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For over a decade, the National Aeronautics and Space Administration (NASA) has tracked and
configuration-managed approximately 30 risks that affect astronaut health and performance before,
during andafter spaceflight. TheHumanSystemRiskBoard (HSRB) atNASAJohnsonSpaceCenter is
responsible for setting the official risk posture for each of the human system risks and determining—
based on evaluation of the available evidence—when that risk posture changes. The ultimate purpose
of tracking and researching these risks is to findways to reduce spaceflight-induced risk to astronauts.
Theadverse effects of spaceflight begin at launchandcontinue throughout thedurationof themission,
and in some cases, across the lifetime of the astronaut. Historically, research has been conducted in
individual risk “silos” to characterize risk, however, astronauts are exposed to all risks simultaneously.
In January of 2020, theHSRBatNASAbeganassessing thepotential value of causal diagramming as a
tool to facilitate understanding of the complex causes and effects that contribute to spaceflight-
induced human system risk. Causal diagrams in the formof directed acyclic graphs (DAGs) are used to
provide HSRB stakeholders with a shared mental model of the causal flow of risk. While primarily
improving communication among those stakeholders, DAGsalso allowacomposite risk network to be
created that can be tracked and configurationmanaged. This paper outlines the HSRB’s pilot process
for this effort, the lessons learned, and future goals for data-driven risk management approaches.

Human spaceflight is a high-risk endeavor. The Challenger and Columbia
disasters acquainted engineers, mission planners, and the public with the risk
stemming from high-energy phases of flight, however, these same groups
often have limited insight into other spaceflight-induced risks to humans1.
The National Aeronautics and Space Administration (NASA) currently
tracks approximately 30 human health and performance risks that crew-
members face during spaceflight, all of which derive from the 5 hazards of
human spaceflight2–4. These human system risks are evaluated against 8
design referencemissions (DRMs), which aremission templates for assessing
risk posture relevant to current missions and to expected future missions3–5.
DRMs include short-duration missions in low Earth orbit, missions to the
lunar orbit or the lunar surface, and excursions to Mars that can last up to 3
years. Although efforts have been made to understand and mitigate these
risks, significantuncertainty remains regardinghowmuch risk crewmembers
will face asmission durations increase and flights extend further fromEarth6.

In addition toprotecting astronauts during anygivenmission,NASA is
responsible for the clinical care of astronauts after their missions, and, to
some extent, after their careers have ended. Research into spaceflight-
induced human system risks has traditionally been organized into specia-
lized risk “silos,” which was advantageous for characterizing risk when
NASA’sHumanSystemRiskBoard (HSRB) risk portfoliomanagementwas
being established and risk records were being developed. However, because
spaceflight-induced risk to the human system is multifactorial and cumu-
lative, this siloed perspective challenges communication among experts
from different disciplines who struggle to contextualize the contribution of
risk fromoutside their specialty area.Differingmentalmodels of the sources
of risk, the factors contributing to risk, and the relationships between those
factors impede clear and informed recommendations regarding the urgency
and prioritization of addressing risk within the limited NASA resources.
Cross-disciplinary research efforts have emerged to address the issue of
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‘siloing’, however, better methods of characterizing and representing the
complex interactions between risks are still needed7. The lack of systematic
approaches to characterize the complexity and multifactorial contributions
to human system risk also exacerbates the challenge of conveying that
spaceflight-induced deterioration of human capability must be adequately
addressed when designing and building spacecraft systems. The inherent
complexity of human system risks and spacecraft systems necessitates new
approaches to understanding and communicating risk so that investments
in risk reduction in one area do not create unintended consequences (i.e.,
elevated risk in other mission areas)2,8.

Establishing a common understanding of the state of these risks and
avoiding unintended consequences is an ongoing challenge for at least 2
reasons. First, thefield of human spaceflight is still nascent, and the evidence
base that describes how humans respond to the spaceflight environment is
still being assembled. The strength of conclusions that can be drawn from
available evidence are often not sufficient to reliably bound risk for mission
planners and program managers. Second, spaceflight-induced effects on
human health and performance result from a complex interplay of factors
that range from the genetic, molecular, and cellular responses of an indi-
vidual, to the social interactions betweenmultiple individuals whomake up
a team, to the ability of that team to engage successfully with vehicle systems
to resolve anomalies. Assessing human system risk involves many areas of
expertise, imparting a level of complexity that makes it difficult to form a
complete picture of risk. Previous attempts to capture these interactions
throughgraphical representationshavebeen inadequate9,10. The challengeof
addressing systemic complexity is daunting and novel approaches for
mapping, communicating, and analyzing that complexity are lacking in the
human spaceflight community. TheHSRB risk stakeholdersmust prioritize
decisions based on a limited (and potentially nonintegrated) set of infor-
mation about the relative importance of the various risks and the key factors
that contribute to them. Risk stakeholders also lack a way to align the
different mental models of the key risk factors and relationships that are
intuitively held by different subject matter experts (SMEs). This leads to
communication failures within organizations, and between the HSRB and
the operational programs that must consider human system risk when
designing vehicles and planning missions. Because no common terminol-
ogy exists for the risk framework and assessments, this complicates the
process of reaching agreement between stakeholders regarding the relative
importance of the many risk factors, the value of proposed monitoring or
research, and the prioritization of system components needed to reduce
spaceflight-induced risk to humans. The HSRB posited that a map of
interactions that is supported by available evidence and input from SMEs
could help stakeholders interpret the larger complex picture of risk, and this
would lead to improved mitigation of the risks.

Graphs have been used extensively in other areas of health and med-
icine to link related concepts11–15. For example, toxicology studies often
graph adverse outcome pathways to conceptualize physiologic issues and
their complex inter-relationships16. Once the conceptual framework of the
graphs are arranged, standardized representation and terminology are

developed to enable a systematic, repeatable, and quantitative process for
analyzing the complex interactions of factors of importance to the scientific
and clinical communities17–19. NASA’s HSRB piloted an approach based on
similar principles using causal diagrams in the form of directed acyclic
graphs (DAGs) to map each of the human system risks. Initially this effort
was designed to improve communication because the causal flow of each
risk, when communicated in a visual format such as a DAG, facilitates a
common understanding among stakeholders. This graphical format allows
clinicians and researchers to identify the “part” of the risk they are
attempting to characterize ormitigate andwhere additional efforts could be
allocated. This enables a more fluid discussion of how those risk char-
acterization and mitigation activities can impact mission-level outcomes of
concern to other stakeholders, such as program managers. The goal of this
pilot project was to evaluate if causal diagrams can improve the process of
managing human system risks at NASA. The lessons learned from this
project indicate that a larger network of the individual risk diagrams could
be created to support greater insight into the complex interactions between
risks. More importantly, the DAGs also form the basis for a graph schema
that can facilitate systematic and quantitative data-driven approaches for
identifying the gaps in knowledge and spaceflight capability that are critical
for reducing risk during future exploration missions. This paper recounts
the work done to date and explores the advantages and limitations of this
approach.

Methods
Directed acyclic graphs
A graph data structure is composed of a set of vertices (nodes), and a set of
edges (links). Each edge represents a link between 2 nodes, indicating the
nodes areadjacent. A graph canonly have one type of link, either directed or
undirected,making it either adirectedgraphor anundirected graph (seeFig.
1 for examples). For example, if the link between 2 nodes a and b is
undirected (no arrow), thena and b are said to be adjacent (a is adjacent to b
and b is adjacent to a). However, if the link between a and b is directed by an
arrow pointing from a to b, then a is adjacent to b but b is not adjacent to a
(unless another directed link exits going from b back to a). A directed graph
can contain a cycle of one ormore links that extend froma specific node and
return to that same node. A directed graph that has no cycles is known as a
directed acyclic graph (DAG)20.

Therefore, a DAG can be a type of network diagram that, through
specific conventions in its construction, represents causality in a visual
format14,21. Specifically, each directed arrow connecting one node to another
node indicates causality.Causalityheremeans theprobability distributionof
the effect variable is conditional on the value of its causal variable(s). In
simpler terms, we can imagine a suspected causal dichotomous factor: i.e.,
the probability of an outcome is different when the factor is present than
when it is absent. Table 1 shows an example of causal and non-causal
relationships between 2 binary variables, A and B.

As the first column in Table 1 shows, when A is not a cause of B the
probability that outcome B occurs is 0.6, whether factor A is present or not.

Fig. 1 | Examples of graph data structures.
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However, if A is a cause of B, then the probability of event B occurring is
greater in the presence of factorA (0.8) than it is in absence of factor A (0.6).
An example pertaining to spaceflight is that exposure to altered gravity (i.e.,
gravity less than that on Earth [1 g]) causes unloading of bones in the body,
which then causes bone remodeling. This in turn can lead to skeletal fragility
and an increased likelihood of bone fractures. In practice thismeans that the
probability of observing a given amount of bone remodeling is contingent
on the gravity field towhich astronauts are subjected. Future spacemissions
may include exposure to lunar (1/6 g) orMars (3/8 g) gravity in addition to
microgravity exposure in orbit and during deep space transit. This example
spans from a hazard of spaceflight (altered gravity) to cellular level changes
(bone remodeling) to functional changes (skeletal fragility) to an outcome
(bone fracture).

DAG derivation for human system risks
Creating DAGs for each of the human system risks requires SMEs to logi-
callymapoutwhat factors contribute to theflowof each risk. Theflowof the
risk from common starting points to common ending points can be pre-
sented at an appropriate level of detail for non-experts to understand and
can also be expanded in detail to be useful to the SMEs. The process,
therefore, suggests 2 types of DAGs. “Narrative” DAGs convey high-level,
aggregate concepts linking the key components of the causal flow to
downstream effects, and these graphs are used to facilitate communication
and sharedmentalmodels at a board or stakeholdermeeting. Eachnarrative
DAGhas a correspondingwrittennarrative, which is presented as a bulleted
walkthrough of the DAG’s causal story. “Detailed”DAGs support the high-
level “story” of the narrative DAGs and include additional detail that may
help explain causal flow and gaps in knowledge. The detailed DAGs must
conform to that same data schema (the graphical model that defines rela-
tionships between graph entities22) as the high-level data schema in the
narrative DAGs. To ensure compatibility with other risk DAGs, this means
that both the narrative and the detailed DAGs must adhere to strict stan-
dards for representing relationships and prescriptive terminology.

As mentioned previously, no feedback loops are permitted in DAGs.
This requirement ensures that causes precede effects, and that the diagrams
showa simplifiedflowof risk from thehazard exposures to themission-level
outcomes, enabling understanding at a high level. The requirement also
ensures the creators of theDAGsarticulate themost important steps that are
likely to lead to the undesirable outcomes, while avoiding the excess detail

that often derails effective communication about risk. If the graph creators
detect a feedback loop, they must choose the most likely predecessor node
and represent it earlier in the causal chain.

Spaceflight-induced human system risks have historically been con-
ceptualized as deriving from 5 hazards that are encountered at the time of
launch into space2–4,9. Therefore, these hazards are the starting point for the
HSRB’s causal diagramming. Whether an astronaut is launched to sub-
orbital space for a short time or toMars for a year-longmission, exposure to
these hazards induces the physiologic changes they experience during
spaceflight. Physiologic changes alone may not lead to risk, instead the
interaction between human crew capability—which itself may degrade
during spaceflight—and the vehicle andmission systems that the crewmust
operate also contribute to risk.

The mission-level outcomes that represent the best return on invest-
ment for characterizing or mitigating human system risks are those that
matter to 3 groups of risk stakeholders:(1) Astronauts whomust accept the
consequences of spaceflight, both during a mission and long after it the
mission is complete; (2) NASA Program managers who decide what to
include in the vehicles and systems that support human crews in space; and
(3) theNASAOffice of theChiefHealth andMedicalOfficer and theHealth
and Medical Technical Authority who are responsible for NASA’s human
system risks4,5. These groups must consider serious outcomes that could
result fromtradeoffs in resourceswhen spaceflight vehicle resourcesmust be
severely limited2. For this reason, the HSRB defines mission-level outcomes
(that can occur either during or after a mission) as those that rise to clinical
or operational significance, including less severe outcomes such as loss of
mission objectives andworst-case scenarios such as loss of crew life and loss
of a mission.

Basic requirements for human system risk DAGs
All contributing factors included in the human system risk DAGs are
expected to significantly affect risk posture, as determinedby either available
evidence or SMEconcern. The structure of eachDAGstartswith at least one
hazard and ends with at least one of the predefinedmission-level outcomes
(Fig. 2). In between are the nodes and edges of possible contributing factors
relevant to the specific risk.

A node or connection between nodes can be included in a particular
DAG if several conditions are met. First, a logical basis must exist that the
node affects the risk. The HSRB has adopted a subset of 6 criteria noted in
the causal guidelines outlined by Sir A. Bradford Hill to assess level of
evidence and these are described in detail elsewhere4,23,24. The evidence on
hand, as evaluated by the risk custodian team, must meet the principles of
temporality andanalogy as theminimumrequirement to include a node in a
DAG and meet the basis for a “speculative” level of evidence which is the
lowest level4. Temporality states that the effect must occur after the cause
(including any expected delays between them), whereas analogy requires
known evidence of similarities between the postulated association and any
other associations. Second, for a narrative DAG the magnitude of a pro-
posed effect must be sufficient to create a measurable downstream effect on

Table 1 | Illustration of potential causal relationships between
factor A and outcome B

Probability outcome P (B = 1 | A) when…

Value of A A not a cause of B A is a cause of B

Absent 0.6 0.6

Present 0.6 0.8

Fig. 2 | Common starting and ending points for
visualizing risk is the first step to a community-wide
agreement on causal flow that is supported by the
available evidence4.
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one or more adjacent nodes. These 2 requirements help limit the size and
scope of the DAG to key nodes and relationships of interest. Imposing this
structure also helps to ensure that key factors believed to be important to a
given risk can be visually related to the outcomes of interest for risk
concerns.

The basic requirements for a DAG are not sufficient to enable like-to-
like comparison across risks or to reliably illustrate how risks interact: for
this standardized representation of human system risks across DAGs is
needed.

Standardized DAG representation
Between the hazards and the outcomes lie the nodes and links of the causal
diagram that are intended to illustrate key relationships in risk propagation.
Naming and depicting nodes and the links between them in a standardized
fashion ensures information acrossDAGs is similar, and that it is structured
to align with HSRB risk configuration-managed items such as important
contributing factors and countermeasures.

Basic drawing guidance. Nodes in the DAGs are represented by circles,
and edges are represented by arrows that are drawn from causes to effects.
Exogenous nodes have one or more arrows pointing out of them and no
arrowspointing into them, and they donot trace back to thehazards in the
risk causal flow, whereas endogenous nodes have one or more arrows
traceable to the hazards. The first DAGs were drawn using Dagitty
software25, which is freely available on the internet, and later, DAGvision

software was implemented, which is still in development at NASA. The
colors and notations shown in Fig. 3 are simply a function of the DAG-
vision software and may be represented differently by other software.

Contributing factors is a heuristic term that describes any node that is
not a hazard or a mission-level outcome. Countermeasures are a type of
contributing factor that is introduced to a systemspecifically tomitigate risk.
Spaceflight countermeasures are typically specific solutions introduced to
mitigate risk, and can be technology-based (exercise devices, decision sup-
port software, radiation shielding, etc.) or non-technology-based (medica-
tions etc.). The HSRB assigns countermeasures to 3 categories: monitoring,
prevention, or intervention4.

Prevention countermeasures prevent a deleterious impact on health or
performance. For example, exercise prevents muscle atrophy and bone loss
in an altered gravity environment26–28, and can also support behavioral
health by improving mood7.

Intervention countermeasures are implemented in response to a
recognized detriment in human health or performance that has already
occurred. In the case ofmedical care this is often called “treatment,”whereas
in the case of failure of vehicle systems this is referred to as “repair.”Both are
interventions to mitigate risk resulting from a change in the human system
state. Pharmaceuticals can play a preventive role or a treatment role
depending on whether they are deployed before or in response to a parti-
cular medical event.

Monitoring is included as a countermeasure because many preventive
or intervention actions are implemented based onmonitoring of the state of

Fig. 3 | Legend for the node and edge visualizations
in the DAGVision software.

Fig. 4 | Approaches to visualizing carbon mon-
oxide exposure as a risk. (A) Shows the general
approach to graphingmonitoring capability and (B)
shows the spaceflight specific example for carbon
monoxide exposure.
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the human system. If monitoring sensors and data management are not
effectively designed into the space vehicle systems using human system
integration processes8,29, the human effectively becomes the monitor
themselves, i.e. injury from invisible sources like radiation, atmospheric

toxins, etc. is detected onlywhensymptomsdevelop,whichmanybe too late
to prevent adverse outcomes in some DRMs. These risk situations must be
evident to mission planners so that they can make risk-informed decisions
about what to include in vehicle systems. The inclusion of monitoring
hardware and software in the vehicle depends ondecisionsmade early in the
systems engineering life-cycle2, so monitoring capabilities are included in
DAGs as a necessary predecessor to various intervention countermeasures.
Panel A of Fig. 4 shows the standard representation of the relationships
between any monitoring capability, the variable being monitored, and the
treatment or intervention influenced by the monitoring information col-
lected. (Note specific node names are bolded in the discussion below to
differentiate them from concepts that are not specifically referencing
the nodes).

Panel B of Fig. 4 shows an example where the monitor in question is a
carbon monoxide monitor and the variable being measured is the carbon
monoxide level in the atmosphere of the spacecraft. The sensor that mea-
sures and the variable being measured must be present for detection to
occur. Once detection occurs it influences the probability that the inter-
vention will occur, in this case the use of oxygen masks. The carbon
monoxide level directly affects the probability of environmental injury
occurring due to the exposure: hence the causal relationship shown.
However, if oxygen masks are used, that will also affect the probability of
environmental injury. Therefore, both the level being detected, and the
intervention are immediately adjacent to the environmental injury node,
whereas the detector and detection are upstream of the intervention node.
This example provides insight into the standardized representation of
relationships used in all the risk DAGs.

Fig. 5 | The category node “individual factors” houses 2 direct sub-nodes—mod-
ifiable factors and non-modifiable factors—that in turn house several sub-nodes
shown in list format.

Fig. 6 | Ego network of the bone remodeling node from the bone fracture directed
acyclic graphs (DAG). Panel (A) shows the high-level narrative visual. Panel (B)
shows the detailed level visual where bone remodeling is subdivided onto 2 sub-
nodes named bone resorption and bone formation. Panel (C) shows the edge-

worked narrative DAG that is visually simplified using only bone remodeling. Panel
(D) shows the edge-worked detailed DAG that is more visually complex. Pharm =
Pharmacy.
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Nesting of nodes. Standardized representation also includes the rela-
tionship between high-level nodal information and more detailed nodal
information. Narrative DAGs are specifically designed to convey high-
level information, and this can oversimplify some of the details beneath
high-level nodes. Nodal nesting is the relationship between a high-level
node and 2 or more sub-nodes. “Category” nodes are the higher-level
nodes, and “sub-nodes” indicate relationships with any “category nodes.”
Fig. 5 illustrates nodal nesting for a category node titled individual fac-
tors that has 2 sub-nodes—modifiable factors and non-modifiable
factors—that have another layer of sub-nodes shown in list format.

The term “nesting” is used because the sub-nodes appear to be nested
within the higher-level nodes. Including a category node in a DAG can help
to simplify the visualization, especially innarrativeDAGs. IndetailedDAGs,
the category node canbe replacedwith the sub-nodes that are relevant to the
specific risk. Each arrow that goes to and fromacategorynodemust connect
to at least one nested sub-node, as illustrated in Fig. 6.

Figure 6 shows an ego network for a portion of the spaceflight-induced
risk of bone fracture tohelp illustrate this nesting concept.An egonetwork is
a sub-graph that visualizes only a specificnodeof interest and anynodes that
are within a specified network distance, or “radius”, of this node. In this
example only the adjacent causes and adjacent effects on the bone remo-
delingnodewithin the larger bone fracture riskDAGare visualized. PanelA
shows the high-level causal hypothesis including the category node bone
remodeling. A more detailed breakdown of bone remodeling into the
nested sub-nodes bone formation and bone resorption is shown in the
detailed level DAG (panel B). The 2 gray nodes in panel A and panel B
represent an influence on bone remodeling from food and nutrition (risk)
and pharmacy (risk). However, the more detailed panel B shows that food
and nutrition (risk) only cause changes in bone resorption and not bone
formation, whereas the pharmacy (risk) causes changes in both bone
resorption and bone formation. Panels C and D of Fig. 6 show the same
visuals at amore detailed level: here salient nested nodes under the gray risk
nodes are identified and replace the gray node, allowing the nested node or
nodes to belong to both risks simultaneously and to demonstrate causal
paths by which the risks interface. The HSRB used the term “edge work” to
describe the process of visually aligning the nodes that overlap risks and
ensuring that those connections do not inadvertently create cycles. For
example, the blue node titled nutrients in Fig. 6C, D replaces the gray food

andnutrition (risk)node inFig. 6A,Bbecausenutrients is a keynode in the
food and nutrition risk DAG that is known to affect bone remodeling
through effects on osteoclastic activity30. In the case of the pharmacy risk,
specific medications such as bisphosphonates are known to affect osteo-
clastic activity thereby affecting bone resorption31,32. Prolonged use of
corticosteroids can affect both osteoblast and osteoclast activity and
therefore affects both bone formation and bone resorption33 All 4 of these
visuals are equivalent, but each serves a different communication purpose,
and illustrate thedifferences betweennarrative anddetailed visuals aswell as
edge-worked visuals.

Harmonized and neutral terminology. Individual risk DAGs can be
combined into a larger DAG where nodes appear in multiple DAGs and
connect the separate networks into a single network. However, for soft-
ware to represent this effectively, these nodes must be named using a
common lexicon. Before DAGs were implemented different groups of
SMEs used at least 6 terms, including microgravity, gravitational force,
weightlessness, partial gravity, to describe the altered gravity hazard. The
use of different terminology introduces confusion in discussions among
the human health and performance community at NASA and would
make combining risk networks impossible if not resolved.

Harmonization is an intentional process intended to ensure that dif-
ferent groups of experts use the same name and definition for the same
concepts. The HSRB reviewed and approved a set of harmonized termi-
nology for use in the DAGs and for risk discussion more broadly. The risk
custodian teams, whomaintain the DAGs, can propose new terminology if
the concept they seek to include is not already represented within the har-
monized list.

The language used for namingnodes should identify a randomvariable
(i.e., neutral terminology) rather than a realized value of a random variable.
For example, a node should be named nutritional status (a random vari-
able) rather than inadequate nutrition (a realized value of the random
variable nutritional status). This ensures maximum utility of the node in
the DAG because it reflects the idea that nutritional status may exert
influence on various nodes when it is either adequate or inadequate. This
makes nodes both risk-independent and DRM-independent, and the risk
steps therefore apply from the moment of launch to the moment of crew
recovery on Earth for any mission.

Fig. 7 | The initial directed acyclic graphs for the risk of spaceflight associated
neuro-ocular syndrome (SANS) that was accepted by the Human Systems Risk
Board in April 2020.Metadata was assigned to the nodes through color and border
differentiation and a legend illustrates the different features of specific nodes.

Additionally, solid lines represent a strong level of evidence and dotted lines
represent a weak level of evidence (i.e., the strength of the evidence that supports the
specific assertion of causal connection).
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Configuration management. An inevitable question arises from any
attempt tomap out the factors that are important to a human system risk:
who decides what is important? This is not a trivial question because the
community who evaluates and provides input to the DAGs come from a
variety of disparate fields that include medicine, life sciences, pharma-
cology, food sciences, behavioral health, exercise physiology, engineer-
ing, human factors, and many more. The initial narrative DAG must
reflect the needs of the stakeholders involved in assessing and mitigating
risk across all these domains. The risk custodian team assigned to each
risk, which includes SMEs from operations, research, and epidemiology
at NASA, and representatives from the HSRB and other SMEs as needed
confer to create the basic DAG. The HSRB provides a forum where
100–200 members of the NASA human health and performance com-
munity review and provide input to each of the risk assessments, and
since January 2020, this has included a review and discussion of the DAG
for each risk. Each risk update goes through the HSRB configuration-
management process that includes a formal, tracked comment period
and a comment resolution process4. Any disagreements are discussed and
resolved either by the board or by the board chair, based on evidence
standards used by theHSRB4,24. In this way, the narrative DAGs and their
write-ups receive crowd-sourced feedback that ensures their causal
stories adhere to the most current evidence-based knowledge available
regarding human health and performance in spaceflight.

In considering new evidence that may challenge the structure of the
DAG, approaches are being developed to evaluate whether or not the cur-
rent DAG structure is consistent with new data. A proposed set of proce-
dures for DAG validation was investigated using a subset of the bone
fracture risk DAG and four datasets of animal studies that analyzed bone
remodeling in altered gravity environments34. Tests of expected marginal
correlation and conditional independencies derived from theDAG indicate
that the rodent data largely supported the structure of the diagram. Prin-
ciples for evaluating incongruencies between the independencies and the
DAG structure were articulated to help interpret the reasons for any
mismatch34. These approaches help guide risk custodians analysis for vali-
dation of DAGs in a structured and repeatable manner.

The HSRB only configuration manages the narrative DAG and
accompanying written narrative for each risk. DAGs that depict a more

detailed view of each risk are not subject to the configuration management
process because of the excessive amount of detail and time thiswould take at
the HSRB.

Applications of DAGs
EvolvingDAGs. Once the causal flow in aDAG is agreed upon,metadata
can be assigned to the nodes or the edges to allow visualization of relevant
parameters. For example, the level of the evidence that is available to
support any specific claim of causality within a DAG can be illustrated by
varying the appearance of the connecting edges between the relevant
nodes. Figure 7 shows the initial DAG for the spaceflight associated
neuro-ocular syndrome (SANS) risk that was approved at the HSRB on
April 23, 2020. This DAG was created prior to instituting standardized
representation, harmonized and neutral terminology, and interface
mapping with other human system risks. Various visual aspects of the
nodes and edges are differentiated to enhance understanding of the risk
story. (This image was created in Microsoft PowerPoint rather than in
DAGvision).

In this visualization, the term “microgravity” was used for the hazard
that is now named “altered gravity.”Dotted lines represent areas where the
evidence base is weak and solid lines represent connections with a strong
evidence base to support the hypothesized causal link. Node color and
border thickness are used to differentiate different types of node properties.
Metadata associatedwith the nodes and edges of any riskDAGcan improve
the communication and analysis of information within the network.

In Fig. 8, the core story from the earlier DAG is retained but is
enhanced by additional information that the SANS Risk Custodian Team
incorporated from discussions within the HSRB community and refine-
ment due to the standardization processes for DAG development. One
specific change is that a pathway from the vehicle design and crew health
andperformance system enables inclusion of various countermeasures and
the likely location of effect on the flow of risk. Because the mass, volume,
power, and other allocations for the vehicles and systems are determined by
distance fromEarth, that pathway originateswith that hazard and is shown
at the top of the image. Trade space decisions in the design process will
determine if the potential countermeasures for mitigation of a risk are
included in any givenmission. If not, the risk posture will likely be elevated.

Fig. 8 | The most recent spaceflight associated neuro-ocular syndrome (SANS)
risk directed acyclic graph (DAG) approved by theHuman SystemsRisk Board in
May 2022. The DAGs are expected to change over time as additional evidence is

gathered and communication needs change39. HSIA Human System Integration
Architecture, CO2 Carbon Dioxide, Pharm Pharmacy, MRI Magnetic Resonance
Imaging. Legend is Fig. 3.
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Additionally, astronaut selection affects individual factors that
include biologic variability of response to the spaceflight environment, and
this also affects risk. This pathway is shown at the bottomof theDAGwhere
multiple arrows are drawn to the physiologic and functional changes that
occur during spaceflight. This does not imply that astronauts are inten-
tionally selected because they have optimal responses, but rather that the
chosen crewmembers will have some variation in their physiologic and
functional responses.

The DAGs are expected to evolve and change as we learn more about
spaceflight-induced human system risks. By establishing guidelines,
implementing a configuration management process, and approving a
starting version, the HSRB seeks to ensure that the causal diagrams used by
NASA are the best possible reflection of the current consensus of the risk
posture.

Connecting DAGs. Configuration managed DAGs not only provide a
communal understanding of how spaceflight-induced risks have evolved,
they also help inform how the risks interact with one another. Intuitively,
it seems obvious that the 30 spaceflight-induced risks are interdependent,
and NASA has pursued methods to elucidate and document the inter-
relationships among risks and any potential cumulative effects they
might pose on mission-level outcomes9,10. Because concept representa-
tion and terminology are standardized, and the edge work systematically
replaces the gray risk placeholder nodes with blue contributing factor
nodes, the set of individual DAGs can be combined through common
nodes to create a risk network. Once created, this network offers the
possibility of structural and computational analysis to gain insights that
are unavailable in the silo approach to risk35. Figure 9 shows the first
attempt to link the DAGs for all 30 risks into a single risk network.

This preliminary risk network image is not an official product of the
HSRB but illustrates the complexity of the interrelationships and that the
interpretation and analysis are beyond manual approaches. This highlights
the need to develop anduse computer-basednetwork approaches to analyze
the structure for insight into the effects of interactions across risks. To
provide a future pathway to systematic and quantitative analysis of risk
using these DAGs the eventual goal has been to use an integrated risk DAG

like the one shown in Fig. 9 as a Bayesian network. In this context uncer-
tainty must be considered in both the evaluation of new evidence and the
analysis of an increasingly complex network.While this is considered future
work, approaches for assessing epistemic and aleatory uncertainty in
Bayesian networks are available from a variety of fields such as environ-
mental risk assessment36, socio-ecological network modeling37, and bio-
geochemical modeling38.

Outlook and summary
The acceptance of DAGs at the HSRB is a starting point to implementing
future changes that have sufficient supporting evidence to inform additions
or subtractions of nodes, or changes in the connections between nodes. The
dynamic nature of DAGs also accommodates discussion and inclusion of
speculative areas of concern as a potential falsifiable hypothesis in the larger
network of risk. The terms dynamic and falsifiable are intentional here. All
the connections within these DAGs are potentially falsifiable–they are
assertions of causal interactions that are based on current understanding of
the evidence.However, thehumanspaceflight evidence base is thin,with less
than 700 humans having experienced the challenges of the spaceflight
environment. As more people fly and new evidence is gathered, we expect
that some connections will be disproven ormodified by emerging evidence.
These DAGs provide a starting place fromwhich to document the ongoing
changes in our knowledge.

TheHSRBprocess for updatingDAGs alignswithNASA’s continuous
riskmanagement processes and enables theNASAcommunity to track how
the evolving evidence from research, occupational surveillance, clinical care,
and other sources elucidates each of the human system risks. Including the
level of evidence scores in the updatedDAGswill help programmanagers to
makedecisions24. For instance, distinguishing the areasofweak evidence can
identify places in the DAG where new nodes should be considered and can
identify gaps in knowledge or capability for addressing spaceflight-induced
risk to the human system. Identifying the relationships between proposed
new nodes that have pathways to mission-level outcomes can help identify
the areas of research that are likely to havemore valuable on investment for
reducing risk and provides research scientistswith away to convey their risk
concerns to program managers by pointing to a node or a connection

Fig. 9 | The first draft risk network created from detailed versions of the 30 individual directed acyclic graphs. Orange nodes are hazards (left edge of diagram), black
nodes are mission level outcomes (right side of diagram), and blue nodes are contributing factors.
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between nodes where their research will help address a deficit in knowledge
or capability. Similarly, visually identifying strong evidence supporting
causal pathways can help justify design decisions for program managers
who may be unsure of the relative importance of competing priorities and
can help to justify the inclusion (or exclusion) of countermeasures such as
certain medications, medical technologies such as ultrasound or defi-
brillators, or monitoring systems under consideration for spaceflight mis-
sions. In the context of operations, a strong level of evidence can help
establish updates to flight rules or clinical practice guidelines that are based
on knowledge that accrued since design decisions were made years before a
mission.

Although this tool and approach has strengths, it also has challenges
and limitations. The human health and performance community at NASA
are not the only group characterizing spaceflight-induced human system
risk. Other international space agencies, academic researchers, and the
emerging commercial space enterprise hold sources of spaceflight data that
should be considered. It is our hope that in publishing this approach
alongside the recently publishednarrativeDAGs39 will provide these entities
with an understanding of NASA’s perspective on the human system risks
and empower them to bring forward their insights to help refine and
interpret risk. NASA has created an HSRB website (https://www.nasa.gov/
hhp/hsrb)where allDAGrelatedmaterial is available, and comments can be
submitted for consideration40.

It should also be noted that once individual DAGs are created and
documented, they could impart anchoring bias on the scientific community,
causing the community to rely too heavily on the first DAG developed. As
such, it is important to continually challenge the story that each DAG
presents when new evidence emerges, and to add and subtract from the
story when sufficient evidence is gathered to justify these updates. Naming
conventions for detailed levels of risk are unlikely to satisfy all stakeholders,
so there must be a means of settling debate on how to name and portray
nodes, categories, and relationships between nodes. This should be guided
by the strength of evidence brought forward for consideration. In cases of
dissent on terminology, NASA’s HSRB has the authority to determine what
the “official”DAG will be until the next update to the risk occurs as part of
the continuous risk management process4. Node naming and para-
meterization changes can and should be documented as risks are updated.

The appropriate level of detail for nodes can also be a source of dis-
agreement. Some might argue that specific medical conditions should be
explicitly shown in individual risk DAGs. Although this is desirable for a
detailed DAG that is intended to be analyzed through computer-based data
analytics, it is overwhelming for the HSRBmembers or programmanagers
whomust understand the high-level sources of risk. The appropriate level of
detail for narrative DAGs depends on the purpose for which it is being
employed and must be determined by the application. The strength of a
graphical schema like this is that attributes of nodes and edges can be
assigned easily and the model itself can be updated in a native graph data-
base without losing assignments that are already in place. From a man-
agement perspective this has several advantages over relational databases.
Once a schema has been created, a variety of powerful analytic algorithms
can be used to gain insight from the graph itself and from data or evidence
assigned to components of the graph41.

A common criticism of the acyclic requirement is that it ignores
feedback loops that exist in the real world and are important to scientific
understanding of the causal components of risk. The response to this cri-
ticism is 2-fold. First, the path through aDAG represents causal factors that
influence effects over time. If a path leads back to its source, this will violate
the coherence of the time sequence inherent in the DAG. This is true for
even the simplest feedback loop: 2 nodes with directed arrows pointing at
eachother. For this feedback representation to be accurate, each nodewould
be the cause of each other at precisely the same moment. Instead, we
recognize that feedback loops are never simultaneous; they occur in a
sequence, even if the timespan of that sequence is quite small. Second, if a
cycle is truly needed to understand the science, this can be represented on
the detailed DAG using time-indexed variables to visually represent the

concepts as nodes that occur repeatedly over time. Using the current gui-
dance, duration of exposure is represented as a single node in places where
time is expected to contribute a clinically or operationally significant impact
to the risk posture under evaluation. This approach is likely to be re-
evaluated in future work.

Although theHSRBhas createdDAGs for eachof the30 configuration-
managed risks, it is the board’s intention to continue curating the existing
DAGs and developing newDAGs for any future risks yet to be defined. The
standardized approach to representationand lexicon inDAGs is intended to
facilitate the creation of an integrated risk network that can be used for data-
driven decisions regarding risk characterization and mitigation as the evi-
dence base for human spaceflight evolves. Developing the DAGs, DAG
narratives, data model, and processes that surround the DAG creation and
maintenance is the first step towards data-driven decisions. Software
packages that maintain the DAGs are being developed. Ongoing work in
this area includes developing algorithms for those software packages that
may enable a quantitative, systematic, and repeatable approach for mana-
ging spaceflight-induced human system risk.
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