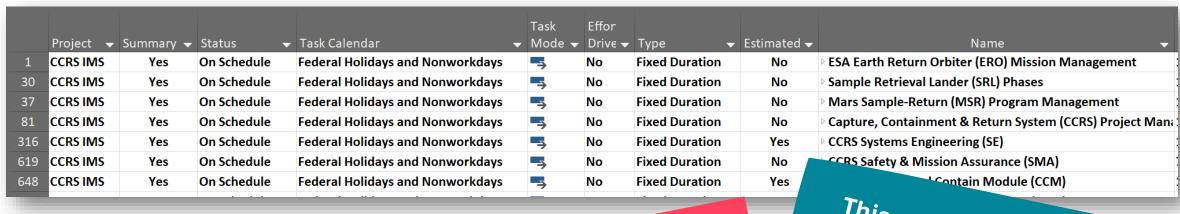
Clean up schedule data so that reports refresh without errors and data stays consistent.

An Example of a Monthly Checklist

Life File Statusing

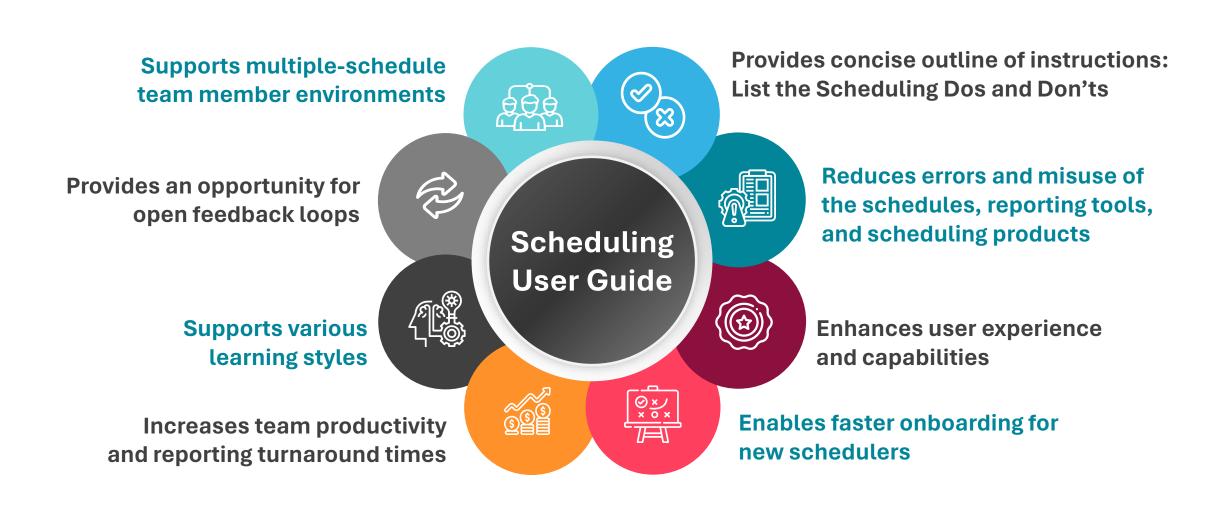
- Prepare IMS file for statusing
 - Request vendor schedule files
 - Review latest reference schedules
- Status the schedule
- Update LOE field
 - PM, SE, SMA, and Spares
- Capture missing delay cause codes
- Run health checks & cleanup
- Configure external files for reports

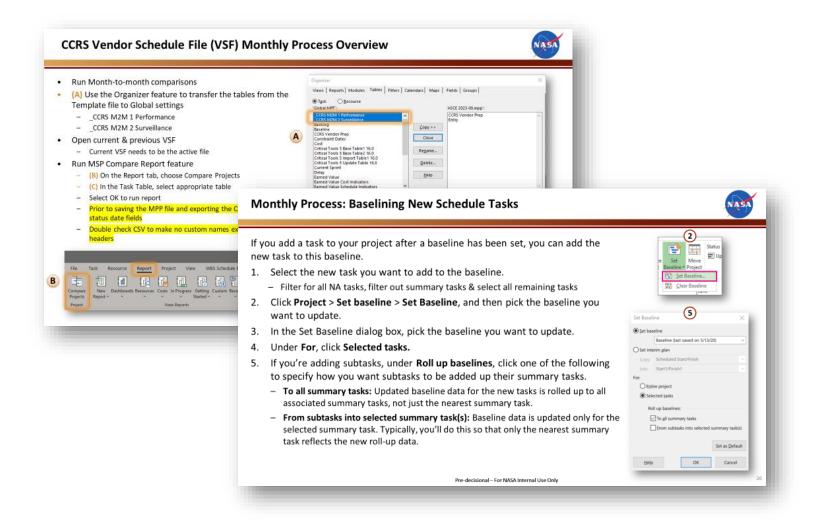
Schedule Cleanup


- Identify critical paths
 - Subsystem-level
 - Project-level
- Populate activity attributes
- Capture date trending
- Perform New Task Assessment
 - Baseline approved tasks
 - ELT/BCR unapproved tasks
- Generate baseline change log
- Save Month-End (ME) file and print PDF
- Upload, notify, and archive IMS
 - Project, Program, and GSFC sites

Populate Monthly Reports

- Run performance metrics tool
- Export Excel and CSV files
- Send CAM-specific requested reports
- Populate Schedule Book
- PM review of variance explanations prior to first monthly review
- Send Supply Chain Impact Delay Cause codes impacts to DPMR
- Update GSFC Portfolio
 Management Milestone schedule


An Example of Schedule Cleanup with Preset Views


Preset views
focus on
specific content

This example allows user to assess whether fields are configured correctly to ensure accurate dates and durations are shown.

Create a schedule user guide and prepare process one sheet for vendors

Dedicating time to create and frequently review the Schedule User Guide (and Vendor Instruction Sheets) yield efficiencies later in the project and increase quality control

Statusing the Schedule in Microsoft Project Purpose & Benefits: The purpose of regularly statusing and updating the project schedule with actual progress for activities and milestones accomplished as well as the forecast-to-complete for activities underway is to provide the project team with important schedule information for management control and decision making including schedule performance against the schedule baseline, an accurate critical path, condition of remaining schedule slack and margin, and shifting of key milestones including project completion such as launch or delivery. The primary benefit of statusing and updating the project schedule is to provide an accurate tool for managing the project. Step 1: Set the Status Date . Select the new status date for the current Period of Performance (PoP). Step 2: Status Tasks in Current PoP . The Task Status field will indicate all "Late" tasks which need to be statused for the current PoP. Following schedule best practices, appropriately adjust task durations or network logic. . In their most basic terms, the questions to be answered in this step include: On what date did work on the activity start? (Actual Start) On what date did work on the activity finish? (Actual Finish) e How many working days are needed to finish the task after the status date for those activities that have already started? (Remaining Duration) c For activities that have already started, but have not been completed, on what date is it expected to finish? Step 3: Update tasks to scheduled percent complete for a specific date . In the Schedule group, choose Mark on Track. 6 Hold CTRL and select each of the tasks in the list that you want to update. . The Task Status field should now show "Complete" or "On Schedule" (Bonus) Step 4: Confirm 1mo Lookahead Plan . Confirming the 1-month (or 1 PoP) lookahead plan will help to ensure a solid forecast plan for the following months' performance measurement metrics. Primary focus should be on all finish dates in the next PoP. . Use Microsoft Project filtering and/or task highlighting or coding in custom fields to aid and expedite the process.

Create monthly reporting cadence tables

Identify the routine chain of reports

Illustrate how monthly reports travel through the reporting cycle:

- Identify who the stakeholders are and when they see the data
- Highlight when some data may be stale and possibly needs a refresh

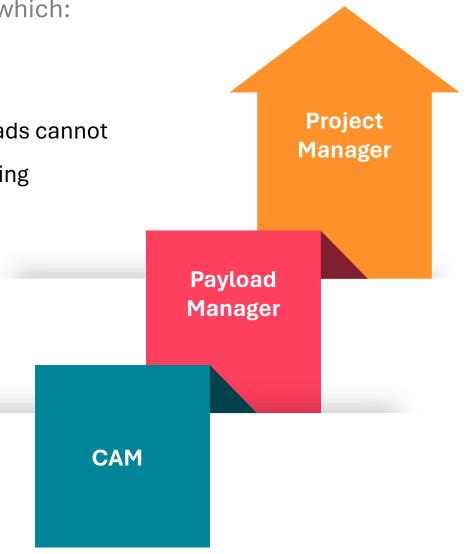
Identify need dates for:

- Identify freeze dates
- External schedule readiness dates

Highlight other significant events:

- Project events
- HQ schedule repository submissions

Reporting tables establish internal planning timelines and capture the history of the project


Key Programmatic Events	2023 POP IMS	2023 Report	EXT ME SCHD Avail	ME IMS to PGM	PROJ Monthly Review	PROG Monthly Review	Center Monthly Review	HQ Schedule Repository
	ME-Dec (2022)	Jan	√ 1/13	√ 1/18	√ 1/31	√ 2/7	√ 2/16	Dec ME file
	ME-Jan	Feb	√ 2/15	√ 2/17	√ 3/2 (CO)	√ 3/7	√ 3/16	
Arch Replan	ME-Feb	Mar	√ 3/15	√ 3/17	√ 3/30	√ 4/12	√ 4/20	
Arch Replan	ME-Mar	Apr	√ 4/17	√ 4/19	√ 4/27	√ 5/2	√ 5/18	Mar ME file
Arch / IMS Replan	ME-Apr	May	√ 5/16	√ 5/22	✓ 5/30 (CO)	√ 6/6	√ 6/15	
IMS Replan	ME-May	Jun	√ 6/15	√ 6/22	√ 6/29 (CO)	√ 7/4	√ 7/20	
IMS Replan	ME-Jun	Jul	√ 7/17	√ 7/19	√ 7/27	√ 8/1	√ 8/17	Jun ME file
IMS Replan / PDR 90d	ME-Jul	Aug	√ 8/15	√ 8/21	√ 8/31	✓ 9/6 (CO)	√ 9/14	
IMS Replan / PDR 60d	ME-Aug	Sep	√ 9/13	√ 9/18	✓ 9/28 (CO)	√ 10/3	√ 10/19	
	ME-Sep	Oct	√ 10/16	√ 10/18	10/26	11/7	11/16	Sep ME file
	ME-Oct	Nov	11/14	11/16	11/28	12/5	Electronic	
PROJ PDR	ME-Nov	Dec	12/14	12/18	12/26	1/2/24		
	ME-Dec	Jan (2024)	1/17/24	1/22/24	1/30/24	2/6/24		Dec ME file

A monthly product cycle highlights what/when stakeholders see data and when updates may be required

	Mon	Tue	Wed	Thu	Fri
Weekly Events	Project, Payload & PP&C Weekly ↓↓↓↓↓↓↓↓↓↓	PM Schedule Meeting	Weekly Reports ↓↓↓↓↓↓↓↓↓↓↓	Schedule Team Meeting Risk Board (3 rd week) ↓↓↓↓↓↓↓↓↓↓↓	1111111111
Week #4		Program Monthly Review			End of PoP
Week #1	Start of PoP	Center Monthly Review	Collect Month End Schedule Status		>
Week #2	<	Deliver Schedule to Program	>	<	Finish Schedule Book
Week #3	>	Project Monthly Review		Risk Board	
Week #4		Program Monthly Review			End of PoP
Week #1	Start of PoP	Center Monthly Review	Collect Month End Schedule Status		>
Week #2	<	Deliver Schedule to Program	>	<	Finish Schedule Book
Week #3	>	Project Monthly Review		Risk Board	
Week #4		Program Monthly Review			End of PoP

Establish the schedule status reporting authority hierarchy, which:

- Provides clarity of roles and responsibilities:
 - Identifies who provides status when normal technical leads cannot
 - Establishes accountability for actions and decision-making
- Establishes clear communication channels
- Resolves conflicts and provides a framework for escalating concerns
- Helps to align individuals/teams with the overall
 Project goals and objectives

Maintain a Schedule Action Item List (SAIL):

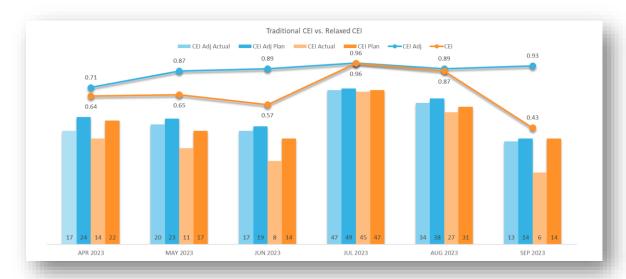
A communication tool between the scope owners, management, and the schedule team

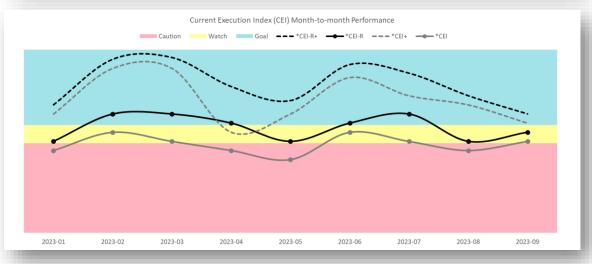
Owned by the scheduling team and made available to the entire Project

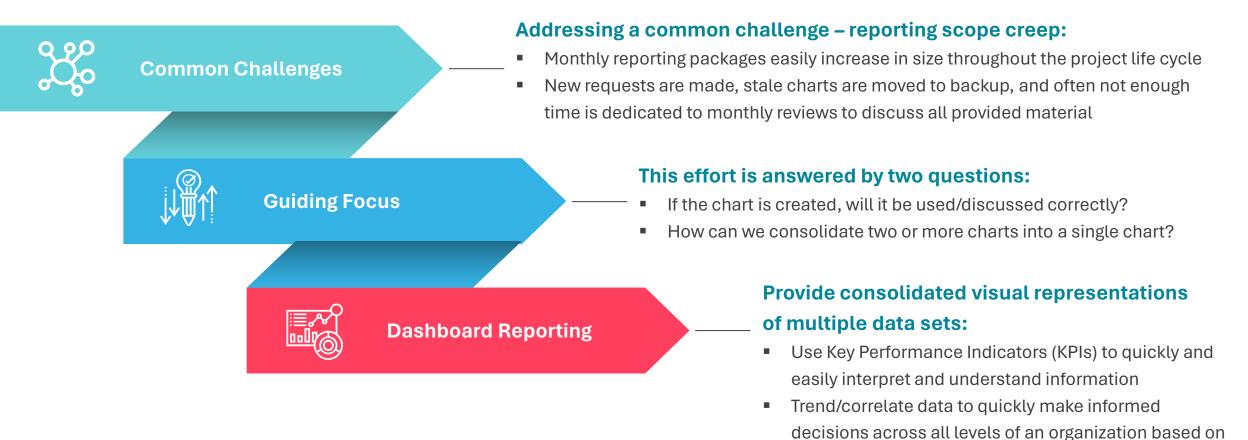
Informal identification and closure of open work

SBS Area	SAIL#	Rank	Category	Action Item	Comments	Status	Open Date	Close Date
PM	5	Х	SCHD Dev	Confirm Road to PDR Plan		Closed	MAY 2023	JUN 2023
SE	6	Χ	SCHD Dev	Confirm Road to PDR Plan		Closed	MAY 2023	JUN 2023
MECH	7	1	SCHD Dev	Add second non- FLT structure	08/2023: included initial version, working disconnects	Open	JUN 2023	
THRM	8	2	SCHD M&C	Update w/new vendor schedule	08/2023: waiting for vendor to make additional updates	Open	JUN 2023	
ELEC	9	3	SCHD M&C	Update for card descope	08/2023: done, needs final confirmation	Open	JUN 2023	
I&T	10	Х	SCHD Dev	Confirm updated receivables list	08/2023: in progress	Open	JUL 2023	

Once the schedule is ready, the focus is placed on generating reports






Evaluate variations and/or alternatives

- Focus on why elements are not performing as well, don't limit reports to reasons for variances
- Add supplemental data points to reports:
 - Examples: finish date slip rate and failed task repeat count
 - Helps reduce calculation bias since all tasks may be equally weighted
- Adjust calculation parameters to accept substandard quality schedules:
 - Provides an alternative perspective and flexibility when it's needed
 - Fact: not all schedules are perfect, but we can't afford to disregard them while we wait

Produce a single dashboard chart

evidence rather than intuition or guesswork

An example of dashboard reporting for CEI/M2M Missed Task Variance Explanation

SBS L1	APR 2023	MAY 2023	JUN 2023	JUL 2023	AUG 2023	SEP 2023	Total
CEI Actual Count	19	15	30	20	25	41	150
CEI Fail Count	20	14	7	7	22	44	114
CEI Plan Count	39	29	37	27	47	85	264
CEI	0.49	0.52	0.81	0.74	0.53	0.48	0.57
AVG SR of Fails	1.65	1.11	0.84	1.12	1.23	1.11	1.18
BEI							
SPI							

SBS L2	Actual	Fail	Plan	CEI	(Actual+)	(CEI+)	AVG SR of Fails
CLM	25	20	45	0.56	1	0.58	0.51
СС	0	2	2	0.00	0	0.00	0.90
CSE	2	6	8	0.25	0	0.25	1.46
LTM	2	7	9	0.22	0	0.22	1.20
NRE	3	2	5	0.60	0	0.60	1.52
OM/LTM	0	5	5	0.00	0	0.00	2.34
GSE	9	2	11	0.82	0	0.82	2.52
Total	41	44	85	0.48	1	0.49	1.11

	%
N/A CLM	45
Staffing/Workforce	11
Paperwork	9
Priority (controlled)	7
Supply Chain D/NR	7
Tech Challenge	7

DCC Category	%
Vendor NCR	5
General Inefficiency	2
Priority (uncontrolled)	2
Scope Growth	2
Sys Req/Uncertainties	2

CLM-2538 CLM-2609	3 3	Potentiometers (Betatronix) Potentiometer - Leads	9/11/2023	10/00/0000				
		Potentiometer - Leads		10/20/2023	10	1.00		07/19/2023: Updated with new delivery date from Vendor
0050 04005		i otolitionistei - Leaus	10/2/2023	10/26/2023	5	0.63		
GSFC-31825	3	FMS Calibration - Test Data Processing	9/13/2023	10/30/2023	1219	1.57	Staffing/Workforce	10/11/23: Resource limitation, de-prioritized for other more critical activities
GSFC-31889	2	C&C HDRM - Paperwork (Create SOW / DILs / Sole Source Justification)	9/1/2023	10/31/2023	150	1.95	Paperwork	10/12/23: exp to complete late Oct. SOW Completed but still working approvals from CCB members
GSFC-31900	2	EDU GoT - Testbed assembly drawing (frame and cone coupons)	9/25/2023	11/22/2023	114	1.95	Staffing/Workforce	10/11/23: re-prioritized due to staffing changes
GSFC-32020	2	Sensors ETU - Assemble LED Subassembly (Incl Bonding)	9/20/2023	10/27/2023	93	1.29	Tech Challenge	10/16/23: bonding issues, extend to late Oct
GSFC-7390 CSE	2	Sensors ETU - Fab Sensor Array Bracket (Generative Design Parts)	9/18/2023	11/20/2023	80	2.10	Vendor NCR	10/16/23: now likely delayed to mid-Nov due to continuing vendor quality challenges
CLM-2746 CLM	1	Order TVAC Stand Material	10/2/2023	10/17/2023	0	0.40		
GSFC-35279 CSE	1	Sensors ETU - Sensor Array Bracket Post/Receiving Metrology	9/21/2023	11/27/2023	80	2.14	Vendor NCR	
CLM-2554	1	Bushings	10/2/2023	10/17/2023	7	0.40		JW 08/09/2023: Reached out to vendor on 7/19, and again 8/9/23. Past due on promised delivery date. Will continue checking in
CLM-2563	1	Coating	10/4/2023	10/26/2023	184	0.57		

Conclusion

Improve your Project's potential for success by implementing enhanced schedule maintenance and control measures

- A solid schedule management foundation provides insightful reporting data through simple, deliberate, and consistent Integrated Master Schedule (IMS) coding.
- An initial investment early in the Project life cycle to focus on establishing these best practices will return their results during later Project phases when free time may be less available.
- Effective schedule maintenance and control plays a crucial role in enhancing project outcomes by ensuring that timelines are adhered to, resources are optimized, and potential risks are proactively managed.
- The results are an improved quality IMS, clear monthly procedures, valuable data sets, and alternative data points to correlate, all of which culminate into valuable reports that can be analyzed and discussed more efficiently.