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Part 1 
Determining the 

Index of 
Refraction of AlF3

Zoe Hughes- senior Drew 
University, NJ- summer ‘16
Mentor: Dr. R Steven Turley



Motivation

Aluminum oxidizes when exposed to 
the atmosphere
Why AlF3? 
❖One of three wide bandgap fluorides 
useful in protecting Al. The index of 
refraction of AlF3  in EUV spectrum was 
unknown. 
❖Some ML mirrors contain AlF3 and in 
Kramers-Kronig analysis. 



Sample Prep

Evaporate AlF 3 on Si (100) pieces
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Methods: @ ALS 6.3.2
1. Measure reflectance vs Incidence Angle (Θ)
2. Fit Reflectance vs. Θ to find index of 

refraction for all wavelengths
A)Thickness
B)Index of refraction

Θ-2Θ fit:

Reflectance vs. Angle for 

45 nm
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We tested three samples:



Initial Results:
Comparison of all samples index of refraction vs. wavelength

n= 1-δ + i𝛃

(nm) (nm)



1.Compare with the CXRO data
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2. Adjust Model: Using Predicted Thicknesses

Sample

Experimental 

Avg 

(Ångstroms)

SE's 

Prediction

(Ångstroms)

SE's  2nd 

Prediction

(Ångstroms)

A 57.42     60.9 62.02

C 78.602(Day 1) 88.9 93.54

31.3928(Day 

2) 

D 32.4443           36.7 43.62



2. Adjust Model: Using Predicted Thicknesses

(nm) (nm)



2. Check Data with ALS BYU 
Measurements
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3. Check ALS Data with BYU Data-
Why is BYU higher?

Sample D at Wavelength: 
30.4 nm

ALS BYU



3. Check ALS Data with BYU Data-
Why is BYU higher?

Sample D at Wavelength: 
25.6 nm

ALS BYU



Our 
Experim
ental 
Data 
Compar
ed to 
Bridou’s 
Data-
There is 
a 10nm 
gap-
can it 
really 
change 
that 
much? 



Summary for this section 

Collected Data from ALS and BYU
Investigated difference in results



Turley-Allred Group 

EUV optics & Thin films 
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Our group has made spaces mirrors for Far- Extreme 

Ultraviolet (EUV) 

Images from www.schott.com/magazine/english/info99/ and  www.lbl.gov/Science-Articles/Archive/xray-inside-cells.html.

Thin Film U/Si 

Multilayer Mirrors

EUV Astronomy: IMAGE Mission

The Earth’s magnetosphere in the EUV-30.4 nm

BYU EUV Optics

2 Nov. 2016

• –
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The Earth’s 
magnetosphere 
is at UHV (<1E-
8 torr) but we 
can see it with 
the right 
mirrors.   

Tools to study EUV Multilayers 
 Al is partially transparent <90 nm; particularly <60 nm
 Surfaces- Non Ideal

 Roughness, Layers: Oxides, Contamination
 Bifunctional mirrors. Genetic algorithm. 
 Compounds are often better.
 Optical Constants->40nm are needed. 




http://users.zoominternet.net/~matto/M.C.A.S/electromagnetic_spectrum.gif

Space mirrors because:
Only part of the electromagnetic spectrum gets through the atmosphere.  

EUV: 10 to 100 nm



Why EUV? Astrophysics

AGN

–OJ-287

Crab Pulsar

Gamma Ray Bursters

Thanks for Ben Taylor BYU Astronomy Faculty
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Do we need the EUV?
Planet characterization?
Yes, Jupiter –Io flux tube   
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EUV Astronomy: IMAGE Mission

The Earth’s magnetosphere in the EUV-30.4 nm

Proxima Centari b
may be a Ground Based will see it.
Magnetosphere?
Space Telescopes have an 
ESSENTIAL role
Why for M-Dwarf?
Flares & wind
UV can be brighter than rest of 
star output. 
Light echos.

The Earth’s 
magnetosphere 
is at UHV 
(<1E-8 torr) 
but we can see 
it with the right 
mirrors & in 
space.   

Opportunity for dynamic measurements- a 
flare will generate a time delayed 
reflectance echo-



Do we have far UV (FUV) and EUV deep space, solar-

observing, and planetary space-based telescopes?  

1.Hubble – COS in 6-11 eV (115 to 205nm) range 
(far UV) it uses an MCP. 2009-21?

2.GALEX- , 2003 until 2012, was an Explorer class 
mission with a 50cm diameter aperture primary, 
the near UV- to FUV making observations from 
4.4 -9.2 eV (135-280nm).

3.Far Ultraviolet Spectroscopic Explorer (FUSE) 
1999 to 2007-10.4-13.7eV (90.5-119.5nm)

4.EUVE (1992-2001) one of the most successful 
spacecraft to fly.  7 to 76 nm (16-177eV). 
Glancing-angle optics (Wolters) optics. 

1. 20

BETWEEN 76nm & 90 nm NOTHING ever!  
After Hubble NOTHING in VUV-EUV



Our Goals:

Pathway to doubling* the effective 
bandwidth of traditional Al mirrors- used 
way traditional mirrors used (near normal)

– Tradeoffs.

– Educate students.

– Develop computational tools. 
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*From current 0 to ~10 eV to 0 to ~20 eV or 0 
to 15 + another 5eV further on in EUV
124nm to 62nm or e.g., 124 to 83 & 62-56 nm



Summary: What the mirror coating might be.

Processed in Space -
– Point of use.
– far from Earth.

It is helpful to devise and perfect tools. 
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A Multilayer (ML) VUV-EUV Mirror Coated with as 

Thin as Possible Aluminum Film- without oxide 



Our group has made spaces mirrors for Far- Extreme 

Ultraviolet (EUV) 

Images from www.schott.com/magazine/english/info99/ and  www.lbl.gov/Science-Articles/Archive/xray-inside-cells.html.

Thin Film U/Si 

Multilayer Mirrors

EUV Astronomy: IMAGE Mission

The Earth’s magnetosphere in the EUV-30.4 nm

BYU EUV Optics

2 Nov. 2016

• –
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The Earth’s 
magnetosphere 
is at UHV (<1E-
8 torr) but we 
can see it with 
the right 
mirrors.   

Tools to study EUV Multilayers 
 Al is partially transparent <90 nm; particularly <60 nm
 Surfaces- Non Ideal

 Roughness, Layers: Oxides, Contamination
 Bifunctional mirrors. Genetic algorithm. 
 Compounds are often better.
 Optical Constants->40nm are needed. 




OUTLINE
Introduction: 

Tool development: What do to once we get 

bare aluminum in space

Computational GA

Optical constants required. An example.
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Optimizing Reflectance with 

Aluminum

Extends range of UV to ~83 nm (15 
eV)

Transparent at smaller wavelengths

Aluminum oxide reflectance

–Calculated based on optical constants of 
bulk Al2O3.

Oxidizes instantly in atmosphere



02 Nov. 2016 NASA Mirror Tech-16 Greenbelt MD 26

Near Normal



Why we need barrier layers to go away 

if we want to go below ~100 nm ?

02 Nov. 2016 NASA Mirror Tech-16 Greenbelt MD 27

MgF2 
thickness



02 Nov. 2016 NASA Mirror Tech-16 Greenbelt MD 28
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50 nm of Al on SiO2 
all at 5° from Normal

50nm of Al on SiC

Photon E in eV
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/
c
m

²

Al trans 20-70 eV; 17 to 65 nm



30

Preliminary results from 
GA approach to finding 
EUV mirrors with full 
UVOIR function.
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Substrate is silicon carbide-

under 50nm Al 
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Substrate is silicon carbide- under 

50nm AL
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Substrate is silicon carbide
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Substrate is silicon carbide
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Substrate is silicon 
carbide



36



An exploratory design of wide VUV-EUV & 30 nm
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At 45° reflectance 78 to 94% for 

ML mirror designed by GA
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45°
under an 
Al layer 



6 layer to get above 50% for largest range <80nm @ 5° normal
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Note the cost



Take home-Part 2
The mirror with the largest bandwidth will be a 
Multilayer (ML) VUV-EUV Mirror Coated with as Thin as 
Possible Aluminum Film-

– without oxide/ fluoride overlayers. Space Processing

We need the EUV ASAP.  Definitely for LUVOIR 

Let’s do it
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50 questions about next-generation broadband 

mirrors for space-based observatories

1 Broadband mirror coatings & aluminum: 

2 Understand oxidization of aluminum mirrors
– characterization tools

3 Barrier layers against oxidation 
– 3.1 Those that stay on-

– 3.2 Those that come off: 
Role of Vacuum deposited/ Vacuum removable barriers-

– 3.3 point-of-use processing

4 Applications 
– 4.1 Beyond 15 eV: Aluminum becomes (partially) 

transparent below its plasma edge at about 85 nm
4.2 Space observatory applications

5 Practicalities: How raise TRL.
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