

Math is Instrumental: An Analysis of Multi-Decade Space Flight Science Instrument Cost Performance

2024 NASA Cost & Schedule Symposium Langley Research Center (LaRC)

Rachel Sholder, Johns Hopkins Applied Physics Lab (JHU/APL) Eric Plumer, NASA Headquarters (NASA HQ) Joseph Mrozinski, Jet Propulsion Laboratory (JPL)

Background

- Historically, one of the most significant contributors to cost growth of NASA's science missions has been instrument development cost growth
- There is a strong correlation between instrument cost growth and total mission cost growth where instrument cost growth influences mission cost growth at a 2to-1 factor
- Cost growth at the instrument level tends to snowball up to the mission level by causing changes needed to the mission or spacecraft itself or by simply causing delays in the instrument integration, leading to "marching army" costs for the mission

Background

- Instruments support a wide range of scientific research which are used to advance all the major scientific disciplines of astrophysics, planetary science, heliophysics, and Earth Science
- Instruments can vary greatly in terms of design and complexity
- With so many paths to organize instruments across their functional design and scientific disciplines, grouping instruments into meaningful categories has been challenging

Aerospace's SSIT

- First released in 2017 and was updated to version 2.0 in 2020
- Commonly used for cost modeling for estimating costs of future instruments
- Several models use SSIT framework
- Three levels of categorization
- Remote-sensing focus for our research

	1.1 Electric Field
	1.1.1 Double Probe
un .	1.1.2 Electron Drift
eld	1.2 Magnetometer
ii.	1.2.1 Fluxgate
-	1.2.2. Search Coil
	1.2.3 Ionized Gas Vapor
	1.2.4 Magnetoresistive
	2.1 Mass Spectrometer
	2.1.1 Quadrupole MS
	2.1.2 Time-of-Flight MS
	2.1.3 Sector Field MS
5	2.1.4 Ion Cyclotron Resonance MS
-	2.2 Charge and X-ray Detector
ΨĔ	2.2.1 High Energy Particle Detector
Ба	2.2.2 Low Energy Particle Detector
2	2.3 Plasma Instrument
	2.3.1 Plasma Probe
	2.3.2 Retarding Potential Analyzer
	2.3.3 Ion Drift Meter
	2.4 Dust Detector
2 VDT	
2 441	A 1 Paralus Castland
	4.1 Passive Optical
	4.1.1 Cryo-Cooled Passive Optical
	4.1.2 Optical Telescope Assembly
	4.1.3 Radiometer
	4.1.4 Pyrheliometer
	4.1.5 Film Camera
a	4.1.6 Interferometer
pti	4.1.7 Single-Band Imager
0	4.1.8 Natural Color Imager
4	4.1.9 Multi-Spectral Imager/Spectrometer
	4.1.10 Hyper-Spectral Imager/Spectrometer
	4.2 Active Optical
	4.2.1 Laser Ranging
	4.2.2 Laser Velocimeter / Vibrometer
	4.2.3 Laser Imager
	4.2.4 Laser Scatterometer

5.1 Passive MW/RF		
/RF	5.2 Active MW/RF	
ĭ∑	5.2.1 MW/RF Ranging	
Σ	5.2.2 MW/RF Imager	
, м	5.2.3 MW/RF Scatterometer	
	6.1 Scan Platform	
	6.2 Deployment Mechanism	
	6.3 Robotic Arm	
	6.4 Data Processing Unit	
JT	6.5 Cryogenic Systems	
dd	6.5.1 Cryogenic Radiator	
Ins	6.5.2 Expendable Cryogen Cooler	
6	6.5.3 Mechanical Cryocooler	
	6.6 Accelerometer	
1	6.7 Ultra Stable Oscillator	
	6.8 Mirror Target	
	6.9 Positioning Receivers	
e Si	7.1 Entry and Descent Sensor	
ac	7.2 Meteorological Station	
7 Ssp	7.3 Sample Collector	
s S	7.4 Sample Analyzer	
A	7.5 Seismographer	
9 Comm	8.1 MW/RF Communications	
a comm	8.2 Laser Communications	
9 Other		

Source: Space Scientific Instrument Taxonomy (SSIT) V2.0.

Methodology & Assumptions

- Cost performance of 106 domestic remote-sensing science instruments
 - Launch dates from 2004 to 2023
 - Instruments from 48 science missions
- Cost data collected via PDR and Launch CADRes (Part C)
- Programmatic data collected via CADRes (Parts A, B)
- Costs were normalized to include Phases A-D
- Cost growth was calculated from PDR to Launch as: $cost growth = \frac{(Cost @ Launch - Cost @ PDR)}{Cost @ PDR} \times 100\%$

Methodology & Assumptions

- The cost of each instrument represents the effort needed to design, develop, and deliver the instrument to the spacecraft
 - For single instrument payloads, costs for payload PM/SE/MA were included with the assumption that these payload level costs pertain to the one single instrument
 - For multiple instrument payloads, costs for payload level PM/SE/MA under the payload WBS were excluded
 - For each instrument, instrument-level assembly and testing costs were included
- For dual spacecraft systems with multiple copies of instruments, costs were normalized to costs for the first unique unit
- For instruments that are a part of an instrument suite:
 - If there was detail provided at the instrument level, the unique instruments were included
 - If there was only detail provided at the suite level, the suite was included in the dataset

Methodology & Assumptions

- Instruments were excluded from the dataset if there was missing data
- De-scoped instruments were removed
- Foreign built instruments were removed
- Support instruments were excluded
 - Shared DPU costs were not allocated to remote-sensing science instruments that utilize a shared DPU
- Communications instruments were excluded

NASA Instrument Cost Growth

Potential Cost Growth Factors

- Instrument Type (Level 1)
- Total Instrument Cost
- Instrument Mass
- Instrument Mass Growth
- Mission Acquisition Strategy
- Mission Class
- Destination
- Science Mission Directorate (SMD) Division
- Policy Era

Fields and Particles Instruments

Optical Instruments

APL,

X-Ray and MW/RF Instruments

Cost Growth (%) by Instrument Type (Level 1)

Instrument Type	Average Cost Growth
Fields Instruments	38%
Particles Instruments	50%
X-Ray Instruments	46%
Optical Instruments	45%
MW/RF Instruments	41%

•
$$H_0: \mu_{fields} = \mu_{particles} = \mu_{x-ray} = \mu_{optical} = \mu_{MW/RF}$$

• *H*₁: *means are not all equal*

F Test Summary	
F statistic	0.14
P value	0.97

 However, the differences of the averages are not statistically significant. This indicates that regardless of instrument type, there seems to be a tolerance for cost growth that stakeholders are willing to accept

Cost Growth (\$) by Instrument Type (Level 1)

Instrument Type	Average Cost Growth (%)	Average Cost Growth (\$)	Average Cost at LRD
Fields Instruments	38%	\$1.82M	\$13.70M
Particles Instruments	50%	\$6.87M	\$20.06M
X-Ray Instruments	46%	\$14.41M	\$48.19M
Optical Instruments	45%	\$21.02M	\$60.94M
MW/RF Instruments	41%	\$31.03M	\$101.39M

- Larger, more complex instrument types incur larger cost growth in terms of absolute dollars
- While a percentage tolerance for growth across the various instruments types are similar, applying those similar percentages leads to bigger absolute cost growth for more expensive instrument types

Cost Growth by Total Instrument Cost

Cost at LRD vs Cost Growth

Cost vs Instrument Mass

LRD Mass vs LRD Cost

Cost Growth vs Mass Growth

Cost Growth vs Mass Growth

Cost Growth by Acquisition Strategy

NASA Instrument Development Cost Growth by Acquisition Strategy

Competed Directed

Cost Growth by Acquisition Strategy

Mission Acquisition Strategy	Average Cost Growth
Competed Mission Instruments	45%
Directed Mission Instruments	45%

- At the total mission level, competed missions experience more cost growth than directed missions
- However, regardless of whether a mission is competed or directed, instrument cost growth averages among these two types of mission acquisition strategies are identical so a hypothesis test was omitted
- Stakeholders seem to have similar tolerance for cost growth for instruments on both competed and directed missions

Cost Growth by Mission Class

NASA Instrument Development Cost Growth by Mission Class

Mission Class A/B
Mission Class C/D

Cost Growth (%) by Mission Class

Mission Class	Average Cost Growth
Mission Class A/B Instruments	37%
Mission Class C/D Instruments	54%

- H_0 : $\mu_{A/B} = \mu_{C/D}$
- H_1 : $\mu_{A/B} < \mu_{C/D}$

T Test Summary	
T statistic	-1.94
P value	0.03

- The difference is statistically significant supporting the assertion that Class C/D instruments experience more cost growth than Class A/B instruments
 - We hypothesized that this difference would be due to lower cost Class C/D instruments resulting in misleadingly higher growth percentages

Cost Growth (\$) by Mission Class

Mission Class	Average Cost Growth (%)	Average Cost Growth (\$)
Mission Class A/B Instruments	37%	\$15.75M
Mission Class C/D Instruments	54%	\$17.46M

- Class C/D instruments average more dollars spent than Class A/B instruments
- We speculate that this may be due to higher risk tolerance of Class C/D missions. Higher risk tolerance also means projects are accepting lower cost/schedule reserves levels (often well below 50% confidence) whereas the more expensive Class A/B instruments typically undergo JCL analysis boosting cost reserves to achieve the policy threshold of 70% (or higher) confidence level, thus reducing the likelihood of cost/schedule overrun

Cost Growth by Destination

NASA Instrument Development Cost Growth by Destination

Earth Orbiting
Planetary

Cost Growth by Destination

Destination	Average Cost Growth
Earth Orbiting	58%
Planetary	34%

- $H_0: \mu_{earth orbiting} = \mu_{planetary}$
- H_1 : $\mu_{earth orbiting} > \mu_{planetary}$

T Test Summary	
T statistic	2.75
P value	< 0.001

- The difference is statistically significant supporting the assertion that earth orbiting instruments experience more cost growth than planetary instruments
 - We hypothesize that this is due to launch window constraints

Cost Growth by Science Mission Directorate (SMD)

Cost Growth by Science Mission Directorate (SMD)

SMD Division	Average Cost Growth
Astrophysics/Heliophysics	64%
Earth/Planetary Science	39%

- $H_0: \mu_{physics instruments} = \mu_{science instruments}$
- H_1 : $\mu_{physics instruments} > \mu_{science instruments}$

T Test Summary			
T statistic	2.59		
P value	< 0.001		

- The difference is statistically significant supporting the assertion that astrophysics/heliophysics instruments experience more cost growth than planetary/earth science instruments
 - Is programmatic tolerance for growth for astrophysics/heliophysics instruments higher?

Evolution of Confidence Level Analysis at NASA

"Independent" Estimates (Non-Advocacy)

Source: NASA Cost Estimating Handbook Version 4.0

Cost Growth by Policy Era

APL,

Cost Growth by Policy Era

JCL Establishment	Average Cost Growth
Pre-JCL	55%
JCL	35%

- $H_0: \mu_{pre-JCL} = \mu_{JCL}$
- $H_1: \mu_{pre-JCL} > \mu_{JCL}$

T Test Summary				
T statistic	2.38			
P value	< 0.001			

 The null hypothesis is rejected supporting the assertion that pre-JCL instruments experience more cost growth than JCL instruments

Regardless of how you look at it, cost growth decreasing over time is apparent. A major conclusion can be made that the new programmatic requirements put in place have helped NASA control cost growth for instruments.

Analysis of all Factors

	Cost Growth	Mission Class	JCL	Destination	SMD Division
Cost Growth	100%				
Mission Class	19%	100%			
JCL	22%	-7%	100%		
Destination	26%	49%	-13%	100%	
SMD Division	18%	55%	7%	39%	100%

- Previous slides showed how instrument cost growth relates to single variables
- In reality, cost growth is driven by several variables, some of which may be correlated with each other
- Future work will be to perform this multi-variable analysis

Reported Development Issues

- To capture cost issues associated with the natural progression of instrument design, a review of project Monthly Status Reports (MSRs) was conducted for the 106 NASA instruments in our dataset spanning ~20 years of development history
- Hundreds of project monthly status reports were examined to identify trends for major instrument issues and problems
- For each project, a sample of four to five monthly reports per year of development were reviewed
- The analysis only looked at manifested instrument problems requiring project intervention to mitigate

Classification Methodology

- The 2008 NASA Instrument Capability Study (NICS) provided the foundation for categorizing and coding instrument development issues
- There are five major themes
- Each theme has up to six subcategories for a total of 21 subcategories
- The review yielded ~200 observations of problems and issues

THEME	CODE	DESCRIPTION				
STAFFING	ST-1					
		Instrument Leadership Issues				
	ST-2	Instrument Teams Understaffed				
	ST-3	Difficulty Acquiring Critcal Skills				
	ST-4					
ΔΟΟΙ ΙΙSTΙΟΝ	AQ-1	Insufficient Resources: Optimistic/Unrealistic Estimates				
Acquisition	AQ-2	Supply Chain Issues:				
		Bequirements Management Problems:				
	SE-1	Brosooding at risk Lack of Pagts flow down				
		Proceeding at risk, Lack of Regis flow down				
	SE-2	Technical Complexity Incl Mass Dewar Jacuas				
		Include Complexity Incl Mass Power Issues				
SYSTEMS ENGINEERING	SE-3	Issues with Requirements Changes:				
		Redesign/Changes occuring after PDR and or CDR				
	SE-4	Risk Management Issues:				
		Risks not identified early, Mitigation plans not developed early				
	SE-5	Review Effectiveness:				
		Objectives not meet in reviews, Not raising issues at reviews				
	IM-1	issues with instrument Reserves:				
		Lack of Cost/Schedule Reserve Authority				
INSTRUMENT	IM-2	External Factors				
MANAGEMENT		Issues with Lines of Communication Issues:				
	IM-3	Lines of Authority				
	IM-4	Issues with Budget & Schedule Management at Subsystem Level				
	TI-1	Unverifyable Requirements				
TEST ISSUES	TI-2	Testing Took Longer				
	TI-3	Aggresvie Schedule				
	11-4	Test Failures				
	TI-5	Workmanship & Technical Problems				
	TI-6	Problems with GSE, Test Equip				

Source: NASA Instrument Capability Study

Issue Classification Examples

Number of Issues by Theme

• Test issues account for 56% of the documented issues

Issues by Subcategory

- The most prominent subcategories that have contributed towards observed cost growth using the project monthlies are shown below
- Workmanship Issues and Test Failures, accounting for 27% and 23% of the issues, respectively. The remaining eighteen subcategories had issues that were single digits on a percentage basis

Number of Issues

- The average number of issues for each instrument is 2 with each instrument ranging from 0 to 8 issues
- Total number of issues and cost growth is correlated at 33%

Cost Growth by Test Issue

Test Issue	Average Cost Growth		
Instruments w/ TI-4 or 5	54%		
Instruments w/out TI-4 or 5	30%		

- $H_0: \mu_{TI-4/5} = \mu_{No TI-4/5}$
- $H_1: \mu_{TI-4/5} > \mu_{No TI-4/5}$

T Test Summary			
T statistic	2.82		
P value	< 0.001		

- The difference is statistically significant supporting the assertion that instruments with TI-4 or 5 issues experience more cost growth than instruments without TI-4 or 5 issues
 - We hypothesized that this may be due to high-level differences in programmatics being correlated with lower-level test issues (as seen on the next slide)

Correlation Analysis

	Cost Growth	Mission Class	JCL	Environment (EO vs PL)	SMD Division	Test Issue
Cost Growth	100%					
Mission Class	16%	100%				
JCL	23%	-12%	100%			
Environment (EO vs PL)	25%	44%	-16%	100%		
SMD Division	15%	48%	0%	31%	100%	
Test Issue	25%	26%	22%	10%	22%	100%

- We wanted to evaluate if high-level differences in programmatics could be positively correlated with lower-level test issues
- If an instrument has a test issue (TI 4 or 5), that instrument is 25% more likely to experience cost growth, 26% more likely to be Mission Class C/D, and 22% more likely to be from an older policy era
- Newer policies and higher mission classes drive down risks including risks seen during testing and cost growth in general
 - Thus, testing issues corresponding with lower mission class and antiquated policy era justifies why newer policies are successful as well as how the added requirements of higher-class missions does indeed drive down risk of cost growth

Conclusions

- The goal of this study was to examine cost growth of NASA instruments ranging in size and scope
 - 87% of instruments experienced cost growth post-PDR
 - The average NASA instrument experienced 46% cost growth post-PDR
- This study highlights many potential areas of cost growth. While instrument type and mission acquisition strategy are both not statistically significant, mission class, destination, SMD division, and policy era are all statistically significant
- Thus, there are many factors that may contribute towards instrument cost growth

Key Findings

- Instrument cost growth has been greatly reduced as NASA has implemented updated programmatic policies, as seen by the impact of the JCL policy era data
 - Note that we have also seen this reduction in growth at the mission level (Sholder, 2023)
- In the statistical analysis of potential variables impacting cost growth, high-level technical variables (such as instrument type) were not significant, but many high-level programmatic variables (such as mission class and policy era) were
- When you look at realized instrument issues from MSRs, the primary issues are technical, although at a lower-level (i.e., test failures)
- There appears to be some connection given the substantial correlations between high-level programmatic variables and lower-level technical variables

Potential Future Work

- Examining lower-level instrument categories further
 - Some diagnostic tests revealed a distinction between active and passive microwave instruments, but the difference was not statistically significant
- Evaluating cost growth among instruments that were designed and developed inhouse compared to instruments that were designed and developed out-of-house through other NASA centers, academic institutions, prime contractors, and research laboratories
- Evaluating cost growth at the payload level
 - It's a brand new question to look at payload growth given that some instruments in a specific mission may experience cost growth while others could experience cost shrinkage

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

References

- i. R. E. Bitten and E. M. Mahr, "Instrument first, spacecraft second (IFSS): A new paradigm in space mission development," *2010 IEEE International Geoscience and Remote Sensing Symposium*, Honolulu, HI.
- ii. R. Bitten, E. Mahr and C. Freaner, "Instrument first, spacecraft second (IFSS): Options for implementing a new paradigm," *2012 IEEE Aerospace Conference*, Big Sky, MT.
- iii. N. Brown, "Space Scientific Instrument Taxonomy (SSIT) V2.0." Aerospace. 2021 NASA Cost and Schedule Symposium.
- iv. J. R. Crawford, "Statistical Accounting Procedures in Aircraft Production." 1944, Aeronatical Digest, 44, 78.
- v. R. Bitten and S. A. Shinn, "Historical mass, power, schedule, and cost growth for NASA science instruments," 2014 IEEE Aerospace Conference, Big Sky, MT.
- vi. B. Mlynzcak and B. Perry, "SMD Earth & Space Mission Cost Driver Comparison Study," 2009 Earth Science Support Office.
- vii. R. Sholder, "Competed versus Directed Missions, Tigers, and Bears, Oh My." 2023 NASA Cost and Schedule Symposium, NASA JPL, Pasadena, CA.
- viii. R. Sholder and S. Whitley, "Math is EZIE: How Contracts Help Control Cost," 2023 IEEE Aerospace Conference, Big Sky, MT.
- ix. NASA Cost Estimating Handbook Version 4.0 2015 https://www.nasa.gov/ocfo/nasa-cost-estimating-handbook-ceh/
- x. J. Leon, "NASA Instrument Capability Study," 2008 NASA GSFC Final Report.

Acknowledgements

 The research was primarily carried out at the Johns Hopkins University Applied Physics Laboratory. Additional research was carried out at NASA Headquarters. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

