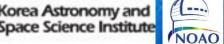
NASA Mirror Technology Days 2018



Application of extended MARI concept to SiC mirrors

<u>Jeong-Yeol Han</u>, Myung Cho, Do-Hoon Kim, HyungKwon Lee, Dong-Kyun Kim, Minho Seo

Nov. 05, 2018.

GREEN UPTICS

Contents

Background: program overview

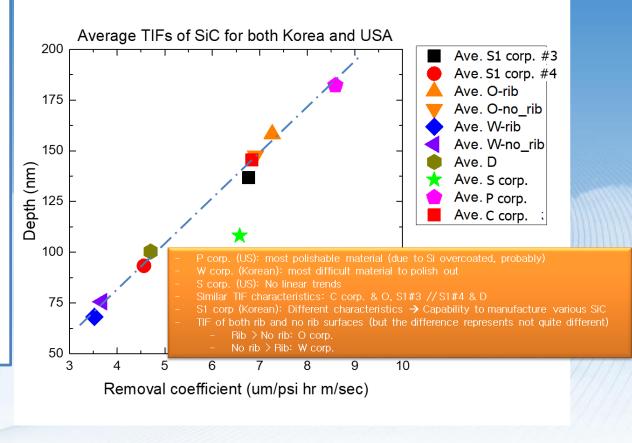
Experimental plan

Fabrication example of off-axis aspheric surfaces

1. BACKGROUND - PROGRAM OVERVIEW

1. Overview

- Collaboration between KASI and NOAO to develop SiC mirror polishing procedure and environmental testing since 2014^{1,2}
- KASI was awarded a study program to develop 'a basic research on ultralightweighted off-axis aspheric optical surfaces for space application' from National Research Foundation (NRF) of Korea for 3 years from July 2018.
- KASI is extending research field toward polishability of ultra-lightweighted mirror materials such as SiC as well as testing for off-axis aspheric mirror surfaces.
- KASI will investigate the MARI (MAterial Removal Indicator) concept for the polishability of lightweighted materials.


¹J.-Y. Han, et al., "Mirror polishing technology with Tool Influence Function (TIF) for SiC," NASA Mirror Tech Days 2014. ²J.-Y. Han, et al., "International collaboration for Silicon Carbide mirror polishing and development," Pub. Of the Korean Astronomical Society, 30, 687~690 (2015).

1. Overview - MARI

Used SiC materials

- US 3 vendors and Korean 4 vendors
- Tool Influence Function(TIF) values are obtained by 27 different input conditions composed of pressure, dwell time and rotation speed.
- TIF depth and material removal coefficient is obtained.

→ MARI concept* can be used to characterize various SiC materials

*J.-Y. Han, et al., "TIF and material removal characteristics of SiC mirror materials," NASA Mirror Tech Days 2016.

1. Overview – NRF program

Objectives

- To improve prediction of accuracy for deterministic polishing of lightweighted mirror materials
- To study of quantitative measurement method and of definition for an off-axis aspheric surfaces

Schedule and budget

- Schedule: July 2018 ~ June 2021 (3 years)
- Budget: 350 M Won (~300,000 USD)

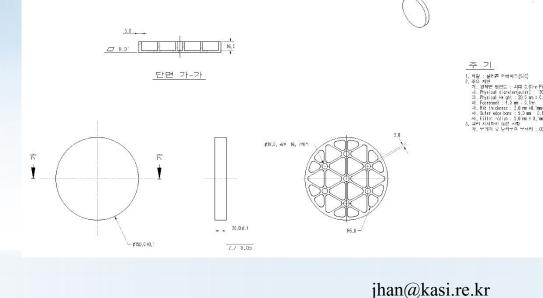
Deliverables

- TIF experiments and analysis
- Characterization of off-axis aspheric surfaces and measurement of physical property for off-axis aspheric mirror surfaces
- All academic achievements will be encouraged to publish to journal or international conferences.

2. EXPERIMENTAL PLAN

2. MARI experiment plan

Materials


- SiC: RB, Sintered, Conversion, and Hybrid SiCs
- Other ultra-lightweighted materials

Size and drawing of Sample

- Size: 150 mm in diameter x 2ea, lightweighted
 - TIF patterns engraving: 81 TIFs (=27 input variables x 3 redundancies),

TIF on Rib and Ron-rib surfaces

- Drawing (not fixed)
 - Vendor may suggest optimized drawing incorporated with their own manufacturing process

2. MARI experiment plan

Polishing head

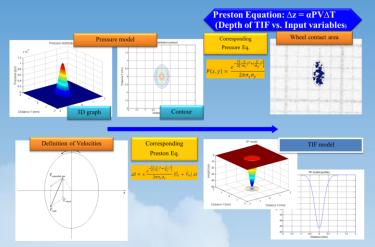
- Orthogonal Velocity Tool (OVT)^{1,2} in KASI
- Simple configuration with two rotation axes and High repeatability of about 90%

OVT (Orthogonal Velocity Tool)

	Items		Detailed items	Ranges / Spec.	
	Req.	TIF shape		Gaussian shape	
		Wheel	Rotation speed	15~1000 rpm	
			Contact width	3.8 ~ 3.9 mm	
			Contact area	6.0 ~ 6.5 mm ²	
	Spec.	Rotational axis (Radial direction)	Rotation speed	4~60 rpm	
			Motion control item	Rotation angle Dwell time	
		Load cell	Measurement ranges	Min.: 0.1 psi Max.: 10 psi	
	Development		KASI, SphereDyne, YoonSeul		
					TIF polishing head

Input variables: Pressure(P), Rotation speed(V), Dwell time(T)

Outcomes: TIF depth and volume

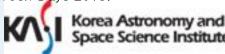

¹H.Seo, et al., "Novel Orthogonal velocity polishing tool and its material removal characteristics from CVD SiC mirror surfaces," Opt. Express., 24, 12349 (2016).

²J.-Y. Han, et al., "Tool Influence Function (TIF) Characteristics of SiC mirrors," NASA Mirror Tech Days 2015.

2. MARI experiment plan

TIF model: Analytical and empirical model^{1,2}

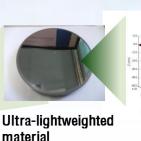
Basic relationship between input and output variables: Preston equation


Collaboration

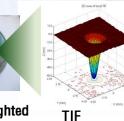
- NOAO: Oversight for the SiC and ultra-lightweighted materials and applications
- Green Optics(GO): Polishing the mirror surfaces
- Material providers: KASI welcomes a mirror sample provider to have a novel and excellent physical property to check polishability. Please let me know if you have an interesting to check.

¹H.Seo, et al., "Novel Orthogonal velocity polishing tool and its material removal characteristics from CVD SiC mirror surfaces," Opt. Express., 24, 12349 (2016).

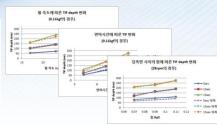
²J.-Y. Han, et al., "Tool Influence Function (TIF) Characteristics of SiC mirrors," NASA Mirror Tech Days 2015.



2. MARI experiment plan - Summary


Materials: 150 mm in diameter

- SiC: RB, Sintered, Conversion, and Hybrid SiCs
- Other ultra-lightweighted materials
- Polishing head: Orthogonal Velocity Tool (OVT) in KASI
- Input variables: Pressure, Dwell time, Rotation speed
- Outcomes: TIF depth and volume
- TIF model: Analytical and Empirical model
- Collaboration
 - NOAO, GO and material providers



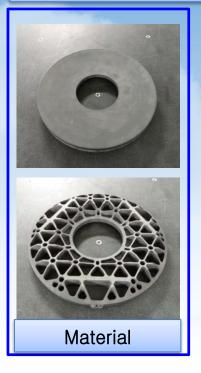
OVT r polishing tool

generation

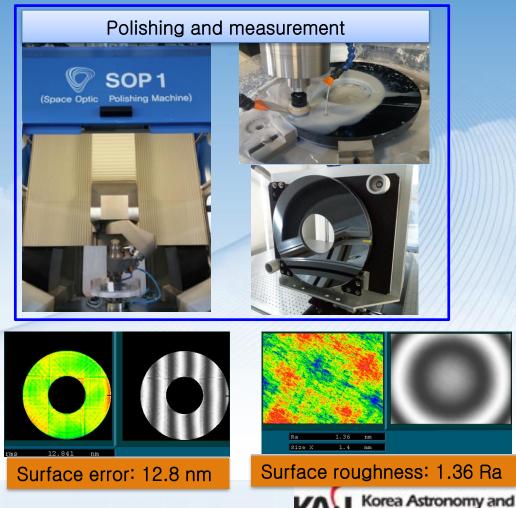
TIF analysis \rightarrow Apply to MARI concept

3. FABRICATION EXAMPLE OF OFF-AXIS ASPHERIC SURFACES

3. Fabrication of off-axis aspheric optical surfaces (1/2)

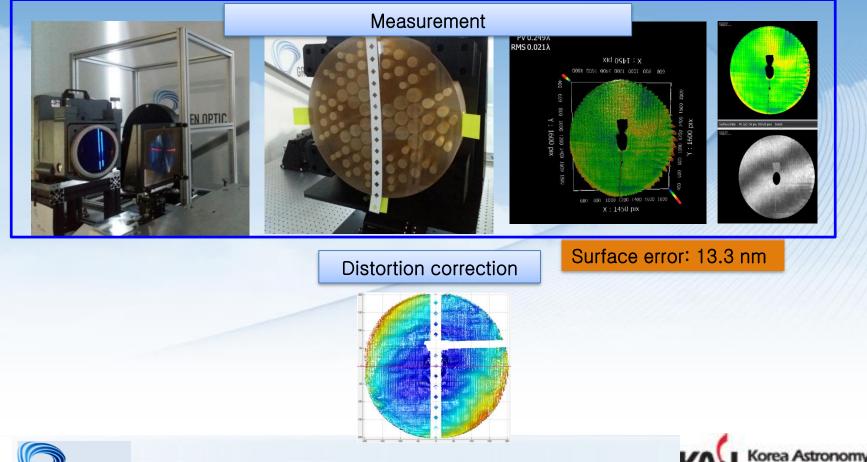

Objectives

i) To fabricate SiC mirror and ii) to develop a metrology to measure


an off-axis aspheric surfaces

Fabrication for SiC

Material: SiC R: 850.45 mm, K: -1.147 CA: 300 mm, Central hole: 128 mm


Space Science Institute

3. Fabrication of off-axis aspheric optical surfaces (2/2)

* Measurement of off-axis aspheric surfaces

Material: Zerodur R: 1670.106 mm, K: -1.0 CA: 400 mm, OAD: 340 mm

jhan@kasi.re.kr

ce Science Institute

4. Conclusion

- KASI has plan to extend MARI concept for various SiC and ultra-lightweighted materials for three years with NOAO, GO, and material providers.
- In order to get TIF, KASI implemented OVT as a polishing head and TIF model.
- KASI and GO is developing deterministic fabrication and measurement processes for off-axis aspheric optical surfaces

