

A D V A N C E D Silicon Carbide M A T E R I A L S

SBIR Phase II for Contract No. NNX17CM08C

"Ultra-stable Zero-CTE HoneySiC[™] and H²CMN Mirror Support Structures"

Dr. William Fischer Principal Investigator Office: 808-245-6465 Cell: 570-899-4191 wfischer@ascmtech.com

ASCM's Primary Technologies

- Manufacturer of <u>both</u> CVC and CVD SiC
 - Capability to process other materials
- Honey SiC ceramic-ceramic composite materials family
- Radiation hard reflective coatings

Patent Pending Transparent/ Translucent CVC SiC

- Transparent SiC is available commercially.
- We have a patent pending technology that would allow for production of transparent/translucent CVC SiC with equivalent optical clarity while
 - Retaining our optical surface finish capability
 - Improving our high temperature capability
 - Retaining our high thermal conductivity
 - Maintaining our cost/size/scale, near net shape capability, capacity, and fast delivery advantages
- Suitable for both Missile and Hypersonic applications, as well as several other advanced technology areas

Transparent/Translucent CVC SiC (cont.)

- Allows for unique design and functional optimization of missile and hypersonic design/geometric windows and optical telescopes etc.
- Similar process technology as standard grade of CVC SiC
 - Same Industrial capacity and equipment with minor modifications
- TRL level not as mature at this point.
- Several potential chemistry and process options to evaluate and characterize performance.

Silicon Carbide

SiC Wafers

Technical Solution: HoneySiC™

- HoneySiC[™]: ASCM's innovative, additively manufactured, ceramic matrix composites
 - HoneySiC T300 carbon fiber reinforced SiC CMC
 - H²CMN hybrid hierarchical ceramic matrix nanocomposite with CNTs
- Program effort addresses the need for stable, strain-free, precision optical structures under the influence of dynamic and thermal stimuli, specifically whiffle plates, delta frames and backplane
- Traceable to the needs of Cosmic Origins for UVOIR, Exo and FIR telescopes
- Maturation of this technology will allow NASA and ASCM to develop a method to create large aperture optical support structures and assemblies via deployment, assembly or active control
- HoneySiC additive manufacturing process significantly minimizes cost and schedule associated with post-production fabrication steps (machining, polishing, metrology).

HoneySiC[™] Features

- Rapid Prototyping Extremely rapid additive manufacturing process with all ADVANCED assets under a single roof.
 - Large complex mirrors/structures could be produced in a matter of weeks.
 - Web thickness < 1mm, core geometries (pocket depth, pocket size) easily tailored.
 - Minimizes machining, recurring/non-recurring costs; cost is 100X < beryllium.
- Low Areal Cost Cost of raw materials ~\$38K/m² for unpolished HoneySiC, which already meets NASA's goal of \$100K/m² -> ~100X reduction in mirror cost based on current cost of \$4-\$6 million/m².

Low Areal Density

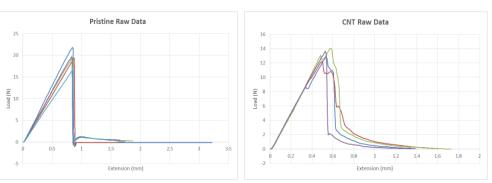
- Face sheet density ~same as beryllium
 - Sandwich constructions further reduce areal density.
- 95% light weighting w.r.t. bulk silicon carbide.
- Areal density of first panel made: 5.86 kg/m².
- Estimated weight and areal density of a 255-mm mirror: 0.35 kg and 7.0 kg/m², respectively.
- Estimated mass of 305-mm optical bench with inserts: 0.94 kg.

HoneySiC[™] Features

- Extreme dimensional stability CTE of HoneySiC confirmed to be nearzero with a variation of only -91 to -146 ppb/°C from -196°C to 0°C in testing at Southern Research Institute.
- Carbon fiber or SiC reinforced SiC structure
 - Thermal conductivity "supercharged" by addition of CNT
 - No coefficient of moisture expansion (CME)
 - Low Z for nuclear survivability
 - Electrically conductive for dissipating static charge build-up
 - ~2X higher fracture toughness than pure SiC, estimated ~4.6 MPa-m^{0.5}
- Nuclear and Space Survivable Precursor carbon-carbon honeycomb is flying on >100 spacecrafts.

Phase I Progress

- ASCM would produce HCMC and H²CMN coupons for flexural strength and CTE measurements.
- Flexure testing would be performed by Professor Nejhad at the University of Hawaii using a 4-point flexure test set up. Properties to be determined: strength, strain/deflection, stiffness and toughness.
- In-plane coefficient of thermal expansion (CTE) testing would be performed at Southern Research Institute (SoRI) at the University of Alabama using a linear variable differential transformer (LVDT). Test temperature range: -196°C to RT.
 - LVDT measures change in length as a function of temperature
 - A dial gauge would be used to provide additional expansion data and validate the LVDT measurements.

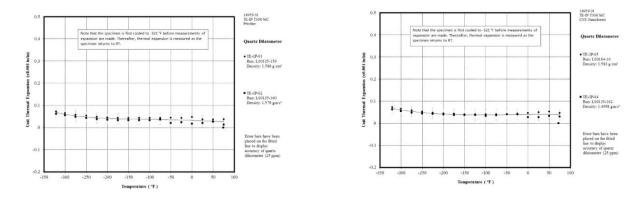

Phase I Results – Flexure Testing

• Flexure testing was performed by Professor Nejhad. Specimens are shown on the left, test fixture is shown on the right.

• Raw load-deflection curves for Pristine (HCMC) and CNT (H²CMN) samples are shown below.

The generated stress-strain data was used to deduce strength, toughness, modulus/stiffness and strain-at-failure.

allure.	Sample	Avg. Flexure Strength (MPa)	Avg. Real Toughness (KJ/m³)	Avg. E Modulus (MPa)	Avg. Flexure Strain at Failure (mm/mm)
	HoneySiC™	63.96	44.55	53,116.96	0.00139
	H ² CMN	40.87	18.49	54,281.89	0.00090
	Notes	CNT had ~36% less	CNT had ~59% less	CNT had ~2% higher	CNT had ~35% less
		strength	toughness	stiffness	strain at failure



Phase I Results – CTE Testing

• LVDT test set up for in-plane CTE measurements shown below.

Spectre Newtor Darea Public Point Public Pub

• Tabulated data is shown below for Pristine (HCMC, left) and CNT samples (H²CMN, right). Error bars represent the accuracy of the quartz dilatometer (25 ppm)

Phase I Conclusions

- Mechanical Measurements
 - The powder impregnation process during SMP-730 pre-pregging allowed sufficient infiltration into HCMC samples, but ineffective for H2CMN since the CNT growth requires a viscous matrix to penetrate the nanoforest.
 - It is believed the CNT matrix wet-outs were incomplete and interlaminar bonding was relatively weak, leading to reduced mechanical performance in strength, toughness and strain-at-failure.
 - H²CMN elastic modulus increased slightly due to the sandwich-type structure.
 - It is believed that the advantages of CNTs will be realized if a less viscous prepregging matrix (SMP-10) is used as the initial pre-pregging matrix. This will be explored in Phase II.
- CTE Measurements
 - Both HoneySiC materials exhibited relatively zero expansion in the in-plane direction from -196°C to RT.
 - Negative expansion was observed between -196°C and -128°C.

Phase II Effort

- Collaborate with NASA MSFC, GSFC, JPL and Northrop Grumman Aerospace Systems (NGAS) to design a prototype whiffle plate, delta frame or tube structure to be made using HoneySiC or H²CMN materials that will support space-based telescope applications.
- Supplement the suite of HCMC and H²CMN material properties measurements as requested by NASA and NGAS.
- Produce HCMC and H²CMN prototype(s) for demonstration of the technology.
- Characterize the prototype via mechanical property testing.
- Demonstrate superior performance to the incumbent material (M55J cyanate ester), which is an organic material and subject to outgassing, dimensional instability under temperature and environmental fluctuations.

Phase II Progress

- Material procurement for technology demonstration prototypes HCMC and H²CMN prototype(s)
- Planning for manufacturing of one or more of the following:

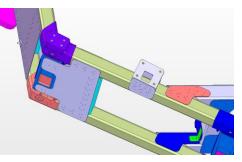


Figure 2. Composite tube structure (yellow)

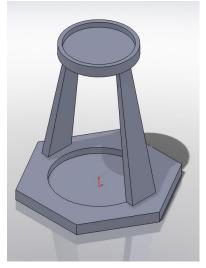


Figure 3. Cassegrain telescope structure

NASA Applications

- NASA sees potential for HoneySiC[™] as an affordable technology for large observatories and future astrophysics missions⁵ for:
 - The Formative Era, answering such questions as "What are exoplanets like?"
 - Characterizing planet forming disks and planetary atmospheres with the LUVOIR Surveyor.
 - Searching for life using the LUVOIR Surveyor to obtain fulldisk images and spectra of pale blue dots.
 - Making longitudinal maps and detecting seasonal variations on exoEarths.
 - Searching for signs of habitability and evidence of biological activity on exoEarths.
 - The Visionary ERA, searching for life using an ExoEarth Mapper to produce resolved maps and spectra of "New Earth", confirming surface water and identifying possible life.

Task Summary Timelines

- H²CMN Validation (19 weeks)
 - Prepare coupons using SMP-10 as the initial pre-pregging matrix.
- HCMC and H²CMN Prototype Definition (10 weeks)
 - A prototype design will be collaboratively designed by ASCM, NASA, NGAS and Professor Nejhad
- Prototype Design and Engineering (16 weeks)
 - FEM will be used to define design and performance requirements.
 - Design concepts will be refined and optimized for HoneySiC[™]; not a redesign of the original component.
 - ICDs, preliminary and final manufacturing drawings will be generated.

Summary of Tasks

- Joint Specimen Production and Testing (27 weeks)
 - Full scale specimens of the intended prototype joint will be produced to replicate the design, application and use of fasteners/hardware for mechanical testing (or other testing deemed appropriate by NGAS and NASA).
 - We anticipate there will be several candidate designs.
- Prototype Definition (28 weeks)
 - An HCMC or H²CMN prototype will be produced based on the D&E and joint specimen testing in Tasks 5 and 7.
 - Tentative plan is to make a scaled-down version of whiffle plate, delta frame or tube structure. Scaling ratio will depend on the selected component relative to UH's furnace workspace (13"x13"x14").
 - Estimated task time includes procurement of materials.

Summary of Tasks

- Prototype Testing (5 weeks)
 - Mechanical testing will be performed.
- Phase II-E Application and Plan (12 months into POP)
 - ASCM intends to apply for a P2-E.
 - The proposed scope of work is as follows:
 - Additional material characterization of HoneySiC[™] materials. Specifically:
 - Thru-thickness CTE
 - In-plane CTE at ppb level (optional)
 - Thermal conductivity
 - Volume resistivity
 - BRDF using visible and single line laser sources
 - Development of 3D printing processes for HoneySiC[™] material systems
 - Design and fabricate a meter-class telescope front structure
- Task 11: Phase III Plan
 - ASCM and NASA will develop a preliminary and strategic plan for Phase III and transition to commercial production.

SBIR Phase II for Contract No. NNX17CM08C

"Ultra-stable Zero-CTE HoneySiC[™] and H²CMN Mirror Support Structures"

Dr. William Fischer Principal Investigator Office: 808-245-6465 Cell: 570-899-4191 wfischer@ascmtech.com