

How to get a mirror thermal tested at MSFC?

Ron Eng, NASA Marshall Space Flight Center

Mirror Tech/SBIR/STTR Workshop

Greenbelt, MD

November 2, 2016

Targeted audience

- Mirror substrate manufacturers
 - Lightweighted mirrors
 - Low density and CTE mirrors
 - High modulus, thermal conductivity
 - Ceramic mirror and structures: Coorstek, ECM, Fantom, POCO, Semplastics, SSG, Xinetics, etc.
 - Low CTE glass mirrors: Corning, Schott,
 - Low density metal mirrors: GD, Peregrine,
 - 3D printed mirrors: ASRC, Dallas Optical, Optimax

Goals and motivation

OBJECTIVE

- provide testing using same test setup and facility to characterize competing mirror substrates
- characterize vendor's process and lot uniformity
- test up to 12 mirrors on a single test to save \$
- R&D characterize lightweight mirror substrates
- FEM validation model prediction correlation
- Mutual benefit vendors and government

1x3 m cryo test chamber

 Vacuum Chamber: 1x3 m cylinder with helium shroud

Optical window: 150mm BK7

Temperature range: 290° to 20° K

Operating pressure: ~ 5 E-6 Torr

Optical test setup

PhaseCam 5010 interferometer

• 1954 x 1967 pixels

• Effective array: 977 x 983 pixels

• diverger: f/6; R/6.25 mirror

PV uncalibrated accuracy: 15 nm

RMS uncalibrated accuracy: 3 nm

• PV repeatability: 0.24 nm

• RMS repeatability: 0.05 nm

• PV precision: 2.64 nm

• RMS precision: 0.51 nm

Test configuration # 1: < 800 mm dia. mirror

← 1.5 - 2.5 m ROC →

Test configuration #2: 12 mirrors < 150 mm dia.

Test envelop for large and small chambers

JWST PMSA test configuration at XRCF

Existing structure prevents testing mirrors with ROC < 3.5 meters

A pressure tight enclosure (PTE) configuration to test mirror with short ROC < 3.5 meter

X-ray cryogenic facility (XRCF)

History

Testing grazing-incidence x-ray telescopes (Chandra, Solar X-ray Imager, Solar B) since 1992.

Testing normal incidence, visible & IR optics & components (NMSD, AMSD, JWST, AMTD) since 1999.

Large test chamber:

7.3 x 22.9 m (O.D. x L) horizontal cylinder

6 x 18.3 m (I.D. x L) test volume

4.25 x 9.4 m (I.D. x L) Helium shroud

< 22.5 m ROC without modification

Up to 30 m ROC with modifications

Cryo shroud enclosure: 320° to 20° K

Refrigeration system: 2 gaseous helium refrigerators; each capable of ~1 kW at 20K.

Vacuum systems: 10-8 Torr

527 m guide tube (starshade testing in vacuum)

Clean Rooms:

6000 sq. ft. Class 2,000

2000 sq. ft. Class 10,000

https://optics.msfc.nasa.gov

XRCF Handbook for more information

Mirror tech days presentations

Thank you

Ron Eng

https://optics.msfc.nasa.gov

ron.eng@nasa.gov

256-544-3603