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NASA’s UAS Traffic management (UTM) -TCL-4 focuses on safely enabling large scale small UAS oper- 

ations in low altitude airspace in dense urban environment. This paper presents an operational architecture 

of an autonomous unmanned aerial vehicle operating in TCL4 . An on-line path planning scheme is proposed 

which can effectively plan for feasible paths in real time with TCL-4 constraints. The real time path planner 

avoids other obstacles and other UAVs flying in the shared airspace. An end-to-end system is designed and 

tested in high fidelity Reflection simulation architecture which demonstrates the feasibility of the approach. 
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I. Introduction 

The need for Unmanned Aerial Vehicles(UAVs) for different commercial applications has been realized by dif- 

ferent industries like package delivery,1 inspection,2 security3 and disaster management.4  More and more vehicles  

are being built for complete autonomous operations which can operate beyond visual line of sight (BVLOS).5 The 

industry is in the midst of a transitional phase where active research is pushing UAVs to be used in many commercial 

applications.  A rapid rise of autonomous UAVs  will bring a sea change to the industry.  As we see a rapid growth  

in UAV technology the need to regulate them becomes increasingly important. Since these vehicles shares the same 

airspace with their bigger counterparts it is absolutely imperative to include small UASs in the National Airspace 

System (NAS). 

Current airspace management systems are looking to incorporate high density of UASs traffic, operating BVLOS 

and sharing the airspace with larger aircraft. NASA’s UAS Traffic Management (UTM) research initiative is being de- 

signed precisely for handling this kind of operations.6 NASA has taken a series of activities under the UTM umbrella 

increasing in complexity to address the issue called “Technology Capability Levels (TCL)”. Starting with operations 

in sparsely populated rural environments the complexity of operations in dense urban regions is being tacked in each 

increasing TCL. For details see NASA UTM website. The current progress made under different national air cam- 

paigns with different technological partners is described in.7 It describes the series of flight tests concluded recently 

under TCL-3 in sparsely populated urban regions. 

UTM TCL4 will focus on UAS operations in higher density urban areas.8 Higher desnisty urban operations include 

operations in high population density areas, as well as multiple unmanned vehicles operating and sharing the same 

airspace. Low altitude autonomous operation of small UASs in populated urban areas will require some fundamental 

technological as well as infrastructural developments. Autonomous operations of UAS in urban environments requires 

guaranteed safe and orderly operations of UASs. UAV operations must be contained within approved flight boundaries 

and within stipulated time. Only highly autonomous UAS will be able to accomplish this task in a safe and efficient 

manner. 

A range of challenges are encountered by UAVs operating in city environment. Unmanned aircraft system navi- 

gation in urban environments requires handling of static as well as dynamics objects. Dynamic objects can be other 

co-operating UAVs operating in the same environment, or other non-co-operative objects. The planning system should 

be able to handle all the different contingency options. 
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Mission Concepts and Use-Cases 

Take-off 

Climb out 
Use Case 2: Emergency 

(High-priority Flight) 

4 Off-nominal 

cases 

Fire dept. 

Emergency 
1 

Landing 2 
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Approach 

Descent 

Landing 

Emergency 

Landing Site 

Destination 

Landing Point 

TTT AS TIM - NASA Ames Research Center, Moffett Field, CA, 

June 27, 2018. 
10 

Start and 

Return Point 

Use Case 1: 

Point-to-Point 

(a) A point to point UAV operation example in dense urban operations. 

Mission Concepts and Use-Cases 

Known (A Priori) Ground Object 

Unknown Ground Object 

Adverse Area (e.g., Wind or Traffic) 

‘Approved’ UTM Volume 

‘Approved’ UTM Contingency Volumes 

Nominal Trajectory 

Energy-Optimized or Wind-Adverse Trajectory 

          Failure Trajectories 

TTT AS TIM - NASA Ames Research Center, Moffett Field, CA, 

June 27, 2018. 
11 

(b) Approved volumes by UTM is designated in Green and shows that it is approved before the flight. 

Figure 1.  Typical UTM TCL-4 Operation Scenario 
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Concepts of TCL-4 are under development. Federal Aviation Administratin(FAA), working with NASA has pub- 

lished Unmanned Aircraft Systems Traffic Management (UTM) Concepts and Architecture Overview,9.10 The UTM 

architecture will define “identify services, roles/ responsibilities, information architecture, data exchange protocols, 

software functions, infrastructure, and performance requirements to enable the management of low-altitude uncon- 

trolled UAS operations”,9.10 

Several proposal are being considered for conflict mitigation in TCL 4. The NASA SAFE50 study11 aimed to 

develop an autonomous UAS for notional last 50 feet of operations. The study aimed to find on-board autonomy 

requirements for autonomous UAS operating BVOLOS. On-board path planning is one of the main requirements that 

were identified for autonomous UAS operations. This paper aims to develop the on-board path planning capabilities 

required for a vehicle to safely operate in UTM. 

This paper aims to develop an end to end system which can be implemented within the current framework of UTM 

operations. Some of the technology developed in this context will enable UAS operations in urban environments. 

The paper will show in simulation a complete system which will avoid obstacles and other vehicles communication 

with DSRC or V2V protocol. Another contribution of the paper is to specify the hardware requirements for vehicles 

operating in TCL4. 

 
A. Motivation 

Package delivery1 is one of the motivating examples for UAS operations in dense urban environments. A basic  

requirements for package delivery is a point-to-point BVLOS operation. As shown in figure 1a, a typical package 

delivery flight will consist of take-off from designated launching site, travel to a designated delivery point and return 

back to the launching site. The vehicle have to encounter known/unknown objects along the way and other vehicles 

operating in the vicinity. Figure 1a shows the typical setup in an urban environment where the vehicle have to share 

same airspace with other vehicles (emergency high priority flight) and has designated emegency landing sote. 

It is assumed that the vehicle will have to operate inside an UTM approved volume during the whole operation. 

As shown in 1b the typical TCL-4 operation will have approved volume and contingency volumes.The contingency 

volumes, which can be used only during emergency include local parks or rooftops. See current UTM operations and 

concepts at,9.10Autonomous vehicles are required to travel in the approved volumes and use the contingency volumes 

as and when required. 
 

             

 

 
The main contribution of this paper is the local planner which ensures safe operation of an autonomous UAV 

inside the UTM approved volume to fly. Figure 2 shows a typical scenario for point to point operation in a dense 

urban environment. With in the UTM approved volumes an autonomous UAV has to avoid other UAVs sharing the 

same airspace or other unknown objects that may enter the airspace. It is assumed that other vehicles participating in 

UTM TCL-4 and sharing the same airspace will be equipped with DSRC/V2V communication exchanging relevant 

information for safe navigation. A tree based local planner is developed in this paper which develops collision free 

trajectories in this shared airspace. We describe an end-to-end simulation of an UAV safely traversing from one point 

to the next using a recursive local planner which plans obstacle free trajectories for the vehicle. 

 
 

 
 (a) A Typical dense urban environment where we propose UAV flight. (b) Cartoon representing different contingencies that has to be mitigated

Figure 2.  Task of the local planner 
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The rest of the paper is arranged as follows: Section II describes the UTM approved volumes and the requirements 

for a local planner. Section III describes the tree based planning algorithm. Section IV describes in details the 

implementation of the method in the Reflection simulation architecture. Section V shows the simulation results for 

both static and dynamic obstacles. Finally Section VI concludes the paper with some recommendation for future 

research and flight tests. 
 

II. Technical Approach 

A complete autonomous operations includes a vehicle traversing autonomously from point A to point B, avoiding 

obstacles along the way.For vehicles participating in UTM, each operator has to submit a flight plan to UTM. The 

flight plan consists of a volume with specific time information. 

It is assumed that the an operator will have an approved volume to fly before take off. An approved volume 

contains a list of waypoints along the way and an enclosed volume around the waypoint which have been approved 

by UTM to fly. In UTM-TCL4 it is envisioned that more than one UAVs have to share the same volume in dense 

urban landscapes. UTM will only control the density of vehicles in a particular volume but individual vehicles are 

responsible for object detection and collision avoidance. 

This work focuses on autonomy developments of a single vehicle rather than co-operative control of all the vehicles 

participating in the environment. This is important because the same air space can be shared by different vehicles with 

different capabilities but obeying some basic requirements. Those requirements are still being evaluated but V2V 

communication of neighboring vehicles is one of the integral components of this infrastructure. 

 

 
      

 

 

 

 
 

(a) Approved Flight Plan

 
 

(b) Approved volume along the flightplan

Figure 3.  Approved Flight Plan and volume. 

Figure 3 shows a typical approved plan. Figure 3a shows the result of an A* algorithm that defines the path that 

a particular UAV has to fly. Figure 3b shows an example of typical approved volume from UTM. This is based on 

local terrain of an urban environment, a typical cluttered polygonal environment. The goal of the planner is to plan 

feasible trajectories along the approved volume with all the constraints included. We introduce a recursive tree based 

local path planning approach to handle all the different uncertainties. 

The main functions of the local planner is to compute and evaluate different possible trajectories the vehicle could 

take at a particular time. Given the list of the waypoints the vehicles has to follow, the function of the local planner is 

to provide a feasible trajectory for the internal controller to follow. 

III. Recursive Tree based Local Planning 

Motion Planning is an active area of research and major breakthroughs have been achieved in the community in 

the last few years. Sampling based methods, including probabilistic roadmaps and rapidly exploring random trees 

have been a particularly useful for different robotic path planning problems. We use a tree based planning approach 

for the current work.12 The major advantages of using a tree based planning method are: a) branches of the tree can 
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Algorithm 1: The optimal Kinematic Tree algorithm. 

1 Function :KinematicTree*(xinit); 

2 G.init(xinit); 

3 G.extended xinit ; 

4  G.not extended φ 

5 for i=1 to K do 

6 xlowest cost choose state(G); 
 

7 Extend(G,xlowest cost ) 

8 end 

9 Return 

10 Function :Extend(G,xlowest cost); 
 

11  Xnext states Steer(xlowest cost ,U, ∆t); 

12 for all xstate Xnext states do 

13 if collision free path(xlowest cost, xstate) then 
 

14 G.add node(xstate); 

15 G.add edges(xlowest cost, xstate, u)) G.extended(xlowest cost)) G.not extended ← G/G.extended; 

16 G.cost ← cost(xlowest cost )+ g(xlowest cost , xstate)+ h(xstate)) 

17 end 

18 end 

19 Return G 

20 Function :Choose State(G); 

21  xlowest cost f ind min cost(G) 
 

22 Return x lowest cost; 
 

 

be precomputed and thus save a lot of computation cost. b) different cost functions can be easily explored by a tree 

based approach. 

The tree based planning approach is described in details.12 We briefly describe the algorithm here for completeness. 

The basic algorithm is included in Algorithm 1. The local planner based on the tree algorithm incrementally builds 

upon a tree G = (V, E) defined by its set of vertices V and edges E. The set of vertices encodes the inertial positions 

(V = x1, x2, x3 x i) and the edges set consists of the path defined by joining the corresponding vertices (Ei, j = 

xi, x j ). The tree is initiated at the vehicles start position. From this start configuration the tree is expanded by 

computing a set of reachable configurations. This set of reachable states can be pre-computed from a set of motion 

primitives described lates. 

Xnext states define the all the possible configurations. The configuration (xlowest cost) is picked from the robot’s 
configuration space (Xnext states) which has the minimum cost function. The node that is selected for expansion at each 

stage minimizes the cost  f̂i  = ĝi + ĥi , where the total cost  f̂i  for the ith node is the sum of the cost of navigating to 
that node ĝi = gi (cost of traveling to a node is always known) and ĥi  is a heuristic estimate of the remaining cost to 

reach the goal. In case of robot navigating a obstacle field environment the cost ĥi  is typically the remaining Euclidean 

distance between the node and the goal. The main purpose of the heuristic cost function is same as that served by a 

heuristic cost function in an A* algorithm; i.e. to grow the tree in relevant areas of the search space. If the path joining 

them is collision free then that new point is added to the vertex set V and the edge joining the points is added to the 

edge set E. This process is repeated until the goal is reached. 

The tree based planning algorithm has been proved to be complete, i.e. it will find a path if a path exists. Also 

the tree based planner has been proved to be optimal up-to resolution if the cost function is admissible (heuristic cost 

function does not overestimate the actual cost).12 Different costs can be incorporated in this formulations. Method to 

incorporate cost of translation that minimizes the jerk is discussed in the next section. 

The Recursive Tree algorithm builds upon the tree algorithm at each time step (Algorithm 2). it is assumed that the 

local controller will be able to follow the developed plan closely. Thus current position is used to re-initialize the tree 

at each time. Note that continuity is always maintained in the path as the current position is assumed to be a subset 

of the path generated by the planner at the earlier time step. At each iteration a new tree is being built with current 

position and desired heading. The desired heading is calculated based in the next waypoint. This is done at each step 

to avoid any drift in the final solution. 

The Recursive tree algorithm sets a local goal at each iteration. A local goal is the next waypoint from the list of 

{ } 
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= 

approved way-points. The algorithm explores all the paths connecting the current position to the local goal using the 

tree based planner and selects the path that corresponds to the minimum cost. The local goal is shifted to the next 

way-point when the current position reaches the local goal. 

The Recursive tree algorithm is run at 1 Hz. It is assumed that the on-board controller is able to follow the 

generated trajectory during that time. As the algorithm develops new trajectories the current position of the vehicle is 

used to re-initialize the tree at each iteration. 

Algorithm 2: The Recursive Kinematic Tree algorithm. 
 

1 while LocalGoal is not Goal do 

2 while Xcurrent state is not LocalGoal do 

3 Main 
4 Xcurrent state xlowest cost prev ; 

5 Function :KinematicTree*(Xcurrent state); 
6 xinit Xcurrent state 

7 G.Re-initialize(xinit); 

8 G.extended xinit ; 

9 G.not extended φ 

10 for i=1 to K do 

11 xlowest cost choose state(G); 
 

12 Extend(G,xlowest cost ) 

13 end 

14 Return 

15 Function :Extend(G,xlowest cost); 
 

16 Xnext states Steer(xlowest cost ,U, ∆t); 

17 for all xstate Xnext states do 

18 if collision free path(xlowest cost, xstate) then 
 

19 G.add node(xstate); 

20 G.add edges(xlowest cost, xstate, u)) G.extended(xlowest cost)) G.not extended ← G/G.extended; 

21 G.cost ← cost(xlowest cost )+ g(xlowest cost , xstate)+ h(xstate)) 

22 end 

23 end 

24 Return G 

25 Function :Choose State(G); 

26 xlowest cost f ind min cost(G) 
 

27 LocalGoal nextwaypoint 

28 Return x lowest cost; 

29 end 

30 Return 

31 end 

32 Return 
 

Figure 5 shows the tree based trajectory generator for a particular time. All the branches are given random wight 

and the planner picks the branch with the minimum cost. Branches that are outside the approved volumes are assigned 

high costs so they are not picked for expansion at the next iteration. How the local plan is generated from the set of 

motion primitives is discussed next. We will begin by defining the motion primitives. 

 
A. Motion Primitives 

A set of motion primitives which are used to construct the local plan at each step is calculated. Defining the cost 

function of jerk, the local path is computed which minimizes the jerk for a translation. 
 

∆t 

C L dt (1) 
0 

where, 

D
o
w

n
lo

ad
ed

 b
y
 N

A
S

A
 A

M
E

S
 R

E
S

E
A

R
C

H
 C

E
N

T
E

R
 o

n
 J

an
u
ar

y
 1

0
, 
2
0
1
9
 |
 h

tt
p
:/

/a
rc

.a
ia

a
.o

rg
 |
 D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
9

-0
9
5
8

 

http://arc.aiaa.org/


d3x 
L = ( 

dt3 
) 

d3y 2 
 

(2) +( 
dt3 

) 

Using Euler equations it can shown that the solution of the differential equation is of the form 

 

      

 

 

 

 
 

2 

x(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (3) 

y(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + b5t5 (4) 

These equations can be solved for different initial and final conditions. The X direction is fixed with the Xb  

body frame of the muticopter. The y-direction gives the lateral position. Thus different positions and velocity can be 

encoded in this pre-computation of branches. With initial position set at the origin, several initial and final velocities 

can be encoded in this formulation. Different final position in the lateral directions lead to possible deviation of the 

trajectory from the center-line (equation 5 to equation 10). The center line depicts the ideal path which is directly 

found joining the approved way-points. 

 
 

(a) Motion Primitives with energy cost function
 

 (b) Motion Primitives with cost function depicting nearness to an obsta-

cle. .

Figure 4. Motion primitives with different cost function (Darker color indicates higher cost) 

x(t = 0) = 0 y(t = 0) =0 (5) 

x˙(t = 0) = vinitial y˙(t = 0) =0 (6) 

x¨(t = 0) = 0 y¨(t = 0) =0 (7) 

x(t = ∆t) = x final y(t = ∆t) =yfinal (8) 

x˙(t = ∆t) = v final y˙(t = ∆t) =0 (9) 

x¨(t = ∆t) = 0 y¨(t = ∆t) =0 (10) 

For details of minimal jerk based trajectory calculations for multi-copters see,13.14 Figure 4 shows the motion 

primitives developed for different final conditions. Figure 4 a shows the path cost as a function of energy expended 

for the maneuver. Straight line motion intuitively has lower cost than other possible candidates. Figure 4 b shows cost 

function as a distance to neighboring obstacle. Similarly other cost functions can be encoded in the motion primitives. 

Other costs includes are distance to other objects as well as distance to the approved UTM volume. Branches which 

end outside the UTM approved volume are assigned a very high cost. This ensures that those branches are never 

picked for expansion in the Extend routine (in algorithm 1). 

D
o
w

n
lo

ad
ed

 b
y
 N

A
S

A
 A

M
E

S
 R

E
S

E
A

R
C

H
 C

E
N

T
E

R
 o

n
 J

an
u
ar

y
 1

0
, 
2
0
1
9
 |
 h

tt
p
:/

/a
rc

.a
ia

a
.o

rg
 |
 D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
9

-0
9
5
8

 

http://arc.aiaa.org/


 

  

These motion primitives are used to build up the tree at each instant of time. The set of branches are precomputed 

to save a lot of computational cost at run time. The set of branches Xb consists of all possible changes in position and 

velocity given the set of possible inputs U, and is formed by concatenating the vectors of all the branches: 

∆Xb = [∆xb ... ∆xb ] (11) 

The selected node with position xi and time ti is expanded using the pre-computed branches. Wind speed is 

obtained from the forecast for the position and time of the selected node and is assumed to be constant over the time 

interval ∆t, and a set of new candidate nodes is computed as 

 

1111 IJKL

Xi,new = Xi,current 1 + Ti∆Xb + wi∆t1 (12) 

where Ti, defined as 

 
cos(θi)cos(ψi) sin(φi)sin(θi)cos(ψi) −cos(φi)sin(ψi) cos(φi)sin(θi)cos(ψi)+ sin(φi)sin(ψi) 

cos(θi)sin(ψi) sin(φi)sin(θi)sin(ψi) −cos(φi)cos(ψi) cos(φi)sin(θi)sin(ψi) −sin(φi)cos(ψi) 

 
(13) Ti = 

 

−sin(θi) sin(φi)cos(θi) cos(φi)cos(θi) 

 

is the transformation which rotates the set of precomputed branches to the local frame defined by the orientation 
angles [φi, θi, ψi]. Cost function based on wind is not considered in this paper, but can can be used as an input to the 

cost function.15,16 

 

 
      

 
 

 

 
 

(a) Local Plan generated inside the approved volume

 
 

(b) Top view of the local plan that was selected.

Figure 5.  Local Plan generated at each instant of time

Figure 5 shows the local plan being developed at a particular instant of time. Motion primitives which goes outside 

the approved volume are given a very high cost. They are still kept in the tree structure in the event that no other paths 

are available. 

The output of the local planner is a list of waypoints. This is then given to the multi-copter at each instant of time. 

It is assumed that the controller is able to faithfully follow the plan.  The output that is received from the simulator  

is the current position of the multi-copter. The current position is a part of the list of local waypoints given in the 

previous time step. The current position is then used to generate the next local plan. Sufficient over-lap is maintained 

so that there is no arbitrary jump in the solution. 

Figure 6 shows the successful development of local planner along the path of the vehicle. It is assumed that the 

current position of the vehicle belongs the the local plan developed at the earlier time step. How far along the local 

plan the vehicle actually gets will depend on the controller. But the local plan generation doest not depend on any 

particular time requirements on the controller. To ensure continuity sufficient points are taken from the planner in the 

previous time step so that there are no abrupt jumps in the overall path. It is important to generate the local plans at 

each instant so that there is no drift in the final solution. 

The proposed architecture was first tested in MatLab as shown in figures 5 and 6. Once satisfacutory performance 

was generated, the entire solution in tested in the realistic simulation developed here at NASA called Reflection.17 
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Top view of the local plan that was selected. (b) Local Plan generated inside the approved volume 

 
Figure 6.  Local Plans generated along the path. 

 

 

IV. Implementation 

The Reflection Architecture is a real time component based plug and play architecture for rapid development of 

embedded vehicle systems developed here at NASA Ames.17 This system has been used in may applications at NASA 

and we have used this system with UTM to build an end-to-end simulation of UTM TCL4 simulation. 

Detailed design and implementation of a fully autonomous and programmable autopilot system for small scale 

autonomous unmanned aerial vehicle (UAV) aircraft using the Reflection architecture is describe here.18 In this paper 

we discuss in details the subsystems that are relevant to the Local Planner. 

Figure 7 shows the overall Reflection architecture for the overall system. With the Reflection plug-and-play archi- 

tecture, simulation and hardware can be mixed on the fly for in-situ simulation testing of hardware components at any 

level of granularity. As shown in figure 7, the same architecture can be be used interchangeable with simulation or 

flight tests. 

The main components of the Reflection software architecture can be divided into sensing and perception, decision 

making and planning and control. The sensing and perception unit consists of SLAM processing, Object detection 

and vehicle sensors. The planning and control subsystem comprises of path planning subsystem, local planner and 

autopilot. The Decision making module is responsible for the overall behavior of the system. The Flight Management 

System(FMS) handles the overall data management (figure 7,). 

The control system of the architecture is an instance of the Autopilot System (AP) class as shown in figure 7. The 

AutopilotSystem class is responsible for communicating with the rest of the Reflection system and maintaining the 

two main objects in the system: the FMS (flight management system) and the Controller. The FMS is responsible for 

maintaining the list of commands which specify FMS mode instructions. The mode instructions are used by the FMS 

to provide targets to the controller. The controller is responsible for implementing the control loops which control the 

aircraft through the vehicle?s actuators. 

The Decision Making(DM) module is responsible for the overall behavior of the UAS.19 The DM communicates 

with the rest of the UTM system and ensures the overall feasibility if the system. From several feasible Trajectories 

(1,2,...n) the DM decided the final waypoints the vehicle has to fly. Together with the list of way-points and the 

approved volume around them, the Local Planner module generates feasible trajectories inside the approved volume 

avoiding other vehicles sharing the same volume. 

 
A. Local Planner Subsystem 

The Local Planner system is implemented as a stand alone plug-in component in the Reflection Architecture. The 

system is designed in such a way that it can be easily be integrated with current autopilot systems. 

Figure 8 shows the top level classes in the Local planner Subsystem. The local planner class gets inputs from the 

communication class which we have designed. It is assumed that other vehicles sharing the same airspace should be 

able to communicate through DRSC/V2V communication in close range. We have simulated the V2V communication 

using socket programming. All the vehicles sharing the same airspace are registered with the V2VCommunication 

class which communicates the position of all the vehicles in close proximity. 
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The raw position measurements through V2V communication is not useful for the local planner. Rather a predic- 

tion of the states of the surrounding vehicles are important for the local planner. The Generate prediction class takes 

inputs from the time stamped positions and velocity of the near-by vehicles and generates possible trajectories for all 

the vehicles. 

From the Vehicle Sensor Facade the planner obtains the Vehicle state and uses it to initialize the tree. The 

ExpandTree() routine generates the motion primitives and the GenerateBranchesRotated() transforms the generated 

branches to the desired orientation according to equation 12. 

The cost function for each branch of the local planner calculates the collision cost of each vehicles from the possible 

trajectories. The cost function also calculates cost of individual trajectories which includes local vehicle conditions. 

The local planner calculates the best trajectory for the UAS to follow based on minimization of the cost function. 

The local planner subsystem runs at 1Hz. V2V communication module also runs at 1 Hz. The overall system runs 

at much higher rate of 30Hz. This entire system was tested in different scenarios in an urban landscape. 

 
V. Simulation Results 

 

      

 

 

 

 

 
 (a) List of waypoints in Downtown Indianapolis (Google Earth).

 
 (b) Reflection software simulating the same environment with UTM ap-

proved volume.

Figure 9.  Algorithm being tested in reflection architecture. 

We simulated a point to point BVLOS UAS operation in a urban environment. Downtown Indianapolis in the 

WholeSale District offers an example of typical urban neighborhood for UTM TCL-4 operations. Here we consider 

a BVLOS flight between two points as shown in Figure 9. The waypoints are shown as red line in figure 9a. It is 

assumed that the UTM will approve a volume around the list of waypoints before the flight. 

The Reflection simulation architecture simulates the downtown Indianapolis as shown in figure 9b. The urban land- 

scape rendering and collision model was created for large section of downtown Indianapolis, see20 for details.Figure 

9b shows the screen shot from Reflection software and the UTM approved volume for the given list of way-points. 

The task of the local planner is to navigate a UAS through this approved volume avoiding static and dynamic 

obstacles. 

It is assumed that the prior permission to fly was obtained and the Decision maker module has selected the current 

list of waypoints and this has been passed on to the Planning subsystem. Now the task of the local planner is to safely 

guide the vehicle along the approved UTM volume while avoiding static and dynamic obstacles which were not know 

to the system a-priori. 

A. Static Obstacle avoidance 

To test the efficacy of the the Tree based planner a static obstacle avoidance is tested in the scenario described above. 

A static obstacle is introduced in the middle of the approved volume as shown in figure 10 a. It is assumed that the 

local planner detects the obstacle either through its on-board sensors or is communicated though UTM SDSPs. 

D
o
w

n
lo

ad
ed

 b
y
 N

A
S

A
 A

M
E

S
 R

E
S

E
A

R
C

H
 C

E
N

T
E

R
 o

n
 J

an
u
ar

y
 1

0
, 
2
0
1
9
 |
 h

tt
p
:/

/a
rc

.a
ia

a
.o

rg
 |
 D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
9

-0
9
5
8

 

http://arc.aiaa.org/
http://arc.aiaa.org/
http://arc.aiaa.org/


 
 

  
(a) Tree based trajectory generations (b) All the branches of the tree are inside the UTM approved volume 

 
Figure 10. Static Obstacle Avoidance in UTM TCL4 implemented in Reflection 
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Figure 11. Trajectory and Velocity solution using the tree based trajectory planner 
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The local planner subsequently plans paths for the UAS which satisfies all the UTM constrains as well as avoids 

the static obstacle. Figure 10a shows the screen shots of local planner being generated in Reflection. The orange cube 

in figure 10a is the static obstacle that the tree planner avoids. The selected path is shown as a string of green dots 

along the way. 

Figure 10b shows that solution obtained from the recursive tree planner remains within the approved UTM volume 

while avoiding the obstacle. Thus all the constraints of the planning problem have been successfully addressed. 

Figure 11 shows the complete trajectory and the velocity of the vehicle along the path. Figure 11 also shows all 

the possible trajectories generated by the recursive tree planner along the path. It is evident from the plot how the 

trajectory solution evolve with time. The planner finally chose a path that satisfied all the constraints. 

The planner was thus shown to successfully plan static obstacle free paths for vehicles participating in UTM. The 

recursive tree based trajectory was next tested to handle dynamic obstacles. 

 
B. Dynamic Obstacle avoidance in TCL4 

We have developed multiple vehicle simulation in the Reflection architecture. The vehicles are controlled indepen- 

dently using their own individual control systems. All the vehicles can follow a desired set of waypoints indepen- 

dently.It is assumed that all the vehicles participating in UTM will communicate with each via V2V communication. 

We assume that we plan for only one vehicle. We call this vehicle the planning vehicle (UAV0) for the rest of the 

discussion. All the other vehicles follows a set of pre-approved way-points. 

 
1. V2V Communication 

As mentioned in the Section IVA the V2V communication class communicates with all the connected vehicles using 

a TCP/IP protocol. The vehicles do not communicate their entire trajectory or intent. Each V2V message contains 

position and velocity information time stamped for each vehicle. The message also contains desired clearance radius 

for each vehicle. 

The planning vehicle (UAV0) maintains a list of all the connected vehicles. The local planner estimates the position 

of the all the other vehicles at the current time by interpolating the position with velocity information. Also the local 

planner estimates the possible position of the vehicle during the next projected time interval. These two positions 

along with the clearance radius is used to define an avoidance volume for each of the connected vehicles (figure 12a). 
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(a) Avoidance Volume (b) Avoidance volume implementation inReflection

Figure 12. Estimated Volume to avoid for other UAVs communicating over V2V 

Figure 12b shows the implementation in Reflection. The black dot in the figure is the position of each vehicle that 

was received by the vehicle at tsend. The blue dot represents the position interpolated at the time that corresponds to 

the planner. And the white translucent volume is the avoidance volume for each vehicle. The recursive tree planner 

needs to avoid all the avoidance volumes while maintaining the UTM constrains. 

http://arc.aiaa.org/


 
 

2. Results 

We again consider the same scenario SectionVA. The waypoints are shown as red line in figure 9a. But in this case 

we consider flight by two UAVs starting at opposite ends of the the approved waypoints. It is assumed that the UTM 

will approve a volume around the list of waypoints before the flight. 

Our planning UAV (UAV0) follow the same set of waypoints as described in sectionVA. While the other UAV(UAV1) 

follows the reverse set of way-points. Both the UAVs share their position and velocity using the V2V communication 

described above. 
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 (a) Tree based trajectory generations (b) All the branches of the tree are inside the UTM approved volume

Figure 13. Dynamic Obstacle Avoidance using V2V communication and Recursive Tree Planner 

Figure 13 shows the screenshot of the successful implementation of the dynamic obstacle avoidance using the 

recursive tree algorithm in Reflection. As seen from the figure the developed branches of the tree avoid the entire 

avoidance volume of the other UAV(UAV1). Also, like the earlier case the developed branches maintains the UTM 

constrains as well. 

(a) De-conflicted Trajectories of the two UAVs
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(b) Separation distance between the two UAVs.

Figure 14.  Implementation in reflection 

Figure 14 shows the collision free trajectories of the two UAVs sharing the same approved UTM volume. The 

separation distance between the two UAVs are also plotted. The minimum separation distance between the UAVs 

maintains the clearance radius requested by UAV1 through the V2V messages. 

Figure 15 shows the trajectory and velocity of the planning UAV (UAV0). Figure 15 also shows the evolving 
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Figure 15. Trajectory and Velocity solution of UAV0 using the tree based trajectory planner 

 

 
trajectories of UAV0 with time. The recursive tree planner thus successfully finds de-conflicted trajectories with other 

UAVs sharing the same UTM approved volume. This technology enables vehicles operating in BVLOS UTM TCL-4 

flights with on-board real time re-planning capabilities and sharing the same volume with other similar vehicles. 

 
VI. Conclusion 

This paper has described in details a end-end system where multiple vehicles can fly autonomously in an UTM 

approved airspace. The paper describes a tree based trajectory planning algorithm which takes into considerations 

the UTM volume boundaries and other UAVs flying in and sharing the same airspace. The vehicles communicates 

over vehicle to vehicle communicating protocol and shares position and velocity information among themselves. The 

paper has demonstrated an entire operational architecture of successful implementation of the on-board path planner 

in Reflection Software. Simulation flight tests in downtown Indianapolis were described in the test results. 

Future endeavors will continue to test more vehicles in the same simulation environment. Maximum number of 

UAVs and their communication requirements will be tested as we add more vehicles in this scenario. Flight tests are 

also planned to test this on-board path planner as a part of TCL-4 flight tests. 
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