

SunRISE Mission Lessons Learned

March 13, 2024

PRINCIPAL INVESTIGATOR: Justin C. Kasper (University of Michigan)

Approved for public release; distribution is unlimited.

SDL/24-0781 Rev. -

- Mission Overview
- Programmatic Lessons Learned
- Development Lessons Learned
- AI&T Lessons Learned
- Propulsion Lessons Learned

SunRISE Mission Overview

Science & Mission Goals

- Reveal how Solar Energetic Particles (SEP) are accelerated as Coronal Mass Ejections (CME) and how the SEPs are released into interplanetary space
- Provide spatially resolved observations of solar radio bursts (<15 MHz)
- Establish the first low frequency radio interferometer in space

Mission Design

- Create a 10 km sparse aperture interferometer using a constellation of six CubeSats
- High availability observations for 12+ months
- High orbit to avoid ionosphere inject directly into GEO graveyard orbit (approximately GEO + 400 km)

Program Requirements & Constraints

Program Constraints

- Class D: "High risk tolerance that is driven more by programmatic constraints" (NASA NPR 8705.4)
- Cost-capped, FY17 \$55M
- Six 6U CubeSats: Volume constrained

Spacecraft Requirements:

- 14-month operational lifetime in GEO graveyard
- <14 outages per week, total of 56 minutes
- Detect and respond to outages automatically
- >100 mils aluminum shielding
- Surfaces >3 cm²: $\leq 10^9 \Omega$ /sq and <0.1 Ω ground

Highlighting Lessons Learned

- Positive feedback do these
 - Intentional decisions
 - Efficient or effective approaches
- Negative feedback avoid these
 - Misses
 - Ineffective or inefficient approaches
- Neutral feedback be aware of these
 - Challenging constraints

Programmatic Lessons Learned

Mission overview Implementation approaches & challenges

Development Approach

- "Best effort" to apply NASA standards and industry best practices – appropriate for Class D
- Approach: Assess risks and manage costs (analysis, test, design, etc.) to implement a balanced design
 - Focus on system-level implementation
 - Minimal flow-down requirements
 - Prioritize high-value risk reduction activities
- **"Document Lite"** fewer high-value documents, reject spurious requests

Programmatic Challenges

Negotiated High Institutional Expectations

- Affected both SDL and JPL
- Class D mission reviewed by implementers of Class A/B/C missions
- Cautious approach to waivers
- Conflicting philosophies with New Space vendors —
- Accept low-effort tasks that reduce risk
- If testing is recommended, evaluate costs —
- Change control boards (CCBs) and safety/mission assurance (SMA) processes to advocate for engineering rigor

Development Lessons Learned

Designing for the GEO region Telecom & mechanical system interactions Mechanical design constraints

Designing for the GEO Region

	Surface	Placement	Purpose	Surface Area (cm²)	Surf. Resistivity (Ohm/sq)	Path-to-Ground Resistance (Ohm)	Mitigation	
High Value Risk Reduction – Mitigate	Amber Kapton	Solar Array	Foam Cover	183	10 ¹⁶	Ø	Change to StaMet black Kapton	
	Patch Antennas	Antennas	Antennas	14-72 ea., 426 tot.	10 ¹³	Ground planes	DC bleed network	
	Somos PerFORM	Propulsion	Structure	TBD (>>3)	Unknown (>10 ⁹)	<0.1 at mount	Add aluminized Kapton layer	
	Anodization	Structure, ADCS, Sun Sensors	CSD Tabs, Other	<80 ea., ~200 tot.	10 ¹¹	<0.1		
	Star Tracker Baffle Coating	Star Tracker Aperture	Light Blocking	TBD (>>3)	TBD	TBD		
	Carbon Fiber	Solar Array	Structure	~90 ea., ~500 tot.	TBD (<10 ⁹)	<0.1 for center panel >0.1 for side panels	Ground strap sides to center	
	Glass	Solar Array	Radiation	27 ea., 1152 tot.	TBD (>10 ⁹)	∞		
	Black Kapton	Solar Array	Thermal	5 ea., 533 tot.	5*10 ⁶	∞		
	Aluminum, Yellow Iridite	Structure	Corrosion Resistance	TBD (>>3)	~1	0		
	ITO Silver FEP	Structure	Thermal	TBD (>>3)	10 ⁴	<0.1		
\smallsetminus \land	Aluminized Kanton	Structure	Thermal	TBD (>>3)	<1	<0.1		

• Performed qualitative analysis & design

- Surface charging materials assessment
- Cover apertures
- Labyrinthine paths, gaskets, and harness shields
- Use common solutions don't reinvent the wheel
- Mitigated surfaces with high-charging risk
 - Modified surface materials for several COTS items to reduce risk
- Assessed costs for moderate-risk items
 - Determine acceptable risk level
 - What is too expensive (time OR schedule) to fix?
- Received limited information from vendors
 - Incomplete parts lists or property data
 - Proprietary materials

Telecom & Mechanical System Interactions

- Fit in narrow mission channel bandwidth using MSPA & alternating polarization
- Late mechanical design change needed for multiple antenna configuration
 - Multiples but not all identical

RHCP/LHCP

X-Band

Antenna

SunRISE 3 channels included in 10 MHz bandwidth downlink

SDL/24-0781 Rev. -

Mechanical Design Constraints

Total dimensions minus tolerance stackup fully utilized

- Volume constraints drove mechanical design
 - Allocated to the limits of tolerances
- Utilized spot shielding and assessed patch antenna contributions without detailed analysis
- Planned, tested, and revised assembly procedure with first flight
 - Early enough for minor design adjustments
- Accepted some tedious processes that did not seem so bad on one spacecraft but challenged staff when applied to six builds

AI&T Lessons Learned

Scaling logistics TVAC lessons Coordination at scale Lessons in discipline

Scaling Logistics

- Same equipment & staff needed in multiple locations at the same time
 - E.g., EMI & TVAC
 - Test & record keeping often most efficient with at least three team members
 - Two hands-on operators
 - One procedure recorder/signer/checker
 - Duplicated some GSE setups but still challenging
- Used moveable equipment racks for "pop-up" test stands
- Configuration managed test scripts
- Iterated, streamlined procedures for many runs
- Avoided "only once" mentality
- Make redline updates immediately

- Two spacecraft in TVAC simultaneously
 - Saved chamber time, not setup time
- Used an **extra set of temperature sensors** to prep "ondeck" spacecraft before moving to the TVAC chamber
 - Secured wires with appropriate strain relief
 - Pipelined work
- **Did not always use** an intermediate connector inside the TVAC chamber
 - RF cables were sensitive to noise affected by placement
 - Ideal is to route & secure harnesses in the lab, not in the chamber
- Assigned test roles to minimize training & staff scheduling burden
 - Test conductor responsible, system & test profile aware (24/7)
 - Chamber watcher chamber operation, logging, and safety (24/7)
 - Test operators spacecraft hardware specialists (as needed)

Coordinating at Scale

- Reordered tests as needed
- Encountered communication challenges using common scheduling tools
 - SN1 was not always first in line
 - Real schedule allows flexibility, tools struggled to capture this
 - Issues tracked by SN
 - Most efficient path often difficult to represent in the schedule
- Used a tailored workflow for over 600 as-run procedures
 - Operator makes traveler entry, submits as-run to QA
 - Marked for verification or not
 - QA inspects the record and collects corrections
 - QA submits to technical writer to digitize
 - Technical writer updates tracking tool
 - Operator links controlled document to traveler

Milestone Status																	
	1) Manifold Assembly	2) Tank Assembly	3) Assy Leak Test#1	4) Thermal Cycle #1	5) Stake Manifolds	6) Install PWAs	7) Assy Leak Test#2	8) Thermal Cycle #2	9) Leak Rate vs. Temp. Meas.	10) Pressure Sensor Install	11) Functional Test	12) Proof Pressure Test	13) Propellant Fill	14) Vibe	15) Verification Leak Rate Meas.	16) Performance Test	17) Ready for SV Integration
SN501																	
SN502																	
SN503																	
SN504																	
SN505																	
SN506																	
SN507																	

- Up-to-date travelers helped diagnose issues and find solutions
- Missed test-on-receipt for a subsystem
 - Root cause of later hardware failure was ambiguous

Lessons in Discipline

Propulsion Lessons Learned

Overview Technical lessons learned

See also: Martineau, R., Smith, T., Felt, M., Weston, C., Rusch, B., et al. "Lessons Learned During the Implementation of a Cold Gas Propulsion System for the SunRISE Mission." *Small Satellite Conference*, August 2023.

Propulsion Requirements

Minimum Capability

- At least 7 m/s delta-V (including RCS equivalent)
- Initial interferometer setup after GEO graveyard orbit injection by rideshare
- 12 months of orbit maintenance
- 12 months of reaction wheel desaturation

Qualitative Features

- ~1U allocation (~2U x 1U x ½U) in 6U CubeSat
- ~12 kg dry mass
- Rideshare-friendly propellant

Propulsion System Overview

- Two-phase cold gas propulsion, R-236fa propellant
- Monolithic 3D-printed (SLA) tank and structure, including nozzles and plumbing
- Heritage from BioSentinel and Ascent

Symptoms

- Valves temporarily stuck after assembly
- Affected valves opened after 5–15 commands
- First open was sometimes sluggish

Contributing Causes

- Insufficient solenoid actuation energy from heritage circuit
- Variability of COTS valves
- Material/process incompatibility

Mitigations

- Increased solenoid spike voltage and duration
- Screened valves for minimum cold open voltage
- Eliminated a cleaning step
- Prepared an on-orbit priming function

Valve Stiction

Symptoms

• High leak rates measured after initial assembly

Contributing Causes

- Compression fittings
- Internal valve seals
- Thermal/mechanical overconstraint

Mitigations

- Implemented qual-style assembly process test program for compression fittings
- Screened valves for leaks
- Designed backup manifolds without compression fittings
- Designed backup manifolds with thermal strain relief

High Leak Rate

Filter Selection & Loading

Symptoms

- Highly variable flow rate through sintered filters
- Filters load quickly, 1 mg coarse test dust

Contributing Causes

- Excessive flow restriction
- Insufficient end-of-life filter capacity
- High variability of COTS filters from factory
- Lack of cleanliness program

Mitigations

- Screened filters for flow rate
- Certified PCL100 cleanliness for all wetted parts

Additive Manufacturing & Materials

Symptoms

- Blocked flow in fluid passages
- Low tank yields
- Vibration mode shifts during testing

Contributing Causes

- Lack of project communication/training with vendor
- Insufficient resin removal processes
- Material creep

Mitigations

- Developed better resin removal processes with vendor, trained onsite at vendor
- Implemented multi-step torque application process

Propellant Phase Management

Symptoms

- Liquid phase observed in plenum during testing
- **Contributing Causes**
 - Lack of phase management feature in system architecture

Mitigations

- Implemented delay-based refill controller, accepted ~1% duty cycle as a result
- Reduced maximum single-maneuver delta-V magnitude
- Recommend using plenum heater or other phasemanagement device for future missions

Other Lessons Learned Topics

- Leak rate measurement
- COTS parts challenges
- Sensor usage
- Propellant handling
- Requirement changes
- Storage protocols
- See paper for additional context and details

SunRISE Status

- Resolved or mitigated risk for all propulsion issues
- Built and tested seven flight units within ~six months, including issue resolution time
- Preparing for storage, launch expected Q4 2024

