

NASA AMES DEVELOPMENT PLAN

FINAL PROGRAMMATIC

Environmental Impact Statement

APPENDIX D: Air Quality Appendix and General Conformity Determination for Carbon Monoxide

NASA AMES RESEARCH CENTER

JULY 2002

DESIGN, COMMUNITY & ENVIRONMENT

NASA AMES DEVELOPMENT PLAN

FINAL PROGRAMMATIC

Environmental Impact Statement

APPENDIX D

NASA AMES RESEARCH CENTER

JULY 2002

MANAGED BY

 DANIEL, MANN, JOHNSON
 MENDENHALL

 394 PACIFIC AVENUE, THIRD FLOOR
 TEL: 415 986 1373

 SAN FRANCISCO, CALIFORNIA 94111-1718
 FAX: 415 986 4886

PREPARED BY

 DESIGN,
 COMMUNITY
 & ENVIRONMENT

 1600 SHATTUCK AVENUE, SUITE 222
 TEL: 510 848 3815

 BERKELEY, CALIFORNIA 94709
 FAX: 510 848 4315

in association with Fehr & Peers Associates, Inc. Nelson Nygaard Illingworth & Rodkin Jones & Stokes Dr. Lynne Trulio Brian Kangas Foulk Bay Area Economics

TABLE OF CONTENTS

Appendix D1: General Conformity Determination for Carbon Monoxide Appendix D2: Hot Spot Analysis Appendix D3: Annual Air Pollutant Emissions

i

N A S A AMES RESEARCH CENTER NASA AMES DEVELOPMENT PLAN FINAL PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT APPENDIX D: TABLE OF CONTENTS

ii

A P P E N D I X D I

GENERAL CONFORMITY DETERMINATION FOR

CARBON MONOXIDE

NASA AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA

General Conformity Determination for Carbon Monoxide NASA Ames Development Plan

Section 176(c) of the Clean Air Act Amendments requires Federal agencies to assure that their actions conform to applicable plans for achieving and maintaining the National Ambient Air Quality Standards (NAAQS). The primary oversight responsibility for assuring conformity is assigned to the Federal agency. The following findings are made regarding the conformity determination statement under the federal Clean Air Act with respect to the Proposed Action.

- 1. The Proposed Action is the build out of Mitigated Alternative 5 described in the Final EIS for the NASA Ames Development Plan.
- 2. The Proposed Action is located in the Bay Area Air Quality Management District (BAAQMD), which is designated by the EPA as a maintenance area for the national carbon monoxide standard.
- 3. The Proposed Action, built out over a period of 11 or more years, would result in maximum annual total direct and indirect emissions of carbon monoxide that exceed 100 tons per year. These emissions exceed the *de minimus* amounts specified in the General Conformity Rule (40 CFR 51), thus requiring a conformity determination.
- 4. The air quality analysis presented in Part D2 of this Appendix D, conducted for the Proposed Action, indicates that predicted carbon monoxide concentrations associated with the project would not cause or contribute to any new violation of the NAAQS for carbon monoxide or increase the frequency or severity of any existing violation of the carbon monoxide NAAQS. Results of the CO dispersion modeling are included in Table 4.4-9 of the Final EIS.
- 5. Pursuant to Section 176(c) of the Clean Air Act (42 U.S.C. 7476(c)), NASA has determined that implementation of the Proposed Action (Alternative 5) will conform to the Bay Area Air Quality Management District (BAAQMD) State Implementation Plan for Carbon Monoxide. The applicable state implementation plan for carbon monoxide is the Bay Area Redesignation Request and Maintenance Plan for the National Carbon Monoxide Standard, approved by the EPA on June 1, 1998.

Signature Dr. Henry McDonald Director Date

APPENDIX D2

HOT SPOT ANALYSIS

CO Hot Spot Analysis Description

To assess local air quality impacts, carbon monoxide (CO) concentrations were modeled at congested intersections substantially affected by the project. Total emission calculations indicate that project-related emissions of CO will exceed the General Conformity *de minimus* levels of 91 metric tons per year (100 tons per year). Therefore, a conformity determination would be needed to address the potential for CO concentrations that violate the National Ambient Air Quality Standards (NAAQS).

Hot spot CO screening modeling was conducted for eight of the most congested intersections that would be affected by traffic from the proposed project. The screening procedure was based on the methodology recommended by the BAAQMD.¹

At the Moffett Boulevard/R.T. Jones Road intersection, a more detailed study was warranted by the results of the screening and was therefore conducted. This refined modeling analysis was conducted using the CALINE4 model following the Transportation Project-Level Carbon Monoxide Protocol.² This protocol includes two screening level methods and a refined level of analysis.

CO concentrations were predicted at intersections where a combination of poor level of service (i.e., LOS D, E, or F) and a substantial effect by the project is predicted (approximately 5 percent of traffic). The BAAQMD screening method was the first level of analysis. Where CO levels that exceeded the standards were predicted, the refined analysis for that intersection using the CALINE4 model was conducted. The BAAQMD procedure used predicted peak AM and PM traffic levels and slow speed emission factors (15 kilometer per hour or 10 mph). Receptors were located at the edge of roadway except for expressway or major arterials (Central Expressway and Mathilda) where receptors were located 25 feet from the roadway. Dispersion coefficients recommended by the BAAQMD were used based on the number of lanes for major movements.

In both the screening and the detailed analysis, the CALINE4 model was used to predict 8-hour CO concentrations for comparison to the NAAQS of 9 parts per million (ppm) and the CAAQS of 9.0 ppm. This model is the latest in a series of line source air quality models that can characterize pollutant dispersion from roadways and intersections. Inputs to the model are source strength (emission rate and traffic volume), meteorological conditions, proximity of receptor locations to roadways, and site characteristics. As with all Gaussian models, a number of supporting assumptions limit the ability of CALINE4 to fully describe the physical conditions of the source and the atmosphere. Because some of the processes that disperse pollutants are not fully understood, the model has been designed to conservatively estimate downwind pollutant dispersion. That is, the estimates of downwind concentrations provided by CALINE4 tend to be greater than actual measured concentrations. In addition, several worst-case assumptions were used with the model to ensure conservative estimates of project impacts. The most conservative assumption included employing a persistent worst-case wind angle and low wind speed, where the wind is assumed to blow for a full hour in the direction that would result in the highest concentration. Other assumptions used in this analysis include:

¹ BAAQMD, CEQA Guidelines, 1996, revised 1999, pp. 36-46.

² University of California, Davis, 1997. *Transportation Project-Level Carbon Monoxide Protocol*. Institute of Transportation Studies. December.

- worst-case wind angle search
- wind speed of 1 meter per second
- sigma theta of 10°
- mixing height 1,000 meters, and atmospheric stability of category F
- ambient temperature of 7°C (45°F)

Emission factors that are used in the CALINE4 model were developed with the EMFAC7Fv1.1 model, using the vehicle mix representative of Santa Clara County traffic and wintertime operating conditions. This model was developed by the California ARB. Although this model has been updated, EPA and the ARB still require use of EMFAC7v1.1 as part of the CO dispersion modeling for CO conformity determinations. The EMFAC7v1.1 performs better for predicting tailpipe emissions that are used in dispersion modeling than the newer emissions models that are designed to predicted emissions for uses in establishing state or county emissions inventories. Key inputs used in EMFAC7v1.1 include:

- Cold start percentage of up to 40% for PM fringe area traffic (near NASA)
- Cold start percentage of 15% for PM Expressway and AM fringe area traffic
- Temperature of 7°C (45°F)

Carbon monoxide concentrations are typically highest in the evening periods, especially near large sources of automobile trips. This is due to a combination of factors that include higher traffic volumes, meteorological conditions, and emissions from traffic combining with wood smoke. In addition, a higher percentage of commuter vehicles near NASA are in what is referred to as Acold-start@ mode where carbon monoxide emissions are considerably higher. After these vehicles have been operating for a few minutes, carbon monoxide emissions decrease substantially. Carbon monoxide emissions are higher during cold-start mode, since cold fuel is not efficiently combusted and catalytic converters in the exhaust line must heat up to reduce emissions effectively.

The CALINE4 model predicts a one-hour level that was converted to an 8-hour level using a persistence factor of 0.7. Background 8-hour concentrations were determined using 8-hour CO background concentrations reported in Figure 4 of the BAAQMD CEQA Guidelines. These concentrations were adjusted for future years using the rollback factors contained in Table 13 of the CEQA Guidelines. Use of this method indicates background CO levels of 5.3 ppm in the year 2000 and 4.1 ppm for the year 2010 and beyond.

The total predicted 8-hour concentration was calculated by adding the modeled 8-hour CO level to the appropriate background 8-hour levels. For conformity determinations, predicted CO concentrations are compared to the 8-hour CO NAAQS (9 ppm or 9.4 ppm) to determine if the project conforms to the SIP. A project with a maximum predicted 8-hour CO concentration that is less than or equal to 9.4 ppm would be considered to conform with the SIP. A predicted 8-hour CO concentration caused by the project that exceeds the California Ambient Air Quality Standard of 9.0 ppm would be considered a significant impact.

	NASA AMES DEVELOPMENT PLAN EIS CARBON MONOXIDE SCREENING ANALYSIS Intersection Lancs Exist Al 1 Intersection Lancs Exist Al 1 Link: #1 Middlefield/Shoreline PM Exist Al 1 Shoreline (west) 4 2628 328 Middlefield (south) 4 1849 245 AM 5 3200 Shoreline (east) 4 1727 2212	ELOPME REENING A		PLAN .YSIS Exist 2628 1849 1727	EIS Alt 1 3281 2457 3200	Traffic Alt 2 3281 2503 3200	Traffic Volume Ak 2 Ak 3 3281 3281 3283 2503 3200 3200 3200 3200 2352 2350	Alt 4 3281 2519 3200	Alt 5 Alt 5 9 2480 9 3200	28 88 82 2	<u>1-Hoy</u> A <u>L</u> 1 1.0 3.7	<u>AI 2</u> 5.0 1.1 2.7	I-Hour CO Contribution Alt 1 Alt 2 Alt 3 5.0 5.0 5.0 1.0 1.1 1.1 3.7 3.7 3.7 0.8 0.8 0.8	≥		84 Alt 5 5.0 5.0 1.1 1.0 3.7 3.7 0.8 0.8	>	Alt 5 5.0 1.0	Alt 5 5.0 1.0	Alt 5 5.0 1.0	Alt 5 5.0 1.0	Total I-Hour CO Com Airs Air1 Air2 Air3 5.0 1.3 1.3 1.3 1.0 1.1 1.1 1.1 3.7 1.1 1.1 1.1 0.8 0.8 0.8 0.8	Total I-Hour CO Concentration Airs Air1 Air2 Air3 Air4 5.0 1.3 1.3 1.3 1.3 1.0 1.1 1.1 1.1 1.1 3.7 1.1 1.1 1.1 1.1 0.8 0.8 0.8 0.8	Total IHour CO Concentration Alt5 Alt1 Alt2 Alt3 Alt3 Alt5 Alt5 II1 II1 <th>Total IHour CO Concentration Alt5 Alt1 Alt2 Alt3 Alt3 Alt5 Alt5 II1 II1<th>Total IHour CO Concentration Alt5 Alt1 Alt2 Alt3 Alt3 Alt5 Alt5 II1 II1<th>Total IHour CO Concentration Total 8-Hour CO Airs Airi Air Airs Airi Air Airi Air Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi</th></th></th>	Total IHour CO Concentration Alt5 Alt1 Alt2 Alt3 Alt3 Alt5 Alt5 II1 II1 <th>Total IHour CO Concentration Alt5 Alt1 Alt2 Alt3 Alt3 Alt5 Alt5 II1 II1<th>Total IHour CO Concentration Total 8-Hour CO Airs Airi Air Airs Airi Air Airi Air Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi</th></th>	Total IHour CO Concentration Alt5 Alt1 Alt2 Alt3 Alt3 Alt5 Alt5 II1 II1 <th>Total IHour CO Concentration Total 8-Hour CO Airs Airi Air Airs Airi Air Airi Air Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi</th>	Total IHour CO Concentration Total 8-Hour CO Airs Airi Air Airs Airi Air Airi Air Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi Airi
$()$ $(4$ $(310^\circ$ (432) (232) $($	c #21Moffett/Central Expressw Tett (west)	oressway		1200	1772	1886	1881	1922		5 5	0.7				2	0.8 0.8			0.8	0.8 12	0.8 12 12	0.8 12 12 12	0.8 12 12 12 12	0.8 12 12 12 12	0.8 12 12 12 12 12	0.8 12 12 12 12 7.3	0.8 12 12 12 12 12 7.3 7.4
Itert/Maidlefield 4 2195 2739 2865 2981 3997 2880 4.2 4.5 nuth) 4 1327 1924 2035 2011 2082 2953 2012 2012 2130 6.6 6.7 nuth) 4 1943 2562 2714 2720 2715 2615 6.6 6.7 retr-Clark/MotTett Ext FM ModeLet setting Culture/ 7220 2742 2120 2122 2122 2122 2123 6.6 6.7 retr-Clark/MotTett Ext FM ModeLet setting Culture/ 723 3676 3625 4285 3149 6.8 1.1 settin/ModeLefield 2 4 1233 140 1721 1140 2530 1334 6.8 1.1 (10) 4 889 1159 1159 1159 1159 123 266 2469 3.7 3.9 (10) 4 1565 2373 2478 2500 2520	'entral Expressway (north)* .M foffett (west) 'entral Expressway (north)*			31 <i>69</i> 954 3081	4332 1482 4213	4378 1581 4253	4376 1590 4250	439 1611		17 55 17	3.9 0.5 2.9								3.9 0.5 2.9	3.9 10 0.5 2.9	3.9 10 10 0.5 2.9	3,9 10 10 10 0.5 2.9	3,9 10 10 10 10 0.5 2.9	3,9 10 10 10 10 0.5 2.9	3,9 10 10 10 10 10 0.5 2.9	3,9 10 10 10 10 6.4 0.5 2.9	3.9 10 10 10 10 10 6.4 6.5 0.5 2.9
	Link: #3 Moffett/Middlefield PPM Moffett (east) Moffett (east)	_		2195	2739	2985	2981	3097		68	4.2				i ka	4.7			4.4	4.4 12	4.4 12 12	4.4 12 12 12	4.4 12 12 12 12	4.4 12 12 12 12	4.4 12 12 12 12 12	4.4 12 12 12 12 12 7.4	4.4 12 12 12 12 12 7.4 7.7
Fire-Clan/Motifiett Ext Fire-Clan/Motifiett Ext (north) 4 1428 2333 3676 3625 4285 3149 4.6 7.2 see() 4 1217 1831 2929 2930 3456 2321 2.1 3.4 2 470 5.44 1138 1202 2930 3456 2321 2.1 3.4 2 470 5.44 1138 1000 1825 7.09 0.2 0.3 3.4 10 5.41 1139 1159 1159 1159 1159 0.5 0.5 0.5 101 4 889 1159 1259 1259 2369 3.7 3.9 01 4 1565 2373 2478 2500 2520 2399 2.8 2.9 1040 1046 1046 1046 1046 0.3 0.3 0.3 2.8 2.9 1040 1565 2373 2478 2500 2520 2399 2.8 2.9	Andouenieud (souur) An Aoffert (west) Aiddlefaeld (south)			1297 1943 1443	1924 2562 2094	2035 2714 2200	2011 2720 2220	2082 2775 2242		907 S	0.6 0.8 1.4				പ				0.7 0.8 1.5	0,7 0.8 1.5	0.7 9 9 1.5	0,7 9 9 9 0.8 1.5	0,7 9 9 9 9 1.5	0,7 9 9 9 9 1.5	0,7 9 9 9 9 9 0.8 1.5	0.7 9 9 9 9 9 5.7 0.8 1.5	0.7 9 9 9 9 9 5.7 5.7 0.8 1.5
(north)41428235336763625428531494.67.2sest)2633114017211140253013340.81.141217183129292930345623212.13.424705441138100018257090.20.3simmi/Middle.field4889115911591159115911590.50141781242825402428256624693.73.90141565237324782500252023992.82.91//ddlefield3902169118821933188117960.91.0		Tett Ext	PM	M odele.	d using (Caline4					3.0	5.1	5,5	6.5		4.7			4.7 IO	4.7 10 12	4.7 10 12 12	4.7 10 12 12 13	4.7 10 12 12 13	4.7 10 12 12 13 12	4.7 10 12 12 13 12 6.2	4.7 10 12 12 13 12 6.2 7.6	47 10 12 12 13 12 62 7,6 7,9
4 1217 1831 2229 2930 3456 2321 2.1 3.4 2 470 544 1138 1000 1825 709 0.2 0.3 ismmi/Middlefield 4 889 1159 1159 1159 1159 1159 0.5 2.6 2.9 2.8 2.9 2.6 <t< td=""><td>PM Moffett-Clark (north) Moffett Ext. (east)</td><td></td><td></td><td> 428 633</td><td>2353 1140</td><td>3676 1721</td><td>3625 1140</td><td>4285 2530</td><td></td><td>07 4</td><td>4.6 0.8</td><td>7.2 1.1</td><td></td><td>8.4 1.7</td><td></td><td>6.2 0.9</td><td></td><td></td><td>6.2 0.9</td><td>6.2 0.9</td><td>6.2 12 15 0.9</td><td>6.2 0.9</td><td>6.2 0.9</td><td>6.2 0.9</td><td>6.2 0.9</td><td>6.2 12 15 15 17 14 7.8 0.9</td><td>6.2 12 15 15 17 14 7.8 9.9 0.9</td></t<>	PM Moffett-Clark (north) Moffett Ext. (east)			428 633	2353 1140	3676 1721	3625 1140	4285 2530		07 4	4.6 0.8	7.2 1.1		8.4 1.7		6.2 0.9			6.2 0.9	6.2 0.9	6.2 12 15 0.9	6.2 0.9	6.2 0.9	6.2 0.9	6.2 0.9	6.2 12 15 15 17 14 7.8 0.9	6.2 12 15 15 17 14 7.8 9.9 0.9
isman (vvest)4889115911591159115911590.50.5idlefield (north)41781242825402428258624693.73.9sman (vvest)4753104610461046104610460.30.3diefield (south)41565237324782500252023992.82.9::#9 Ellis/Middlefield::#9 Ellis/Middlefield3902169118821933188117960.91.0	AM Moffett-Clark Moffett Ext Julk: #8 Whisman/Middlefreld	ž		217 470	1831 544	2929 1138	2930 1000	3456 1825		9 in 9	2,1 0.2	0.3 .4	3.4 0.3	4.0 0.5		2.7 0.2			2.7 0.2	9 0.2 9	9 11 2.7 0.2	9 11 11 2.7 0.2	9 11 11 12 0.2	9 11 11 12 0.2	2.7 0.2	2.7 0.2 0.2	2.7 0.2 0.2
isman (west) 4 753 1046 1046 1046 1046 1046 0.3 0.3 dləfəld (south) 4 1565 2373 2478 2500 2520 2399 2.8 2.9 : #9 Ellis/Middləfəld (enst) 3 902 1691 1882 1933 1881 1796 0.9 1.0	"M Minisman (west) Middlefield (nortfi) MM			889 781	1159 2428	1159 2540	1159 2428	1159 2586		פי סי	0.5 3.7	0.5 3.9	0,5 3.7	0.5 3.9		0.5			0.5 3.7	0.5 3.7	0.5 11 11 11 3.7 10 10 10	0.5 11 11 11 11 3.7 10 10 10 10	0.5 11 11 11 11 3.7 10 10 10 10				
(enst) 3 902 1691 1882 1933 1881 1796 0.9 1.0	Whisman (west) Middlefield (south) int- #0 Filie/Middle-Ead				1046 2373	1046 2478	1046 2500	1046 2520	104 239	90	0.3 2.8	0.3 2.9	0.3 2.9	0.3 3.0		0.3 2.8		0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8	0.3 2.8
10/18/2001	.ink: #9 Ellis/Middlefield M Illis (enst) J/18/2001				1691	1882	1933	1881	179	6	6.0	1.0	1.0	1.0	0	6.0			6.9	0.9 13	0.9 13 13	0.9 13 13 13	0.9 13 13 13 13	0.9 13 13 13 13 13	0.9 13 13 13 13 13	0.9 13 13 13 13 13 8. 0	0.9 13 13 13 13 13 8.0 8.3

.

															Total I-	Hour C) Conce	-Hour CO Concentration		Total 8	Hour C	Total 8-Hour CO Concentration	atration
				Traffic Volume	/olume			E	1-Hour CO Contribution) Contri	button						:						
Intersection Lanes	l	Excist	Alt 1	Alt 2	Alt. 3	Alt 4	Alt 5	~	Alt 1	Alt 2	Alt. 3	All 4	Alt 5		AX 1	Alt 2	AH 3	Alt 4	AH 5	AIL1 AIL2		Alt 3 A	Alt 4
Middlefield (scuth)	4	1869	3135	3378	3431	3409	3281		4.8	5	5,2	5.2	5.0										
AM															11	12	12	12	12	7.2	7.4	7.4	7.5
eins (cast) Middle facht (south)	نب ⊾	nsot VCG	3778	1894	C681	3504	1796		0.7	0.7	0.7	0.7	0.7								•		
ā	ł	1900	3710	5475	3430	5004	2000		3.0	<u>م</u> 1	4.1	4.1	3.9										
PM															۰	1	5	ŝ	9	7	61	۲ ۲	6.3
Ellis (west)	4	546	1021	1609	1703	1698	1348		1.6	2.4	2.6	2.6	2.0							4	1		i
Manilla (south)	N	333	665	803	758	840	684		5,0	0.4	0.4	0,4	0.3										
AM															9	9	9	9	9	5.2	5.7	5.7	7
Ellis (west)	4	607	1238	1724	1750	1811	1427		1.4	2.0	2.0	2.1	1.7							i		!	ļ
Menille	ы	229	551	693	700	730	563		0.2	0.3	0.3	£.0	0.2										
Link: #17 237 WB ramps/Mathilda																							
PM															13	13	13	14	13	8.4	8.6	8.5	8.7
SR 237 WB ramps (west)"	N N	086	2305	2434	2374	2465	2305		6.0	0.9	0.9	0.9	0.9										
AM	0	C177	1340	060/	2001	1611	8661		5.3	0.6	5.5	5.7	5.3		5	נ	5	3	5	ł	9		1
SR 237 WB ramps (east)*	2	806 806	1668	1761	1770	1788	1670		0.5	0.5	0.5	50	05		ì	14	14		Ţ		1.0	1.0	1.7
Mathilda (north)*	80	2772	82.68	8668	8700	8768	8280		4.6	4.9	4.9	4.9	4,6										
Link #18 Manilla-Moffett/Mathilda																							
															13	13	13	13	13	8.3	88.57	98 4	00 17
Manilla-Moffett (west)	4	966	1543	1572	1573	1583	1562		0.6	0.7	0.7	0.7	0.7						,				
Mathikda (south)*	28	2299	7402	7778	7633	7872	7421		5,4	5.7	5.6	5.7	5.4										
AM															12	13	12	13	12	7.8	8.0	7.9	8.0
Manùla-Moffett (west) Mathilda (south)*	A 30	1243 2834	2004 8375	2004 8776	2004 8700	2004 8874	2004 8387		0.7 4.7	0.7 4.9	0.7 4.9	0.7 5.0	0.7 4.7										
Receptor distance 25 feet																							
Emission Factors (EMFAC7Fv1.1 @ 19mph)	10mph)	0						Dispersion Factors (at edge)	Factor	s (at ed	.												
Future 15% Cold Start (AM)		2013	32	9.84 g/mi	hangi.			Primary 4-Lane				_ E	Edge	25 feet 7.0									
Future 25% Cold Start (PM) Future 40% Cold Start (PM on site)		2013 2013	¥ II	12.76 g 16.55 g	g/mi g/mi			6 Lane 8 Lane					8.5 5	6.1 5.7									
Background CO Levels	·			8-Hour	·			Secondary 2-Lane					4.0	3.0									
2000	ł		9.0					6 Lane					2.8	2.3									

NASA AMES DEVELOPMENT PLAN EIS Traffic

				Traffic Vo	olume		
Intersection	Lanes	Exist	Alt 1	Alt 2	Alt. 3	Alt 4	Alt 5
Timber 41 MEANE-13(01 1)	_						
Link: #1 Middlefield/Shoreline PM	LOS	17	. r	Ť			
1 101	% Change	E	E	E 1%	E 1%	E	08/
Shoreline (west)	⁷⁶ Change 4	2628	3281	3281	3281	1% 3281	0%
Middlefield (south)	4	1849	2457	2503	2501	2519	3281 2480
AM	LOS	1042 E		2.505 E	2301 E	2519 E	2400
	% Change	-	, L	1%	1%	1%	0%
Shoreline (east)	4	2545	3200	3200	3200	3200	3200
Middlefield (south)	4	1727	2312	2352	2350	2366	2325
Link: #2Moffett/Central Expre	ssway						
PM	LOS	E	; F	F	F	E	
	% Change			3%	3%	4%	1%
Moffett (west)	4	1200	1772	1886	1881	1926	1829
Central Expressway (north)*	4	3169	4332	4378	4376	4394	4355
AM	LOS	E	E E	E	E	E	
Moffett (west)	% Change			2%	3%	3%	1%
Central Expressway (north)*	4 4	954	1482	1581	1590	1617	1517
Contar Expressway (norm).	4	3081	4213	4253	4250	4267	4226
Link: #3 Moffett/Middlefield							
PM	LOS	Ľ) Е	Е	E	D	
	% Change			8%	7%	11%	4%
Moffett (east)	-	2195	2739	2985	2981	3097	2890
Middlefield (south)		1297	1924	2035	2011	2082	1965
AM	LOS	E) E	E	E	D	
	% Change			6%	6%	8%	2%
Moffett (west)		1943	2562	2714	2720	2775	2615
Middlefield (south)		1443	2094	220 0	2220	2242	2120
Link: #7 Moffett-Clark/Moffe	att Ext						
РМ	LOS	F	F	F	F	F	
	% Change			55%	36%	95%	28%
Moffett-Clark (north)		1428	2353	3676	3625	4285	3149
Moffett Ext. (east)	1.00	633	1140	1721	1140	2530	1334
AM	LOS	F	F	F	F	F	
Moffett-Clark	% Change	1017	1021	71%	65%	122%	28%
Monfett Ext.		1217 470	1831 544	2929	2930	3456	2321
Martin Dat.		470	244	1138	1000	1825	709
Link: #8 Whisman/Middlefiel	d						
PM	LOS	С	В	с	В	с	
	% Change			3%	0%	4%	1%
Whisman (west)	4	889	1159	1159	1159	1159	1159
Middlefield (north)	4	1781	2428	2540	2428	2586	2469
AM	LOS	В		в	В	В	
	% Change			3%	4%	4%	1%
Whisman (west)	4	753	1046	1046	1046	1046	1046
Middlefield (south)	4	1565	2373	2478	2500	2520	2399
Link: #9 Ellis/Middlefield							
PM	LOS	С	· · ·	~	~	~	
	203	Ľ	e c	с	С	С	

.....

NASA AMES DEVELOPMENT PLAN EIS Traffic

Traffic Volume Intersection Lanes Exist Alt 1 Alt 2 Alt 4 Alt. 3 Alt 5 % Change 9% 10% 11% 5% Ellis (east) 902 3 1691 1882 1933 1881 1796 Middlefield (south) 4 1869 3135 3378 3431 3409 3281 AM LOS С D D С D % Change 7% 7% 8% 3% Ellis (east) 959 3 1738 1894 1895 1796 1896 Middlefield (south) 1980 3278 4 3475 3480 3504 3362 Link: #12 Ellis/Manilla PM LOS С F Ε F D % Change 43% 46% 51% 21% Ellis (west) 4 546 1021 1609 1703 1698 1348 Manilla (south) 2 333 665 803 758 840 684 AM LOS в В В С В % Change 35% 37% 42% 11% Ellis (west) 4 607 1238 1724 1750 1811 1427 Manilla 2 229 551 693 700 730 563 Link: #17 237 WB ramps/Mathilda РМ F LOS F F F F % Change 5% 3% 7% 0% SR 237 WB ramps (west)* 2 380 2305 2434 2374 2465 2305 Mathilda (north) 8 2213 7320 7696 7552 7791 7338 AM LOS F F F F F % Change 5% 5% 6% 0% SR 237 WB ramps (east)* 2 806 1668 1761 1770 1788 1670 Mathilda (north)* 8 2772 8268 8668 8700 8768 8280 Link: #18 Manilla-Moffett/Mathilda PM LOS F F F F F 5% % Change 0% 3% 6% Manilla-Moffett (west) 4 966 1543 1572 1573 1583 1562 Mathilda (south)* 8 2299 7402 7778 7633 7872 7421 AM LOS F F F F F % Change 4% 3% 5% 0% Manilla-Moffett (west) 4 1243 2004 2004 2004 2004 2004 Mathilda (south)* 8 2834 8375 8776 8700 8874 8387 * Receptor distance 25 feet Emission Factors (EMFAC7Fv1.1 @ 10mph)

Future 15% Cold Start (AM)	2013	 9.84 g/mi
Future 25% Cold Start (PM)	2013	 12.76 g/mi

Background CO Levels	<u>1-Hour</u>	8-Hour
1992 (from BAAQMD Guidelines)	12	7
2000	9.0	5.3
2013	7.0	4.1

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 1

JOB: NASA#7 Moffett/Clark Alt1pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U= 1.0 M/S	z0= 1	.00. СМ	ALT=	0. (M)
BRG= WORST CAS	E VD=	.0 CM/S		• •
CLAS= 6 (F)	VS=	.0 CM/S		
MIXH= 1000. M	AMB=	.0 PPM		
SIGTH= 10. DEG	REES TEMP=	7.0 DEGREE (c)	

II. LINK VARIABLES

	LINK DESCRIPTION	*	LINK X1	COORDIN Y1	ATES X2	(M) Y2	* * *	TYPE	VPH	EF (G/MI)	н (м)	W (M)
Α.		*	250	405	345	489	*	AG	527	5.7	.0	13.3
Β.	MCEBA	*	345	489	465	543	*	AG	527	16.6	.0	13.3
с.	MCEBD	*	465	543	608	600	*	AG	304	7.1	.õ	13.3
D.	MCEBC	Ŕ	608	600	708	636	*	AG	304	5.7	.õ	13.3
Ε.	MCWBC	*	703	647	606	606	*	AG	1495	5.7	.ŏ	13.3
F.	MCWBA	*	606	606	464	553	*	AG	1495	38.3	.ŏ	13.3
G.	MCWBD	*	464	553	342	499	*	AG	1826	18.3	.ŏ.	13.3
н.	MCWBC	*	342	499	241	414	ŵ	AG	1826	5.7	ĬŎ	13.3
I.	MENBC	*	425	331	425	400	ŵ	AG	64	5.7	.ŏ	13.3
э.	MENBA	×	425	400	471	550	*	AG	64	15.1	.ŏ	13.3
к.	MENBD	*	471	550	488	630	*	AG	531	7.4	.ŏ	13.3
Ŀ.	MENBD	*	488	630	454	687	*	AG	531	7.4	.ŏ	13.3
м.	MENBC	*	454	687	447	762	*	AG	531	5.7	.ŏ	13.3
Ν.	MESBC	*	440	760	446	693	*	AG	609	5.7	.ŏ	13.3
ο.	MESBA	*	446	693	482	628	*	AG	609	16.6	.ŏ	13.3
Ρ.	MESBA	*	482	628	460	548	*	AG	609	16.6	.ŏ	13.3
Q.	MESBD	¥	460	548	420	401	*	AG	34	7.1	.ŏ	13.3
Ŕ.	MESBC	*	420	401	417	333	*	AG	34	5.7	.ö	13.3

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 2

JOB: NASA#7 Moffett/Clark Alt1pm RUN: Hour 1 (WORST CASE ANGLE) • POLLUTANT: Carbon Monoxide

III. RECEPTOR LOCATIONS

R	ECEPTO)R	*	COORD X	INATES Y	(M) Z
2. 3. 4. 5.	Recpt Recpt Recpt Recpt Recpt Recpt	3 4 5	* * * * * *	464 483 488 489 439 467	483 537 576 656 678 624	1.8 1.8 1.8 1.8 1.8 1.8 1.8

Recpt	7	*	462	581	1.8
8. Recpt	8	×	445	560	1.8
9. Recpt	9	*	442	521	1.8
10. Recpt	10	*	469	522	1.8

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

	* * *	BRG	* * * *	PRED CONC (PPM)	* * * *	A	B	c c	CONC/I (PPI D	F	G	н
2. Recpt 3 4. Recpt 4 5. Recpt 4 5. Recpt 5 6. Recpt 6 7. Recpt 7 8. Recpt 8 9. Recpt 9	******	352. 230. 194. 126. 171. 92. 84. 50.	* * * * * * * * * *	1.1 2.0 2.7 1.4 1.1 1.2 2.1 3.0 2.2 1.8	*******	.0 .0 .0 .0 .0 .0 .0 .0	.0.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	 .4 1.2 .9 .5 .6 1.5 2.5 1.7 .9	.1 .0 1.0 .2 .0 .0 .0 .0	0. 0. 0. 0. 0. 0. 0. 0.

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 3

JOB: NASA#7 Moffett/Clark Alt1pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

IV. MODEL	RESULTS	(WORST	CASE WI	ND ANGL	.E)	(c	DNT.)	
	* *			CONC/LI (PPM)				
RECEPTOR	* I .*	J	K L	M	N	0	Ρ	QR
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 6 7. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	* .0 * .0 * .0 * .0 * .0 * .0 * .0 * .0	.0 .0 .0	.0 .0 .2 .0 .1 .1 .1 .0 .1 .0 .1 .0 .1 .0 .0 .0 .0 .0 .1 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .2 .0 .1 .4 .0 .0 .0 .0	.2 .3 .2 .4 .0 .4 .4 .3 .0 .4	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

00

.

.

.

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 1

JOB: NASA#7 Moffett/Clark Alt2pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U= 1.0 M/S	ZO= 100. CM	ALT=	0. (M)
BRG= WORST CASE	VD= .0 CM/S		
CLAS= 6 (F)	VS= .0 CM/S		
MIXH= 1000. M	AMB= .0 PPM		
SIGTH= 10. DEGREES	TEMP= 7.0 DEGREE (C)		

II. LINK VARIABLES

	LINK DESCRIPTION	* *	LINK X1	COORDIN Y1	ATES X2	(M) Y2	* *	ΤΥΡΕ	VPH	EF (G/MI)	H (M)	W (M)
Α.	MCEBC	*	250	405	345	489	*	AG	825	5.7	.0	13.3
в.	MCEBA	के	345	489	465	543	*	AG	825	18.3	.ŏ	13.3
с.	MCEBD	*	465	543	608	600	×	AG	479	7.1	.ŏ	13.3
D.	MCEBC	*	608	600	708	636	×	AG	479	5.7	.ŏ	13.3
E.	MCWBC	*	703	647	606	606	*	AG	2062	5.7	.ŏ.	13.3
F.	MCWBA	4	606	606	464	553	*	AG	2062	49.3	.ō	13.3
Ġ.	MCWBD	*	464	553	342	499	Ń	AG	2851	26.6	.0	13.3
н.	MCWBC	*	342	499	241	414	*	AG	2851	5.7	.Ó	13.3
r.	MENBC	*	425	331	425	400	*	AG	64	5.7	. 0	13.3
э.	MENBA	*	425	400	471	550	×	AG	64	15.1	.Ó	13.3
к.	MENBD	*	471	550	488	630	*	AG	654	8.4	.0	13.3
L.	MENBD	*	488	630	454	687	*	AG	654	8.4	.0	13.3
м.	MENBC	*	454	687	447	762	*	AG	654	5.7	.0	13.3
Ν,	MESBC	*	440	760	446	693	*	AG	1067	5.7	.0	13.3
ο.	MESBA	*	446	693	482	628	*	AG	1067	20.4	.0	13.3
Ρ.	MESBA	*	482	628	460	548	*	AG	1067	20.4	.0	13.3
Q.	MESBD	*	460	548	420	401	*	AG	34	7.1	.0	13.3
R.	MESBC	*	420	401	417	333	*	AG	34	5.7	.0	13.3

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 2

JOB: NASA#7 Moffett/Clark Alt2pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

III. RECEPTOR LOCATIONS

F	RECEPTO)R	* * _*	COORD X	INATES Y	(M) Z
3. 4.	Recpt Recpt Recpt Recpt Recpt Recpt		* * * * *	464 483 488 489 439 467	483 537 576 656 678 624	1.8 1.8 1.8 1.8 1.8 1.8 1.8

7.	Recpt	7	*	462	581	1.8
8.	Recpt	8	*	445	560	1.8
	Recpt		*	442	521	1.8
10.	Recpt	10	*	469	522	1.8

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

RECEPTOR	* * * *	BRG	* * *	PRED CONC (PPM)	* * *	А	В	c c	CONC/I (PPI D		F	G	н
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 6 7. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	* * * * * * * * * *	352. 230. 195. 126. 171. 93. 85. 30.	* * * * * * * * * * *	1.9 3.50 2.6 2.0 3.6 5.1 3.8 3.2	*******	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.0.5.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	.0 .1 .0 .0 .0 .0 .0 .1 .0	.0 .0 .0 .0 .0 .0 .0 .0	.00.00.00.00.00.00.00.00.00.00.00.00.00	.7 2.1 1.6 .4 1.0 2.5 4.3 1.5	.3 .0 2.1 .4 .0 .0 .0 .0 1.5	.0

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 3

JOB: NASA#7 Moffett/Clark Alt2pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

IV. MODEL	RESULTS	(WORS	T CAS	SE WIN	D ANG	SLE)	((CONT.))	
	* *			C	ONC/L					
RECEPTOR	* I _*	J	К	L	M	N	0	P	Q	R
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 6 7. Recpt 7 8. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	* .0 * .0 * .0 * .0 * .0 * .0 * .0 * .0		.0 .2 .2 .2 .0 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	.0.02200.00.00	.0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0	2 3 9 0 0 0 0 3	.4 .6 .5 .9 .0 .9 .8 .5 .7 .8	.0 .0 .0 .0 .0 .0 .0	

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 1

JOB: NASA#7 Moffett/Clark Alt3pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	1.0	M/S	z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	6	(F)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	10.	DEGREES	TEMP≕	7.0	DEGREE	(C)			

II. LINK VARIABLES

	LINK DESCRIPTION	*	LINK X1	COORDIN Y1	ATES X2	(M) Y2	*	TYPE	√РН	EF (G/MI)	Н (M)	W (M)
		_*-					*.					
Α.	MCEBC	*	250	405	345	489	*	AG	792	5.7	.0	13.3
Β.	MCEBA	*	345	489	465	543	*	AG	792	16.6	,ō	13.3
с.	MCEBD	*	465	543	608	600	×	AG	569	7.1	.0	13.3
D.	MCEBC	*	608	600	708	636	*	AG	569	5.7	.0	13.3
E.	MCWBC	¥	703	647	606	606	*	AG	2502	5.7	.0	13.3
F.	MCWBA	*	606	606	464	553	*	AĠ	2502	49.3	.0	13.3
G.	MCWBD	*	464	553	342	499	*	AG	2833	31.4	.0	13.3
н.	MCWBC	*	342	499	241	414	*	AG	2833	5.7	.0	13.3
I,	MENBC	*	425	331	425	400	*	AG	64	5.7	.0	13.3
э.	MENBA	×	425	400	471	550	¥	AG	64	15.1	.0	13.3
ĸ.	MENBD	*	471	550	488	630	÷	AG	531	7.7	.0	13.3
L.	MENBD	*	488	630	454	687	*	AG	531	7.7	.0	13.3
Μ.	MENBC	*	454	687	447	762	*	AG	531	5.7	.0	13.3
Ν.	MESBC	*	440	760	446	6 9 3	¥	AG	609	5.7	.0	13.3
ο.	MESBA	÷	446	693	482	628	*	AG	609	16.6	.0	13.3
Ρ.	MESBA	*	482	628	460	548	*	AG	609	16.6	.0	13.3
Q.	MESBD	*	460	548	420	401	*	AG	34	7.7	.0	13.3
R.	MESBC	*	420	401	417	333	*	AG	34	5.7	.0	13.3

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 2

JOB: NASA#7 Moffett/Clark Alt3pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

III. RECEPTOR LOCATIONS

RECEPTOR	* *	COORD X	INATES Y	(M) Z
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 6	* *	464 483 488 489 439 467	483 537 576 656 678 624	1.8 1.8 1.8 1.8 1.8 1.8 1.8

7.	Recpt	7	*	462	581	1.8	
8.	Recpt	8	*	445	560	1.8	
9.	Recpt	9	¥	442	521	1.8	
10.	Recpt	10	*	469	522	1.8	

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

RECEPTOR	* * *	BRG	* * * *	PRED CONC (PPM)	* * * *	A	в	c c	CONC/I (PPI D		F	G	н
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 5 7. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	* * * * * * * * * *	48. 230. 195. 126. 114. 93. 85. 50.	****	1.8 3.7 5.3 2.0 1.6 1.9 3.6 5.5 4.1 2.9	*****	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .4 .0 .0 .0 .0 .0 .3 .0	.0 .2 .0 .0 .0 .0 .0 .0 .1 .1	.0 .0 .0 .0 .0 .0 .0 .0	0.000.00.00.00.00.00.00.00.00.00.00.00.	.9 3.5 1.9 1.0 1.5 3.0 5.0 3.4 2.7	.3 .0 2.5 .5 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0

.

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 3

JOB: NASA#7 Moffett/Clark Alt3pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

IV. MODEL	RESULTS	(WORS	T CAS	E WIN	ID ANG	SLE)	(0	CONT.))	
	*			C	ONC/L (PPM	.INK I)				
RECEPTOR	* I	3	К	L	M	N	0	Р	Q	R
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 6 7. Recpt 7 8. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	* .0 * .0 * .0 * .0 * .0 * .0 * .0 * .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .2 .1 .0 .0 .0 .0 .0	.0 .0 .1 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .2 .4 .0 .0 .0 .0	.2 .0 .2 .4 .0 .3 .4 .3 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	0. 0. 0. 0. 0. 0. 0.

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 1

JOB: NASA#7 Moffett/Clark Alt4pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U= 1.0	M/S	z0=	100.	CM		ALT=	0.	(M)
BRG= WORST	CASE	VD=	.0	CM/S				
CLAS= 6	(F)	VS≖	.0	CM/S				
MIXH= 1000.	M	AMB=	.0	PPM				
SIGTH= 10.	DEGREES	TEMP=	7.0	DEGREE	(C)			
	DEGREED		,	BEGNEE	(-)			

II. LINK VARIABLES

	LINK DESCRIPTION	* *	LINK X1	COORDIN Y1	IATES X2	Y2 1	* * _	TYPE	VPH	EF (G/MI)	H (M)	W (M)
Α.	МСЕВС	*	250	405	345		*	AG	938	5.7	.0	13.3
в.	MCEBA	÷	345	489	465		\$	AG	938	18.3	.ŏ	13.3
с.	MCEBD	*	465	543	608		*	AG	433	7.1	.õ	13.3
D.	MCEBC	*	608	600	708	636	*	AG	433	5.7	.0	13.3
ε.	MCWBC	*	703	647	606		*	AG	1908	5.7	.0	13.3
F.	MCWBA	*	606	606	464	553	*	AG	1908	49.3	.0	13.3
G.	MCWBD	*	464	553	342	499 1	*	AG	3347	31.4	.0	13.3
н.	MCWBC		342	499	241	414	*	AG	3347	5.7	.0	13.3
I.	MENBC	*	425	331	425	400 1	×	AG	64	5.7	.0	13.3
э.	MENBA	*	425	400	471	550 *	×	AG	64	15.1	.0	13.3
к.	MENBD	*	471	550	488	0.0	×	AG	813	12.0	.0	13.3
L.	MENBO	*	488	630	454	007	*	AG	813	12.0	.0	13.3
м.	MENBC	*	454	687	447	102	¥	AG	813	5.7	.0	13.3
Ν.	MESBC	*	440	760	446	000	*	AG	1717	5.7	.0	13.3
ο.	MESBA	*	446	693	482	020	*	AG	1717	26.6	.0	13.3
Ρ.	MESBA	*	482	628	460	340	*	AG	1717	26.6	.0	13.3
Q.	MESBD	*	460	548	420	401.1	*	AG	34	7.1	.0	13.3
R.	MESBC	*	420	401	417	333 -	*	AG	34	5.7	.0	13.3

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 2

JOB: NASA#7 Moffett/Clark Alt4pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

III. RECEPTOR LOCATIONS

F	RECEPTO	DR	`* *	COORD X	INATES Y	(M) Z
1. 2. 3. 4. 5. 6.	Recpt Recpt Recpt Recpt Recpt Recpt Recpt	2 3 4		464 483 488 489 439 439 467	483 537 576 656 678 624	1.8 1.8 1.8 1.8 1.8 1.8 1.8

7.	Recpt	7	*	462	581	1.8
8.	Recpt	8	*	445	560	1.8
9.	Recpt	9	*	442	521	1.8
10.	Recpt	10	*	469	522	1.8

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

RECEPTOR	* * *	BRG (DEG)	**	PRED CONC (PPM)	* * *	A	в	c	CONC/L (PPN D		F	G	н
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 5 7. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	*****	232.	*****	2.7 4.4 6.5 4.2 3.0 3.1 4.9 5.5 5.3 4.3		-0 -0 -0 -0 -0 -0 -0 -0 -0 -0	.1 .0 .6 .1 .0 .2 .0 .7 .0	.0 .0 .0 .0 .0 .0 .1 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0	.6 2.0 1.2 .4 .8 .9 .8 4.0 .3 1.4	.4 .0 3.1 .6 .0 .0 1.0 .0 2.3 .2	.0 .0 .0 .0 .0 .0 .0

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 3

JOB: NASA#7 Moffett/Clark Alt4pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I	V. MOD	EL.	RES	ULTS	(WORS	ST CAS	SE WI	ND ANG	GLE)	(CONT)	
			*				4	CONC/I (PPI					
RI	ECEPTOR		* *	I] 	К	L	м	N	0	P	Q	R
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Recpt Recpt Recpt Recpt Recpt	3 4 5 6 7	* * * * * * * * * *	.0		.1 .4 .3 .0 .2 .2 .3	.0 .1 .0 .3 .3 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0		.4 .6 .0 .7 1.9 .0 .0 .0 .1 .5	.9 1.1 1.1 1.8 .0 1.8 2.8 1.1 1.5 1.6	.0 .0 .0 .0 .0 .0 .0	.0

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 1

JOB: NASA#7 Moffett/Clark Alt5pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U= 1.0 M	/s z0=	100. CM	ALT=	0. (M)
BRG= WORST C	ASE VD=	.0 CM/S		
CLAS= 6 (F) VS≂	.0 CM/S		
MIXH= 1000. M	AMB=	.0 PPM		
SIGTH= 10. D	EGREES TEMP=	7.0 DEGREE	(C)	

II. LINK VARIABLES

	LINK DESCRIPTION	* * _*_	LINK X1	COORDIN Y1	ATES X2	(11)	* * *	TYPE	VPH	EF (G/MI)	н (м)	W (M)
Α.	МСЕВС	ತೇ	250	405	345	489	*	AG	750	5.7	.0	13.3
в.	MCEBA	*	345	489	465	543	*	AG	750	16.6	.õ	13.3
с.	MCEBD	*	465	543	608	600	*	AG	397	7.1	.0	13.3
D.	MCEBC	*	608	600	708	636	*	AG	397	5.7	.0	13.3
E.	MCWBC	★	703	647	606	606	*	AG	2004	5.7	.0	13.3
F.	MCWBA	*	606	606	464	553	*	AG	2004	49.3	.0	13.3
G.	MCWBD	*	464	553	342	499	*	AG	2399	31.4	-0	13.3
н.	MCWBC	*	342	499	241	414	☆	AG	2399	5.7	.0	13.3
I.	MENBC	*	425	331	425	400	¥	AG	64	5.7	.0	13.3
э.	MENBA	*	425	400	471	550	*	AG	64	15.1	.0	13.3
к.	MENBD	*	471	550	488	630	×	AG	661	8.4	.0	13.3
L.	MENBD	*	488	630	454	687	*	AG	661	8.4	.0	13.3
м.	MENBC	*	454	687	447	762	*	AG	661	5.7	.0	13.3
Ν.	MESBC	*	440	760	446	693	*	AG	673	5.7	.0	13.3
ο.	MESBA	*	446	693	482	628	*	AG	673	16.6	.0	13.3
Ρ.	MESBA	*	482	628	460	548	*	AG	673	16.6	.0	13.3
Q.	MESBD	*	460	548	420	401	ŵ	AG	34	7.1	.0	13.3
R.	MESBC	*	420	401	417	333	¥	AG	34	5.7	.0	13.3

00

.

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 2

JOB: NASA#7 Moffett/Clark Alt5pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

III. RECEPTOR LOCATIONS

RECEP	FOR	*	COORD X	INATES Y	(M) Z
1. Recp ¹ 2. Recp ¹ 3. Recp ¹ 4. Recp ¹ 5. Recp ¹ 6. Recp ¹	t 2 t 3 t 4 t 5	- * * * * *	464 483 488 489 439 467	483 537 576 656 678 624	1.8 1.8 1.8 1.8 1.8 1.8 1.8

7. 8. 9. 10.	Recpt Recpt Recpt Recpt Recpt	9 10		467 449 442 469 SULTS)	581 560 521 522 WORST (1 1 1	8 8 8 8) ANG	LE)					
R	ECEPTOR	2	* * *	BRG (DEG)	* * *	PRED CONC (PPM)	*	A	в	c	CONC/L (PPM D		F	G	Н
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Recpt Recpt Recpt Recpt	6 7 8	*******	3. 48. 230. 195. 126. 114. 93. 85. 47. 3.	*******	1.6 3.1 4.7 2.0 1.5 1.7 3.1 4.7 3.5 2.6	_ * * * * * * * * * * *	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .4 .0 .0 .0 .0 .0 .0 .0	.0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.7 3.0 1.6 .4 1.3 2.5 4.2 2.6 1.6	.3 .0 2.2 .4 .0 .0 .0 .2 .1	.0 .0 .0 .0 .0 .0 .0

00

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION PAGE 3

JOB: NASA#7 Moffett/Clark Alt5pm RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

IV. MODEL	RESULTS	(WORS	ST CA	SE WIN	ND ANG	GLE)	(0	CONT.))	
	*			C	CONC/I					
RECEPTOR	* I *		K	L	M	N	0	Р	Q	R
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4 5. Recpt 5 6. Recpt 6 7. Recpt 7 8. Recpt 8 9. Recpt 9 10. Recpt 10	* .0 * .0 * .0 * .0 * .0 * .0 * .0 * .0	0. 0. 0. 0. 0. 0. 0. 0.	.0 .0 .2 .2 .0 .1 .2 .1 .0 .2	.0 .0 .2 .2 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.1 .0 .2 .5 .0 .0 .0 .0	.2 .0 .3 .5 .0 .3 .4 .3 .0 .4	0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0.

00

							MPH RATES	FROM 3 M	DERIVED F		IN GRAMS/MIN,	ß	
			2.72	2.86	40						4.84	5.11	21 21
			2.77	2.92	95						ເຫ ພ	5.62	19
			2.83	2.98	38						5.62	5,93	18
			2.89	3.04	37						5.94	6.26	17
			о 0,0 7,0 7,0 7,0		ω 0 57 0						6.29	6.64	16
			0.1 € 0 + 1 €		עט (נ ערית)						6.70	7.07	15
			α. 10	ມ ເ ວີເບ ບ	3 10						7.16	7.56	14
			3.27	ירי היי היי	3 6						7.0 7.2.0	20 · · 20	
			υ. 10 10 10 10 10	3.54	10,1						900 100	ער 0 דט, א	
			3.46	3.65	30						9.84	10.39	10
			3.57	3.77	29						10.84	11.45	, v
			69.5	3.89	28						50.21	12.14	0.00
			3.82	4.02	27						13.54	14.33) ~
			3,95	4.17	26						15.45	16.36	1. đi
			4.10	4.32	25						17.97	19.06	ហ
			4.26	4.50	24						21.49	22.84	4
			4.44	4.68	23						26.87	28.64	. (u
			്റ	4,88	22						1.34	1.43	*370T
			ា	40	MEH						. 45	• O!	MPH
					FAHRENHEIT		RE IN DEGREES	TEMPERATURE					SPEED
							MILE	IN GRAMS PER	IN G	IDE	CARBON MONOXIDE		POLLUTANT NAME:
								ļ	,				
					N FACTORS	EMISSION	COMPOSITE	TARLE 2	4				
	\$ MDT 7.0 \$ HDD 3.0		27.0 0.0 0.5	* MCX * HDG	62.0 0.5	LDA 62 UBD 0	ake ake C H	15.0 25.0 60.0	D STARTS STARTS STAB	8 COLD 8 HOT (8 HOT (INT: 10 NCE: YES	DEWPOINT: 5 MAINTENANCE: TER	YEAR: 2013 INSPECTION & M SEASON: WINTER
						ea	PM Expressway/AM Fringe Area	ssway/AM		NASA	BAGS I & J	ADJUSTMENT	TIME RATE A
	EMERG (EL.I			7	1/25/94	OF	EMEACTF1.1 RATES AS OF	EMEAC7F1.1	1		•		
		RUN DATES:	R				CALTRANS DI	D D	ME				N
100.00		00.68 00.68	11.00 11.00	100.00	100.00	0.00	0,00	100.00	0.00	0.03	99.97 99.93	0.00	
100.00	00 100.00	89.00	11.00	100.00	100.00	0.00	0.00	100.00	0.00	0.03	99.97	0.00	& VMT
MCY ALL	HEAVY DUTY TRUCKS CAT CAT DIESEL	Y DUTY CJ	HEAV NCAT	URBAN BUS DIESEL	TRUCKS CAT	MED DUTY NCAT	NUCKS DIESEL	IT DUTY TRUCKS CAT DIE	LIGHT NCAT	OS DIESEL	DUTY AUT CAT	LIGHT NCAT	
					FRACTIONS	TRAVEL	ESTIMATED	TABLE 1:	Т				
0	8 MDT 7.0 8 HDD 3.0		27.0 0.0 0.5	% LDT % HDG % MCY	62.0 0.5	LDA 62 UBD (o≁o o≁o 	15.0 25.0 60.0	D STARTS STARTS STAB	8 COLD 8 HOT 2 8 HOT 2	INT: 10 NCE: YES	DEWPOINT: & MAINTENANCE: NTER	YEAR: 2013 INSPECTION & M SEASON: WINTER
					1/20/24	Ģ	r naiss Fringe A	essway/AM	PM Expre		BAGS 1 & 3	RATE ADJUSTMENT BAGS	TIME RATE A
					175/01	5	ר האתים א	FMFX/7F1					
.1 10/16/2001 .1 10/16/2001	ES: ENV028F1.1 EMFAC7F1.1	RUN DATES:	R	н	ON OF AND RESEARCH		CALTRANS DIVISION OF NEW TECHNOLOGY, MATERIALS AND	C W TECHNOL	NE				1ENV028F1.1

19 20	18	17	ת ר ה	14	1 13	77	רק נ רן נ		1 4		20	7	σ	មា	4	ω		IDLE*	175.11	NDR	POLLUTANT	YEAR: 2013 INSPECTION & M SEASON: WINTER	TIME RATE AD		N		s VMT s			SEASON: WINTER	YEAR: 2013 INSPECTION &	TIME RATE AD		1ENV028F1.1
7.32	7.72	200. 	0 	9.86	10,59	11.44	12.44	10.02	13 63		77 91	18.94	21.75	25.52	30.91	39.38		1.97	10	TEMPERATURE	NAME: CAL	DEWPOINT: & MAINTENANCE: NTER	ADJUSTMENT I		0.01	10 0	n on		LIGHT	ER	DEWPOINT: MAINTENANCE:	ADJUSTMENT BAGS		
6.53 53	7.24	7 57 C	0 10	9.24	E6.6	10./3	11.66	10.10	96 GL 80.51		15 70	77 72	20.33	23.82	28.80	36.59		1.83	4 (" LN	NAME: CARBON MONOXIDE	INT: 10 NCE: YES	BAGS 1 & 3		22.20		99.97 70.00		DUTY AUT		INT: 10 NCE: YES	BAGS 1 & 3		
																				DEGREES FAR	IDE	* COLD * HOT S	NASA S		0.00		0.03			& HOT S	COLL HOT			
																				FARRENHETT	TABLE IN GRAMS) STARTS STARTS STAB	Screening	E NEW	0.00		0.00		LIGH	STAB) STARTS STARTS	NASA Screening	E NEW	
																					2: PER	25.0 25.0 50.0	Emission	W TECHNOLO EMFAC7F1.1	DO-00		100.00		INCLE I: ESIL LIGHT DUTY TRUCKS	50.0	25.0 25.0		EMFAC7F1.1	0
																					COMPOSITE	0/0 0/0	Factor	GY, MAI RATES	CALTRANS D	0.00	0.00		DIFERT		අං අව	Emission Factors	NEW TECHNOLOGY, MATERIALS EMFAC7F1.1 RATES AS OF	CALTRANS DIVISION OF
																				SPEED	EMISSIO	LDA 62.0 UBD 1.0			DIVISION		0.00	n CHI			LDA 62 UBD 1			
40 9 9	2D ~	9 C	ο ω 5	34	33	32	31	30	29	0) (- 0	3 3 (40	25	24	23	22	21	MPH		EMISSION FACTORS	.0		AND RESEARCH 1/25/94	OF	100.00	100.00	0211	0		62.0 1.0		AND RESEARCH 1/25/94	OF
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ນ. ເບັນ ເບັນ	4.01	4.11	4.21	4.33	4.45	4.58	4.13	4.88			л ()	ר <u>ר</u> ד ר	5.62	5.84	6.08	6.35	6.64	40	TEMPERATURE		% LDT % HDG % MCY		ب لر	100.00	100.00	100.00	ртвови	URBAN BUS	% MCY	% LDT % HDG		H	
3.52 4.52	3.68 60	3.76	3.86	3.96	4.07	4.18	4.30	4.44	4.58	4.76	2 C C			5 27	5 48	5.71	5.96	6.23	45 5	'H N		27.0 0.0 1.0			LL.UU RUN	11 00 00.11	11.00	NCAL	HEAVY	1.0	27.0 0.0			RU
																				DEGREES FAI		o¢o o∳o 			ay.00 N DATES:	00.60	00-68		DUT		රුප දෙප			N DATES:
									·											FAHRENHEIT		MDT 7.0 HDD 2.0		EMFAC7F1.1	LUU.UU ENV028F1.	100.00	100.00	ULBOBL	UCKS		MDT 7.0 HDD 2.0		EMFAC7F1.1	RUN DATES: ENV028F1.1
																								د ر	100.00 1 10/17/2001	100.00	100.00	APT	MCY				.1 10/17/2001	.1 10/17/2001

	19	18	17	16	15	<u>н</u>	1.1	12	11	10	و	æ	7	റ	ហ	4	ω		IDLE*		MPH		POLLUTA	INSPECTION & M SEASON: WINTER	TIME RATE . YEAR: 2013		1ENV028F1.1			% VMT				SEASON: WINTER	YEAR: 2013	TIME RATE	
i .	9.54	10.06	10.64	11.29	12.03	12.87	13.84	14.96	16.27	17.83	19,72	22.04	24.96	28.77	33.94	41.44	53.45		2.67 2.		40		POLLUTANT NAME: CARBON MONOXIDE	AI	TIME RATE ADJUSTMENT BAGS			0.01	0.00	0.00	NCAT	LIGH		NTER	DEWPOINT:	RATE ADJUSTMENT BAGS	
4	8.86	9.35	68.6	10.49	11.18	11.96	12.85	13.89	15.11	16.55	18.30	20.44	23.14	26.64	31.40	38.27	49.25		46	1	45		BON MONOXII		MGS 1 & 3			59,93	99.97	99.97	CAT D	LIGHT DUTY AUTOS			ENT: 10	3AGS 1 & 3	
																							DE	% HOT STAR % HOT STAB	NASA PM Fringe % COLD STARTS					0.03	ESEL	S		* HOT STAB		NASA PM Fringe	
																						_	IN GR	STARTS STAB	Fringe TARTS		NPW			0.00	NCAT	I.IGHT		STAB	TARTS	Fringe	NEW
																							TABLE 2: O GRAMS PER M	25.0 35.0	Area 40.0	EMFAC7F1.1	C7	100.00	100.00	100.00	CAT	LIGHT DUTY TRUCKS	••	35.0	40.0	Area	W TECHNOLO
																							COMPOSITE MILE		a%e	RATES	CALTRANS DI	0.00	0.00	0.00	DIESEL	JCKS	ESTIMATED	9			LOGY, MATERIALS AND
																							EMISSIO		LDA 62			0.00	0.00	0.00	NCAT	MED DUT	TRAVEL				LALS AN
40	υ () Ο ()	ω () D -	1 U 1 7	י ע יי יי	ית	ω () Α	י נג ז נג	2	31	30	29	28	27	26	25	24	23	22	21	20	MPH		EMISSION FACTORS	0.5	.0	1/25/94	OF	100.00	100-00	100.00		MED DUTY TRUCKS I	FRACTIONS	0.0	62.0	120794	NEW TECHNOLOGY, MATERIALS AND RESEARCH
4 7 0 U	2 N N N N N N N N N N N N N N N N N N N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	л () н л (л (. - с. - х.	л (טיני ביי ביי	л (5 77	5.94	6.13	6.33	6.55	6.78	7.08	7.30	7.60	7.92	8.27	8.65	9.07	40			* HDG * MCY	% LDT	-		100.00	100.00	100.00	DIESEL	URBAN BUS		* MCY			ж
י. קיים	4 4 6 C	ы н п п п п п	4 JO	7 . 1 . 1 . 1 .	A 0 A	5.07	л (у (ות ונג ור	ບາ ເປັນ ເປັນ	5,70	5.89	60.0	6.30	6.57	6.79	7.06	7.36	7.68	•	8.43	45			0.0	27.0		RUN	11.00	11.00	11.00	NCAT	HEAVY		ос	27.0		
																								ojo				00.68	89.00	00,68	CAT	HEAVY DUTTY TRUCKS		0			
																								HDD 3.0	MDT 7.	EMPAC/P1.1		100.00	100.00	100.00	DIESEL	TICKS		нрр З .	, ⁷		EMFAC7F1.1
																								0	0	TOD2 /9T /OT		100.00	100.00	100.00	ALL	MCY		Ċ			L.1 10/16/2001

Cruise	% Red	Traffic Volume (vehicles per hour per lane)											
Speed	Time	200	300	400	500	600	700	800	900	1000			
15	30	10.7	10.4	10.2	9.9	9.4	8.7	7.9	6.9	5.4			
15	40	9.4	9.0	8.8	8.3	7.8	7.0	5.8	4.1	2.5			
15	50	8.1	7.8	7.4	6.9	6.1	4.6	2.8*	1.6*	0,9			
15	60	7.0	6.6	6.1	5.0	3.1	1.6*	0.9	0.5	0,3			
15	70	5.9	5.3	3.6	1.6*	0.7*	0.4	0.2	0.1	0.1			
15	80	4.4	1.6*	0.5*	0.2	0.1	0.1	0.0	0.0	0.0			
15	90	0.2*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
20	30	13.0	12.6	12.3	11.8	11.2	10.2	9.1	7.8	6.0			
20	40	11.1	10.7	10.3	9.7	9.0	7.9	6.4	4.4	2.6			
20	50	9.4	9.0	8.5	7.8	6.8	5.0	2.9*	1.6*	0.9			
20	60	7.9	7.4	6.7	5.5	3.3	1.6*	0.9	0.5	0.3			
20	70	6.6	5.8	3.8	1.6*	0.7*	0.4	0.2	0.1	0,1			
20	80	4.7	1.6*	0.5*	0.2	0.1	0.1	0.0	0.0	0.0			
20	90	0.2*	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0			
25	30	15.0	14.5	14.0	13.4	12.6	11.4	10.0	8.4	6.4			
25	40	12.5	12.0	11.4	10.8	9.9	8.6	6.9	4.6	2.6			
25	50	10.4	9.8	9.2	8.4	7.3	5.2	3.0	1.6*	1.0			
25	60	8.6	8.0	7.2	5.8	3.4	1.7*	0.9*	0.5	0.3			
25	70	7.0	6.1	4.0	1.7*	0.7*	0.4	0.2	0.1	. 0,1			
25	80	5.0	1.7*	0.5*	0.2	0.1	0.1	0.0	0.0	0.0			
25	90	0.2*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
30	30	16.7	16.1	15,5	14.7	13,7	12.4	10.7	8.9	6.7			
30	.40	13.7	13.1	12,4	11.6	10.6	9.2	7.2	4.8	2.7			
30	50	11.1	10.5	9.8	9,0	7.6	5.4	3.0	1.6*	1.0			
30	60	9,1	8.5	7.6	6,1	3.5	1.7*	0.9*	0.5	0.3			
30	70	7.4	6.4	4.1	1. 7*	0.7*	0.4	0.2	0.1	0.1			
30	80	5.1	1.7*	0.5*	0.2	0.1	0.1	0.0	0.0	0.0			
30	90	0.2*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
35	<u>,</u> 30	18.1	17.4	16.7	15.8	14.7	13,1	11.2	9.3	6.9			
35	40	14.6	13.9	13.1	12.3	11,1	9.6	7.4	4.9-	2.7			
35	50	11.8	11.0	10.3	9.3	7.9	5.5	3.1	1.6	1.0			
35	60	9.5	8.8	7.9	6.2	3.5	1.7	0.9*	0.5	0.3			
35	70	7.7	6.6	4.2	1.7*	0.7*	0.4	0.2	0,1	0.1			
35	80 '	5.3	1.7*	0.5*	0.2	0.1	0.1	0.0	0.0	0.0			
35	90	0.2*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
40	30	19.4	18.6	17.8	16.8	15.5	13.7	11.7	9.6	7.1			
40	40	15.4	14.6	13.8	12.8	11.6	9.9	7.7	3.0 4.9	2.7			
40	50	12.3	11.5	10.7	9.7	8.2	5.7	3.1	4.9 1.7*	<i>ي</i> د. 1.0			
40	60	9.8	9.1	8.1	6.4	3.6	1.7*	0.9*	0.5	0.3			
40	70	7.9	6.8	4.2	1.7*	0.7*	0.4	0.2	0.1	0.3			
40	80	5.4	1.7*	0.5	0.2	0.1	0.1	0.2	0.0	0.0			
40	90	0.2*	0.0	· · 0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Table B.13 Average Speeds in mph for Approach Segments [Garza, 1995a]

٢

* Values below 3 mph for interpolation purposes only

Cruise	% Red			Tra	fic Volume	(vehicles pe	er hour per l	ane)		
Speed	Time	200	300	400	500	600	700	800	900	1000
15	30	14.2	14.1	14.0	14.0	13.9	13.6	13.4	13.0	12.1
15	40	13.9	13.7	13.7	13.5	13.2	13.0	12.4	11.2	. 9.1
15	50	13.4	13.3	13.2	13.0	12.6	11.7	9.6	7.4	5.2
15	60	13.1	12.8	12.6	12.0	10.2	7.3	5.2	3.3	2.7*
15	70	12.4	11.9	10.7	7.2	3.9	3.2	1.6*	1.2*	0.9
15	80	11.3	7.0	3.8	2.2*	1.0*	0.3*	0.0	0.0	0.0
15	90	1.8*	0.1*	0.0*	0.0	0.0	0.0	0.0	0.0	0.0
20	30	18.6	18.5	18.4	18.2	18.1	17.8	17.3	16.6	15.2
20	40	18.1	17.9	17.7	17.5	17.2	16.5	15.6	13.8	10.9
20	50	17.4	17.3	17.0	16.6	15,9	14.4	11.3	8.3	5.2
20	60	16.6	16.4	15.7	14.8	12.1	8.1	5.2	3.3	2.7
20	70	15.8	15.2	12.8	8.0	5.1	3.2	1.6*	1.2*	0.9
20	80	14.1	7.8	3.8	2.2*	1.0*	0.3*	0.0	0.0	0.0
20	90	1.8*	0.1*	0.0*	0.0	0.0	0.0	0.0	0.0	0.0
25	30	22.8	22.7	22.6	22.4	22.0	21.5	20.9	19.8	17.9
25	40	22.1	.21.9	21.5	21.3	20.8	19.8	18.5	15.7	11.6
25	50	21.0	20.7	20.4	19.7	18,9	16.5	12.5	8.3	6.5
25	60	20.0	19.4	18.7	17.3	13.9	9.1	5.2	3.3	2.7
25	70	18.6	17.6	14.9	9.0	5.1	3.2	1.6*	1.2*	0.9
25	80	16.2	8.7	3.8	2.2*	1.0*	0.3*	0.0	0.0	0.0
25	.90	1.8*	0.1*	0.0*	0.0	0.0	0.0	0.0	0.0	0.0
30	30	27.0	26.9	26.7	26.3	25.8	25.3	24.2	22.8	20.6
30	40	25.9	25.6	25.2	24.8	24.1		21.0	17.8	13.2
30	50	24.4	24.0	23.6	23.0	21.7	18.8	14.0	9.3	6.5
30	60	23.0	22.5	21.5	19.9	15.3	9.1	5.2	3.3	2.7
30	70	21.5	20.0	16.7	9.0	5.1	3.2	1.6*	1.2*	0.9
30	80	18.2	9.7	3.8	2.2*	1.0*	0.3*	0.0	0.0	0.0
30	90	1.8*	0.1*	0.0*	0.0	0.0	0.0	0.0	0.0	0.0
35	30	31.1	30.9	30.5	29.9	29.5	28.7	27,3	25.8	22.8
35	40	29.6	29.1	28.6	28.1	27.2	26.0	23.5	19.5	14.1
35	50	27.6	27.1	26.7	25.6	24.1	20.4	14.8	9.3	6.5
35	60	25.9	25.0	24.2	21.8	16.0	10.2	5.2	3,3*	2.7
35	70	23.9	22.3	18.0	10.1	5.1	3.2	1.6*	1.2	0.9
35	80	20.4	9.7	3.8	2.2*	1.0*	0.3*	0.2	0.0	0.0
35	90	1.8*	0.1*	0.0*	0.0	0.0	0.0	0.0	0.0	0.0
40	30	35.1	34.7	34.3	33.6	33.0	31.9	30,3	28,4	24.7
40	40	33.0	32.5	32.0	31.2	30.3	28.5	25.7	20.8	14.1
40	50	30.6	30.2	29.4	28.2	26.6	22.1	15.7	10.5	6.5
40	60	28.5	27.7	26.4	23.4	16.8	10.2	6.6	3.3	2.7*
40	70	26.1	24.3	18.7	10.1	5.1	3.2	1.6*	1.2*	2.7 0.9
40	80	21,6	9.7	3.8	2.2*	1.0*	0.3*	0.2	0.0	0.0
40	90	1.8*	0,1*	0.0*	0.0	0.0	0.0	0.0	0.0	0.0

Table B.14 Average Speeds in mph for Departure Segments [Garza, 1995a].

* Values below 3 mph for interpolation purposes only

APPENDIX D3

ANNUAL AIR POLLUTANT

EMISSIONS

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 2 Construction ROG

INPUT DATA

Year	Construction	Area	Mobile
2002	0.0155		
2003	0.0148		
2004	0.0141	0.0001	0.0064
2005	0.0134	0.0001	0.0059
2006	0.0126	0.0001	0.0054
2007	0.0118	0.0001	0.0049
2008	0.0110	0.0001	0.0044
2009	0.0102	0.0001	0.0039
2010	0.0094	0.0001	0.0034
2011	0.0089	0.0001	0.0032
2012	0.0084	0.0001	0.0030
2013	0.0078	0.0001	0.0027
2014	0.0073	0.0001	0.0025
2015	0.0068	0.0001	0.0023

Emission Factor (tons per 1000 ft²)

Ļ		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
519.3	0	7.7
519.3	519	10.7
519.3	1039	13.1
519.3	1558	15.1
519.3	2077	16.5
519.3	2597	17.4
519.3	3116	17.8
519.3	3635	17.6
519.3	4154	18.2
519.3	4674	18.6
	5193	14.6
	5193	13.4
	5193	12.2

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 21,517 week day trips at 6.9 mi per trip for 5,193,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 2 Construction NOx

INPUT DATA

Annual

Emissions

(tons per year)

115.9 118.8

121.2

122.3

122.9

122.9 122.4

121.4

122.0

122.5

52.1 51.0

49.8

 $1000s ft^2$

Occupancy

0

519

1039

1558

2077

2597

3116

3635

4154

4674

5193

5193

5193

Year	Construction	Area	Mobile	Incremental 1000s ft ² Const
2002	0.2312			
2003	0.2231			519.
2004	0.2151	0.0018	0.0119	519.
2005	0.2070	0.0018	0.0114	519.
2006	0.1974	0.0018	0.0109	519.
2007	0.1877	0.0018	0.0104	519.
2008	0.1780	0.0018	0.0099	519.
2009	0.1684	0.0018	0.0094	519.
2010	0.1587	0.0018	0.0089	519.
2011	0.1511	0.0018	0.0087	519.
2012	0.1435	0.0018	0.0085	519.
2013	0.1359	0.0018	0.0082	
2014	0.1284	0.0018	0.0080	
2015	0.1208	0.0018	0.0078	

Emission Factor (tons per 1000 ft²)

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 21,517 week day trips at 6.9 mi per trip for 5,193,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 2 Construction CO

Emission Factor (tons per 1000 ft²)

INPUT DATA

Annual Emissions (tons per year)

> 20.1 101.5

171.7

231.2

279.6

316.7 342.6

357.3

381.1

398.8 394.4

363.7

333.0

Year	Construction	Area	Mobile	Incremen 1000s ft Const	
2002	0.0405				
2003	0.0388			5	19.3
2004	0.0370	0.0008	0.1577	5	19.3
2005	0.0353	0.0008	0.1469	5	19.3
2006	0.0347	0.0008	0.1361	5	19.3
2007	0.0341	0.0008	0.1253	5	19.3
2008	0.0335	0.0008	0.1145	5	19.3
2009	0.0329	0.0008	0.1037	5	19.3
2010	0.0323	0.0008	0.0929	5	19.3
2011	0.0318	0.0008	0.0870	5	19.3
2012	0.0314	0.0008	0.0811	5	19.3
2013	0.0309	0.0008	0.0752		
2014	0.0305	0.0008	0.0693		
2015	0.0300	0.0008	0.0634		

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 21,517 week day trips at 6.9 mi per trip for 5,193,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 3 Construction ROG

INPUT DATA

Year	Construction	Area	Mobile
2002	0.0160		
2003	0.0153		
2004	0.0145	0.0001	0.0058
2005	0.0138	0.0001	0.0053
2006	0.0130	0.0001	0.0049
2007	0.0122	0.0001	0.0044
2008	0.0113	0.0001	0.0040
2009	0.0105	0.0001	0.0035
2010	0.0097	0.0001	0.0031
2011	0.0092	0.0001	0.0029
2012	0.0086	0.0001	0.0027
2013	0.0081	0.0001	0.0025
2014	0.0076	0.0001	0.0023
2015	0.0070	0.0001	0.0020

Emission Factor (tons per 1000 ft²)

Ļ		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
434.3	0	6.6
434.3	434	8.8
434.3	869	10.7
434.3	1303	12.1
434.3	1737	13.1
434.3	2172	13.8
434.3	2606	14.0
434.3	3040	13.9
434.3	3474	14.3
434.3	3909	14.5
	4343	11.1
	4343	10.1
	4343	9.2

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 15,721 week day trips at 6.9 mi per trip for 4,343,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 3 Construction NOx

INPUT DATA

Year	Construction	Area	Mobile
2002	0.2385		
2003	0.2302		
2004	0.2219	0.0018	0.0108
2005	0.2136	0.0018	0.0103
2006	0.2036	0.0018	0.0099
2007	0.1936	0.0018	0.0094
2008	0.1837	0.0018	0.0090
2009	0.1737	0.0018	0.0085
2010	0.1637	0.0018	0.0081
2011	0.1559	0.0018	0.0078
2012	0.1481	0.0018	0.0076
2013	0.1402	0.0018	0.0074
2014	0.1324	0.0018	0.0072
2015	0.1246	0.0018	0.0070

Emission Factor (tons per 1000 ft²)

Ļ		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
434.3	0	100.0
434.3	434	101.8
434.3	869	103.3
434.3	1303	103.6
434.3	1737	103.6
434.3	2172	103.1
434.3	2606	102.3
434.3	3040	101.1
434.3	3474	101.2
434.3	3909	101.2
	4343	40.2
	4343	39.3
	4343	38.4

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 15,721 week day trips at 6.9 mi per trip for 4,343,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 3 Construction CO

Emission Factor (tons per 1000 ft²)

INPUT DATA

Annual

Emissions

(tons per year)

16.8 85.5

145.3

196.7

239.2

272.8 297.6

313.4

336.1

354.0 353.4

328.6

303.9

Year	Construction	Area	Mobile	Incremental 1000s ft ² Const	1000s ft ² Occupancy
2002	0.0405				_
2003	0.0388			434.3	(
2004	0.0370	0.0010	0.1590	434.3	434
2005	0.0353	0.0010	0.1487	434.3	869
2006	0.0347	0.0010	0.1385	434.3	1303
2007	0.0341	0.0010	0.1282	434.3	1737
2008	0.0335	0.0010	0.1180	434.3	2172
2009	0.0329	0.0010	0.1077	434.3	2600
2010	0.0323	0.0010	0.0975	434.3	3040
2011	0.0318	0.0010	0.0918	434.3	3474
2012	0.0314	0.0010	0.0861	434.3	3909
2013	0.0309	0.0010	0.0804		4343
2014	0.0305	0.0010	0.0747		4343
2015	0.0300	0.0010	0.0690		4343

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 15,721 week day trips at 6.9 mi per trip for 4,343,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 4 Construction ROG

INPUT DATA

Year	Construction	Area	Mobile
2002	0.0157		
2003	0.0150		
2004	0.0143	0.0001	0.0064
2005	0.0135	0.0001	0.0060
2006	0.0127	0.0001	0.0055
2007	0.0119	0.0001	0.0050
2008	0.0111	0.0001	0.0045
2009	0.0103	0.0001	0.0040
2010	0.0095	0.0001	0.0035
2011	0.0090	0.0001	0.0032
2012	0.0085	0.0001	0.0030
2013	0.0079	0.0001	0.0028
2014	0.0074	0.0001	0.0025
2015	0.0069	0.0001	0.0023

Emission Factor (tons per 1000 ft²)

<u> </u>		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
	l I	
621.3	0	9.3
621.3	621	12.9
621.3	1243	15.9
621.3	1864	18.3
621.3	2485	20.0
621.3	3107	21.1
621.3	3728	21.6
621.3	4349	21.4
621.3	4970	22.2
621.3	5592	22.6
	6213	17.8
	6213	16.3
	6213	14.8

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 26,528 week day trips at 6.9 mi per trip for 6,213,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 4 Construction NOx

INPUT DATA

Year	Construction	Area	Mobile
2002	0.2340		
2003	0.2258		
2004	0.2177	0.0018	0.0121
2005	0.2095	0.0018	0.0116
2006	0.1998	0.0018	0.0111
2007	0.1900	0.0018	0.0106
2008	0.1802	0.0018	0.0100
2009	0.1704	0.0018	0.0095
2010	0.1607	0.0018	0.0090
2011	0.1530	0.0018	0.0088
2012	0.1453	0.0018	0.0086
2013	0.1376	0.0018	0.0083
2014	0.1299	0.0018	0.0081
2015	0.1222	0.0018	0.0079

Emission Factor (tons per 1000 ft²)

Ļ		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
621.3	0	140.3
621.3	621	143.9
621.3	1243	146.8
621.3	1864	148.1
621.3	2485	148.7
621.3	3107	148.7
621.3	3728	148.1
621.3	4349	146.9
621.3	4970	147.7
621.3	5592	148.2
	6213	63.0
	6213	61.6
	6213	60.2

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 26,528 week day trips at 6.9 mi per trip for 6,213,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 4 Construction CO

INPUT DATA

Year	Construction	Area	Mobile
2002	0.0410		
2003	0.0392		
2004	0.0375	0.0006	0.1596
2005	0.0357	0.0006	0.1487
2006	0.0351	0.0006	0.1378
2007	0.0345	0.0006	0.1269
2008	0.0339	0.0006	0.1159
2009	0.0333	0.0006	0.1050
2010	0.0327	0.0006	0.0941
2011	0.0322	0.0006	0.0881
2012	0.0317	0.0006	0.0821
2013	0.0313	0.0006	0.0761
2014	0.0308	0.0006	0.0701
2015	0.0304	0.0006	0.0641

Emission Factor (tons per 1000 ft²)

Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
(21.0		24.4
621.3	0	24.4
621.3	621	122.9
621.3	1243	207.8
621.3	1864	279.8
621.3	2485	338.3
621.3	3107	383.2
621.3	3728	414.5
621.3	4349	432.2
621.3	4970	461.0
621.3	5592	482.4
	6213	476.8
	6213	439.6
	6213	402.4

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 26,528 week day trips at 6.9 mi per trip for 6,213,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 5 Construction ROG

INPUT DATA

Year	Construction	Area	Mobile
	0.0138		
2003	0.0132		
2004	0.0126	0.0001	0.0063
2005	0.0120	0.0001	0.0058
2006	0.0112	0.0001	0.0054
2007	0.0105	0.0001	0.0049
2008	0.0098	0.0001	0.0044
2009	0.0091	0.0001	0.0039
2010	0.0084	0.0001	0.0034
2011	0.0079	0.0001	0.0032
2012	0.0075	0.0001	0.0029
2013	0.0070	0.0001	0.0027
2014	0.0065	0.0001	0.0025
2015	0.0061	0.0001	0.0023

Emission Factor (tons per 1000 ft²)

<u> </u>		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
413.3	0	5.5
413.3	413	7.9
413.3	827	9.9
413.3	1240	11.4
413.3	1653	12.6
413.3	2067	13.4
413.3	2480	13.7
413.3	2893	13.7
413.3	3306	14.2
413.3	3720	14.5
	4133	11.7
	4133	10.8
	4133	9.8

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 15,167 daily trips at 6.9 mi per trip for 4,133,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 5 Construction NOx

INPUT DATA

Year	Construction	Area	Mobile
2003	0.1972		
2004	0.1916	0.0018	0.0119
2005	0.1860	0.0018	0.0114
2006	0.1773	0.0018	0.0109
2007	0.1686	0.0018	0.0104
2008	0.1600	0.0018	0.0099
2009	0.1513	0.0018	0.0094
2010	0.1426	0.0018	0.0089
2011	0.1358	0.0018	0.0086
2012	0.1290	0.0018	0.0084
2013	0.1221	0.0018	0.0082
2014	0.1153	0.0018	0.0080
2015	0.1085	0.0018	0.0077

Emission Factor (tons per 1000 ft²)

↓		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
		01.5
413.3	0	81.5
413.3	413	84.8
413.3	827	87.8
413.3	1240	89.0
413.3	1653	89.8
413.3	2067	90.2
413.3	2480	90.2
413.3	2893	89.8
413.3	3306	90.6
413.3	3720	91.3
	4133	41.3
	4133	40.4
	4133	39.4

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 15,167 daily trips at 6.9 mi per trip for 4,133,000 sq. ft.

NASA AMES DEVELOPMENT PLAN Total Annual Air Pollutant Emissions Emissions by 1000 Square Feet of Construction based on Alt 5 Construction CO

INPUT DATA

Year	Construction	Area	Mobile
	0.0362		
2003	0.0346		
2004	0.0331	0.0010	0.1566
2005	0.0315	0.0010	0.1459
2006	0.0310	0.0010	0.1352
2007	0.0304	0.0010	0.1245
2008	0.0299	0.0010	0.1138
2009	0.0294	0.0010	0.1030
2010	0.0288	0.0010	0.0923
2011	0.0284	0.0010	0.0864
2012	0.0280	0.0010	0.0806
2013	0.0276	0.0010	0.0747
2014	0.0272	0.0010	0.0688
2015	0.0268	0.0010	0.0629

Emission Factor (tons per 1000 ft²)

<u> </u>		
Incremental 1000s ft ² Const	1000s ft ² Occupancy	Annual Emissions (tons per year)
		14.2
413.3	0	14.3
413.3	413	78.8
413.3	827	134.4
413.3	1240	181.6
413.3	1653	220.0
413.3	2067	249.4
413.3	2480	270.0
413.3	2893	281.8
413.3	3306	300.7
413.3	3720	314.8
	4133	312.7
	4133	288.4
	4133	264.1

Note: Emissions factors are a composite factor for square footage. These factors change with year and mix of land uses. Factors were developed for 2000, 2005, 2010, and 2015 - then interpolated for other years.

Mobile source emissions calculated based on 15,167 daily trips at 6.9 mi per trip for 4,133,000 sq. ft.

Development of Construction Emission Factors Alternative 2

Development Data and Emission Factors for Construction of Land Use Types Associated with the NASA/AMES Research Park Plan - Conformity Analysis.

		Emission	Factors		
Land Use Type	ROG	CO	NOx	PM10	Units
Dormitory/Housing	22.0	70.2	322.9		lbs/1000 ft
Hotel	41.6	132.9	611.0	43.4	lbs/1000 ft
Museum/Exhibit Space	41.6	132.9	611.0	43.4	lbs/1000 ft
Office Park	55.4	177.2	814.7	57.9	lbs/1000 ft
Research & Development	55.4	177.2	814.7		lbs/1000 ft
Retail	31.8	101.6	467.0	33.2	lbs/1000 ft
University	47.0	150.2	690.5	49.0	lbs/1000 ft

Yearly Adjustment Factors

Year	ROG	CO	NOx	PM	
1990		1.08	1.08	1.08	1.08
1995		0.90	0.83	0.89	0.84
2000		0.72	0.59	0.72	0.60
2005		0.57	0.47	0.60	0.50
2010		0.40	0.43	0.46	0.39
2015		0.29	0.40	0.35	0.29
2020		0.24	0.39	0.30	0.24

0.0135

0.0096

0.0071

Total Emissions in Tons Throughout Construction Period

Use	Size Units	ROG	NOx	со	PM10	-		
NRP Area:		II			-			
Educational Uses	840 ksf	20	290	63	21			
Computer Museum	70 ksf	1	21	5	2			
CASC	390 ksf	11	159	35	11			
Coference Center & Gym	200 ksf	4	61	13	4			
Housing (188 800f ² units)	150 ksf	2	24	5	2			
Housing (300 1200f ² units)	360 ksf	4	58	13	4			
Office High Density R&D	502 ksf	14	204	44	15			
Retail and Support	50 ksf	1	12	3	1			
Ames Campus Area								
No Uses Under this Alt.	0 ksf	-	-	-	-			
Eastside Airfield Area								
Office High Density R&D	360 ksf	10	147	32	10			
Low Density R&D	891 ksf	25	363	79	26			
Disaster Training	80 ksf	2	28	6	2			
Bay View Area								
Educational/Child Care Uses	500 ksf	12	173	38	12			
Housing (250 1200f ² units)	300 ksf	3	48	11	3			
Office High Density R&D	500 ksf	14	204	44	14			
		-	-	-	-			
Total Uncontrolled	5193	122	1792	390	127			
						Annual Emission Factor	(tong por 1000	cauana
						foot) Assuming 10-year B		square
Adjust for New 1990 Factors		132	1935	421	137			РМ
Adjust for future years	2002	80	1200	210	70			0.013
	2005	69	1075	183	64			0.01
	2010	49	824	168	50			0.00
	2015 2020	35 29	627 538	156 152	37 31		0.0300 0.0293	0.00

ksf = 1000 square feet

Development of Construction Emission Factors Alternative 3

Development Data and Emission Factors for Construction of Land Use Types Associated with the NASA/AMES Research Park Plan - Conformity Analysis.

Land Use Type	ROG	CO	NOx	PM10	Units	
Dormitory/Housing	22.0	70.2	322.9	22.93	lbs/1000 f	ft ²
Hotel	41.6	132.9	611.0	43.4	lbs/1000 f	ft ²
Museum/Exhibit Space	41.6	132.9	611.0	43.4	lbs/1000 f	ft ²
Office Park	55.4	177.2	814.7	57.9	lbs/1000 f	ft ²
Research & Development	55.4	177.2	814.7	57.9	lbs/1000 f	ft ²
Retail	31.8	101.6	467.0		lbs/1000 f	
University	47.0	150.2	690.5	49.0	lbs/1000 f	ft ²

Yearly Adjustment Factors

Year	ROG	СО	NOx	PM
1990	1.08	1.08	1.08	1.08
1995	0.90	0.83	0.89	0.84
2000	0.72	0.59	0.72	0.60
2005	0.57	0.47	0.60	0.50
2010	0.40	0.43	0.46	0.39
2015	0.29	0.40	0.35	0.29
2020	0.24	0.39	0.30	0.24

Total Emissions in Tons Throughout Construction Period

Use	Size Units	ROG	NOx	со	PM10	-
NRP Area:					-	1
Educational Uses	840 ksf	20	290	63	21	
Computer Museum	70 ksf	1	21	5	2	
CASC	390 ksf	11	159	35	11	
Coference Center & Gym	250 ksf	5	76	17	5	
Housing (188 800f ² units)	150 ksf	2	24	5	2	
Housing (300 1200f ² units)	360 ksf	4	58	13	4	
Office High Density R&D	1427 ksf	40	581	126	41	
Retail and Support	75 ksf	1	18	4	1	
Ames Campus Area						
No Uses Under this Alt.	0 ksf	-	-	-	-	
Eastside Airfield Area						
Office High Density R&D	0 ksf	-	-	-	-	
Low Density R&D	781 ksf	22	318	69	23	
Disaster Training	0 ksf	-	-	-	-	
Bay View Area						
No Uses Under this Alt.	0 ksf	-			-	
		-	-	-	-	
Total Uncontrolled	4343	105	1546	336	110	
Adjust for New 1990 Factors Adjust for future years	2002 2005 2010 2015	114 69 60 42 31	1669 1036 927 711 541	363 182 158 145 134	119 60 59 46 34	0.0138 0.2136 0.0364 0.0136 0.0097 0.1637 0.0333 0.0106
	2013	25	464	134	28	
kef - 1000 equara faat						

ksf = 1000 square feet

Development of Construction Emission Factors Alternative 4

Development Data and Emission Factors for Construction of Land Use Types Associated with the NASA/AMES Research Park Plan - Conformity Analysis.

		Emission Factors				
Land Use Type	ROG	СО	NOx	PM10	Units	
Dormitory/Housing	22.0	70.2	322.9	22.93	lbs/1000 ft ²	
Hotel	41.6	132.9	611.0		lbs/1000 ft ²	
Museum/Exhibit Space	41.6	132.9	611.0	43.4	lbs/1000 ft ²	
Office Park	55.4	177.2	814.7	57.9	lbs/1000 ft ²	
Research & Development	55.4	177.2	814.7	0.10	lbs/1000 ft ²	
Retail	31.8	101.6	467.0	33.2	lbs/1000 ft ²	
University	47.0	150.2	690.5	49.0	lbs/1000 ft ²	

Yearly Adjustment Factors

Year	ROG	CO	NOx	PM
1990	1.08	1.08	1.08	1.08
1995	0.90	0.83	0.89	0.84
2000	0.72	0.59	0.72	0.60
2005	0.57	0.47	0.60	0.50
2010	0.40	0.43	0.46	0.39
2015	0.29	0.40	0.35	0.29
2020	0.24	0.39	0.30	0.24

Total Emissions in Tons Throughout Construction Period

Use	Size Units	ROG	NOx	CO	PM10	
NRP Area:						
Educational Uses	800 ksf	19	276	60	20	
Computer Museum	70 ksf	1	21	5	2	
CASC	390 ksf	11	159	35	11	
Coference Center & Gym	185 ksf	4	57	12	4	
Housing (144 800f ² units)	115 ksf	1	19	4	1	
Housing (220 1200f ² units)	265 ksf	3	43	9	3	
Office High Density R&D	202 ksf	6	82	18	6	
Retail and Support	35 ksf	1	8	2	1	
Ames Campus Area						
No Uses Under this Alt.	0 ksf	-	-	-	-	
Eastside Airfield Area						
Office High Density R&D	480 ksf	13	196	43	14	
Low Density R&D	891 ksf	25	363	79	26	
Disaster Training	80 ksf	2	28	6	2	
Bay View Area						
Educational/Child Care Uses	300 ksf	7	104	23	7	
Housing (550 1200f ² units)	660 ksf	7	107	23	8	
Office High Density R&D	1540 ksf	43	627	136	45	
Low Density R&D	200 ksf	6	81	18	6	
Total Uncontrolled	6213	148	2170	472	154	
						Annual Emission Factor (tons per 1000
						square foot) Assuming 10-year Build Out
Adjust for New 1990 Factors		159	2343	510	166	ROG NOx CO PM10
Adjust for future years	2002	97	1454	255	83	
	2005	84	1302	222	72	
	2010	59	998 770	203	66	
	2015 2020	43 35	759 651	189 184	62 60	0.0069 0.1222 0.0304 0.0099 0.0057 0.1048 0.0296 0.0097
ksf = 1000 square feet	2020	55	031	104	00	0.0037 0.1046 0.0290 0.0097

Development of Construction Emission Factors Alternative 5

Development Data and Emission Factors for Construction of Land Use Types Associated with the NASA/AMES Research Park Plan - Conformity Analysis.

		Emission Factors			
Land Use Type	ROG	CO	NOx	PM10	Units
Dormitory/Housing	22.0	70.2	322.9	22.93	lbs/1000 ft2
Hotel	41.6	132.9	611.0		lbs/1000 ft2
Museum/Exhibit Space	41.6	132.9	611.0	43.4	lbs/1000 ft2
Office Park	55.4	177.2	814.7	57.9	lbs/1000 ft2
Research & Development	55.4	177.2	814.7	0110	lbs/1000 ft2
Retail	31.8	101.6	467.0		lbs/1000 ft22
University	47.0	150.2	690.5	49.0	lbs/1000 ft22

Yearly Adjustment Factors

Year	ROG	CO	NOx	PM
1990	1.08	1.08	1.08	1.08
1995	0.90	0.83	0.89	0.84
2000	0.72	0.59	0.72	0.60
2005	0.57	0.47	0.60	0.50
2010	0.40	0.43	0.46	0.39
2010	0.10	0.15	0.10	
2015	0.29	0.40	0.35	0.29
2020	0.24	0.39	0.30	0.24

Total Emissions in Tons Throughout Construction Period

						-			
Use	Size Units	ROG	NOx	со	PM10				
NRP Area:									
Educational Uses	968 ksf	23	334	73	24				
Computer Museum	120 ksf	2	37	8	3				
CASC	500 ksf	14	204	44	14				
Coference Center & Gym	275 ksf	6	84	18	6				
Housing (290 800f ² units)	232 ksf	3	37	8	3				
Office High Density R&D	449 ksf	12	183	40	13				
Retail and Support	77 ksf	1	18	4	1				
Ames Campus Area									
Office High Density R&D	500 ksf	14	204	44	14				
Eastside Airfield Area									
Control Tower	12 ksf	0	5	1	0				
Bay View Area									
Housing (750 1200f ² units)	900 ksf	10	145	32	10				
Retail and Support	100 ksf	2	23	5	2				
Total Uncontrolled	4133	87	1274	277	90				
						Annual Emi		· ·	
Adjust for New 1990 Factors		94	1376	299	98	square foot) ROG	Assuming NOx	TO-year B CO	PM10
5	2002	94 57	854	299 150				0.0362	0.0118
Adjust for future years	2002	57 49	854 764	130	49 43		0.2065 0.1850	0.0362	
	2005	49 35	764 586	130					0.0103
	2010	35 25			39		0.1418 0.1079	0.0288	0.0094
	2015 2020	25 21	446 382	111 108	36 35			0.0268	0.0088
	2020	21	382	108	35	0.0050	0.0925	0.0261	0.0085

ksf = 1000 square feet

NASA AMES DEVELOPMENT PLAN PM10 Construction Emissions

General Construction (e.g., grading and other ground disturbance)

Alternative	Total Developable Acreage	Years of Construction	Daily PM10 Emissions (pounds per day)	Annual PM10 Emissions (tons per year)*
Alt. 2	192	10	979	125.1
Alt. 2	192	10	919	123.1
Alt. 3	125	10	638	81.4
Alt. 4	219	10	1117	142.7
Alt. 5	190	10	969	123.8

* Assumes active construction occurring 70% of time

Equipment and Vehicle Exhaust

	Annual Area of		Maximum PM10 Exhaust
	Construction	Years of	Emissions (tons
Alternative	$(1000s \text{ ft}^2)$	Construction	per year)
Alt. 2	5193	10	6.7
Alt. 3	4343	10	5.9
Alt. 4	6213	10	7.8
Alt. 5	4133	10	4.5

Demolition Activities

Alternative	Total floor Area of Demolition (1000s ft ³)	Years of Demolition	Total PM Emissions per yea	(tons
		_		
Alt. 2	5169	5		0.2
Alt. 3	5169	5		0.2
Alt. 4	5169	5		0.2
Alt. 5	9169	5		0.4

Emission factors based on BAAQMD CEQA Guidelines: Dust = 51 pounds per acre per day Equipment exhaust varies by land use type

Demolition = 0.00042 pounds per ft³ demolished

Total		
Alternative	Annual Area of Construction $(1000s \text{ ft}^2)$	Maximum PM10 Exhaust Emissions (tons per year)
Alt. 2	5193	132.0
Alt. 3	4343	87.6
Alt. 4	6213	150.7
Alt. 5	4133	128.7

Future Year Construction Emission Adjustment Factors

Year	ROG	CO	NOX	PM
1990	1.00	1.00	1.00	1.00
1995	0.83	0.77	0.83	0.78
2000	0.66	0.55	0.67	0.55
2005	0.53	0.44	0.55	0.47
2010	0.37	0.39	0.42	0.36
2015	0.27	0.37	0.32	0.27
2020	0.22	0.36	0.28	0.23

Increase by	8%			
Year	ROG	со	NOX	РМ
1990	1.08	1.08	1.08	1.08
1995	0.90	0.83	0.89	0.84
2000	0.72	0.59	0.72	0.60
2005	0.57	0.47	0.60	0.50
2010	0.40	0.43	0.46	0.39
2015	0.29	0.40	0.35	0.29
2020	0.24	0.39	0.30	0.24

Developed from tables below

Offroad Construction Equipment (Statewide)

Year	Population	ROG	CO	NOX	PM
1990	153729	49.12	223.94	448.50	32.43
1995	161089	43.81	182.82	389.95	26.79
2000	168448	38.51	141.70	331.41	21.14
2005	180482	32.93	120.24	295.20	19.48
2010	188114	23.30	111.37	229.64	15.49
2015	193493	16.92	106.79	169.84	12.02
2020	195188	13.78	105.25	141.74	9.86

Factors (uni ROG	co	r day)	РМ
0.64	2.91	5.83	0.42
0.54	2.27	4.84	0.33
0.46	1.68	3.93	0.25
0.36	1.33	3.27	0.22
0.25	1.18	2.44	0.16
0.17	1.10	1.76	0.12
0.14	1.08	1.45	0.10

*emissions in tons per day

Construction Equip. Adjustment Factors

1990 1995 2000	1.00 0.85	1.00 0.78	1.00	1.00
		0.78	0.02	
2000			0.83	0.79
	0.72	0.58	0.67	0.59
2005	0.57	0.46	0.56	0.51
2010	0.39	0.41	0.42	0.39
2015	0.27	0.38	0.30	0.29
2020	0.22	0.37	0.25	0.24

Heavy Duty Trucks (Santa Clara County)

						-	Factors (uni	t pounds pe	r mı)	
Year	VMTx1000	ROG	со	NOX	PM		ROG	CO	NOX	PM
1990	852000	2.91	23.60	16.96	1.86		0.007	0.055	0.040	0.004
1995										
2000	905000	1.09	9.00	11.02	0.58		0.002	0.020	0.024	0.001
2005	960000	0.91	8.57	9.49	0.40		0.002	0.018	0.020	0.001
2010	1066000	0.90	9.32	9.63	0.36		0.002	0.017	0.018	0.001
2015	1173000	0.94	10.18	10.28	0.36		0.002	0.017	0.018	0.001
2020	1279000	1.01	11.11	11.13	0.39		0.002	0.017	0.017	0.001

HDT Adjustment Factors

Year	ROG	со	NOX	PM
1990	1.00	1.00	1.00	1.00
1995	0.70	0.70	0.80	0.70
2000	0.35	0.36	0.61	0.29
2005	0.28	0.32	0.50	0.19
2010	0.25	0.32	0.45	0.15
2015	0.23	0.31	0.44	0.14
2020	0.23	0.31	0.44	0.14

These account for 14% of construction activity emissions

	UNIT OF	EMISSION FACTORS LBS/CONSTRUCTION PERIOD							
LAND USE	MEASURE	ROC	NOX	(0)	PM10				
RESIDENTIAL Single Family Housing Apartments Condominiums Mobile Homes	1,000 sq. ft. GFA* 1,000 sq. ft. GFA 1,000 sq. ft. GFA 1,000 sq. ft. GFA 1,000 sq. ft. GFA	23.66 21.97 21.30 21.30	347.74 322.90 312.97 312.97	75.62 70.22 68.06 68.06	24.69 22.93 22.22 22.22				
EDUCATION Schools	1,000 sq. ft. GFA	46.99	690.52	150.16	49.03				
COMMERCIAL Business Park Day Care Center Discount Store Fast Food Government Office Complex Hardware Store Hotel Medical Office Motel Movie Theatre Office Resort Hotel Restaurant Shopping Center Supermarket	1,000 sq. ft. GFA 1,000 sq. ft. GFA	55.44 31.87 31.78 55.44 31.78 41.58 55.44 41.58 31.78 31.78 31.78 31.78 31.78 31.78	814.72 466.97 466.97 814.72 466.97 611.04 814.72 611.04 466.97 814.72 611.04 466.97 466.97 466.97	177.17 101.55 101.55 177.17 101.55 132.87 177.17 132.87 101.55 177.17 132.87 101.55 101.55 101.55	57.85 33.16 33.16 57.85 33.16 43.39 57.85 43.39 33.16 57.85 43.39 33.16 33.16 33.16				
INDUSTRIAL	1,000 sq. ft. GFA	32.79	481.88	104.79	34.22				

Table 9-1. Screening Table for Estimating Total Construction Emissions**

**Construction emissions include on-site construction equipment and workers' travel.

 $E = (((Project square footage/1,000) \times (Table 9-1 emission factor))/(Number of days to construct)) E = Daily construction emissions$

For on-site construction equipment and material handling construction emissions, subtract emissions obtained by using screening Table 9-3.

For on-site construction equipment emissions, subtract emissions obtained by using screening Tables 9-3 and 9-4.

Refer to Appendix 9 for methodologies and assumptions used in preparing this table.

These emissions were estimated using energy consumption values provided in Energy and Labor in the Construction Sector, B. Hannon, R. Stein, and D. Serber, Science, 1978, 202:837–847.

Source: 1993. CEQA Air Quality Handbook, South Coast Air Quality Management District. April

NASA AMES DEVELOPMENT PLAN EMISSION FACTORS

Daily Operational Emissions (Area & Mobile)

9-Oct-01 Emissions in pounds per day

	2010 Build Out = 75%				2015 Bu	ild Out =	100%		
	ROG		NOx	PM10		ROG	Ν	Ox	PM10
Alt 2									
Area		1.6	32.9	0.0			2.2	43.8	0
Mobile		84.6	219.8	8 107.9			75.2	255.1	143.9
Total		86.2	252.7	107.9	-		77.4	298.9	143.9
Alt 3									
Area		1.2	27.9	0.0			1.6	37.3	0
Mobile		61.8	160.6	5 78.8			55	186.4	105.1
Total		63.0	188.5	78.8			56.6	223.7	105.1
Alt 4									
Area		2.5	36.2	2 0.0			3.3	48.2	0
Mobile		104	271	133			93	315	177
Total		106.5	307.2	133.0			96.3	363.2	177.0
Alt 5									
Area		2.1	38.2	2 0.0			2.7	51.0	0
Mobile		60	155	5 76			53	179	101
Total		62.1	193.2	2 76.0	•		55.7	230.0	101.0

Total Annual Operational Emissions by Alternative

Emissions in tons per year

	2003 2005 100% Build out							2010 100% Build out				2015 100% Build out				2020 100% Build out				
Scenario I	ROG	NOx	СО	PM10	ROG	NOx	CO I	PM10	ROG 1	NOx	CO 1	PM10 I	ROG N	NOx	CO I	PM10	ROG 1	NOx	CO I	PM10
Alternative 1 Area Sources Mobile Sources (Sat)					0.3 0.2	6.6 0.3	1.0 4.4	0.0 0.1	0.3 0.1	6.6 0.3	1.0 2.8	0.0 0.1	0.3 0.1	6.6 0.2	1.0 1.9	0.0 0.1	0.3 0.1	6.6 0.2	1.0 1.6	0.0 0.1
Mobile Sources (Sun)					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mobile Sources (WD) TOTAL					5.7 6.2	11.1 18.0	142.5 147.9	4.3 4.4	3.3	8.6 15.5	90.1 93.9	4.3	2.2	7.6	61.4 64.4	4.3	2.1	7.2	50.8 53.3	4.3
Mobile					5.88	11.43	147.9	4.4	3.43	8.91	93.9 92.93	4.4	2.26	7.80	63.35	4.4	1.80	7.40	52.35	4.4
Alternative 2					0.4	0.0	1.0	0.0	0.4	0.0	4.0	0.0	0.4	0.0	1.0	0.0	0.4		1.0	0.0
Area Sources Mobile Sources (Sat)					0.4 4.0	8.0 7.7	4.0 99.5	0.0 3.0	0.4 2.3	8.0 6.0	4.0 62.9	0.0 3.0	0.4 1.5	8.0 5.3	4.0 42.9	0.0 3.0	0.4 1.2	8.0 5.0	4.0 35.4	0.0 3.0
Mobile Sources (Sun)					3.7	7.2	92.7	2.8	2.3	5.6	58.7	2.8	1.4	4.9	40.0	2.8	1.2	4.7	33.0	2.8
Mobile Sources (WD)					22.8	44.4	570.7	17.1	13.3	34.6	361.0	17.1	8.8	30.3	246.1	17.1	7.0	28.7	203.4	17.1
TOTAL					30.9	67.4	766.9	22.8	18.2	54.3	486.6	22.8	12.1	48.5	333.0	22.8	9.8	46.4	275.9	22.8
Mobile					30.52	59.36	762.89	22.82	17.82	46.27	482.62	22.82	11.73	40.49	329.01	22.82	9.37	38.42	271.86	22.82
Alternative 3						C 0	1.0	0.0	0.0	<i>c</i> 0	1.0	0.0	0.0	6.0	1.0	0.0	0.0	C 0	1.0	
Area Sources Mobile Sources (Sat)					0.3 3.3	6.8 6.5	4.0 83.1	0.0 2.5	0.3 1.9	6.8 5.0	4.0 52.6	0.0 2.5	0.3 1.3	6.8 4.4	4.0 35.9	0.0 2.5	0.3 1.0	6.8 4.2	4.0 29.6	0.0 2.5
Mobile Sources (Sun)					3.1	5.9	76.3	2.3	1.9	4.6	48.3	2.3	1.2	4.1	32.9	2.3	0.9	5.8	27.2	2.3
Mobile Sources (WD)					16.7	32.4	417.0	12.5	9.7	25.3	263.8	12.5	6.4	22.1	179.8	12.5	5.1	21.0	148.6	12.5
TOTAL					23.4	51.6	580.4	17.2	13.8	41.8	368.7	17.2	9.2	37.4	252.6	17.2	7.4	37.8	209.4	17.2
Mobile					23.06	44.85	576.45	17.24	13.47	34.96	364.67	17.24	8.86	30.59	248.60	17.24	7.08	30.97	205.42	17.24
Alternative 4												1								
Area Sources					0.6	8.8	4.0	0.0	0.6	8.8	4.0	0.0	0.6	8.8	4.0	0.0	0.6	8.8	4.0	0.0
Mobile Sources (Sat) Mobile Sources (Sun)					4.6	9.0	115.6	3.5 3.1	2.7	7.0	73.1 66.3	3.5 3.1	1.8	6.1 5.6	49.8 45.2	3.5	1.4	5.8 5.3	41.2	3.5
Mobile Sources (WD)					28.1	54.7	703.6	21.0	16.4	42.7	445.1	21.0	10.8	37.3	303.5	21.0	8.6	35.4	250.7	21.0
TOTAL					37.6	80.7	927.9	27.6	22.2	64.8	588.5	27.6	14.8	57.8	402.5	27.6	11.9	55.3	333.3	27.6
Mobile					36.96	71.89	923.95	27.63	21.58	56.04	584.51	27.63	14.21	49.03	398.47	27.63	11.35	46.53	329.26	27.63
Alternative 5																				
Area Sources					0.5	9.3	4.0	2.0	0.5	9.3	4.0	2.0	0.5	9.3	4.0	2.0	0.5	9.3	4.0	2.0
Mobile Sources (Sat) Mobile Sources (Sun)					4.0	7.8	100.4	3.0 3.0	2.3	6.1 6.2	63.5 64.2	3.0 3.0	1.5	5.3 5.4	43.3	3.0	1.2	5.1	35.8 36.1	3.0
Mobile Sources (WD)					16.1	31.2	401.2	12.0	9.4	24.3	253.8	12.0	6.2	21.3	173.0	12.0	4.9	20.2	143.0	12.0
TOTAL					24.6	56.2	607.1	18.0	14.6	45.9	385.5	18.0	9.8	41.3	264.1	18.0	7.9	39.7	218.9	18.0
Mobile					24.13	46.92	603.08	18.04	14.09	36.58	381.52	18.04	9.27	32.00	260.09	18.04	7.41	30.37	214.91	18.04

Mobile Sources

Total Emissions in Tons Per Day for all of Santa Clara County based on CARB MVEIG BURDEN Report

		Tons Per Day Emissions										
	2005			2010			2015			2020		
Pollutant Factor	W	S	Weighted	W	S	Weighted	W	S	Weighted	W	S	Weighted
ROG												
Exhaust	9.22	9.45	9.34	5.19	5.39	5.29	3.5	3.62	3.56	3.05	3.14	3.10
RunLoss	3.59	4.25	3.92	2.9	3.53	3.22	2.43	3.03	2.73	2.26	2.84	2.55
Start	15.52	9.54	12.53	8.8	5.69	7.25	5.23	3.67	4.45	3.7	2.76	3.23
HotSoak	5.05	2.98	4.02	3.7	2.18	2.94	2.88	1.7	2.29	2.61	1.54	2.08
NOx												
Exhaust	40.04	37.28	38.66	33.32	31.27	32.30	31.23	29.47	30.35	31.67	29.96	30.82
Start	11.51	10.09	10.80	10.22	8.94	9.58	9.67	8.45	9.06	9.82	8.57	9.20
СО												
Exhaust	172.43	178.04	175.24	146.28	151.76	149.02	132.48	137.65	135.07	134.38	139.65	137.02
Start	181.38	97.89	139.64	119.93	70.25	95.09	83.93	54.93	69.43	72.02	50.35	61.19
PM10												
Exhaust	1.48	1.48	1.48	1.49	1.49	1.49	1.56	1.56	1.56	1.67	1.67	1.67
		2000	2003	2005	2010	2015	2020					
	Burden Data											
	Daily VMT			35830000	38767000	41708000	44644000					
	Daily Starts			8618209	9277197	9936189	10596849					
Using CARB Det	faults		W = winter	, S = sumn	ner	VMT = vel	hicle miles tra	avelled				

Note: MVEIG BURDEN is the motor vehicle emissions inventory model developed and used by the California Air Resources Board to predict county-wide emissions inventories for future years

NASA AMES DEVELOPMENT PLAN EMISSION FACTORS

On-Road Motor Vehicle Emission Factors

Santa Clara County								
	2000	2003	2005	2010	2015	2020		
Burden Info								
Daily VMT (county-w		35830000	38767000	41708000	44644000			
Daily Starts (county-w	vide)		8618209	9277197	9936189	10596849		
	VMT =							
	6.9 mi in 2000 through 2015							
	Weekday		Saturday	Sunday				
Project Info	Unmitigated	Mitigated	Unmitigated	Mitigated	Unmitigated	Mitigated		
Alt 1 Televis	5024	5371						
Alt 1 Trips	5934	35/1	694	680	0	0		
Alt 1 Trips Alt 2 Trips	5934 33527	21517	694 16649	680 15233	0 13159	0 11960		
1		21517				-		
Alt 2 Trips	33527	21517 15721	16649 13831	15233 12734	13159	11960 9845		

Percent of We	ekday Trips					
Saturday	Su	Sunday				
Unmitigate(M	itigated Un	mitigate M	itigated			
12%	13%	0%	0%			
50%	71%	39%	56%			
57%	81%	44%	63%			
47%	67%	36%	51%			
61%	102%	52%	86%			

In typical year -Saturdays = 52 + ~5 = 57 (16%) Sundays = 52+12 = 69 (19%) Weekdays 365 -(57+69) = 239 (65%)

						ms/start)					
Pollutant Factor	Emissions in tons per day for entire county				Pollutant Factor	2000	2003	2005	2010	2015	2020
ROG					ROG						
Exhaust	9.34	5.29	3.56	3.10	Exhaust	grams/mi		0.24	0.12	0.08	0.06
RunLoss	3.92	3.22	2.73	2.55	RunLoss	grams/mi		0.10	0.08	0.06	0.05
Start	12.53	7.25	4.45	3.23	Start	grams/start		1.32	0.71	0.41	0.28
HotSoak	4.02	2.94	2.29	2.08	HotSoak	grams/start		0.42	0.29	0.21	0.18
NOx					NOx						
Exhaust	38.66	32.30	30.35	30.82	Exhaust	grams/mi		0.98	0.76	0.66	0.63
Start	10.80	9.58	9.06	9.20	Start	grams/start		1.14	0.94	0.83	0.79
СО					СО						
Exhaust	175.24	149.02	135.065	137.02	Exhaust	grams/mi		4.44	3.49	2.94	2.79
Start	139.64	95.09	69.43	61.19	Start	grams/start		14.71	9.31	6.34	5.24
PM10					PM10						
Exhaust	1.48	1.49	1.56	1.67	Exhaust, Reintrained	grams/mi		0.44	0.44	0.44	0.44

Conversion Factors pounds to tons = /2000 grams to pounds = *454

0 1

Note:

County-wide mobile source emissions in tons per day were converted to unit emission factors (in grams per mile or grams per day) using county-wide vehicle activity (I.e., daily vehicle miles traveled and daily vehicle starts).