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ABSTRACT 

An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic 

analysis of fluid systems and components.  The procedure is applicable for a flow network consisting of 

pipes and various fittings where flow is assumed to be one dimensional.  It can also be used to simulate 

flow in a component by modeling a multi-dimensional flow using the same numerical scheme.  The flow 

domain is discretized into a number of interconnected control volumes located arbitrarily in space.  The 

conservation equations for each control volume account for the transport of mass, momentum and entropy 

from the neighboring control volumes.  In addition, they also include the sources of each conserved 

variable and time dependant terms.  The source term of the entropy equation contains entropy generation 

due to heat transfer and fluid friction.  Thermodynamic properties are computed from the equation of state 

of a real fluid.  The system of equations is solved by a hybrid numerical method, which is a combination of 

simultaneous Newton-Raphson and successive substitution schemes.  The paper also describes the 

application and verification of the procedure by comparing its predictions with the analytical and 

numerical solution of several benchmark problems. 

 

NOMENCLATURE 

 

A Area (ft2) 

A     Pump Characteristic Curve Coefficient 

B Pump Characteristic Curve Coefficient 

D Diameter (ft) 

f  Darcy Friction Factor 

g Gravitational Acceleration (ft/sec2 )  

gc Conversion Constant (=32.174 lbm-ft/lbf  

-sec2 ) 

J Mechanical Equivalent of Heat (778 ft-lbf  

/Btu) 

Kf Flow Resistance Coefficient (lbf -sec2 /lbm
2 

-ft2) 

K Non-dimensional Rotating Flow Resistance 

Coefficient 

L Length (ft) 

M Molecular Weight 

m Resident Mass (lbm) 

m
.

 Mass Flow Rate (lbm/sec) 

p Pressure (lbf / ft2 ) 

Q Heat Source (Btu/sec) 

Re Reynolds Number  

        (Re =  uD /  ) 

R Gas Constant (lbf -ft/lbm-R) 

 

r Radius (ft) 

S Momentum Source(lbf  ) 

S
gen

.

Entropy generation rate (Btu/R-sec) 

s Entropy (Btu/lbm - R) 

T Temperature (R) 

u Longitudinal Velocity (ft/sec) 

v Transverse Velocity (ft/sec) 

V Volume (ft3  ) 

x Coordinate Direction 

y Coordinate Direction 

z Compressibility Factor 

Greek 

 Density (lbm/ft3  ) 

 Angle Between Branch Flow Velocity Vector 

and Gravity Vector (deg), 

n  Angle Between Neighboring Branches for  

Computing Shear (deg) 

 Angular Velocity (rad/sec) 

  Absolute Roughness (in) 

/D Relative Roughness 

 Viscosity (lb/ft-sec) 

 Specific Heat Ratio 

 Time Step (sec) 

 Time (sec)        

___________________________________________________________________ 
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INTRODUCTION 

 

A numerical procedure capable of modeling fluid 

flow for both systems and components is of 
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significant importance in aerospace and many 

other engineering industries.  Although separate 

numerical methods are available for performing 

system and component analysis, there are not 

many attempts to develop an unified procedure 

applicable to both systems and components.  

Hardy Cross1 developed a numerical method for 

calculating flow and pressure distribution in a 

flow network.  This method has been widely 

used in modeling water distribution systems in 

municipalities.  The Hardy Cross method 

assumes an equilibrium between pressure and 

friction forces in steady and incompressible flow.  

As a result it has not been successfully used in 

unsteady and compressible flow calculations 

where inertia force is important. 

 

Patankar and Spalding2 developed a finite 

volume procedure to solve for Navier-Stokes 

equations in a structured co-ordinate system.  

Since the publication of the original paper in 

1972, there have been several developments 

reported to improve the numerical 

performance of the original algorithm.  Several 

general purpose computer programs that have 

been developed based on these procedures are 

increasingly being used for component 

analysis. 

 

However, very few applications of the finite 

volume method have been reported for system 

analysis.  Datta and Majumdar3 used this 

solution algorithm to develop a calculation 

procedure for manifold flow systems. 

However, this procedure cannot be used for 

simulating a flow network due to its 

dependence on a structured co-ordinate 

system.  The purpose of this paper is to present 

a finite volume procedure based on an 

unstructured co-ordinate system that can be 

applied to analyze both systems and 

components. 

 

MATHEMATICAL FORMULATION 

 

All finite volume procedures require solution 

of mass, momentum and energy conservation 

equations in a flow domain consisting of 

interconnected control volumes.  For turbulent 

flows, additional conservation equations of 

turbulence parameters are solved to calculate 

enhanced momentum exchanges due to 

turbulence.  For reactive flows, specie 

conservation equations are solved in 

conjunction with other conservation equations.  

The main characteristic features of the present 

method are the following: 

 

Unstructured Co-ordinate System 

A flow domain is resolved into a network 

consisting of nodes and branches.  The nodes 

are connected by branches.  The nodes are 

classified into two categories: boundary and 

internal nodes.  At a boundary node, pressure 

and temperature are known; at an internal node 

they are computed by solving conservation 

equations.  Each internal node can be 

connected with an arbitrary number of internal 

and boundary nodes.  At each node mass and 

entropy conservation equations are solved in 

conjunction with the equation of state.  The 

momentum conservation equations are solved 

at all branches.  This process of discretization 

allows the development of the set of 

conservation equations in an unstructured co-

ordinate system.  A schematic of a typical flow 

network is shown in Figure 1. 

 

Viscous Effect 

In conventional finite volume procedure, 

viscous effects are modeled by shear stress, 

which is expressed as a product of effective 

viscosity and local velocity gradient.  In order 

to calculate the velocity gradient accurately, 

the finite volume procedure requires a large 

number of control volumes.  It is not practical 

to use such a large mesh for a system level 

calculation.  Therefore in this method, the 

frictional effect is modeled in the momentum 

equation by the following expression: 

p K mfriction f=
. 2

  (1) 

where K f   is a function of Reynolds number, 

density, area and geometry of the branch in 

consideration.  However for multi-dimensional  
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Figure 1 - Schematic of a Flow System Consisting of Nodes and Branches 

 

flows, viscous effects are modeled by 

conventional shear stress method. 

 

Thermodynamic Formulation 

Entropy is calculated at every internal node 

using a second law analysis4 of the control 

volume.  The temperatures are then calculated 

from pressure and entropy, and densities are 

calculated from a modified virial equation of 

state5.  During each iteration cycle, thermo- 

dynamic properties are calculated to ensure 

thermodynamic equilibrium prevails during 

the course of attaining the solution. 

 

Solution Scheme 

The system of equations is solved by a hybrid 

numerical scheme, which is a combination of 

the Newton-Raphson and successive sub- 

stitution schemes.  The equations which are 

strongly coupled are solved by the Newton-

Raphson method.  The equations which are 

weakly coupled are solved by the successive 

substitution scheme.  The successive sub- 

stitution scheme is also used to develop an 

initial guess for the Newton-Raphson scheme 

to ensure numerical stability. 

 

GOVERNING EQUATIONS 

 

Figure 2 displays a schematic showing 

adjacent nodes, their connecting branches, and 

the indexing system used in this paper.  In 

order to solve for the unknown variables, mass 

and entropy conservation equations and the 

equation of thermodynamic state are written 

for each internal node and flow rate equations 

are written for each branch. 

 

Mass Conservation Equation 

 

 + −
=

=

=






m m
m

j

j n

ij

.

1
  (2) 

Equation 2 requires that, for the transient 

formulation, the net mass flow from a given 

node must equate to the rate of change of mass in 

the control volume.  In the steady state 

formulation, the left hand side of the equation is 
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zero.  This implies that the total mass flow rate 

into a node is equal to the total mass flow rate 

out of the node. 
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Figure 2- Schematic of Nodes,  Branches and 

Indexing Practice 

 

Momentum Conservation Equation 

 

The flow rate in a branch is calculated from 

the momentum conservation equation 

(Equation 3) which represents the balance of 

fluid forces acting on a given branch.  A 

typical branch configuration is shown in 

Figure 3.  Inertia, pressure, gravity, friction 

and centrifugal forces are considered in the 

conservation equation.  In addition to these 

five forces, a source term S has been provided 

to represent any external momentum sources.  

For example, this external momentum source 

term can be used to model a pump in a flow 

system. 

 

The two terms in the left hand side of the 

momentum equation represent the inertia of 

the fluid.  The first one is the time dependent 

term and must be considered for unsteady 

calculations.  The second term is significant 

when there is a large change in area or density 

from branch to branch.  The first term in the 

right hand side of the momentum equation 

represents the pressure gradient in the branch.  

The pressures are located at the upstream and 

downstream face of a branch.  The second 

term represents the effect of gravity.  The 

gravity vector makes an angle () with the 

assumed flow direction vector.  The third term 

represents the frictional effect.  Friction was 

modeled as a product of Kf, the area,  and the 

square of the flow rate.  Kf  is a function of the 

fluid density in the branch and the nature of 

the flow passage being modeled by the branch.  

The calculation of Kf  for different types of 

flow passages is described later in this paper.  

The fourth term in the momentum equation 

represents the effect of the centrifugal force.  

This term will be present only when the branch 

is rotating as shown in Figure 3.  Krot   is the 

factor representing the fluid rotation.  Krot is 

unity when the fluid and the surrounding solid 

surface rotate with the same speed.  This term 

also requires a knowledge of the distances of 

the upstream and downstream faces of the 

branch from the axis of rotation. 
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Figure 3 - Schematic of a Branch Showing   

Gravity and Rotation 
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Entropy Conservation Equation 

 

The entropy conservation equation for node i, 

shown in Figure 2, can be expressed 

mathematically as shown in Equation 4. 

 

The entropy generation rate due to fluid fric-

tion in a branch is expressed as 

 

S
m p

T J

K m

T J
ij gen

ij ij viscous

u u

f ij

u u

.

,

.

,

.

= =











 

3

(4a)

      

Equation 4 shows that for unsteady flow, the 

rate of increase of entropy in the control 

volume is equal to the rate of entropy transport 

into the control volume plus the rate of entropy 

generation in all upstream branches due to 

fluid friction plus the rate of entropy added to 

the control volume due to heat transfer.  The 

MAX operator in Equation 4 reflects the use of 

an upwind differencing scheme  which has 

been extensively employed in the numerical 

solution of Navier-Stokes equations in 

convection heat transfer and fluid flow 

applications.  When the flow direction is not 

known, this operator allows the transport of 

entropy only from its upstream neighbor.  In 

other words, the upstream neighbor influences 

its downstream neighbor but not vice versa.  

The first term in the right hand side of the 

equation represents the advective transport of 

entropy from neighboring nodes.  The second 

term represents the rate of entropy generation 

in branches connected to the ith  node.  The 

third term represents entropy change due to 

heat transfer.   

 

Equation of State 

 

A modified virial equation of state   is used to 

calculate the density from the computed 

pressure and temperature at a given node. 

 

( ) ( )p A T B T ei

i

i N

i

j

j

j M

j c= +

=

=

=

=

+ − 
1 1

2 1 2

    (5)

 

Ai(T) and Bj(T) are polynomials in T and 1/T 

 

This equation was originally developed by 

Benedict, Webb and Rubin (BWR) and later 

modified by Bender5 .  This equation was the 

basis of the computer code GASP developed 

by Hendricks et al6.  This equation enabled 

PVT calculations to be made in the liquid and 

vapor phases.  The derived properties of 

enthalpy and entropy were also  obtained.  The 

Table 1 - Mathematical Closure 
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Unknown Variables Available equations to solve 

Pressure Mass Conservation Equation (Eqn. 2) 

Flow rate Momentum Conservation Equation (Eqn.3) 

Temperature Second Law of Thermodynamics (Eqn. 4) 

Density Equation of State (Eqn. 5) 

Mass (Unsteady Flow only) Compressibility Factor (Eqn 6) 

 

present method uses the GASP computer code 

to compute density and other thermophysical 

properties during iterative cycles of 

computation. 

 

Compressibility Factor 

For unsteady flow, resident mass in a control 

volume is calculated from the compressibility 

factor assuming a thermodynamic equilibrium  

(Equation 6). 

 

m
pV

RTz
=    (6) 

 

Table 1 shows how each equation is used to 

calculate the unknown variables to 

demonstrate the problem of mathematical 

closure. 

     

Multi-Dimensional Flow 

Multi-dimensional conservation equations 

must account for the transport of mass, 

momentum and entropy into and out of the 

control volume from all directions in space.  

The scalar transport equations (i.e., mass and 

entropy conservation equations) can account 

for such transport because each internal node 

can be connected with multiple neighboring 

nodes located in space in any arbitrary location 

(Figure 2).  Equations 2 and 4 account for the 

transport of mass and entropy respectively 

from all directions in space.  On the other 

hand, the momentum conservation equation 

(Equation 3) is one dimensional.  Multi-

dimensional momentum transport can be 

accounted for by incorporating two additional 

terms in the momentum equation.  These terms 

include: (a) momentum transport due to shear, 

and (b) momentum transport due to the 

transverse component of velocity. 

 

These two terms can be identified in the two-

dimensional steady state Navier-Stokes 

equation which can be expressed as: 

( ) ( )
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x
+
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u

y
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2

2

2
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(7) 

 

The first term on the left hand side of Equation 

7 corresponds to the inertia term in Equation 3.  

The second term on the left hand side of 

Equation 7 corresponds to the transverse 

momentum exchange.  The first term on the 

right hand side of Equation 7 corresponds to 

the pressure term.  The second term on the 

right hand side of Equation 7 corresponds to 

the gravity term.  The third term on the right 

hand side of the equation is negligible (based 

on an order of magnitude argument).  The 

fourth term on the right hand side corresponds 

to the friction term in the one dimensional 

momentum conservation equation.  For multi-

dimensional flow, friction is modeled by shear 

force as discussed below. 

 

Momentum Transport Due to Shear 

 

N1 N2
N12

1 2
12

S1 S2
S12

YN

YSAS

AN

 

 

 

 

 
Figure 4 - Branch and Node Schematic for 

Shear Exchange 

 

Figure 4 represents a set of nodes and branches 

for which shear forces are exchanged.  Let 

branch 12 represent the branch for which the 

shear force is to be calculated.  Branches N12 

and S12 represent the parallel branches which 
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will be used to calculate the shear force on 

branch 12.  Let YS be the distance between 

branches 12 and S12, and let YN be the 

distance between branches 12 and N12.  Let 

AS be the shearing area between branches 12 

and S12 while AN is the shearing area 

between branches 12 and N12. 

 

The shear force on a control volume can be 

expressed as  

 

( )
( )( )( )






 

2

2 2

u

y
V x

Ashear

  
u

y
y z  =

 
u

y
x z =  

u

y
          (8)
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The finite volume formulation for shear for the 

i  branch can be written as: 










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A A

A

shear ij
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
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


where i is the current branch, np  is the number 

of parallel branches to branch i, and ns  is the 

number of parallel solid walls to branch i 
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Figure 5 - Branch and Node Schematic for 

Transverse Momentum Exchange 

 

 

Transverse Momentum Transport 

 

The transverse momentum component of 

Equation 7 can be expressed in terms of a 

force per unit volume. 
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    (10)  

 

Figure 5 represents a set of nodes and branches 

for which transverse momentum exchange will 

take place.  Let branch 12 represent the current 

branch which will receive transverse 

momentum from the surrounding branches.  

Branch S12 represents an adjacent parallel 

branch, while branches S1 and S2 represent 

the adjacent normal branches. 

 

The finite volume formulation for transverse 

momentum for the ith   branch can be written as 

shown in equation 11. 
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Detailed derivation of equation (9) and (11) 

appear in GFSSP User’s Manual.7   

 

SOLUTION PROCEDURE 

 

In the sample circuit shown in Figure 1, 

pressures and temperatures are to be calculated 

for the 7 internal nodes; flow rates are to be 

calculated in the 12 branches.  The total 

number of equations can be evaluated from the 

following relationship: Number of equations = 

Number of internal nodes * Number of scalar 

transport equations + Number of branches.  

Therefore, the total number of equations to be 

solved is 40 (= 7 X 4 + 12). 

 

There is no explicit equation for pressure.  The 

pressures are implicitly computed from the 

mass conservation equation (Equation 2).  The 

flow rates are calculated from Equation 3.  The 

inertia and friction terms are nonlinear in 

Equation 3.  The pressures and mass flow rates 

appear in the flow rate equations.  The flow 

rates also appear in the entropy equation.  The 

governing equations to be solved are strongly 

coupled and nonlinear and therefore they must 

be solved by an iterative method. 
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There are two types of numerical methods 

available to solve a set of non-linear coupled 

algebraic equations: (1) the successive 

substitution method and (2) the Newton-

Raphson method.  In the successive 

substitution method, each equation is 

expressed explicitly to calculate one variable.  

The previously calculated variable is then 

substituted into the other equations to calculate 

another variable.  In one iterative cycle each 

equation is visited.  The iterative cycle is 

continued until the difference in the values of 

the variables in successive iterations becomes 

negligible.  The advantages of the successive 

substitution method are its simplicity to 

program and its low code overhead.  The main 

limitation, however, is finding an optimum 

order for visiting each equation in the model.  

This visiting order, which is called the 

information flow diagram, is crucial for 

convergence.  Under-relaxation (partial 

substitution) of variables is often required to 

obtain numerical stability. 

 

In the Newton-Raphson method, the 

simultaneous solution of a set of non-linear 

equations is achieved through an iterative 

guess and correction procedure.  Instead of 

solving for the variables directly, correction 

equations are constructed for all of the 

variables.  The intent of the correction 

equations is to eliminate the error in each 

equation.  The correction equations are 

constructed in two steps:  (1)  the residual 

errors in all of the equations are estimated and 

(2) the partial derivatives of all of the 

equations,  with respect to each variable, are 

calculated.  The correction equations are then 

solved by the Gaussian elimination method.  

These corrections are then applied to each 

variable, which completes one iteration cycle.  

These iterative cycles of calculations are 

repeated until the residual error in all of the 

equations is reduced to a specified limit.  The 

Newton-Raphson method does not require an 

information flow diagram.  Therefore, it has 

improved convergence characteristics.  The 

main limitation to the Newton-Raphson 

method is its requirement for a large amount of 

computer memory. 

 

The present formulation employs a novel 

numerical scheme, SASS (Simultaneous 

Adjustment with Successive Substitution)  

which is a combination of the successive 

substitution and Newton-Raphson methods.  

The mass and momentum conservation 

equations are solved by the Newton-Raphson 

method.  The entropy conservation equations 

are solved by the successive substitution 

method.  The underlying principle for making 

such a division was that the equations which 

are more strongly coupled are solved by the 

Newton-Raphson method.  The equations 

which are not strongly coupled with the other 

set of equations are solved by the successive 

substitution method.  Thus, the computer 

memory requirement can be significantly 

reduced while maintaining superior numerical 

convergence characteristics.  To improve the 

convergence and stability of the numerical 

scheme, the successive substitution method is 

used to provide an initial guess for pressure 

and flow rate.  Equations 2 and 3 are rewritten 

such that pressures and flow rates can be 

estimated at each node and branch. 

 

In a typical unsteady calculation, the SAAS 

procedure consists of the following steps: 

 

 

1.  At the beginning of a new time step, 

provide the initial solution of all 

dependant variables in the flow domain 

e.g. pressure, resident mass, density and 

entropy at all internal and boundary 

nodes, flow rates at all branches. 

2.  Begin the outer iteration loop; the purpose 

of this loop is to calculate entropy and 

density at all internal nodes and flow 

resistance in the branches. 

3.  Solve mass conservation equation 

(Equation 2) in internal nodes, momentum 

conservation equation in branches 

(Equation 3) and equation of resident 

mass in internal nodes (Equation 6) by 

Newton Raphson method (Appendix - A). 

4.  Solve entropy conservation equation by 

successive substitution method (Appendix 

- B). 

5.  Calculate density and temperature from 

the equation of state for calculated 

pressure and entropy at each internal 

node.  Viscosity is also computed from 

the thermophysical property correlation 

for calculated pressure and temperature. 

6.  Calculate flow resistance parameter (Kf) 

of each branch.  Kf  is a function of 

density and viscosity. 
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7.  Calculate the maximum difference in 

values of entropy, density, and flow 

resistance parameters between successive 

iterations.  Steps 3 to 7 constitute one 

iteration cycle. 

8.  Repeat steps 3 to 7 until the maximum 

difference is less than the specified 

convergence criterion.  Steps 2 to 8 

constitute all operations required for one 

time step. 

9.  Repeat steps 1 to 8 until final time is 

reached. 

    

 

 

 

 

 

 

COMPUTER PROGRAM  

 

The numerical procedure described in the 

previous sections was incorporated into a 

general purpose computer program named 

Generalized Fluid System Simulation Program 

(GFSSP)  .  The computer program has three 

major parts.  The first part consists of the 

subroutines for the preprocessor.  The 

preprocessor allows the user to interactively 

create the flow network model consisting of 

nodes and branches.  All of the input 

specification, including the boundary 

conditions, are specified through the 

preprocessor.  The second major part of the 

program consists of the subroutines that 

provide the initial conditions and then develop 

and solve all of the conservation equations in 

the flow network.  The third part of the 

program consists of  the thermodynamic 

property programs, GASP and WASP that 

provide the necessary thermodynamic and 

thermophysical property data required to solve 

the resulting system of equations. 

 

Figure 6 shows GFSSP’s process flow 

diagram.  The user runs the interactive 

preprocessor to generate the input data file.  

The input data file contains all the information 

necessary for the model.  The solver module 

reads the input data file and produces the 

solution in conjunction with the 

thermodynamic property programs.   

 

 

User

Preprocessor

Input 

Data File

Equation

Generator

Output

Fluid Property 

Programs

Equation

Solver

Solver and Property Module

 
 

 

Figure 6 - GFSSP Process Flow Diagram 
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Figure 7 - Flow system consisting of a pump, valve and pipe line. 
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Figure 8 - Finite volume Model of Flow System Described in Example 1. 

 

RESULTS 

 

The feasibility, robustness and verification of the 

proposed method have been demonstrated by 

simulating five example problems.  They are: 

 

1.  Flow system consisting of pump, valve 

and pipe line. 

2.  Water distribution network. 

3.  Compressible flow through a converging-

diverging nozzle. 

4.  Blow down of a pressurized tank. 

5.  Recirculating flow in a square cavity. 

 

Example 1 - Flow System Consisting of a 

Pump, Valve and a Pipe Line 

 

A problem commonly encountered in fluid 

engineering is to match a pump’s 

characteristics with the operating system’s 

characteristics.  The designer needs to know 

the flow rate in the system and the power 

consumed by the pump.  The system 

considered for this example is shown in Figure 

7. 

 

The fluid system show in Figure 7 was 

simulated with a finite volume model 

consisting of four nodes and three branches as 

shown in Figure 8. 

 

Pump Model 
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The pump was modeled as a momentum 

source in branch 12.  The pump characteristics 

were expressed as: 

 

p = A0 + B0 m 2
  (12) 

 

Where: 

         p  = Pressure rise, lbf/ft 

          m
.

= Flow rate, lbm/sec 

 

The momentum source, S, in Equation 3 was 

then expressed as: 

 

S p A=    

 

Valve Model 

The resistance in branch 23 representing the 

valve was computed by the two-K method of 

Hooper8 .  For this option, K f  of Equation 3 

was expressed as: 

( )
K

K K l D

g Af

c u

=
+ +1

2

1

2

/ Re /


        (13)              

 

Where: 

K1  = K for the fitting at Re = 1; 

K  = for the fitting at Re =  

D  = Internal diameter of attached pipe, in. 

 

The constants K1  and K  for common fittings 

and valves are listed in reference 8. 

 

 

 

 

 

Pipe Model  

The resistance in branch 34 was computed 

from the friction factor in the pipe line.  The 

resistance coefficient, K  , for a pipe with 

length, L, diameter D, and surface roughness, 

was expressed as: 

 

fK
fL

u D cg

=
8

52
 

                              (14)

          

 

Where u  is the density of the fluid at the 

upstream node of a given branch. 

 

The Darcy friction factor, f, is determined 

from the Colebrook Equation9  which is 

expressed as: 

1
2

37

251

f D f
= − +













log
.

.

Re


        (15)  

           

Where  /D and Re are the surface roughness 

factor and Reynolds number respectively. 

 

It took 28 iterations to satisfy the convergence 

criterion.  The solutions are shown in Tables 2 

and 3.  Table 2 show pressures, temperatures, 

compressibility factors and density in nodes 2 

and 3.  It may be noted that water was treated 

as a compressible fluid and the compressibility 

factor is very low as expected. 

 

Table 2 shows Kf , pressure drop, flow rate, 

velocity, Reynolds number and Mach number 

in each branch.  The predicted flow rate is 191 

lbm/sec and the pump is supplying 214 psid 

pressure rise to meet the system requirement.  

The predicted system and pump characteristics 

are shown in Figure 8 which also provides 

verification of the predicted operating point 

shown in Table 3. 

 

 

  Table 2.  Predicted Solution of Example 1 at Internal Nodes 

 
INTERNAL NODES 

 NODE     P(PSI)      T(F)        Z           RHO         EM(LBM)     QUALITY 

                                              (LBM/FT^3) 

     2    0.2290E+03  0.6003E+02  0.1186E-01  0.6241E+02  0.0000E+00  0.0000E+00 

     3    0.2288E+03  0.6003E+02  0.1185E-01  0.6241E+02  0.0000E+00  0.0000E+00 

 

 

 

 

  Table 3.  Predicted Solution of Example 1 at Branches 
BRANCHES 
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BRANCH       KFACTOR       DELP        FLOW RATE     VELOCITY    REYN. NO.   MACH NO.   ENTROPY GEN.  LOST WORK 

      (LBF-S^2/(LBM-FT)^2) (PSI)       (LBM/SEC)     (FT/SEC)                           BTU/(R-SEC)   LBF-FT/SEC 

    12       0.000E+00    -0.214E+03   0.191E+03     0.219E+01   0.241E+06   0.183E-02   0.000E+00   0.000E+00 

    23       0.764E-03     0.193E+00   0.191E+03     0.156E+02   0.644E+06   0.130E-01   0.210E-03   0.848E+02 

    34       0.591E+00     0.214E+03   0.191E+03     0.156E+02   0.644E+06   0.130E-01   0.162E+00   0.657E+05 
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Figure 9 - Fluid System Operating Point 

 

Example 2 - Water Distribution Network 

 

In Example 1 we analyzed a single line pipe 

flow problem commonly encountered by 

pipeline designers.  In this example, we 

consider an example associated with multipath 

 

 

     

 

systems which are commonly known as flow 

network.  In general, water supply systems are 

considered as flow networks, since nearly all 

such systems consist of many interconnecting 

pipes.  A ten pipe (commercial steel) 

distribution system is shown in Figure 10. 
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Figure 10 - A Schematic of Water Distribution 

Network 

               Table 4 - Water Distribution Network Branch Information 

 

Branch Length (inches) Diameter (inches) Roughness 

Factor 

12 120 6 0.0018 

25 2400 6 0.0018 

27 2400 5 0.0018 

57 1440 4 0.0018 

53 120 5 0.0018 

56 2400 4 0.0018 

64 120 4 0.0018 

68 1440 4 0.0018 

78 2400 4 0.0018 

89 120 5 0.0018 
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Figure 11 - A Flow Rate Comparison Between GFSSP and Hardy Cross Method  Predictions 

 

The system shown in Figure 10 is modeled by 

using 9 nodes and 10 branches as shown in 

Figure 10.  The fluid was assumed 

incompressible. Nodes 1, 3, 4 and 9 are 

boundary nodes where the pressures are 

prescribed.  Node 1 represents the inlet 

boundary node.  Nodes 3, 4 and 9 are outlet 

boundary nodes.  All of the remaining nodes 

(2, 5, 6, 7 and 8) are internal nodes where the 

pressures are calculated.  All of the branches 

in this circuit simulate pipes.  The length, 

diameter and roughness factor of all branches 

are given in Table 4. 

 

Figure 11 shows a comparison of flow rates 

between the present predictions and the Hardy 

Cross method.  The comparison appears 

reasonable considering the fact that the Hardy 

Cross method assumes a constant friction 

factor in the branch while the present method 

computed the friction factor for each branch 

during every iteration.  Therefore, as the 

flowrates change the friction factor also 

changes. 

 

Example 3 - Compressible Flow in a 

Converging-Diverging Nozzle 

 

In this example we will consider compressible 

flow in a converging-diverging nozzle to 

demonstrate the method’s capability to handle 

compressibility. One of the characteristics of 

compressible flow in a duct is that the flow 

rate becomes independent of exit pressure after 

reaching a threshold flow rate.  This threshold 

value is known as the choked flow rate and it 

is a function of inlet pressure and temperature.  

Flow in a confined duct becomes choked when 

the flow velocity equals the local velocity of 

sound.  The purpose of this example is to 

investigate how accurately the present 

procedure can predict the choked flow rate in a 

converging-diverging nozzle. 

 

The converging-diverging nozzle considered 

for this example is show in Figure 11.  The 

fluid considered was steam at 150 psia and 

1000  F.  The nozzle back pressure was varied 

from 134 psia to 15 psia. 

Flow0.492 in.

0.158 in.

6.142 in.

1.453 in.

Not to Scale

 
 

 

Figure 11 - Converging-Diverging Steam Nozzle Schematic 

 

The fluid system show in Figure 12 was 

simulated by seventeen nodes and sixteen 

branches.  Nodes 1 and 17 are the boundary 

nodes representing the inlet and outlet of the 

nozzle.  All of the remaining nodes are internal 

nodes connected in series.  The outlet 
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boundary node pressures were varied to 

include 134, 100, 60, 30 and 15 psia.  Table 5 

lists the model predicted mass flow rates with 

varying exit pressures.  As expected, the mass 

flow rate increased as the exit pressure was 

decreased until the pressure ratio decreased 

below the critical pressure ratio.  At this point 

and below, the mass flow rate remained 

constant due to choking of the flow at the 

nozzle throat. 

 

Table 5 - Predicted Mass Flow Rate with 

Varying Exit Pressure 

 

Pexit 

(psia) m
.

 (lbm/s) 

134 0.258 

100 0.301 

60 0.308 

30 0.308 

15 0.308 

 

The isentropic flow rate at the choked point 

was calculated to be 0.303 lbm/sec from the 

following relation: 

m
.

 =  A P

g

R T

2

1

throat
inlet

1

1

c
 

  +  

 + 
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Example 4 - Simulation of the Blow Down of 

a Pressurized Tank 

 

In the previous examples we considered the 

simulation of steady state flow in a given flow 

circuit.  In this example we will employ the 

capabilities of the unsteady flow formulation 

to simulate the process of blowing down a 

pressurized tank. 

 

Consider a tank with an internal volume of 10 

ft3  containing nitrogen gas at a pressure and 

temperature of 100 psia and 80  F respectively.  

The nitrogen is discharged into the atmosphere 

through an orifice with a 0.1 inch diameter 

until the pressure in the tank drops to 50 psia.  

The purpose of this example is to determine 

the blow down time and the pressure, mass 

flow rate and temperature history of the 

isentropic blow down process.  These 

predicted values will then be compared with 

the analytical solution. 

 

The physical schematic for Example 4 is 

shown in Figure 13(a) and a schematic of the 

corresponding finite volume model is shown in 

Figure 13(b).  The venting process can be 

modeled with two nodes and one branch. Node 

1 is an internal node which represents the tank. 
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Initial Conditions

p
i
 = 100 psia

T
i
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1 2

12
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Figure 13- Physical Schematic (a) and GFSSP Model (b) for Venting Nitrogen Tank 

Analytical Solution 

The differential equation governing an 

isentropic blow down process can be written 

as: 
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This is an initial value problem and the initial 

conditions are: 

 =   0 1,
p

i
p

=  

The analytical solution for p i
p/  is given by 

Moody10   as: 
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The analytical and finite volume solutions 

obtained by GFSSP are compared in Figure 

13.  Excellent agreement was observed 

between two solutions.  Blow down of a nitrogen tank from 100 to 50 psia
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Figure 13 - Comparison of the Predicted 

Pressure History by Finite Volume Method 

using GFSSP and the Analytical Solution 

 

Example 5 - Recirculating flow in a Square 

Cavity 

 

Flow in a square cavity is induced by moving 

its top wall at a constant speed as shown in 

Figure 15.  The density of the fluid is assumed 

constant at 1.00 lbm/ft3 , and the viscosity of 

the fluid is assumed to be 1.00 lbm/(ft-sec).  

The bottom and side walls are fixed.  The top 

wall is moving to the right at a constant speed 

of 100 ft/sec.  The corresponding Reynolds 

number for this situation is Re = 100. 

 

Due to the complexity of the flow field, an 

analytical solution of this situation is not 

practical.  Instead of an analytical solution, a 

well known numerical solution by Odus 

Burggraf11  was used as the benchmark 

solution.  Burggraf used a 51x51 grid in his 

model of the square cavity. 

12 inches

12 inches

uwall = 100 ft/sec

 
 

Figure 14 - Flow in a Shear Driven Square 

Cavity 
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Figure 16 - Finite Volume Model of  Flow in a Shear Driven Square Cavity 
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Figure 17 - Shear Driven Square Cavity Centerline Velocity Distribution 

 

The finite volume model of the driven cavity 

consists of 49 nodes (48 of which are internal) 

and 84 branches.  For numerical stability, one 

node (Node 1) was assigned to be a boundary 

node with an arbitrary pressure of 100 psi.  A 

unit depth (1 inch) was assumed for the 

required areas.  The model is shown 

schematically in Figure 16.  Modeling details 

are provided in GFSSP user’s manual. 
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Figure 16 shows a comparison between the 

benchmark numerical solution and the finite 

volume predictions along a vertical plane at 

the horizontal midpoint.  As can be seen in 

Figure 17, the results of this coarse grid model 

compare very favorably with the benchmark 

numerical solution of Burggraf. 

  

CONCLUSIONS 

 

1.  The present paper has described a 

generally applicable numerical method to 

perform thermo-fluid dynamic analysis of 

a fluid system or component. 

2.  A novel unstructured co-ordinate system 

has been used; this allows the 

development of mass, momentum and 

entropy conservation equations in a 

complex flow network defined by 

interconnected nodes and branches. 

3.  The method described here uses a 

generalized momentum equation which 

considers an one-dimensional form for 

system level calculations.  Fluid friction is 

calculated from the friction factor or loss 

coefficients.  For component level 

analysis, the multi-dimensional form of 

the momentum equation is used.  Fluid 

friction is, then, calculated from the local 

velocity gradient and viscosity.  In 

addition, transverse transport of 

momentum is also computed. 

4.  Thermodynamics and fluid dynamics of 

the flow is linked through entropy and 

pressure.  The second law formulation 

allows the calculation of entropy 

generation through heat and fluid flow.  

All thermodynamic and thermophysical 

properties are computed from local values 

of pressure and entropy. 

5.  The system of equations is solved by a 

novel numerical method which is a 

combination of successive substitution 

and Newton Raphson Methods.  The 

method has demonstrated a remarkable 

stability for both system and component 

level analysis. 

6.  The method has been incorporated into a 

general purpose computer program which 

is extensively being used in many 

aerospace engineering applications and 

the computer program, GFSSP, is 

available through NASA/Marshall Space 

Flight Center’s Technology Transfer 

Center. 
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APPENDIX - A 

 

  Newton-Raphson Method of Solving 

Coupled Nonlinear System of Algebraic 

Equations 

 

The application of the Newton-Raphson 

Method involves the following 7 steps: 

 

1.  Develop the governing equations: 

 

The equations are expressed in the following 

form: 

11 2 3 0

12 2 3 0

1 2 3 0

f x x x nx

f x x x nx

n
f x x x nx

( , , ,....... )

( , , ,....... )

........................................

( , , ,....... )

=

=

=

 (A-1) 

 

If there are n number of unknown variables, 

there are n number of equations. 

 

2.  Guess a solution for the equations. 

 

Guess  1 2 3
*, * , *,....... *x x x nx  as an initial 

solution for the governing equations 

 

3.  Calculate the residuals of each equation. 

 

When the guessed solutions are substituted 

into Equation A-1, the right hand side of the 

equation is not zero.  The non-zero value is the 

residual. 

 

11 2 3 1

12 2 3 2

1 2 3

*( , * , *,....... *)

*( , * , *,....... *)

........................................

*( , * , *,....... *)

f x x x nx R

f x x x nx R

n
f x x x nx nR

=

=

=

 (A-2) 

 

The intent of the solution scheme is to correct 

1 2 3
*, * , *,....... *x x x nx  with a set of 

corrections 1 2 3
' , ' , ' ,....... 'x x x nx  such that 

1 2 3R R R nR, , ,........, are zero. 

 

4.  Develop a set of correction equations for 

all variables. 

 

First construct the matrix of influence 

coefficients: 
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Then construct the set of simultaneous 

equations for corrections: 
























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




















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2

2
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2

1 2 3
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f
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

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




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



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

















=






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







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




1

2

1

2
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5.  Solve for 1 2 3
' , ' , ' ,....... 'x x x nx  by 

solving the simultaneous equations. 

 

6.  Apply correction to each variable. 

 

7.  Iterate until the corrections become very 

small. 

     

APPENDIX - B 

 

Successive Substitution Method of Solving 

Coupled Nonlinear System of Algebraic 

Equations 

 

The application of the successive substitution 

method involves the following steps: 

 

1.  Develop the governing equations: 

11 2 3

12 2 3

1 2 3

1

2

x f x x x nx

x f x x x nx

x n
f x x x nxn

=

=

=

( , , ,....... )

( , , ,....... )

........................................

( , , ,....... )

(B-1)  

 

If there are n number of unknown variables, 

there are n number of equations. 

 

2.  Guess a solution for the equations: 

 

Guess  1 2 3
*, * , *,....... *x x x nx  as an initial 

solution for the governing equations. 

 

3.  Compute new values of 

1 2 3x x x nx, , ,.......  by 

substituting 1 2 3
*, * , *,....... *x x x nx                              

in the right hand side of Equation B-1. 

 

4.  Under-relax the computed new value: 

( )x x x= − +1  *   

      where      is the under-relaxation  

parameter. 

 

5.  Replace 1 2 3
*, * , *,....... *x x x nx  with the 

computed value of   

1 2 3x x x nx, , ,.......                             

from Step 4. 

 

6.  Repeat Steps 3 to 5 convergence. 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


