

Non-Contact Metrology of Freeform Surfaces

By: Scott DeFisher, NASA Mirror Tech Days Open Session November 11, 2015

www.optipro.com

*SBIR Data Rights Apply

Overview

Measurement Methods

- Equipment
- Software
- Capabilities

Measurement Examples

• Freeforms!

UltraSurf

- 5-Axis Non-Contact Measuring System
- Scans With Various Non-Contact Probes
- All Air Bearing Axes
- Linear Motors
- Brushless DC Rotary Motors
- X,Y,C move the part
- Z,B move the probe

Axis:	X,Y,Z	В	С
Travel:	200 mm	360°	360°
Resolution:	5 nm	0.02 second	0.01 second
Max. Velocity:	20 mm/s	6 RPM	6 RPM

Non-Contact Probes

1-10 μm Lateral and 10 nm Vertical resolution

 $30-50\ \mu\text{m}$ Lateral and $30\ \text{nm}$ Vertical resolution

Current Measurement Abilities

5-Axis Freeform Example

Point Cloud Registration

UltraSurf 3D Interface

- Developing a 3D interface for freeform shapes
- CAD file importation for measurement path and data analysis
- Significantly easier for user to setup measurements and visualize data
- Dual Surface Definitions
 - CAD for visualization, measurement path planning
 - Equation or point cloud for analysis and error calculation

UltraSurf 3D Interface

Freeform Measurement (With CAD)

UltraSurf 3mm x 3mm

High resolution (<10 μ m / point), small sub-aperture to inspect texture

Freeform Measurement Example

CeFO (<u>Center for Freeform Optics</u>) & University of Rochester

www.optipro.com

Optical Component

Part Setup

- Part secured by a 3D printed fixture, S1 facing up
- Fixture has 4 reference "spheres" for locating the position of the part
- The reference spheres were not very spherical, finding their apex was difficult
 - This is attributed to "flat" areas on top of the sphere created by the 3D printed contour
 - The spheres locations were well documented to the measurement easier, but...
 - The heights of the spheres did not correlate well to the optical surface, according to the document
- 3D Printed fixture may have warped or was misprinted

Measuring on UltraSurf

Measurement Results

0.25 mm by 0.25 mm lateral resolution2 hour measurement time, 15 minute setup timeNumber of Points Attempted: 5662

- Color scale +/- 5 um
- Most error falls between +/- 2 um
- Grid lines apparent,
- Drop out due to non-perpendicular metrology
 - The chosen probe must stay +/- 2 degrees parallel to surface normal
 - 78% Coverage (4429/5662)
 - Part was diamond turned in two orthogonal orientations, causing the grid

- Better location of the part would keep the probe in the +/- 2 degree angle limitation
 - The CCS probe has a +/- 25 degree angle limitation, but measures closer to the part
- The 3D printed fixture could be improved by
 - Increase rigidity or structural accuracy
 - Use a large flat base instead of 4 small legs, this would give more area to secure the surface
 - Improve the sphericity of the locating surfaces, or change their shapes. Conical?

Freeform Measurement Lessons

Q + D:

3,889

Summary & Future Work

- UltraSurf is a flexible platform for freeform optical surface metrology
- 3D printing and additive manufacturing can provide fixtures and alignment features for freeform optics
- Current 3D interface is making progress, and will soon provide an easy to use interface for freeform shapes
- We are working to reduce scanning time to increase throughput of deterministic corrections
- We are also working on a process to communicate the shape, orientation, and location of freeform surfaces with regards to manufacturing and metrology