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The ability to rapidly identify UAS in the field has emerged as a critical need for the integra- 

tion of small UASs into the national airspace and counter-uas operations. This paper proposes 

an architecture for rapid retrieval of UAS information leveraging NASA’s current Unmanned 

Aircraft System (UAS) Traffic Management (UTM) system. The proposed architecture uti- 

lizes UTM components: FIMS (Flight Information Management System), USS (UAS Service 

Supplier), and vehicle registration and model database in order to provide assessment of the 

UAS reported in the field including the ability to distinguish between participating and non- 

participating UTM actors. Detailed system descriptions are provided and preliminary results 

from field tests conducted during UTM TCL (Technical Capability Level) 3 are discussed. It 

is found that 94% of the remote ID look-ups resulted in positive identification. The average 

time of a look-up is found to be 1.2 seconds. Negative identification cases are examined and 

recommendations on the next steps to advance UAS remote ID are provided. 

 
I. Introduction 

By 2024, the commercial drone market is estimated to reach 17 billion US dollars [1]. Much of this growth can be 

attributed to significant venture capital investment over the last several years coupled with more capable UAS platforms 

targeting information and value-add services. Agriculture applications, for example, continue to drive market demand in 

the areas of crop monitoring, spraying, and soil and crop health. UAS package delivery is projected to save up to 50 

billion US dollars as a result of 50 million drone deliveries per day [2]. 

With the potential of millions of drones simultaneously accessing the airspace in the near future, there is significant 

concern regarding the ability to distinguish participating from non-participating actors in the Unmanned Aircraft System 

(UAS) Traffic Management (UTM) system. There have been increasing reports of criminals and organized crime 

leveraging advancements in drone technologies in order to surveil targets [3], deliver contraband to prison inmates 

[4], and smuggle narcotics across borders [5]. Recently in Staten Island, NY, a hobbyist unwittingly flew a UAS into 

airspace where a Blackhawk UH-60M assigned to the 82nd Airborne Division was located [6]. The quadrotor collided 

with the Blackhawk causing damage to the main rotor blade. 

In response to these events, Counter-UAS or C-UAS has emerged as a critical need in both the public and private 

sectors [7]. Although legal challenges abound [8], there has been recent venture capital investment in companies 

such as Citadel Defense Co. and Securus Technologies [9]. Over 230 counter-UAS products currently exist or are 

under development worldwide spanning a range of technologies including radar, active and passive optics, acoustics, 

electromagnetic emissions, and magnetic field detection. While counter-UAS technologies continue to make inroads 

with respect to detection of vehicles in cluttered environments (for example, an urban setting), rapid UAS identification 

and the ability to distinguish participating from non-participating actors in the UTM system remains a significant 

challenge. For comprehensive, end-to-end counter-UAS solutions, four components are required (collectively referred 

to herein as DIAD and depicted in Fig. 1): (1) Detect UAS; (2) Identify UAS; (3) Assess safety and risk metrics; (4) 

Defeat UAS (disable or thwart mission objectives). 
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The Detect block refers to process by which a collection of phenomenological data is acquired by one or more 

sensors (active or passive) and processed via sensor fusion or other techniques in order to locate and track a potential 

drone as it traverses its flight path. The block labeled Identify, which is the primary focus of this paper, constitutes 

the point in the flow where information is gleaned from the detect block and provides registration and/or position 

information to a public safety USS (discussed below) to ‘look-up’ or acquire corresponding information in the UTM 

system. The information provided by the UTM system could include vehicle performance specifications, past flight data 

including detailed trajectory and planning information, current and future flight plan information and owner contact 

details. 

Historical information could be useful in order to predict anomalous behavior. While it is not known the type of 

traffic patterns that may emerge∗ as the UTM system unfolds, machine learning techniques could be used to identify in 

near real-time unusual flight patterns arising from witting or unwitting actors. For example, package delivery trajectories 

may follow relatively predictable patterns given a set of known parameters such as vehicle type, time of year, location, 

weather, and economic metrics. At the same time, delivery routes may be located near assets vulnerable to a potential 

UAS threat that would require rapid intervention to defend. 

Assessment, the third block, comprises the garnering and processing of all relevant information from the detect 

and identify blocks as well as additional information regarding the asset to be protected. Risk metrics are evaluated 

and a decision is made as to how to defeat the potential threat, if any. This leads to the Defeat block where a list of 

counter-UAS options are made available. It is quite possible that one such option could be simply making contact 

with an unwitting operator bringing attention to the perceived threat. Further discussion of detect, assess, and defeat 

(including the associated legal challenges) is beyond the present scope. 

 
 

Fig. 1    Detect Identify Assess Defeat (DIAD) 

The primary contributions of this paper are as follows: (1) initial architecture for remote ID in the context of the 

UTM system, (2) description of the preliminary prototype deployed, and (3) initial assessment of the system used in 

UTM TCL3 field tests conducted February through June 2018. The remainder of this paper is as follows: In Section II, 

a brief description of the problem and relevant background information on the NASA UTM project is presented. In 

Section III, the initial remote ID architecture and scenarios are discussed. The main results are presented in Section IV 

and summary in Section V. 
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II. Background and Previous Results

By 2021, the combined number of commercial and hobbyist UASs could reach 6 million [10]. The scale, type, risk, 

and increasing complexity of the potential UAS operations would likely overwhelm the existing Air Traffic Management 

(ATM) system. To address this challenge, NASA developed an initial concept termed Unmanned Aircraft System (UAS) 

Traffic Management (UTM) in 2015 [11] which provided a research platform to test and integrate innovative strategies 

∗Traffic patterns will likely be driven by market need and regulatory requirements which are currently evolving. 
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and solutions. In collaboration with the FAA, UTM has evolved and consists of a suite of services [12] to aid the 

management of complex UAS operations in uncontrolled (Class G) airspace. It establishes safe, efficient, and secure 

mechanisms for UAS operators to share flight operation intent and receive common situational awareness. The elements 

of UTM consist of: (1) USS (UAS Service Supplier) which is the entity that receives flight operations from a UAS 

operator and provides support for deconfliction, conformance monitoring, and communication with FIMS; (2) FIMS 

(Flight Information Management System) which is the centralized gateway of information between the USSs and FAA; 

(3) SDSP (Supplementary Data Service Supplier) which is the entity that provides data or services to USSs or UAS 

operators. Further description of the UTM system and its interplay between ATC services can be found in [12]. 

In 2018, NASA worked with six test sites to demonstrate UTM Technical Capability Level (TCL) 3 which explored 

the following elements: (1) Moderate Population; (2) Moderate Traffic Density; (3) Suburban Applications; (4) Mixed 

Operations; (5) Vehicle to Vehicle Communication; (6) Public Safety Operations. The test sites were located in Alaska, 

North Dakota, Nevada, New York, Texas, and Virginia. 

In support of the UTM project the Vehicle Registration and Model Database (VRMD) was created to enable the 

storage and retrieval of detailed vehicle-specific information for use in trajectory performance analysis and potential 

counter-UAS applications. The total number of manufacturers that currently exists in the database is 168 and the total 

number of distinct vehicles types (available to select as part of the registration process) is 474. This includes both 

publicly available vehicles and custom vehicles (vehicles built or customized for this test or are otherwise not publicly 

available). As an example, Fig. 2. depicts the breakdown for vehicle class, MTOW (Maximum Take-Off Weight), 

maximum velocity, and maximum endurance. In the histogram subplots, UAS categories defined in [13] are also shown. 

Each vehicle type has associated with it over thirty model properties which can be queried in real-time via the VRMD 

API. 

As part of UTM TCL3 field test (across the six test sites), approximately 124 vehicles registered via the NASA 

VRMD system. The registered vehicles include vehicles that were reserved for backup and vehicles that failed and 

were replaced during the course of preparation for the testing events. Sixteen of the vehicles were used for simulation. 

Registration was facilitated by a web-portal made publicly available and partners from the test sites were provided access 

through NASA’s access and identity control system. Prior to performing any testing, all vehicles that were anticipated 

to fly had to register and provide detailed vehicle model specifications. The process of registering a vehicle involves 

selecting the vehicle type from a vehicle list (containing the 474 vehicle types) and entering additional vehicle instance 

(the realization of a vehicle type) information. Upon its creation, VRMD issues a universally unique identifier (version 

4 UUID) termed UTM Vehicle Identification Number (UVIN). 

 

 III. UTM Remote ID System 

 

A. Architecture 

The remote ID architecture that was implemented in UTM TCL3 is shown in Fig. 3. The primary objective of the 

remote ID concept is to test and validate a list of scenarios where identification of a vehicle is required by an authorized 

entity working near the operation. An example of this scenario is when a police officer observes a UAS flying overhead 

and requires the following: 

1) Identification of the UAS owner and contact 

2) Vehicle properties including class (fixed-wing, quad, etc.) 

3) Current flight plan, vehicle speed and heading, and future operations 

4) UTM state of the corresponding flight plan, e.g. ROGUE, NON-CONFORMING, etc. 

Given the above information, the officer may assess the situation and choose the appropriate counter-UAS measure. It is 
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important to note that a counter-measure might be as simple as contacting the owner/operator and conveying that the 

vehicle should not be there. If the owner/operator, ‘turns the vehicle around’ then that mission was effectively ‘defeated’ 

from the public safety officer’s point of view. 

Three test sites conducted one or more of the test scenarios discussed below. Each test scenario involves (1) a 

UAS to be remotely identified and zero or more UASs nearby that may also be simultaneously broadcasting drone 

identification information, (2) a public safety USS, (3) a public safety user who performs the remote UAS identification 

and validates the results of the tests, and (4) a USS that receives the original flight plan for the UAS to be identified (note 

that certain tests which do not include vehicle registration and/or proper flight plan submission to a USS excluded this 

component). A public safety USS is a USS that has been granted by FIMS the PUBLIC_SAFETY role (indicated by a 

dashed arrow in Fig. 3.). Bound to this role are a number of public safety permissions enabling it to request information 
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Fig. 2 UTM Vehicle Registration and Model Database (VRMD) Summary. At the time of this writing, the 

database contains 474 distinct vehicle types that operators can select from during the registration process. Each 

vehicle type has associated with it over thirty model properties which can be queried in real-time via the VRMD 

API. 

 

 
from other USSs and query the VRMD to obtain detailed vehicle-specific information. A public safety user is a person 

who is registered with a public safety USS and has relevant credentials/authorization to communicate with it using a 

suitable device (tablet, phone, etc) over the public internet. Test sites provided the appropriate hardware and software 

for both the UAS to be identified and the public safety user (the sensors are described in Section IV). 

UAS remote ID is a multi-step process which we now describe. There are eight steps which correspond to the labels 

in Fig. 3. 

Step 1: A UAS is detected by one or more sensors corresponding to the Detect block in Fig. 1. This includes 

any additional information such as the broadcast of position and UVIN (registration) data. 

Step 2: After acquiring the information, the Vehicle Identification Device (VID)† transmits an HTTP GET 

request to a public safety USS. 

Step 3: If the information received contains a UVIN, the public safety USS requests information from the UTM 

Vehicle Registry and Model Database (VRMD). The public safety USS has specialized roles that enable 

it to access required vehicle information including make, model, owner contact information, and other 

properties. 

Step 4: The response from VRMD is returned indicating whether the vehicle has been found or not. If found, 

additional vehicle-specific information is provided. 

Step 5: The public safety USS sends a request to the USS Discovery Service. The USS Discovery Service 
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†In this paper, the device that detects the vehicle and transmits the information to the public safety USS is referred to as the VID. However, in 

general this could be any system and need not be a portable device. 



8  

 

 
 

Fig. 3    UTM Remote ID Flow Diagram 

 
 

receives the request and retrieves the ‘owning’ USS instance (highlighted in red in Fig. 3). This request 

is based on the UVIN and/or reported 4d position estimate of the UAS as determined by the VID (Detect 

block in Fig. 1). An illustration of this process for two overlapping USS instances is shown on the left 

side of Fig. 4. A USS instance is a specific realization defined by a bounding rectangle. A USS may 

instantiate zero or more USS instances to support its missions. 

Step 6: The public safety USS then performs an inquiry to the ‘owning’ USS to retrieve additional information 

such as the current flight operation submitted (GUFI), current UTM state, position and velocity of the 

UAS (if identified), and future flight operations. Depending on the scenario, the ‘owning’ USS instance 

many need to be selected from a list of candidate USS instances. This is illustrated on the right side of 

Fig. 4. UTM operation states include states such as ACTIVE, ROGUE, NON-CONFORMING, AND 

CLOSED. 

Step 7: The public safety USS assembles all relevant pieces of information and performs Drone Observation 

Resolution (DOR) - a process where it provides its ‘best’ estimate of the observed vehicle and its status 

with respect to the UTM ecosystem. This could be challenging when there exists multiple overlapping 

USSs and multiple operations overlapping in time and space. In addition, position updates and other 

messages could be used to fine-tune the estimate. 

Step 8: The DOR is assembled and returned to the VID for display to the public safety user. 

 

B. Remote ID Test Scenarios 

Having described the general flow of information, the remote ID test scenarios that were considered‡ as part of 

UTM TCL3 testing are now discussed. As indicated above, not all paths in Fig. 3. are traversed since some scenarios 

do not, for example, involve the broadcast of a UVIN to the VID. When the positions of the vehicle or the VID are 

referred to WGS-84 [14] is assumed. 
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Scenario 1: Valid UVIN; flight plan & observation consistent 

The UAS transmits a valid UVIN to the VID and its coordinates are also estimated by the VID§. The 
‡Not all of these scenarios were fully field tested. 
§In the event that the VID is unable to provide an estimate, the position of the VID itself could be used as an estimate provided the detection

range is small relative to the UAS movement capabilities. 
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Fig. 4 [Left]: Overlapping USS instances. The UAS location transmitted by the VID is located in a region of 

intersection between two USS instances. Both USS instance IDs are returned to the public safety USS. [Right]: 

VID position reported contained in operation (identified by a GUFI) associated with USS instance B. 

 
 

public safety USS receives the UVIN and the vehicle coordinates. DOR determines 

ï UVIN is valid 

ï Flight plan submitted is consistent with the observation 
Scenario 2: Valid UVIN; flight plan & observation inconsistent 

The UAS transmits a valid UVIN to the VID and its coordinates are also estimated by the VID. The 

public safety USS receives the UVIN and vehicle coordinates. DOR determines: 

ï UVIN is valid 

ï Flight plan submitted is inconsistent with the observation (for example, a rogue operation) 
Scenario 3: Valid UVIN; no flight plan submitted 

The UAS transmits valid UVIN to the VID and its coordinates are also estimated by the VID. The 

public safety USS receives the UVIN and vehicle coordinates. DOR determines 

ï UVIN is valid 

ï There is no flight plan submitted by the operator of the vehicle within a time range that 

coincides with the observation time 

Scenario 4: Unregistered (or expired) UVIN 

The UAS transmits a UVIN to the VID and its coordinates are also estimated by the VID. The public 

safety USS receives the UVIN and vehicle coordinates. DOR determines 

ï There does not exist an entry in the vehicle registration database or that the UVIN has expired 
Scenario 5: No transmission; valid flight plan 

The UAS does not transmit a UVIN to the VID, however, its coordinates are estimated by the VID. 

The public safety USS receives the vehicle coordinates. DOR determines 

ï There exists at least one flight plan that is consistent with the transmitted coordinates 

ï There are valid UVINs of the vehicle(s) whose flight plan(s) is (are) consistent with the 

observation and notes lack of transmission 

Scenario 6: No transmission; no flight plan 

The UAS does not transmit a UVIN to the VID, however, its coordinates are estimated by the VID. 

The public safety USS receives the vehicle coordinates. DOR determines 

ï There does not exist a flight plan that is consistent with the transmitted coordinates 

ï Determines this is a non-participating vehicle 

 

IV. Main Results 
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In this section, the results from the remote ID field tests which were performed as part of the UTM TCL3 campaign 

are now discussed. Remote ID tests were performed at the North Dakota, New York, and Virginia test sites. Data from 

the NY and ND test sites are presented below and include Scenarios 1 and 5 described above. Fig. 5. summarizes the 

vehicles that participated, including several performance specifications. 
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Vehicle Test-
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Manufacture
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Model MTOW Endurance Range Cruise 
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39.7 [lb] 
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30 
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55 [lb] 

 

60 [min] 

 

4.9 

[mi] 
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NY 

 

DJI 

 

S1000 

 

24 [lb] 

 

12 [min] 

 

3.6 

[mi] 

 

9.72 

[kts] 
 

 

 

NY 

 

DJI 

 

M100 

 

7.9 [lb] 

 

10 [min] 

 

2.5 

[mi] 

 

9.72 

[kts] 

Fig. 5 Remote ID: Vehicle Specifications. A total of five vehicles took part in remote ID test scenarios during 

the UTM TCL3 field demonstrations (February-June 2018). 

 
 

North Dakota Test Site: All remote ID tests occurred at Camp Graphton North located near Devils Lake Municipal 

Airport (KDVL). Each test included three vehicles simultaneously operating near one another. Two vehicles (Altavian 

Nova F700 and SharperShape A6) always flew as ‘participating’ vehicles, that is, they were registered and filed flight 

plans with a USS. One vehicle (Vapor) served as the ‘non-participating’ or intruder vehicle. 

Two remote ID systems were examined, both using µAvionix ADS-B technology. The first was a passive system 

where local area receivers were deployed and continually monitored for UVIN and position information transmission. 

This system could be deployed to locations where persistent surveillance and situational awareness is required providing 

an additional data and verification layer. For example, if a vehicle unwittingly did not properly file a flight plan but was 

able to transmit its UVIN and position information, the system could determine the vehicle type, its properties, and 

contact the owner to assess whether or not this constituted a bad actor in the system. 

In the second system, a handheld receiver was developed to provide a public safety officer to actively identify a 

vehicle. The receiver had internet connectivity and was able to query the public safety USS once UVIN and position 

information was received (see Fig. 3). Fig. 6. depicts one of the remote ID test flights that occurred on April 17, 2018 

around 14:50 GMT. 

New York Test Site: All remote ID flights were conducted at the NY UAS test site at Griffiss International Airport in 

Rome, NY. In each test, a DJI S1000 and M100 (see Fig. 5.) equipped with various sensor packages were flown. Three 

UAS Remote ID methods were tested: (1) ADS-B (using µAvionix), (2) Secure Integrated C2, and (3) Infrared Light 

Beacon Encoding. 

In the first method, µAvionix Ping 2020 ADS-B transceivers were installed and programmed to transmit UVIN and 

position information over 978MHz. Multiple ground-based ADS-B receivers received the transmission and a smart 

phone application was used by the public safety officer to interface with the public safety USS. 

The second method, termed secure integrated C2, leveraged the Internet Engineering Task Force (IETF) Host 
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Identification Protocol (HIP). A primary advantage of HIP is its separation of identity and location as opposed to 

traditional TCP/IP architectures which combine them based on IP addresses leading to non-verifiable identities subject 

to spoofing and other forms of attack. Instead, identity is established based on 2048-bit RSA public keys. 

In the third method, infrared light beacons were installed on each UAS and were programmed to transmit UVIN data 

at 1Hz. The public safety officers used handheld IR receivers connected to a smart-phone application that interfaced 

with the public safety USS. Generally, this technology required the public safety officers to be in closer proximity to the 

UAS being identified (see Table 3). 
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Fig. 6 Remote ID Look-Up Test: The blue trajectory depicts the A6 (participating multi-rotor) simulating a 

scenario of filming a sporting event. Also depicted in blue is its geo-fence. The Vapor (intruder helicopter), 

depicted in red, takes off and breaches the geo-fence of the A6. The public safety officer becomes aware of the 

intruder and uses its VID to identify the intruding vehicle. Two look-ups are shown by the white lines indicating 

the positions of both vehicle and public safety officer at the times of look-up. The average distance 179.45 [m] and 

time 1.13 [s] are computed over all data from the ND test site. Also shown is the Nova (participating fixed-wing) 

in yellow. 
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ADS-B 
(71%) 

The primary metrics analyzed included detection and 

look-up latencies as well as the distances from the vehicle 

to the vehicle identification device (VID) at times of look- 

up. Remote ID detection latency is defined as the time 

duration (measured in seconds) from the initial detection 

by the relevant sensor suite to its acquisition of a UVIN, 

position, or other information required for a remote ID 

look-up. In Fig. 3., this is the time duration between steps 

1 and 2. Remote ID look-up latency is defined as the time 

duration (measured in seconds) from the initiation of the 

  

 
 

Infrared (5%)  

 

 

 

Secure C2 

(24%) 

HTTP request by the VID to its corresponding HTTP 

response. In Fig. 3., this is the time duration between 

steps 2 and 8. A time of look-up is defined as the time 

(GMT) that step 2 occurs. 

Fig. 7 Detection Technology Breakdown 

Overall, there were a total of three technologies examined in TCL3 Remote ID experiments¶. ADS-B based 

technology (using µAvionix hardware) was tested most frequently (generated the highest number of lookup data). The 

second was secure C2 and the third was IR-based technology. Fig. 7. depicts this breakdown based on the percentage of 

look-ups by technology. 

A total of 12 flights (12 distinct GUFIs) were flown for remote ID (8 at the NY test site and 4 at the ND test site) 

generating a total of 326 look-up data points. Table 1 shows the minimum, maximum, average, and standard deviation of 

the look-up latency times for all UTM remote ID look-ups. The last column, positive identification percentage, indicates 

the percentage of the 326 look-ups that resulted in a positive identification of an observed vehicle. A look-up is said 

to result in a positive identification (in Scenarios 1 and 5) if the public safety USS returns to the VID an HTTP 200 

or success message along with the vehicle properties, flight plan, owner contact, and other information. A look-up is 

said to result in a negative identification if (in Scenarios 1 and 5) the public safety USS returns to the VID an HTTP 

404 or not found message when in fact the observed vehicle is registered and has a corresponding accepted flight plan 

submitted to a USS. Of the 326 look-ups, 306 or 93.87 percent resulted in a positive identification. Twenty look-ups or 

 

 

Total 

Look-ups 

 

Minimum 

Latency [s] 

 

Average 

Latency [s] 

 

Maximum 

Latency [s] 

Standard 

Deviation 

[s] 

 

Positive ID 

Percentage 

326 0.40 1.20 9.49 0.86 93.87 

Table 1 Overall Look-up Latency Metrics. The minimum, maximum, average, and standard deviation of the 

latency times for all UTM remote ID look-ups are computed. This included whether or not the look-up resulted 

in a successful identification. In the last column the percentage of successful look-ups is reported. 

 
6.13 percent resulted in a negative identification. 

It is found that the average look-up latency time was 1.2 [s] which is reasonable given that the HTTP request must 

ultimately traverse several network connections to disparate components (public safety USS, vehicle registration, USS 

discovery service, etc.). In addition, each component also has its own database connection which in most cases was an 

Amazon Web Service RDS (Relational Database Service). The maximum time was found to be 9.49 [s]. Longer look-up 

times were likely due to public safety USS server performance issues (see step 2 in Fig. 3.) due to unanticipated heavy 
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loads. Specifically, it was found that the number of connections to the database (AWS RDS) exceeded the allowable 

limit. 

Typically, this number is adjusted to optimize database performance. In addition, optimizing the connection pool 

maintained by the application could also have impact on performance. Other sources of delay could be due to the 

vehicle registration service which used a third party authentication service that is known to result in intermittent delays 

of several seconds. 

¶DSRC was used at the Virginia test site, however, data analysis of those flights are not included in this paper. 
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Let R be fixed and suppose the vehicle is observed at t∗. Let the cost functional be defined by J[u] = 
tf 

1 · dt, 

Look-up Times 
140 
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Fig. 8 Look-Up Time Histogram. The average look-up time was 1.2 [s]. The maximum (one occurrence) was 

9.4 [s]. The standard deviation was 0.86 [s]. Delays were likely due to increased traffic on the public safety USS 

or vehicle registration service and their dependencies. 

 

 
 

It is also depicted in Table 2 the detection 

latency statistics. This varied by technology 

since each one has different processing steps 

that enable the information (position and UVIN) 

to be processed and properly formatted for an 

HTTP request in step 2. 

 

Minimum 

Latency [s] 

 

Average 

Latency [s] 

 

Maximum 

Latency [s] 

Standard 

Deviation 

[s] 

0.001 1.542 5.200 1.120 
Table 2 Overall Detect Latency Metrics. The detect latency 

is defined by the time elapsed from when the detector acquires 

the relevant information to the time it becomes available to the 

software component that initiates the look-up. 

All of the negative identification cases (6%) 

were testing Scenario 5, that is, the scenario 

where only an estimate of the vehicle position 

is provided. When the VID submits the position 

estimate, it must also provide a bounding radius 

which is used to search for vehicles known by UTM to be within that bound at the time of the detection. There are a 

number of challenges that could potentially result in a negative identification. First, the estimate of the vehicle position 

and time needs to be sufficiently accurate. Second, the bounding radius must take into consideration the time delay 

associated with the look-up (see Fig. 8). 

To illustrate the second issue, let ∆T denote the total delay, that is, the sum of the detection and look-up latencies for 

a particular look-up. Suppose that the dynamics of the vehicle are described by x = f t, x, w where w represents a 

non-autonomous wind field component. Let xp denote the components of x that describe the position of the vehicle. 

Suppose at time t∗, the VID detects the vehicle, that is, it generates an estimate for xp  t∗   = xp
∗ .  Upon selecting a 

bounding radius, R, there are two possibilities at the time of look-up as shown in Fig. 9. If the vehicle at time t∗ + ∆T is 

inside of the region (see A ) then a positive identification results. If the vehicle at time t∗ + ∆T is outside of the region 

(see B ) then a negative identification results. 

Although there exists a sufficiently large radius, R, that guarantees the vehicle is contained within the region at the 

time of look-up, it may result in multiple vehicles being identified especially in the case of high density operations. 

An optimization problem naturally emerges: find the smallest radius such that the region is guaranteed to contain the 

vehicle to be identified at time t∗ + ∆T . The solution depends on a number of factors including the vehicle dynamics and 

wind conditions. One approach to solve this problem is to appeal to optimal control theory which we briefly describe. 
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( ) 
p f p p denotes the complement of the open ball of radius 

that is, a minimum time cost functional. The optimal control problem reads: find u∗ = argmin J[u] su
t∗

bject to 

the constraint that x (t ) ∈ Bc(x∗ ; R), where Bc(x∗ ; R) 
u ∈U 

R about 

xp  t∗  = xp
∗ . This is known as a free-time, fixed-endpoint problem where the control minimizes the time to reach the 

destination. The minimum time, t∗
f 
, is clearly a function of the bounding radius, R. To find the smallest possible R, a 

search must be performed in order to compute R∗ = argmin{t∗
f 
(R) : t∗ + ∆T  < t∗

f 
(R)}. That is, R∗ is the smallest radius 
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such that at the time of look-up (t∗ + ∆T ) the vehicle is within the region. 

 

 
 

 

Fig. 9 Vehicle Position at Time of Look-Up. In the case of A, the vehicle is within the circular region with 

radius R and results in a positive identification. In the case of B, the vehicle is outside of the circular region with 

radius R and results in a negative identification. 

 
 

Also of interest is the distribution of distances 

from the vehicle to the VID or public safety offi- 

cer at times of look-up. Overall, 26,588 vehicle 

position data elements were collected over 97 

min of total flight time and linear interpolation 

was used to compute the distance from the vehi- 

cles to the public safety officers. Table 3 depicts 

the quartiles and the minimum and maximum 

statistics for the distances (in meters) based on 

the technology. The IR technology had the lowest 

 

Technology Min Q1 Q2 Q3 Max 

ADS-B 45.81 59.47 82.50 141.82 194.73 

Infrared 54.52 57.33 66.72 73.18 84.24 

Secure C2 48.18 57.96 88.78 111.70 163.95 

Table 3 Distance at Times of Look-Up by Technology [m] 

range since the receiver had to be in closer proximity to the vehicle in order to obtain a detection. 

To summarize the results, there were a total of 12 flights, 326 look-up data points and a 94% success rate. The 

sensor technologies used had a significant impact on the data and success rate. For example, while the IR technology 

approach is promising, further research is needed regarding its detection range, susceptibility to environment factors, 

and vehicle orientation (Euler angles) and speed during a particular mission. In addition, if the public safety officer 

is required to manage simultaneously two different devices (one for detection and one for interfacing with the public 

safety USS) this may impact the failure rate adversely especially when pointing accuracy on a moving target is required. 

ADS-B technologies had the highest number of look-up tests and the highest range (maximum distance) from the public 

safety officer at the time of look-up. This is likely due to the maturity of the technology (for example, the IR and secure 

C2 approaches was custom built specific to this test) and its general widespread familiarity. 

While this analysis represents an important first step in remote ID using the UTM system, it is recommended 

that future remote ID experiments break the experiment into more focused subsets in order to analyze separately the 

individual components. This includes sensor technologies, communication protocols, and the various s/w and network 
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components that comprise Fig. 3. 

 
V. Summary 

This paper discussed the UTM remote ID framework and examined initial data collected during the UTM TCL3 field 

tests that were conducted February through June 2018. The proposed architecture utilized UTM components: FIMS 

(Flight Information Management System), USS (UAS Service Supplier), and vehicle registration and model database in 

order to provide assessment of the UAS reported in the field including the ability to distinguish between participating 

and non-participating UTM actors. Detailed system descriptions were provided and preliminary results from field tests 
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were discussed. This included an analysis of the detect and look-up latencies and distances between the vehicles to 

be identified and the public safety officers. Future work should focus on (1) developing requirements for the latency 

metrics measured in this study which may depend on numerous factors including risk, geographic location, population 

density, etc., (2) the emerging technologies that enable remote identification of vehicles at longer distances, and (3) a 

more comprehensive and thorough analysis of the various UTM components and their network interconnections that 

play a critical role in remote ID. 
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