Advanced Mirror Technology Development (AMTD) thermal trade studies Thomas Brooks, Phil Stahl, Bill Arnold NASA/MSFC

# What is AMTD?

- Efforts associated with this presentation are performed as part of the Advanced Mirror Technology Development (AMTD) program
- Larger aperture space telescopes are required to answer our most compelling science questions.



- AMTD's objective is to mature to TRL-6 critical technologies needed to produce 4-m or larger flightqualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.
- •To accomplish our objective, we:
  - Use a science-driven systems engineering approach.
  - Mature technologies required to enable highest priority science AND result in a high-performance low-cost low-risk system.

## Description of Primary Mirror

- 4m Circular Monolith
- 0.152m depth front to back
- Light-weighted with a back sheet
- Areal Density is 146 kg/m<sup>2</sup>
- Optical face coated with  $\varepsilon_{aluminum}$ =0.03
- Fixed Mount
- Material Properties:

| Material        | Conductivity<br>[W/(m*K)] | Specific Heat<br>[J/(kg*K)] | Density<br>[kg/m <sup>3</sup> ] | Emissivity | CTE<br>[1/K]         |
|-----------------|---------------------------|-----------------------------|---------------------------------|------------|----------------------|
| ULE             | 1.31                      | 766                         | 2210                            | 0.82       | 30x10 <sup>-9</sup>  |
| Silicon Carbide | 180                       | 750                         | 3100                            | 0.9        | 2.2x10 <sup>-6</sup> |
| Zerodur         | 1.46                      | 800                         | 2530                            | 0.9        | 7x10 <sup>-9</sup>   |





## Heat Flow Through Mirror

- Most heat enters the mirror from the heated plate and exits through the optical surface
- Heat is transported by radiation (56%) and conduction (44%)



Not to scale

## **Description of Telescope Architecture**

- Cylindrical Shroud; 60° Scarf
- No secondary mirror or baffles
- MLI on outer surface of shroud & sides of mirror ε\*<sub>MLI</sub>=0.03
- Inner surface of shroud painted black
- Heated plate behind mirror
- Placed at L2



#### WFE Contour Video



#### WFE Visualization



Sample WFE Contour Plot (50mK, 140s Period)

Sample WFE with Focus, Tilts, and Astigmatisms Removed (50mK, 140s Period)

## WFE Stability versus Controllability

- Material: ULE
- Period of ACS: 5000s
- Controllability of ACS: Varied
- Density of Mirror: ULE Density
- Emissivity: 0.82
- Thicknesses: Baseline Design
- Conductivity: ULE Conductivity



#### WFE Stability versus Controllability



NAS

## WFE Stability versus Period

- Material: ULE
- Period of ACS: Varied
- Controllability of ACS: 50mK
- Density of Mirror: ULE Density
- Emissivity: 0.82
- Thicknesses: Baseline Design
- Conductivity: ULE Conductivity



## WFE Stability versus Conductivity

- Material: ULE
- Period of ACS: 140s
- Controllability of ACS: 50mK
- Density of Mirror: ULE Density
- Emissivity: 0.82
- Thicknesses: Baseline Design
- Conductivity: Varied



#### WFE Stability versus Mass and Control

- Material: ULE
- Period of ACS: 140s
- Controllability of ACS: Varied
- Density of Mirror: Varied
- Emissivity: 0.82
- Thicknesses: Baseline Design
- Conductivity: ULE Conductivity



## WFE Stability versus Thicknesses

- Material: ULE
- Period of ACS: 140s
- Controllability of ACS: 50mK
- Density of Mirror: ULE Density
- Emissivity: 0.82
- Thicknesses: Varied
- Conductivity: ULE Conductivity



## WFE Stability versus Emissivity

- Material: ULE
- Period of ACS: 140s
- Controllability of ACS: 20mK
- Mirror Density: ULE Density
- Emissivity: Varied
- Thicknesses: Baseline Design
- Conductivity: ULE Conductivity



#### WFE Stability versus Material

- Material: Varied
- Period of ACS: 140s
- Controllability of ACS: 50mK
- Mirror Density: Material Based
- Emissivity: Material Based
- Thicknesses: Baseline Design
- Conductivity: Material Based



# Quick Review

NASA

- RMS WFE Range is directly proportional to the ACS's controllability and period.
- RMS WFE Range is inversely proportional to the mirror's heat capacity and has a weak, negative linear relationship with conductivity and emissivity.
- For the material properties used, Zerodur causes the easiest to meet requirements on an active control system, followed closely by ULE, and distantly by Silicon Carbide

Rod with a mass, specific heat, thermal energy, temperature and coefficient of thermal expansion of m, c<sub>p</sub>, Q, T, and CTE respectfully

Length of rod, L

- Equation 1 describes heat transfer in and out of the rod
- Equation 2 describes linear thermal expansion
- Algebra and calculus then Equation 5
- Equation 4 shows variables that affect thermal strain rate
  - Geometry dependent: L, V, dQ/dt (surface area)
  - Material dependent: CTE,  $\rho$ ,  $c_p$ , and dQ/dt (emissivity and absorptivity)

 $\frac{dQ}{dt} = \rho V c_p \frac{dT}{dt} \quad \text{Equation 1}$  $(\text{CTE}) L \Delta T = \Delta L \quad \text{Equation 2}$  $\frac{dT}{dt} (\text{CTE}) L = \frac{dL}{dt} \quad \text{Equation 3}$  $\frac{dL}{dt} = \frac{(\text{CTE})L}{\rho V c_p} \frac{dQ}{dt} \quad \text{Equation 4}$ 

# Summary

• Numerical and analytical models agree that heat capacity and CTE have very strong affects on thermal deformation rates.



$$\frac{dL}{dt} = \frac{(\text{CTE})L}{\rho V c_p} \frac{dQ}{dt}$$

• For an actively controlled substrate, the following figures of merit are proposed:

Massive Active Optothermal Stability, MAOS =  $\frac{\rho c_p}{CTE}$ Active Optothermal Stability, AOS =  $\frac{c_p}{CTE}$ 

#### **Summary Continued**



#### A data table of potential substrate materials is provided\*

| Material              | Massive Active Optothermal<br>Stability (TJ/m <sup>3</sup> ) | Active Optothermal<br>Stability (GJ/kg) | Specific heat<br>(J/kg/K) | Density<br>(kg/m³) | Coefficient of thermal expansion (1/K) |
|-----------------------|--------------------------------------------------------------|-----------------------------------------|---------------------------|--------------------|----------------------------------------|
| Fused silica          | 2.91                                                         | 1.32                                    | 741                       | 2202               | 5.60E-07                               |
| ULE 7971              | 112                                                          | 51.1                                    | 766                       | 2200               | 1.50E-08                               |
| Zerodur               | 83.1                                                         | 32.8                                    | 821                       | 2530               | 2.50E-08                               |
| Cer-Vit C-101         | 140                                                          | 56.0                                    | 840                       | 2500               | 1.50E-08                               |
| Beryllium I-70A       | 0.298                                                        | 0.161                                   | 1820                      | 1850               | 1.13E-05                               |
| Aluminum 6061-T6      | 0.113                                                        | 0.042                                   | 960                       | 2710               | 2.30E-05                               |
| Silicon Carbide CVD   | 0.936                                                        | 0.292                                   | 700                       | 3210               | 2.40E-06                               |
| Borosilicate crown E6 | 0.595                                                        | 0.255                                   | 830                       | 2330               | 3.25E-06                               |

\* Data in this table is compiled from Yoder, P.R., Opto-Mechanical Systems Design, 2<sup>nd</sup> ed., Marcel Dekker, New York, NY (1993).

## Any Questions?

#### **Contact Information**

Email: <a href="mailto:thomas.brooks@NASA.gov">thomas.brooks@NASA.gov</a>

Phone Number: (256) 544-5596

## Methodology



- Tasks boxed in red are handled entirely with a program written in Python.
- Program saves weeks of work per analysis.
- Program has been used to determine relationships between the telescope's characteristics and technical performance parameters like stability.

