CVC SiC Thermally Insensitive Telescope Development

Fantom Materials, Inc.

Presented by William F. Fischer III, Ph.D.

President

Outline

- Brief overview of Fantom Materials Technologies
- Thermally Insensitive Telescope Project Review
 - Overall project
 - Goals
 - Status
 - Projections
- Details: Components
- Integration
- Lessons Learned
- Summary and Plan Forward

Fantom Materials, Inc.

Tuesday, November 01, 2016

Primary Technologies

- CVC SiC[®] and CVD SiC
 - Capable of processing other materials like TaC, TaB₂, ZrC, ZrB₂, HfC, and HfB₂ etc
- HoneySiC ceramic matrix composite materials
 - Carbon-Carbon & Silicon Carbide Composite
 - Continuous fibers
 - Chopped Fibers
 - Carbon Nanoparticles & Fibers and/or Nanotubes
 - Silicon Carbide & Silicon Carbide Composite
- Radiation & Space hardened reflective coatings

CVC SiC[®] Process to Grow Ultra High Purity Silicon Carbide

 $CH_3SiCl_{3(g)} \rightarrow SiC_{(s)} + 3HCl_{(g)}$

Particles added to CVD stream promotes equiaxial grain growth and low intrinsic stress

US Patent No. 5,348,765

CVD/CVC[®] Reactor Operations

MATERIALS

CVC SiC[®] is a Superior Material

CVD SiC Has Columnar Growth

Powder Addition Relieves Intrinsic Stress and Provides Other Advantages

CVC SiC Has Equiaxed Growth

CVC SiC® Has Multiple Advantages

- Dimensionally stable to temps as low as 4 K
- Large Size (60-inch) and Thick Parts (>3 inch)
- ✓ High thermal conductivity
- ✓ Temperatures Up To 4500 °F
- ✓ Directly Super-Polishable (w/o Cladding Layer)
- Faster growth rate (>5x CVD)
- ✓ High Yields (Nearly 100%)

- ✓ HAENS Survivable
- ✓ Near Net Shape
- ✓ Wear Resistant
- ✓ Corrosion Resistant
- Machineable (Like Glass)
- High Aspect Ratio (> 100:1)

- ✓ High Stiffness
- ✓ Lightweight
- ✓ 100% Dense
- ✓ Non-Toxic
- Low CTE
- ✓ Low Z
- ✓ High Purity

Silicon Carbide Optics

Advantages

- Specific stiffness
- Thermal stability
- Rad hard
 - Passed several test procedures and environments including HAENS testing

Optical performance:

- Figure: λ/20 P-V typical
- Have achieved λ /40+
- Roughness: 4 Å rms typical
 - Have achieved 1 Å

Project Why's and Goals

Telescope Description Summary

- Compact Lightweight 4 mirror telescope
- Challenging prescription and requirements
- Rapid movement with stability
- Thermal stability
- Rad hard

Why "Thermally Insensitive"?

<u>Project Goal</u>: Demonstrate producibility of a thermally insensitive radiation-hard aerospace telescope

- Extend trajectory and flight path defense capability
- Perform in space, decoy, and nuclear environment.
- ✓ High HAENS damage threshold
- Space environment proven

Telescope Design Ideal Goals

- Reduce lead time and cost
- Meet or Exceed optical performance
- Improve thermal stability and mechanical robustness
- Incorporate radiation hardness
- Maintain weight requirement
- Identify Lessons Learned
- Develop CVC SiC optimized solution

Primary Mirrors

Tuesday, November 01, 2016

Primary Mirror (PM)

- Successfully completed Primary Mirror Development
 - On Schedule and on Budget
- Designed, manufactured, and tested 3 PM units
- Met drawing and requirements
 - Mass, Stiffness, Strength, and Thermal Distortion

Primary Mirror (PM) - Performance

	EU 1 🧹	EU 2 🎸	EU 3 🖌	Be Ref.
Thickness	1.93x 🖌	1.42x	0.66x	~1.000
Weight (actual)	2.00x 🖌	1.65x 🖌	0.75x	1.000
Weight (model)	2.10x 🖌	1.63x 🗸	0.79x 🗸	1.000
Harmonic Frequency	1.31x	1.23x	1.02x	1.000
Harmonic Frequency (model)	1.28x	1.21x	1.04x	1.000

PM EU1 Optical Surface Figure, Location and Optical Axis Pointing Results

	Requirement	Pre Thermal Cycle
Unrestrained Surface Figure	1.00 1.00 1.00	0.095 0.080 0.474
Optical Axis Pointing	1.00	0.633 🗸
Vertex Location	1.00	0.024 🧹
Datum A Surface Profile	1.00	0.000 🧹

PM EU1 Surface Figure Results

PM EU2 Surface Figure Results

CVC-SiC Primary Mirror Modal Survey

Modal Tap Test Surveys were performed on all Units, before and after thermal cycle Free-Free and Constrained

• Attached to a Warm Stop Interface Simulator

Modes correlated well with analysis predictions

Secondary Mirror

Tuesday, November 01, 2016

S1 to S2 Transition

Developed S2 processing on top of S1 to optimize / minimize the transition zone.

- A "grinding study" established & calibrated the process for production of SM mirrors.
- Radius and tilt were tightly maintained while controlling transition.

Secondary Mirror

Secondary Mirror Analysis

Mirror	Mass	Stiffness (Hz)			S1 Surface Gravity Sag			S2 Surface Gravity Sag		
		f1	f2	f3	1gx	1gy	1gz	1gx	1gy	1gz
Baseline Be	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
EU 1	1.683	1.200	1.120	1.120	0.059	0.373	0.693	0.407	0.410	0.665
EU2	1.417	1.168	1.019	1.019	0.053	0.340	0.738	0.372	0.375	0.681
EU3	1.150	1.223	1.031	1.032	0.045	0.284	0.564	0.319	0.318	0.631

Fixed a 3 interface holes for modal analysis and gravitational sag

Tertiary Mirror

Tuesday, November 01, 2016

Manufacturing – Tertiary Mirror

Deposition

Mirror blank slice separation

CNC mirror tab form ation routines

CNC optical S1 surfacing routines

Pre-polished TM mirror blank (S1)

Pre-polished TM mirror blank

Tertiary Mirror

Optical Surface

M

Finite Element Analysis – TM

Mirror	Mass	Stiffness (Hz)			S1 Surface Gravity Sag		
		f1	f2	f3	1gx	1gy	1gz
Baseline Be	1.00	1.00	1.00	1.00	1.00	1.00	1.00
EU 1	1.161	20.515	1.728	1.727	0.417	0.415	0.205
EU2	0.967	1.841	1.573	1.572	0.455	0.452	0.202
EU3	0.773	1.633	1.391	1.391	0.547	0.544	0.203

Fixed a 3 interface holes for modal analysis and gravitational sag

Quaternary Mirror

Tuesday, November 01, 2016

Quaternary Mirror

Optical Surfaces

Finite Element Analysis – QM

			9	Stiffness (Hz)
Mirror	ID	Mass	f1	f2	f3
Berrylium	Reference Design	1.000	1.000	1.000	1.000
EU1	CVC SiC	2.000 🧹	2.171 🗸	2.170	1.849 🗸
EU2	Conductive CVC SiC	2.000 🏹	2.180 🗸	2.177	1.865 🗸
EU3	SuperSic-Si-4S	1.833 🖌	1.952 😽	1.949	1.666 🖌

Integrated Telescope

Warm Shield Design

HoneySiC Warm Stop Fabrication Process

- High temperature Fiber Treatment
- Wet Layup and Pre-Pregging
- Infiltration
- Pyrolysis
- Infiltration
- Machining
- Pyrolysis
- PIP Iterations to achieve <1% weight change

Currently working on 3D printing techniques

HoneySiC Technology allows for

- Tailoring CTE and
- Elimination of any layering effects

Telescope Assembly Design

Section View

4-Mirror Assembly – Optical Test

Waves (RMS)

Lessons Learned

Primary Mirror Lessons Learned

- Tight tolerances dictate integrated fine grinding and optical polishing in lieu of the traditional sequential approach
- Some print tolerancing exceeded metrological capabilities of most fabricators
- EU 4 is high aspect ratio CVC SiC mirror
- Bonding surface preparation/cleanliness is more critical than our previous studies have shown
- Design rules (component level and mounting/assembly) used for Be do not necessarily apply to CVC SiC[™]
- Development of custom CVC SiC design rules developed and would greatly improve performance
- FEA Models fit measured data very well

Milestone Summary

Primary Mirror Met optical specifications Superior thermal stability Superior stiffness Potential 25% wt reduction

Secondary Mirror Met optical spec. Superior Thermal Superior Stiffness

Tertiary Mirror Slightly Off-specification Superior Thermal Superior Stiffness Potential 23% Wt Reduction

Quaternary Mirror Met Optical Specs. Superior Thermal Superior Stiffness

Invar Warm Stop Meets drawing

2-Mirror Telescope With minor adjustments exceeds projected 2-mirror Wave-front requirement.

Substantially Along the Learning Curve. Optimization Will Achieve a Superior Telescope and Capability.

Summary and Path Forward

Mirrors Optimized after Lessons Learned

Mirror	Mass	Surface Figure (λ)	Surface Figure (λ)	Surface Figure (λ)	Surface Roughness (Å rms)	f1	f2	f3
Primary Be	0.964 1.000	~0.95 1.00	~0.15 0.20	~0.07 0.10	< 50 N/A	2267 1953		
Secondary	~1.333	~0.6	~0.10	~0.05	< 50	6051	7519	7522
Be	1.000	1.00	0.20	0.10	55	5094	6716	6719
Tertiary	~0.947	~1.00	~0.15	~0.10	< 40	5181	5270	5271
Be	1.000	1.00	0.20	0.10	55	2526	3050	3052
Quaternary	~1.000	0.80	0.15	0.05	< 40	38505	38683	42720
Be	1.000	1.00	0.20	0.10	55	17737	17826	23106
Total	~0.989	All in	All in	All in	All in spec	All in	All in	All in
Be	1.000	spec	spec	spec		spec	spec	spec

Tuesday, November 01, 2016

Path Forward & Next Steps

Next Steps

- Modify mirror designs slightly for optimized CVC SiC and our production process
 - Goal hard mounted, bolt together design
 - Tertiary mirror especially
- Determine Optimum Warm Shield Structure
 - CVC SiC, SiC, HoneySiC, Other or composite design
 - Stray light control task especially
- Build and test insertable design prototype using manufacturing process and supply chain
- Review results
- Build XXXX units as needed
- Apply processing and design lessons learned to other DoD and Commercial telescopes

Tuesday, November 01, 2016

Seeker Telescope Program Analysis

	Beryllium	CVC SiC [®]
Cost for 1x w/o detector	???	Target Price: ~0.9x or less
Lead Time for 1x	???	16-20 weeks typical
Cost for 100x w/o detector	???	TBD, but less
Lead time for 100x	???	Incremental 1-2 weeks
Weight of Telescope	1.00	1.00 or lower (~0.8)
Rad Hard	No	Yes
Optical Specs	All Met	All Met
Mechanical Integrity		Improved
Harmonic Resonances		Increased
Current Capacity (#/yr)	??????	>1,700
Total Capacity	??????	Virtually unlimited

MA

ERIALS